
Effects of Professional Development on Programming
Knowledge and Self-Efficacy

Yolanda J. Reimer
Dept of Computer Science

University of Montana
Missoula, USA

yolanda.reimer@mso.umt.edu

Michael Coe
Cedar Lake Research Group

Portland, USA
michael@cedarlakeresearch.com

Lisa M. Blank
PJW College of Education and

Human Sciences
University of Montana

Missoula USA
lisa.blank@umontana.edu

Jeffrey Braun
Dept of Computer Science

Montana Tech
Butte, USA

jbraun@mtech.edu

Abstract— This Research Full Paper presents the effects of
our weeklong Professional Development class on the
programming skills of nineteen high school teachers, their
confidence in programming, and their confidence for teaching
programming. A primary objective of the CS10K and CS For All
initiatives is the education of K-12 teachers in aspects of
computer science and computational thinking so they can teach
CS courses in their schools. Many of these educators have
degrees in disciplines other than computer science, such as math,
science, and business, so preparing them to teach CS is a
challenge, particularly since most K-12 teachers have limited
time to devote to learning new curriculum. This study describes
how we managed a short course in computational thinking and
programming to a group of high school teachers. We illustrate
through survey data assessment and evaluation that significant
gains in skill level and self-efficacy can be realized within a short
but intensive week of face-to-face training. Five months later we
follow-up with the same cohort to see if earlier achievements
remain evident over time. Discussion throughout the paper
identifies strengths and weaknesses of the training week, which is
useful to others planning to undertake similar PD offerings.

Keywords— Professional development; CS10K; CS For All;
computational thinking; programming skill; K-12 instruction

I. INTRODUCTION
Our work within the CS10K initiative focuses on

broadening participation in computer science (CS) across the
rural state of Montana. Like much of the country, Montana has
a strong demand for graduates with technical and computer
programming skills; some estimates suggest the number of
those graduating with CS degrees from Montana public
colleges and universities meets only 10% of statewide demand
[1]. Our project unites three flagship institutions along with a
Tribal College in a statewide collaboration. The goal is to
increase the number of qualified high school CS teachers by
providing professional development (PD) opportunities and
sustaining resources like curriculum plans, assignments,
schedules, etc.

Many high school teachers who are recruited or volunteer
to teach CS courses are educated primarily in other disciplines
(e.g., Math, Science, Business). While they are a highly
motivated group, these teachers often lack prerequisite
experience with programming and computational thinking, and
so require opportunities to develop their skill sets as well as
resources to maintain them over time. Educating more K12
teachers in CS will result in an increase in the number of CS
courses taught in high schools, and subsequently more students
will be exposed to the area and will give further consideration
of its career prospects.

As we prepared to offer our first professional development
class for high school teachers from around the state, we looked
to the experiences of others. We observed another PD
workshop offering the same curriculum we would use, and we
attended discussions about how to organize PDs effectively
and the importance of logistics and community building [2, 3].
We considered much of what we learned and made some
specific decisions about our own PD that ranged from having
meals catered on-site rather than going off campus to
eliminating certain curriculum topics that seemed too advanced
for a one week session.

This paper provides an overview of our PD, including the
curriculum we covered and why, who our participants were,
and the weeklong schedule we followed. However, the main
focus of the report is the impact our PD had on participants’
computational thinking abilities, programming competency,
and self-efficacy. Some of our findings coincide with results
from Price et al.’s study evaluating the impact of the Beauty
and Joy of Computing (BJC) CSP PD his team offered [4].
Price shows significant improvement in participants’ perceived
ability to teach CSP across four categories: Content, Inquiry,
Equity and Differentiation. While these categories are geared
towards the goals of the BJC curriculum and our are centered
differently, there is certain overlap between our two projects.
In broad terms, both studies show improvement in the
confidence level of participants across various spectrums, and
our study further illustrates that these gains can be realized
after only one week of face-to-face training, and then sustained
somewhat over a longer period of time.

978-1-5386-1174-6/18/$31.00 ©2018 IEEE

II. PD OVERVIEW
Our professional development class covered the Joy and

Beauty of Computing (JBC) curriculum. JBC is a semester
long 3-credit college course first piloted at Montana State
University (MSU) during the fall of 2013 to forty students. It
has since grown in popularity and size, and is now regularly
taught to hundreds of students around the state. Despite having
similar titles, JBC should not be confused with Berkeley’s
Beauty and Joy of Computing (BJC) course [5]. Two key
differences between them include: 1) students learn Python in
JBC and Snap! in BJC, a visual programming language; 2)
JBC incorporates a variety of web resources, including the
online text “How to Think Like a Computer Scientist” [6]; in
contract, "Blown to Bits" [7] is used to teach students about
social implications of computing in BJC.

