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Abstract—The increased usage of computer-based learning
platforms and online tools in classrooms presents new opportu-
nities to not only study the underlying constructs involved in the
learning process, but also use this information to identify and
aid struggling students. Many learning platforms, particularly
those driving or supplementing instruction, are only able to
provide aid to students who interact with the system. With this
in mind, student persistence emerges as a prominent learning
construct contributing to students success when learning new
material. Conversely, high persistence is not always productive
for students, where additional practice does not help the student
move toward a state of mastery of the material. In this paper,
we apply a transfer learning methodology using deep learning
and traditional modeling techniques to study high and low
representations of unproductive persistence. We focus on two
prominent problems in the fields of educational data mining
and learner analytics representing low persistence, character-
ized as student “stopout,” and unproductive high persistence,
operationalized through student “wheel spinning,” in an effort
to better understand the relationship between these measures
of unproductive persistence (i.e. stopout and wheel spinning)
and develop early detectors of these behaviors. We find that
models developed to detect each within and across-assignment
stopout and wheel spinning are able to learn sets of features
that generalize to predict the other. We further observe how
these models perform at each learning opportunity within student
assignments to identify when interventions may be deployed
to best aid students who are likely to exhibit unproductive
persistence.

Index Terms—Early detection, Wheel Spinning, Stopout,
Transfer learning, Deep learning , Persistence

I. INTRODUCTION

THe use of digital learning environments in schools has led

to new opportunities to study influential student learning

constructs both longitudinally and at fine levels of granularity.

Digital learning environments have emerged to take advantage

of these opportunities, providing researchers with the tools and

data to better understand such learning processes while simul-

taneously providing a platform through which that research

can be implemented and deployed to improve students learning

experiences. As is the case for many, if not all, learning

platforms, particularly those that aim to drive or supplement

teacher instruction, are only able to provide aid to students

who interact with the system; it is for this same reason that

human tutors often employ a range of techniques to maintain

student engagement and encourage student persistence when

approaching difficult content [1]. This reinforces the need

to better understand student persistence during the learning

process so as to develop better detectors of struggling students

and subsequently develop interventions to promote productive

learning strategies.

When approaching difficult content, it is essential for

students to exhibit high persistence by working through a

sufficient number of practice problems in order to successfully

learn the material. In this way, the construct of persistence

plays an important role in student success as has been studied

through research pertaining to grit [2], perseverance [3], and

productive failure [4]. Students who fail to complete their work

after only a small number of problems, defined in this paper

as students exhibiting “stopout,” are missing opportunities

to learn difficult material through additional practice; this is

particularly the case when students exhibit stopout early in an

assignment, within, for example, the first few problems.

Although the presence of persistence is essential for students

to overcome learning obstacles, there are cases where high per-

sistence can be unproductive. This negative aspect of exhibit-

ing high unproductive persistence has been operationalized in

previous works through a behavior known as “wheel spinning”

[5]. Wheel spinning describes the case when a student persists

in a particular learning task yet is unable to reach a state of

mastery within a reasonable timeframe.

Both stopout and wheel spinning represent unproductive

examples of student persistence; in one case, stopout repre-

sents students who are not exhibiting enough persistence to

succeed while wheel spinning represents too much persistence

where it would likely benefit the student to stop and seek

additional aid from an instructor or tutor. For this reason,

we define stopout and wheel spinning as mutually exclusive

measures within a single assignment. As previous works have

defined wheel spinning behavior as a student reaching the

tenth problem, or learning opportunity, of a mastery-based

assignment (discussed further in Section 3), students are only

considered to have stopped out of an assignment if done before

the tenth problem; it is important to emphasize this definition

as each measure in this way represents what we consider to

be unproductive learning behavior.

It is important to be able to detect when students are likely

to exhibit stopout or wheel spinning behavior in order to

develop interventions to promote persistence when it is likely

beneficial to students and to also suggest additional help when

such persistence is unlikely to lead to success. In light of this

importance, however, deploying an intervention once stopout

is detected is likely not very impactful as the student has

already ceased interaction with the system, and similarly, in

the case of wheel spinning, deploying an intervention at the

moment of detection is likely too late as the student has already
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wasted time and effort (and perhaps has become frustrated). It

is with these scenarios in mind that it becomes imperative to

deploy such interventions preemptively in anticipation of such

behavior and address potential causes of stopout and wheel

spinning behavior before the student exhibits unproductive

forms of high and low persistence. As will be discussed

further in the Background Section, recent applications of deep

learning in the context of education has led to promising

results, supporting the exploration of such models for the task

of developing early detectors of these student behaviors.

It is the goal of this work to explore the early detection

of unproductive persistence as operationalized through wheel

spinning and stopout. Using machine learning techniques

including the application of deep learning in conjunction with

both model and outcome transfer learning methods, we explore

the relationship between learned predictors of wheel spinning

and stopout both within an assignment and across assignments.

With this goal in mind, we seek to address the following

research questions:

1) How do temporal deep learning models compare to

traditional methods in the task of predicting wheel

spinning and stopout behavior both within- and across-

assignments?

2) Are learned predictors of each wheel spinning and

stopout behavior also predictive of the other respective

behavior (e.g. are predictors of wheel spinning also

predictive of stopout as well as the reverse)?

3) How does recency affect the performance of models

predicting each within and across assignment wheel

spinning and stopout?

The focus of this work is on exploring the relationship

between representations of unproductive student persistence

in an effort to develop early detectors of such behaviors. The

following section will first describe existing works that have

previously studied behaviors of student attrition and wheel

spinning in addition to previous applications of deep learning

in the context of education. We will then describe the source

and attributes of the data used in this work before detailing the

applied methodology and analyses conducted to study these

student behaviors. The results of these analyses will then

be discussed with particular focus on the early detection of

each within and across-assignment stopout and wheel spinning

behaviors. Finally, we will discuss the potential future work,

highlight the contributions of this work, and discuss final

conclusions from the conducted analyses.

II. BACKGROUND

A. Wheel Spinning

Several previous works have explored and have attempted

to model student wheel spinning behavior in several plat-

forms including Cognitive tutor [6] and ASSISTments [5]

[7], while other work has explored policies to help prevent

wheel spinning [8]. As described in the Introduction Section,

wheel spinning is the behavior in which a student exhibits

high persistence in a learning task, but unable to obtain

sufficient understanding of the learning materials. The term

“wheel spinning” is analogous to a car that is stuck in snow

or mud; despite devoting effort into moving, the wheels will

spin without getting anywhere.

In this work, we will be using the definition of wheel

spinning given in the work of Beck and Gong [5] as failing

to reach mastery after seeing ten learning opportunities. It is

for this reason that prior work observing wheel spinning has

pertained to student interactions with mastery-based assign-

ments. Mastery-based assignments, as opposed to traditional

assignments that require students to answer all assigned prob-

lems, instead require students to demonstrate a sufficient level

of understanding, or mastery, of the assigned material in order

to complete the assignment. In the case of ASSISTments, this

threshold of understanding, by default, requires students to

simply answer three consecutive problems correctly on the

first attempt without the use of computer-provided aid.

Previous attempts to model wheel spinning have observed

student activity on mastery-based assignments at the problem-

level to predict whether the student will eventually wheel spin

in that assignment [7]. The model was trained on expert-

generated features describing each problem and student recent

actions to estimate the likelihood of a student wheel spinning

on the current assignment. We hypothesize that such a model

is likely to perform better on later problems in an assignment

than earlier problems, but previous works have reported an

average model performance across all opportunities, or prob-

lems.

This paper attempts to, in part, build upon this previous

body of work to build models to predict wheel spinning using

a finer-granularity of data (e.g. at the action-level), observe

wheel spinning behavior (as well as stopout which will be

described next) over longer periods (e.g. across assignments),

and observe how model performance changes over consecutive

problems.