The goal of JBC is to give students who are interested in
exploring computer science a gentle introduction to
computational thinking and a high level understanding of the
field: where it has been, where it is now, where it is going, and
what careers are possible. As such, JBC provides students with
an alternative pathway into the curriculum. This multi-pronged
approach is necessary as entry-level CS courses are often
populated with a somewhat homogeneous group of students
who have taught themselves about computers since an early
age. When novices and self-taught students are lumped
together, the experience can be intimidating to the beginners,
perhaps causing them to harbor the misconception that they are
significantly behind other students and sowing doubts as to
whether they have chosen a viable major.

A. Curriculum
The curriculum for the 15-week version of JBC, including

suggested schedule, topics and assignments, is freely accessible
online [8]. JBC focuses on computational thinking using the
Python programming environment, but it also integrates a wide
variety of computing topics into course discussions and
assignments in order to engage a more diverse student body.
We spent considerable time developing a Moodle supplement
for our PD course, which participants relied on heavily
throughout the week and can continue to access. This
supplement contains curriculum schedules, assignments, text
readings, exams, solutions, samples of student work,
participant contact information, etc. We also started a Moodle
forum for teachers so that they could share tips and resources
related to teaching with one another. This rich repository of
information is a critical resource for participants as they teach
JBC at their own local high schools, now and in the future.

A key challenge of our PD class was not only familiarizing
participants with core aspects of computational thinking and
programming, but also discussing how participants can teach
this course to their own students. Throughout the week we
talked about how to assess computer programs and
assignments, administer exams, and integrate new, contextually
relevant activities. We routinely asked participants to submit
their solutions to various exercises covered in class, which we
then reviewed together as a group. This allowed us to discuss
problem solving techniques, highlight common mistakes, and
illustrate how participants might grade student solutions on
their own going forward.

B. Participants
Nineteen K-12 teachers from across the state of Montana

enrolled in our weeklong PD class. Participants came from
rural communities with extremely small populations (e.g.,
Stanford, pop. 384), as well as from larger cities and towns,
including Missoula (pop. 72,364) where the workshop was
held. Some traveled as long as 7 hours to attend the class.
Eighteen of our participants teach at the high school level
(grades 9-12), and one teaches middle school. Some participant
schools are located on Native American reservations. The
classes our participants typically teach include Business, Math
and Computer Applications.

We were able to offer one thousand dollar stipends to each
participant and pay for travel and meal expenses. As part of
participation in our PD, we asked participants to take an online
Python course offered by Codecademy prior to the June PD,
attend a follow-up weekend workshop in November and again
during the following spring. Our intent is to sustain this
community of teachers over time, scaffold learning between
previous and new groups, and expand on both the number of
participants and the variety of resources going forward.

At the start of the PD week, participants were asked to
assess their level of experience with programming and in
teaching programming, both with Python and without. As seen
in Table 1, most reported little to no prior experience. This
finding foreshadows their initial responses pertaining to self-
efficacy, which we report on later in this paper. Both measures
indicate that our group of PD participants considered
themselves to be novice programmers.

TABLE 1. Participant background experience (n=19)

Q1 - Please indicate your level of
experience regarding the following
statements.

None A
Little

A Fair
Amount

A
Lot

How much programming have you
done before your involvement in the
CS10K project?

0% 68% 16% 16%

In particular, how much Python
programming have you done before
your involvement with the CS10K
project?

53% 32% 16% 0%

How much teaching of computer
programming have you done before
your involvement in the CS10K
project?

42% 42% 11% 5%

In particular, how much teaching of
Python programming have you done
before your involvement with the
CS10K project?

58% 37% 5% 0%

C. Schedule
Class met from 8:30am-5pm, Monday to Friday with one

hour allocated for lunch and a few other small breaks
scheduled throughout the day. Covering course materials
normally taught over the span of a semester in five days is
unquestionably daunting, and because of this many PDs are
offered over an extended period of time and in multiple
formats [4, 9]. However, we chose to limit our PD to one face-
to-face week during the summer followed by two weekends
throughout the year in order to maximize teacher participation.