B. Student Attrition and Stopout

Student attrition, more commonly characterized by student

dropout, has received a large amount of attention in recent

years as a problem in education, largely due to its prominence

in digital environments such as Massive Open Online Courses

(MOOCs) [9] [10] [11] [12] [13]. In such systems, it has

been observed that a large portion of students do not complete

their courses; such behavior is called dropout. Surveys have

shown multiple reasoning behind low persistence in MOOCs

which vary from learners to learners. For example, some

may quit due to insufficient background knowledge or the

difficulty of content, but other may get interrupted due to

time management or scheduling, or simply stop coming back

because they learned all they want to know [14]. Student

attrition within MOOCs has also been previously studied

through the development of a deep learning model, named

“GritNet,” that was found to outperform existing baseline

methods [15] and even transfer across courses [16]. While

these areas have, as described, received a large amount of

attention, the characteristics of persistence and the reasoning

for attrition in MOOCs differs greatly from that observed in

K-12 classrooms as most students do not exhibit dropout in

the same manner.
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Dropout is not common within traditional K-12 classroom

context (i.e., mandatory education) as attendance and gradua-

tion are often enforced and encouraged by the parents. Instead,

student attrition and low persistence are observed in a form

of students not completing certain learning tasks; we call

this behavior ”stopout”. The main difference between stopout

and dropout is that when a student stopouts, they are still

in the course and may choose to complete the subsequent

assignments, while learners are defined as dropout when the

do not come back to finish the course.

When Student attrition at the assignment level, in many

cases, prevents students from sufficiently learning the material

and subsequently may lead to further difficulty when learn-

ing post-requisite skills (e.g. see [17]), but also introduces

a range of other issues pertaining to the development and

deployment of effective learning interventions. As students

exhibiting stopout behavior cease interaction with the learning

environment, aid cannot be given to the student through the

platform, relying solely then on external sources, such as the

teacher, to help the student. Missing or incomplete student

data caused by attrition makes it difficult to study the learning

process (as no data can be recorded for students who are

not interacting with the system), measure the effectiveness of

interventions through randomized controlled trials [18], and,

as the cause of stopout is often difficult to identify, develop

effective interventions to support more productive persistence.

For these reasons, it is important to build models to help

identify students likely to exhibit stopout preemptively so that

we can better understand the early signs of the behavior and

develop interventions to prevent it.

C. Deep Learning in Educational Contexts

The use of deep learning methods in the context of edu-

cation and learning analytics has led to a growing body of

research focusing on better modeling student behavior and

performance. Within this domain, a large number of such

works have begun to utilize recurrent neural networks (RNNs)

[19], for their ability to model complex temporal patterns of

student behaviors. These models have shown great promise

in recent works modeling student knowledge and short-term

performance [20] [21] [22], predicting student graduation [15]

and real-time performance [16] in MOOCs, detecting student

affective state [23], and predicting long-term outcomes [24]

[25].

Despite the often-reported high performance of these mod-

els as applied to their respective tasks in education, the large

number of learned parameters and complex model structures

often make them difficult to interpret. While this difficulty

applies to the learned parameters of the model, this does not

mean that the estimates produced by the models are similarly

uninterpretable and can be utilized to explore student behavior

over time at fine levels of granularity (e.g. see [26]). Something

as simple as observing the estimates themselves, or even model

performance, over time can lead to better insights into the

modeled behaviors as well as when action may best be taken

through intervention.

The high complexity of deep network structures allows

the model to learn rich feature embeddings, either explicitly

(e.g. [27]) or implicitly (e.g. [25]), that better describe the

data to make better-informed model estimates. In this way,

such models also support the application of transfer learning

[28] to better understand the relationship between outcomes

of interest by providing the means to observe how learned

features generalize across prediction tasks.

III. DATASET

The data used in this work is comprised of students working

with ASSISTments during the 2016-2017 academic year. AS-

SISTments is a web-based learning platform that provides the

tools for teachers to assign classwork or homework content

for which students receive immediate correctness feedback

[29]. While working through each assignment, many problems

supply students with optional on-demand computer-provided

aid; hints, of which there may be from 0 up to several

available, supply students with an instructional message, while

scaffolding, when available, breaks the problem into smaller

steps to solve. In addition to these, the system provides a

“bottom-out” hint for every problem that supplies the students

with the correct answer if the student is unable to solve the

problem as students are not allowed to progress to subsequent

problems until the correct response is entered inside ASSIST-

ments.

ASSISTments is used by several thousands of distinct

students daily, most of which being in 6th-8th grade solving

primarily mathematics content, providing a dataset of suffi-

cient scale and variation to apply deep learning methods that

often require such data. While the majority of students are

of late-middle-school age, the dataset itself is comprised of

all users of the system during the aforementioned academic

year. The data is filtered to include only student interaction

with mastery-based assignments, known as “skill builders” in

the system, where the completion threshold is designated to

simply require students to answer three consecutive problems

correctly without the use of computer-provided aid (i.e., with-

out hints, scaffolding, or bottom-out hints). In recognition of

wheel spinning as an undesirable learning behavior, the system

implements a “daily limit,” stopping students on the skill

builder assignment for the day if the completion threshold is

not reached by the tenth problem (except in the case where the

student is about to reach the threshold on or directly following

the tenth problem); the system provides the student with an

instruction to seek additional help and return to the assignment

on the subsequent day.

As teachers using the system assign a range of content,

both made available through the system as well as self-

built material, we include data from skill builder assignments

where at least 10 students started the assignment and the

overall completion rate is at least 70%. These limitations

help to remove outliers such as sample classes and optional

supplementary assignments where the teacher does not require

every student to complete. These outlier cases are excluded as

we would argue that attrition due to such factors is not stopout

as we have defined it within this task (e.g. low unproductive

persistence).
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Feature Name Description

Action Type One-hot encoding of the action (attempt, help request, etc.)

Attempt Count The number of attempts made up to the current action

Hint Count The number of hints requested up to the current action

Problem Count The number of problems seen up to the current action

Probability of Action The probability of the current action given the problem

Probability of Action
Given Action Count

The probability of the current action given both the problem
and the number of actions taken in the problem

Probability of Response When an attempt, the probability of a student answering with
the specific response given the problem

Probability of Response
Given Action Count

When an attempt, the probability of a student answering with
the specific response given the problem and number of actions
taken in the problem

Cumulative Log Likelihood
of Response

The cumulative log likelihood of a student answering with the
specific response on the problem

Normalized Time Taken The amount of time since the last action, z-scored within action
type and problem

Used Penultimate Hint Whether the second-to-last hint has been seen before the
current action

Used Bottom Out Hint Whether the student has seen the last hint (containing the answer)
before the current action

Correctness Correctness or incorrectness if the current action is an attempt, or
a non-attempt (as a 3-value one-hot encoding)

Preceding 3 Actions One-hot encoding describing the previous three actions taken
excluding the current action

Current and
Preceding 2 Actions

One-hot encoding describing the previous three actions taken
including the current action (current and previous 2)

TABLE I: Description of the generated action-level features.

A. Features

The data consists of action-level data recorded by the

system, describing a fine-grained level of interaction with the

content. As such, each row of the data describes a single

action taken by a student pertaining to problem answering,

or attempts, as well as hint requesting within the system in

addition to time-related measures, probability of each response

(e.g. identifying common wrong answers), and recency infor-

mation (e.g. preceding actions taken). From the 15 features

generated, a one-hot encoding was applied to all categorical

features, resulting in a total of 86 features to use as input into

our models. A brief description of each of these features is

provided in Table I.

B. Wheel Spinning and Stopout Labels

The labels of wheel spinning and stopout are applied to the

data largely following previous definitions of these behaviors,

although with a small number of edge-case exceptions that

are detailed here to avoid ambiguity. As we hypothesize that

wheel spinning and stopout are, respectively, representations

of high and low unproductive persistence, as emphasized in

the Introduction, we have defined these behaviors as mutually

exclusive. Wheel spinning occurs when students have not

reached a sufficient threshold of understanding by the tenth

learning opportunity; we acknowledge that this threshold of

ten problems to define wheel spinning behavior is rather

arbitrary (and perhaps worth refinement in future work), but is

used here for consistency with previous works studying wheel

spinning behavior. Again as emphasized in the Introduction,

we define stopout to occur only if a student fails to complete

the assignment and stops out before the tenth problem. Attri-

tion exhibited after the tenth problem is not labeled as stopout

behavior, but rather would be characterized as wheel spinning

(as the tenth problem was reached without completing the

mastery assignment). In this way, any student with ten or

more problems, unless completion was reached precisely on

the tenth item, is labeled as having exhibited wheel spinning

behavior.

The labels of each stopout and wheel spinning are rep-

resented as separate binary values and, while calculated at

the student-assignment level, are applied to each row of the

dataset. In this way, all models reported in this paper are

predicting wheel spinning and stopout at each action taken

by a student, similar to the problem-level estimates observed

in previous works [5] [7]. While we do not expect that such

models will perform at the same level of accuracy for all

actions, this level of prediction will allow for the study of

such performance over time.