Work supported by the National Science Foundation under Grant No. CNS-
1639841.

To assist with this tight scheduling, we relied heavily on our
prior experience co-teaching JBC at a local high school during
the previous year and the schedule developed for previous JBC
PDs held at MSU. Having gone through the course at least
once with a high school class allowed us to know which
aspects of the curriculum to focus on more than others during
the PD week. To fit the curriculum into a five day week, we
winnowed down some content by skipping or glossing over
exercises and activities that we felt were already covered
sufficiently given the time frame. We were also careful to
minimize instructor lecture time and maximize hands-on
activities during the week, and we alternated frequently
between activities to avoid remaining on any one topic for too
long. At times, this meant participants were not able to
complete exercises entirely, but they typically got far enough
along to know they could finish if they had more time. Some
participants also worked on programs after class hours. Table 2
below provides a high-level overview of the topics and
activities we covered during the week.

Still we anticipated it would be challenging for participants
to keep pace with the intense schedule. To mitigate this further,
we required all attendees to complete Codecademy’s Python
course [10] as a prerequisite. While some participants reported
having difficulties with the material, it at least provided all of
them with basic exposure to fundamental programming and
computational thinking concepts prior to attending the face-to-
face PD.

TABLE 2. PD schedule

Topics Hands-on Activities

Mon • Curriculum overview
• Python shell, IDLE

editor
• Simple python data
• Turtle graphics

• Pre-course assessment
• Create static business card
• Custom business card
• Draw initials on screen
• Draw star

Tue • Graphics using loops
• Advanced turtle

graphics
• Practicum reviews
• Intro to functions

• Draw Pokemon Go character
• Practice practicum
• Practicum 1

Wed • More functions
• Selection
• Modules
• Practicum review

• Factorial function
• Repeating song lyrics function
• Minecraft drawing using

functions
• Practice practicum
• Practicum 2

Thurs • Curriculum
development

• Iteration
• Computing topics

discussion

• Assignment ideation
• Manufactoria functions

Fri • Strings
• (Optional) recursion
• Practicum review

• Practicum 3
• Post-course assessment

D. Curriculum Development Model
Throughout the week we stressed to participants that the

JBC curriculum was not just about computational thinking and
programming, but that a significant focus of it when taught in
the high school should be on expanding the diversity of the

student body. Various computing topics are listed on the
original course syllabus, which instructors can use as a starting
point for initiating further projects, classroom discussions, and
research. To facilitate discussions of how we might build a
more inclusive curriculum and engage a wider body of students
in our CS courses, we allocated one full morning later in the
week for curriculum discussion and development.

Small participant groups were formed based loosely on
similar teaching environments (classes, location, school size,
etc.). Each group was asked to come up with alternative
assignments and exercises beyond those we had already
provided based on what they thought their particular student
body would be most interested in. Aside from the ideas
generated, many of which involved having students using
Python’s turtle graphics to design Native American symbols
and other images that students might be particularly invested
in, we realized the importance of providing this time for
teachers to collaborate with other teachers and of involving
them directly in curriculum development. Gray et al. also
recognize the importance of incorporating teachers in
curriculum development; their entire CSP PD is built around
the Teacher Leader model whereby more experienced K12
teachers were recruited and tasked with much of the curriculum
planning efforts and resource development [11].

III. RESEARCH METHOD
In this study, we focus on the effectiveness of our weeklong

professional development (PD) course with particular regard
given to changes in participant self-efficacy for programing,
and self-efficacy for teaching programming. On the first
morning of PD week we asked participants to complete an
online survey, the results of which formed a baseline from
which we could measure change. During the afternoon of the
last day of class participants were asked to complete a post-PD
survey that contained many of the same questions as the pre-
PD survey. Five months after the weeklong PD, we invited this
same teacher cohort to meet for a weekend workshop. Sixteen
of the original nineteen participants attended the weekend
workshop. We asked participants again at the beginning of the
weekend to complete a survey containing many of the same
questions as previous surveys. This approach gives us a sense
of the extent to which observed changes in participant
programming skill and confidence were sustained over time.
We use our research findings to determine the extent to which
our PD is effective and to engage in continuous improvement.