Number of Distinct Students 12,714

Number of Student Assignments 123,539

Number of Rows (Actions) 1,055,588

Percent Assignments with Wheel Spinning 4.85%

Percent Assignments with Stopout 4.72%

TABLE II: The notable descriptives of the dataset.
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DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.847 0.327 0.511 0.437 0.887 0.313

LSTM - Wheel Spinning 0.87 0.318 0.887 0.313 —- —-

LSTM - Stopout 0.679 0.388 0.708 0.39 —- —-

Majority Class Model RMSE: 0.482

TABLE III: Predicting Wheel Spinning in current assignment

DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.706 0.224 0.46 0.275 0.759 0.223

LSTM - Wheel Spinning 0.71 0.224 0.683 0.226 —- —-

LSTM - Stopout 0.747 0.223 0.757 0.222 —- —-

Majority Class Model RMSE: 0.234

TABLE IV: Predicting Stopout in current assignment

features as the output layer of the LSTM had). Secondly,

the wheel spinning features are again presented to a different

decision tree and logistic regression model which are then

trained to predict within-assignment stopout. The third set

of models then observes, conversely, how well the stopout

features, learned by the LSTM model trained to predict within

assignment stopout, transfer to a decision tree and logistic

regression model to again predict within assignment stopout.

Finally, the fourth set of models uses the stopout features

in a decision tree and logistic regression to predict wheel

spinning. It is important to clarify that this work does not

attempt to make the comparisons between within-assignment

features transferring to predict next assignment outcomes.

V. RESULTS

A. Metrics

We compare the results using two primary metrics of AUC

and RMSE in addition to, in the case of observing model

performance over time, Recall. There are several benefits to

using this particular range of measures to evaluate each model,

particularly in case of modeling wheel spinning and stopout

where there is a large imbalance amongst the labels (most

students do not exhibit such behaviors). In such cases of

imbalance, majority class models tend to appear to perform

well even when no distinction between classes is learned. To

prevent trained models from producing a low error by biasing

their estimates toward majority class, we use AUC to evaluate

model fit.

The use of AUC evaluates how well a model distinguishes

positive samples from negative samples; given an instance of

the positive class and the negative class, AUC can be thought

of as the probability the positive class will be the one with a

higher probability estimate. Therefore, the measure accounts

for sparseness of the positive class. The value is bounded

between 0 and 1, with higher values indicating better model

fit. Values close to 0.5 are indicative of the model performing

similar to random chance.

While AUC evaluates how well the model is able to

distinguish the classes, RMSE identifies the distance of each

estimate (in terms of error) from the true label; the metric

is calculated using the continuous-valued probability of each

class as produced by the model and comparing this against

the ground truth label. In this way, the model penalizes for

indecisiveness in the model. For example, if, for a set of

positive and negative labels the model produced all estimates

of 0.1 and 0.09 respectively, the AUC would indicate perfect

model fit while the RMSE would be comparatively poor (as

the error on the positive instances is very high). This metric,

however, does not account for majority class bias and should

therefore be compared in relation to the RMSE value of a

majority class model. The value of RMSE is bounded between

0 and 1 in this case (as all estimates are bounded within this

range and the labels are binary values), with lower values

indicating better model performance.

Finally, we will also report a value of recall when observing

the next assignment wheel spinning and next assignment

stopout models performance over time. Recall, as a measure

of accuracy in regard to the positive label (for all positive

cases, how many did the model successfully identify), helps

to identify model performance in identifying the positive cases

of wheel spinning and stopout. This is particularly important,

again, due to the large imbalance as it provides a means of

evaluating the models ability to identify cases of stopout and

wheel spinning behavior. The drawback of this metric is that it

does require a rounding threshold to be set, and as it is likely

the estimates are biased toward the majority class, a rounding

threshold of the model output mean is used rather than the

more traditional use of 0.5; in other words, values above the

mean are rounded up to identify a positive case of either wheel

spinning or stopout and estimates below the mean are rounded

down to identify a negative case of either measure. The value

of recall is also bounded between 0 and 1 with higher values

indicating better model performance.
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DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.581 0.238 0.539 0.273 0.600 0.251