Throughout the remainder of this paper, we report on the
pre and post PD results, along with the five month delayed
(weekend workshop) results. Note that not all of the questions
on the surveys are shown here. We omitted questions that are
either unrelated to the focus of this report, or that involve open-
ended responses (e.g., not multiple choice) which are more
difficult to include because of the various scoring rubrics
required. Also note that although we have numbered the survey
questions in each of our tables, we do so only for ease of
reference; the ordering shown here is not exactly the same as
they appeared on our surveys.

Limitations of our study include a somewhat small sample
size and that three PD participants were not available for the
follow-up weekend workshop when retention over time was

measured. We also believe that while survey results such as our
are useful and meaningful as they can provide an important
snapshot in time, they can become even more so with the
added context of follow-up participant interviews. Also as
discussed further in the paper, our computational thinking
questions turned out to be a bit narrow in scope and type. In the
future, we will expand on both the number and type of
computational thinking questions so we get a fuller picture of
the progress our participants are making.

A. Computational Thinking
The computational thinking questions we included on the

surveys, as seen in Table 3 below, come from Dehnadi and
Bornat’s work exploring student mental models [12, 13, 14].
We hoped that after our PD class more participants would be
able to solve single and multiple assignment problems (Q4-
Q7). Although each of these questions listed many possible
multiple choice answers, only a few are shown due to the space
constraints of this paper. Each of these assignment questions
has only one correct answer, and even though participants were
allowed to check more than one box in each case, we only
counted an answer as correct if it was the only box selected. In
other words, if participants checked more than one box, even if
one of them included the correct answer, we still marked the
response as incorrect since the others selected were not correct.
Although this is a less nuanced and stricter way to grade
responses for these questions, and one that does not consider
the possible mental models that students might have used in
coming up with their answers as Dehnadi and Bornat have
done, it does provide a snapshot of participant progress.

TABLE 3. Computational Thinking
(Pre and Post n=19; Delayed n=16)

 Pre Post Delay
Q4 - Read the following statements and
check the box next to the correct answer(s).
a = 10, b = 20, a = b. Check all boxes that
apply.

a = 20 and b = 0
a = 20 and b = 20
a = 0 and b = 30
etc. (more options were
available, but limited here for
space constraints)

32%

47%

50%

Q5 - Read the following statements and
check the box next to the correct answer(s).
a = 40, b = 30, b = a, a = b. Check all boxes
that apply.

a = 0 and b = 30
a = 70 and b = 70
a = 0 and b = 70
etc.

32%

6/19

37%

38%

Q6 - Read the following statements and
select the box(es) next to the new values of
big and small. big=10, small=20, big=small.

b = 0 and small = 30
big = 0 and small = 10
big = 20 and small = 0
etc.

42%

47%

44%

Q7 - Read the following statements and
select the box(es) next to the new values of
a, b and c. a = 0; b = 1; c = 2; b = a; a = c; c =
b.

a = 2 and b = 2 and c = 2
a = 2 and b = 1 and c = 3
a = 1 and b = 4 and c = 3
etc.

32%

42%

38%

Table 3 shows the percentage of participants who got the
correct answer for each computational question. While some
gains are evident from the beginning of the PD week to the end
of the week and in delayed performance (i.e., after a five-
month period had elapsed), overall movement in these areas
was surprisingly small. We discuss possible reasons for this,
along with the fact that only 50% or less answered each
question correctly, later in the Discussion section.

B. Python Programming
 The next set of questions on our surveys evaluated Python
programming skill levels. These questions were assessed in the
same way as the computational thinking questions, and Table 4
shows the percentage of participants who got each question
correct. As previously mentioned, all participants were
required to take Codecademy’s online Python course prior to
arriving at our face-to-face PD class. While some struggled
with the Codecademy course and may not have finished parts
of it entirely, all participants did report spending time with the
course, thus giving them some initial exposure to Python
programming and computational thinking.

To derive this set of questions, we looked at Codecademy
materials and the content of what we covered during PD. We
tried to include one or two basic questions for each of the main
topics of our class listed in Table 2. Categories are noted in
parentheses prior to the listing of each question in Table 4.
Each question was multiple choice and had only one correct
response, and we show the number of participants who
answered each correctly both pre and post PD as well as after
five months had elapsed (Delay column).

There was no decline in average scores from pre to post PD
for any of the questions, and many show strong improvement
in participant programming skill over the course of the week.
Two questions where little or no improvement is apparent
involve mathematical computation and syntax (Q8), and strings
(Q16). Scores for Q8 likely stay mostly the same because they
were relatively high to begin with, and Q16 is arguably a more
challenging question that is difficult to answer even after a
week of PD. The topic of Strings was the last one we covered,
when participants may also have been saturated with new
material, but these results indicate that future PDs should spend
more time and include more exercises related to both topics,
especially given how central they are to programming.

The delayed results in programming skill assessed five
months later fell generally between the pre- and post-PD
scores. On average, teachers correctly answered 50 percent of
these questions at pretest, 70 percent at posttest, and 57 percent
at the delayed follow-up. While we would like to see even
stronger retention rates over time, less than a third of our
teachers (five out of sixteen) were teaching JBC in their high
schools when the delayed assessment took place, and thus they
likely did not have continued engagement with the material
during the interim period. As more and more teachers are able
to integrate JBC in their own classrooms, we expect these
retention results will improve.

TABLE 4. Python Programming Skill
(Pre and Post n=19; Delayed n=16)

Q8 - (Data & Syntax) Evaluate each of the following
expressions and write the answer below:

1. 5 ** 2
2. 9 * 5
3. 15 / 12
4. 15 // 12
5. 5 % 2

Pre

79%
89%
63%
11%
21%

Post

79%
89%
68%
58%
26%

Delay

88%
88%
56%
25%
38%

Q9 - (Data & Syntax) What is the value of the following
expression: 16 - 2 * 5 // 3 + 1 (If you do not have an
answer, please respond with IDK).

11% 58% 19%

Q10 - (Data & Syntax) What data type is False and True
in Python?

79% 100% 81%

Q11 - (Functions) What will the following function
return?
def mystery(n):
 answer = 0
 for i in range(1,n+1):
 answer = answer + i
 return answer

Call function and print answer
print(mystery(10))

53% 68% 44%

Q12 - (Functions) What are the parameters of the
following function?

def drawSquare(t, sz):
"""Make turtle t draw a square of
with side sz."""
 for i in range(4):
 t.forward(sz)
 t.left(90)

53% 95% 69%

Q13 - (Functions) What is a variable's scope? 63% 84% 81%

Q14 - (Selection) True or False: The following two
blocks of code are equivalent and produce the same
result.
#####################################
#block 1
if x < y:
 print("x is less than y")
elif x > y:
 print("x is greater than y")
else:
 print("x and y must be equal")
#####################################
#block 2
if x < y:
 print("x is less than y")
else:
 if x > y:
 print("x is greater than y")
 else:
 print("x and y must be
equal")

53% 74% 56%

Q15 - (Loops) How many times does the word "Hello"
get printed to the screen with the following code:
for i in range(5):
 print("Hello")

47%

74%

63%

Q16 - (Strings) What is printed when the following code
runs. If you do not have an answer, please respond
with "I don't know".
somestring = "JBC Rocks!"
print(somestring[1], somestring[3],
somestring[5])

32%

32%

31%

TABLE 5. Self-Efficacy for Programming
(Pre and Post n=19; Delayed n=16)

Strongly
disagree

Moderately
disagree

Slightly
disagree

Slightly
agree

Moderately
agree

Strongly
agree

I have a lot of experience with programming to create software, websites, etc.

Pre 26% 32% 0% 5% 26% 11%
Post 16% 26% 0% 42% 5% 11%

Delay 19% 13% 13% 25% 19% 13%

I am very confident in my current ability to use Python code to accomplish
programming tasks and projects.

Pre 37% 16% 11% 16% 16% 5%
Post 0% 11% 5% 47% 21% 16%

Delay 0% 31% 6% 38% 13% 13%

I am very familiar with and can use more than one programming language.

Pre 37% 16% 0% 21% 11% 16%
Post 37% 5% 11% 26% 11% 11%

Delay 25% 6% 13% 38% 6% 13%

I regularly use or tinker with code I have written.

Pre 47% 5% 11% 16% 16% 5%
Post 21% 16% 11% 21% 21% 11%

Delay 13% 31% 0% 25% 25% 6%

I know where to find examples of code that I can repurpose for my own
programming projects.

Pre 16% 42% 0% 16% 11% 16%
Post 5% 0% 0% 16% 32% 47%

Delay 0% 6% 13% 13% 31% 38%

C. Self-efficacy
Perhaps the most important measurement of the success of

our PD is the change in confidence that participants felt with
regard to their own programming ability and their ability to
teach programming and computation to others. Related
questions are shown in Tables 5 and 6, along with pre and post
PD responses and the delayed responses obtained five months
later during our weekend workshop.