LSTM - Next Assignment Wheel Spinning 0.595 0.250 0.601 0.250 — —

LSTM - Next Assignment Stopout 0.570 0.251 0.569 0.251 — —

Majority Class Model RMSE: 0.246

TABLE V: Predicting Wheel Spinning in next assignment

DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.545 0.209 0.492 0.25 0.557 0.221

LSTM - Next Assignment Wheel Spinning 0.547 0.221 0.548 0.221 — —

LSTM - Next Assignment Stopout 0.553 0.221 0.557 0.221 — —

Majority Class Model RMSE: 0.215

TABLE VI: Predicting Stopout in next assignment

B. Model Performance

Our results are recorded such that each of the Tables III-

VI record results of one outcome variable. Table III describes

the various models which where built to predict if a student is

going to wheel spin in the current assignment. The first model

was built using the raw features (i.e the original features of

the dataset as listed in Table I). We see that the LSTM model

performs the best with an AUC of 0.887 and an RMSE of

0.313. It is then followed by the decision tree model with

an AUC of 0.847 and RMSE of 0.327. The logistic regression

model does not perform well with a low AUC of 0.511, barely

better than chance performance.

The second and third model in Table III is built using

transfer learning, where we use the learned hidden layer of the

LSTM trained to predict wheel spinning. Its learned features

are used as input to the decision tree and logistic regression

models. This experiment demonstrates how well the learned

features transfer between models as well as generalize to

new outcomes. The main result is that both models show

improvement when trained using the features discovered by the

LSTM: decision trees see a slight improvement in both AUC

and RMSE, while logistic regression is greatly improved. We

see that the LSTM-Logistic Regression model with AUC of

0.887 (RMSE 0.313) performs better than the LSTM-Decision

tree model with AUC of 0.87 and RMSE 0.318. We can

observe that the transfer of the LSTM model over the Logistic

Regression model is resulting in the same AUC of the LSTM

with raw features, which is unsurprising as the output layer of

the LSTM is essentially a logistic regression model. The last

model is another transfer learning model, wherein the LSTM

which was built to predict stopout in the current assignment

is used to transfer its learned features to a decision tree and

a logistic regression model to predict wheel spinning. The

results were mixed, with the decision tree exhibiting little

benefit vs. using the raw features, while logistic regression

outperformed the raw features. It is interesting that the logistic

regression improved even when given features extracted for

a different learning activity. We observe that both of these

models performed well with an AUC of 0.679 and RMSE

of 0.388 in the case of the LSTM-decision tree model and

an AUC of 0.708 and RMSE 0.39 for the LSTM-logistic

regression model.

Similar to Table III, Table IV records the model perfor-

mance for predicting if a student is going to stopout in the

current assignment. The order is similar to Table III where in

the first row the original features were used to fit the decision

tree, logistic regression and the LSTM model. The LSTM

model seems to perform the best with an AUC of 0.759 and

RMSE of 0.223, followed by the decision tree and logistic

regression models with AUCs of 0.706 and 0.46, respectively.

The second model is the first of the transfer learning models

aimed at predicting within-assignment stopout. The learned

features of the LSTM to predict wheel spinning were trans-

ferred as input to a decision tree and logistic regression model

to predict the stopout. Despite using features learned for a

different prediction task, both the decision tree and logistic re-

gression showed improved performance over just using the raw

features. For decision trees, the benefit is slight with a trivial

increase in AUC. However, logistic regression demonstrated

a large performance gain with AUC improving from 0.46 to

0.683 and RMSE improving from 0.275 to 0.226. Finally using

the LSTM model which was built to predict stopout using the

raw features, we transferred its learned features as input to

a decision tree and logistic regression model to predict the

same stopout label. Both models show improvement over using

the LSTM stopout features. Both decision tree and logistic

regression show noticeable performance gains in AUC, with

smaller gains in RMSE.