Responses to these five questions were averaged to form a
scale score for Self-Efficacy for Programming. The scale had
high internal consistency reliability (Cronbach’s alpha = .93 at
pretest and .89 at post-test). Change from pre to post was
statistically significant (t(18) = 4.30, p =.0004), with the mean
response rising from near the “slightly disagree” response at
pre-test to near the “slightly agree” response at post-test.
Change from pre to the delayed follow up remained
statistically significant, (t(15) = 4.05, p =.0010), with the mean
response at the delayed follow up remaining near the “slightly
agree” level. If we aggregate all response options indicating
agreement, of note is that post-PD participants said they were
more confident in their current ability to use Python to
accomplish programming tasks (37% pre PD vs. 84% post vs.
64% delayed), and they were more familiar with how to locate
other examples, resources and code to use for their own
programming projects (43% pre PD vs. 95% post vs. 82%
delayed).

In terms of self-efficacy for teaching programming,
participants also reported considerable gains (Table 6).
Responses to these ten questions were averaged to form a scale
score for Self-Efficacy for Teaching Programming. The
scale had high internal consistency reliability (Cronbach’s
alpha = .96 at pretest and .90 at post-test). Change from pre to
post was statistically significant (t(18) = 4.60, p =.0002), with
the mean response rising from near the “slightly disagree”
response at pre-test to above the “slightly agree” response at
the post-test. Change from pre to the delayed follow up
remained statistically significant, (t(15) = 3.88, p =.0015), with
the mean response at the delayed follow up remaining near the
“slightly agree” level. Again aggregating all three levels of
agreement, confidence doubled or more from pre to post in the
belief participants had in:

• learning progressions that help students develop their
programming concepts and skills (42% pre, 84% post, 75%
delayed);

• how to structure programming concepts and skills so that
students can systematically develop their understanding
(26% pre, 84% post, 68% delayed);

• employing group CS learning strategies such as pair
programming with their students (38% pre, 90% post, 63%
delayed);

• fostering students’ computational thinking (43% pre, 95%
post, 75% delayed).

Also notable is that 100% of post-PD participants expressed
some confidence in their ability to apply the programming
content they learned to their own CS teaching. The discussion
we had during PD about diversity and developing specific
curriculum modules (topics, assignments, etc.) that would be of
particular cultural relevance to students also made a positive
impact on participants. While 32% either moderately or
strongly agreed to feeling confident that their CS teaching
strategies would be effective with diverse groups of students
pre-PD, that number almost doubled to 63% directly after PD
before falling back down to 38% five months later.

While all other self-efficacy for teaching programming
responses also rose from pre to post PD, smaller percentages
were reported relating to experience participants had helping
students write code and teaching computational thinking. There
was also one interesting anomaly in that participants actually
reported a lower level of confidence in their current ability to
teach students how to code in the five month delayed survey
than they did pre-PD (56% delayed versus 63% pre-PD).
We’re not sure why this decrease happened, but we believe it
may be related to a lack of sustained engagement with the
curriculum during the interim period as mentioned previously
and discussed further in the next section.

TABLE 6. Self-Efficacy for Teaching Programming
(Pre and Post n=19; Delay n=16)

Strongly
disagree

Moderately
disagree

Slightly
disagree

Slightly
agree

Moderately
agree

Strongly
agree

I have a lot of secondary teaching experience in helping students learn how to
write code.

Pre 47% 11% 11% 16% 11% 5%
Post 16% 26% 21% 26% 5% 5%

Delay 6% 25% 13% 44% 6% 6%

I am very confident in my current ability to teach students how to code.

Pre 26% 11% 0% 37% 21% 5%
Post 11% 0% 5% 47% 26% 11%

Delay 0% 25% 19% 31% 19% 6%

I am very familiar with learning progressions that help students develop their
programming concepts and skills.

Pre 42% 11% 5% 21% 21% 0%
Post 5% 0% 11% 42% 37% 5%

Delay 0% 13% 13% 38% 31% 6%

I know how to structure programming concepts and skills so that students can
systematically develop their understanding.

Pre 47% 5% 21% 16% 5% 5%
Post 11% 5% 0% 32% 47% 5%

Delay 0% 13% 19% 31% 31% 6%

I have used Python with students and I am familiar with how to teach
computational thinking.

Pre 63% 11% 0% 16% 5% 5%
Post 37% 16% 11% 16% 16% 5%

Delay 19% 13% 31% 13% 19% 6%

I am very confident that I will be able to apply the programming content I will
learn in this course in my CS teaching.

Pre 11% 5% 21% 5% 42% 16%
Post 0% 0% 0% 21% 42% 37%

Delay 0% 0% 13% 44% 19% 25%

I am very confident in my current ability to explain essential CS concepts such
as functions to my students.

Pre 26% 11% 11% 16% 32% 5%
Post 0% 0% 16% 47% 11% 26%

Delay 0% 19% 6% 38% 25% 13%

I am ready to employ group CS learning strategies such as pair programming
with my students.

Pre 37% 16% 11% 11% 16% 11%
Post 0% 5% 5% 37% 37% 16%

Delay 0% 25% 13% 25% 25% 13%

I am very confident in my current ability to foster my students’ computational
thinking.

Pre 16% 26% 16% 0% 32% 11%
Post 0% 5% 0% 26% 53% 16%

Delay 0% 13% 13% 31% 31% 13%

I am very confident that my CS teaching strategies will be effective with
diverse student groups including both male and female learners.

Pre 26% 16% 5% 21% 21% 11%
Post 0% 5% 0% 32% 42% 21%

Delay 0% 6% 13% 44% 25% 13%

IV. DISCUSSION
As we planned our PD class, we were concerned with the

large amount of material we needed to cover in just one week.
We also felt, though, that it was not practical to schedule the
class for a longer period of time. Even extending it to two
weeks would likely cause some teachers to opt out, particularly
since many were not local, and it would put additional strain on
our budget. We tried to compensate for the tight face-to-face
time period by requiring participants to gain exposure to
computational thinking and Python programming via
Codecademy prior to attending our PD. Despite the difficulty
some participants had with that material, particularly as they
worked on it independently and without immediate help
available, we ultimately think requiring some prior experience
with course topics was effective and should be repeated.

Even so, we were still concerned that participants might
become overwhelmed and frustrated with the intense schedule
and large amount of new material they were expected to absorb
during PD week. And, in fact, on final course feedback forms a
number of participants did note hitting a wall of sorts about
mid-week. However, when we look at the results of pre and
post PD surveys of programming skill, self-efficacy for
programming, and self-efficacy for teaching programming, we
are reassured. There were no instances where participants
regressed during the PD week, and in many areas they made
significant progress. We are most excited by the gains in self-
efficacy participants reported as we believe this is a critical
barometer of their willingness to teach JBC in the future at
their own schools, and to be successful with it. It is also worth
noting that all PD participants completed the entire week of
class; none dropped out. Furthermore, many of the gains
realized were still evident after a five-month period had
elapsed.

Some results of our assessment were not as positive as we
would like, however. As noted earlier, we were surprised at the
relative lack of improvement with the computational thinking
questions, shown in Table 3, and that fewer than half of
participants answered these questions correctly. We attribute
this in part to the lack of prior programming experience
participants reported (Table 1), but perhaps more-so to a slight
disconnect between the fairly narrow computational thinking
questions we asked and the content and main focus of our PD.
While computational thinking was certainly covered during our
course, it did not take the same format as the questions we
posed on our assessments, all of which were very similar in
type. In the future we would look to remedy this on both ends:
do a better job covering aspects of variables and how values
are stored and changed; and include a broader set of
computational thinking questions on assessments.

We are also cautious about steeper drop offs that occurred
in some delayed responses. For example, while we would like
to see even stronger retention rates over time in programming
skill, we also understand that most teachers were not yet
teaching JBC in their high schools when the delayed
assessment took place, and thus they likely did not have
continued exposure to the material during the interim period.
As more and more teachers are able to engage regularly with
JBC in their own classrooms, we expect the retention results

will improve in skill levels, which should also drive up delayed
self-efficacy scores. In the meantime, though, to help mitigate
proficiency gaps that may appear over time, we must continue
to develop and provide additional resources like curriculum
plans and assignment solutions and encourage teachers to
consistently engage with them.