Table V describes the results for the model built to predict if

a student is going to wheel spin in the next, rather than current,

assignment. Using the original features, the LSTM exhibits

an AUC of 0.600 (RMSE 0.251), followed by the decision

tree with an AUC of 0.581 (RMSE 0.238), and then the

logistic regression with an AUC of 0.539 (RMSE 0.273). The
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second row describes the performance of the transfer learning

models from the LSTM built to predict wheel spinning in next

assignment. This LSTM - decision tree model had an AUC

of 0.595 (RMSE 0.250) while the LSTM - logistic regression

model exhibited an AUC of 0.601 (RMSE 0.250). Similarly the

LSTM built to predict next assignment stopout is used to build

transfer learning models with the decision tree and logistic

regression for the task of predicting next assignment wheel

spinning. These models resulted in an AUC of 0.570 (RMSE

0.251) for the transferred decision tree model and an AUC of

0.569 (RMSE 0.251) for the logistic regression model. Again,

we observe the general pattern of learned features resulting in

better accuracy than the raw features. For logistic regression,

even features built for a stopout manage to outperform the raw

features, although this result does not hold for the decision

tree.

Table VI describes the models built to predict if a student is

going to stopout in the next assignment. Following the similar

structure of the previous tables, the original features were

used to build a decision tree, logistic regression model and an

LSTM model. The results are not nearly as strong as shorter-

term predictions for the current assignment, but are still better

than chance, perhaps highlighting the difficulty of identifying

this behavior as early as the previous assignment without

contextual information as to the content of the subsequent

assignment. The LSTM again seemed to perform the best out

of the three with a not-so-high AUC of 0.557 (RMSE 0.221). It

was followed by the decision tree with a AUC of 0.545 (RMSE

0.209) and the logistic regression model with a below chance

AUC of 0.492 (RMSE 0.25). Following the raw features, we

use what was learned by the LSTM model built to predict

wheel spinning in the next assignment to transfer its learning to

a decision tree and a logistic regression model. These models

resulted with AUC of 0.547 (RMSE 0.221) and 0.548 (RMSE

0.221), respectively. We observe that there are few differences

between the two models. Next we use the LSTM model trained

to predict next assignment stopout to transfer its learning to a

decision tree and logistic regression model to predict the very

same label of next assignment stopout, resulting in AUCs of

0.553 (RMSE 0.221) and 0.557 (RMSE 0.221) respectively.

It is important to reiterate that each model is predicting the

respective label at each timestep. In other words, each behavior

is predicted at each student action. It is likely for this reason

that some models exhibit AUC values near chance; the poor

performance of the logistic regression model in Table III, for

example, and conversely high performance of the decision tree,

suggests that positive and negative labels of the behavior are

not linearly separable using the raw features alone and need

more information (such as the temporal features supplied by

the LSTM) in order to exhibit higher performance.

C. Observing Model Performance by Opportunity

In addition to observing model performance averaged over

all estimates, we further observe how model performance

changes at each learning opportunity, or problem, when

predicting each outcome measure. By observing how these

models perform at each learning opportunity, we can begin to

identify how early in the preceding assignment we are likely

able to detect indicators of unproductive persistence in the

future; this can then help to 1) identify potential causes or

factors that may correlate with future unproductive persistence

and 2) begin to understand not only when but also what type of

intervention may be deployed to support productive learning

behaviors.

As the data is represented as a series of student actions, we

first take the mean model performance within each student

problem and plot this performance over the first ten problems

of the student assignments as shown in Figure 3. As the

number of students present at each opportunity changes due

to students either exhibiting stopout behavior or effectively

completing the assignment, it is important also to include con-

fidence intervals as each value will be less precisely measured

at each subsequent opportunity. In the case of RMSE, this

confidence interval is calculated by computing the square root

of the upper and lower bounds of the standard errors calculated

from the squared errors across estimates at each opportunity. In

the case of recall, the confidence bounds are computed using

a Wilson score interval [36] for the computed recall value at

each opportunity. The confidence bounds for AUC is computed

using pROC [37], an an open source R package.

We plot the model performance for each within next assign-

men t wheel spinning and next assignment stopout as estimated

using the LSTM model without transfer learning in Figures

4 and 6 respectively; we compare these, then to the model

performance for each within-assignment wheel spinning and

stopout depicted in Figures 3 and 5 respectively. It is important

to highlight, as was described in the Metrics Section, lower

RMSE values indicate better model performance while both

higher recall and higher AUC values are indicative of better

model performance; in this way, although both RMSE and

recall, for example, exhibit a general upward trend over each

subsequent opportunity, the metrics are contradictory in their

trend of model performance. This particular case observed in

Figure 4 would therefore suggest that, while the model is able

to correctly identify a larger number of students likely to wheel

spin by the end of the preceding assignment, the model is less

precise in its ability to do so. This is further supported by the

decrease in AUC observed in that figure, where the model is

likely mislabeling students who do not wheel spin on the next

assignment.