For others looking for specific suggestions in offering their
own PDs, in our case having good support staff on hand greatly
contributed to participant learning. We were fortunate that all
four of our project PIs were able to assist the class, along with
one undergraduate student who helped with the high school
offering of JBC the previous fall. Having both the number and
the expertise of this support staff proved invaluable. It allowed
for different PIs to teach different modules throughout the
week, freeing up others to assist students as they worked
through the hands-on activities. Many participants commented
favorably on this particular aspect of the week on their final
course feedback forms.

Lastly, we also mention that a number of our participants
expressed interest in obtaining credit for completing the PD
class, which we were able to accommodate by setting up a
separate course number at our institution. Taking the PD class
for credit was entirely optional, and it did cost enrollees $155 if
they chose to do so, but it was an added incentive for some. For
the seven students that enrolled in the PD for credit, we
required them to upload solutions to various exercises
throughout the week and write a reflection of their learning
process in each case. Having teachers enroll for credit which
they had to pay for themselves likely contributed to more
serious engagement with the class and better overall results.

V. FUTURE WORK
In our second year of the CS10K project, we continue to

extend this work in a number of ways. We are currently
supporting teachers who are teaching JBC in their local schools
and assessing student outcomes in these classes. We recently
piloted the Mobile CSP course at Montana Tech, held a
weekend workshop there, and will offer weeklong PDs for both
it and JBC during the summer of 2018. We are expanding our
online community forum for our teacher cohort, and hope to
use it to provide additional resources year-round. We will roll
out the Mobile CSP curriculum to high schools during the
2018/19 academic year and continue to support and assess the
effectiveness of both courses.

ACKNOWLEDGMENT
This material is based upon work supported by the National

Science Foundation under Grant No. CNS-1639841. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

REFERENCES
[1] Dennison, M. (2013, September 17). Former Bozeman software

company exec urges more computer science students. The Missoulian.
Retrieved from missoulian.com.

[2] Davis, S. (2017) Session 15N: BoF 559: Improving Effectiveness of CS
Teacher Professional Development SIGCSE 2017.

[3] Camp, T., Schanzer, E., Goode, J., Astrachan, O., & Campos, E. (2017).
CSPd Week: A Scalable Model for Preparing Teachers for CS for All.
Proceedings of SIGCSE ‘17, 645-646. doi>10.1145/3017680.3017681

[4] Price, T., Catete, V., Albert, J., Barnes, T., & Garcia, D. (2016). Lessons
Learned from “BJC” CS Principles Professional Development.
Proceedings of SIGCSE ‘16, 467-472. doi> 10.1145/2839509.2844625

[5] Garcia, D., et al. The Beauty and Joy of Computing. Retrieved from
https://bjc.berkeley.edu/

[6] Miller, B. & Ranum, D. How to Think Like a Computer Scientist:
Interactive Edition. Retrieved from:
http://interactivepython.org/courselib/static/thinkcspy/index.html

[7] Abelson, H., Ledeen, K., & Lewis, H. Blown to Bits: Your Life, Liberty,
and Happiness After the Digital Explosion. Retrieved from
http://www.bitsbook.com/thebook/

[8] Paxton, J. The Joy and Beauty of Computing. Retrieved from
http://ou.montana.edu/t2cs10k/jbc/lectures/index.html

[9] Morelli, R., Uche, C., Lake, P., & Baldwin, L. (2015). Analyzing Year
One of a CS Principles PD Project. In Proc. of the 46th Annual ACM
SIGCSE Conf., 2015.

[10] Codecademy: Learn Python. Retrieved from
https://www.codecademy.com/learn/learn-python

[11] Gray, J., Haynie, K., Packman, S., Boehm, M., Crawford, C. &
Muralidhar, D. (2015). A Mid-Project Report on a Statewide
Professional Development Model for CS Principles. Proceedings of
SIGCSE ‘15, 380–385. doi>10.1145/2676723.2677306

[12] Bornat, R., & Dehnadi, S. (2008). Mental models, consistency and
programming aptitude. ACE '08 Proceedings of the tenth conference on
Australasian computing education 78, 53-61.

[13] Dehnadi, S. & R. Bornat. (2006). The camel has two humps. Little PPIG
2006. Coventry,UK.

[14] Dehnadi, S. (2006). Testing Programming Aptitude, in P. Romero, J.
Good, E. A. Chaparro and S. Bryant, eds, Proceedings of the PPIG 18th
Annual Workshop, pp. 22--37.
URL:http://www.ppig.org/papers/18thdehnadi.pdf