When predicting next assignment wheel spinning, as illus-

trated in Figure 4, the RMSE of the model is at its lowest

over the first three opportunities of students assignments.

This is not very surprising as, since the completion threshold

for the assignments is answering three consecutive problems

correctly, a large number of students will likely answer the

first three problems correctly and effectively complete the

assignment. Such students, although certainly dependent on

content, are probably less likely to exhibit wheel spinning

in future assignments than students exhibiting difficulty early

in the assignment; students who do not effectively learn

the material are likely to struggle to learn subsequent skills

that may require mastery of the prior content. The model

performance, in terms of RMSE, then steadily declines after

the third opportunity as it is likely biasing estimates toward the
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Fig. 3: The performance of the LSTM model in predicting within-assignment wheel spinning by opportunity.

Fig. 4: The performance of the LSTM model in predicting next assignment wheel spinning by opportunity.

majority class. In regard to both recall and AUC, however, the

model is steadily improving with each subsequent opportunity,

suggesting that, while perhaps biased toward majority class,

the model is able to more effectively identify future cases of

wheel spinning behavior as students remain in the assignment.

The model’s recall does seem to plateau near the end of the

10 problem span, but the result suggests that by the end

of the assignment, it is able to identify 60% of the wheel

spinning students on the subsequent assignment (without even

knowing what that content will be). Presumably, the model

may be simply identifying cases where students who exhibit

wheel spinning within the current assignment are more likely

to wheel spin on subsequent assignments, particularly as the

students remaining in the assignment at the tenth opportunity

are wheel spinning (unless completion is reached on the tenth

item per our definition of the behavior).

In one sense, this suggests that, somewhat unsurprisingly,

an intervention aimed at preventing wheel spinning on a

subsequent assignment is likely to be most impactful at the

first sign of potential wheel spinning behavior on the current

assignment. In the case of our results, this seems to be around

the third learning opportunity, as illustrated by the recall and

metric in Figure 3. In that figure, the third opportunity exhibits

both the highest recall, suggesting that the model is able

to identify the cases where wheel spinning is exhibited by

the end of the assignment, and the lowest RMSE, which,

even with majority class bias, is the opportunity where all

metrics generally agree in terms of exhibiting good model

performance.

The performance of the LSTM model in predicting next as-

signment stopout, as depicted in Figure 6, illustrates a similar

trend to that of the wheel spinning model. Although exhibiting

noticeably higher variation, the RMSE of the stopout model is

lowest within the first three learning opportunities and steadily

increases on subsequent opportunities. Recall again exhibits a

contradicting trend, exhibiting the worst performance over the

first three opportunities and then substantially increasing in

performance after the third opportunity, correctly identifying

approximately 59% of the students who stopout on the next

assignment. By the large confidence bounds on AUC, however,
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Fig. 5: The performance of the LSTM model in predicting within-assignment stopout by opportunity.

Fig. 6: The performance of the LSTM model in predicting next assignment stopout by opportunity.

it would appear that, similar to the AUC of the next assignment

wheel spinning model illustrated in Figure 4, the model has

difficulty distinguishing students likely to exhibit each of these

behaviors in the future.

In observing the within-assignment performance of this

model in Figure 5, however, another interesting trend can be

identified. Similar to the wheel spinning model, the metrics

appear to agree in terms of better model performance on the

third opportunity. However, the RMSE steadily improves and

both the recall and AUC metrics decrease somewhat steadily

after this point. This almost-inverse trend from what was seen

for the wheel spinning performance suggests, although not sur-

prisingly, that the model is unable to distinguish students likely

to stopout and persist on later opportunities; by our definition,

stopout can only occur within the first ten opportunities, but

also students present on later opportunities are demonstrating

persistence which may be hard for the model to identify when

stopout will occur in such cases.

VI. FUTURE WORK

Although this work advances the understanding of trans-

fer learning in understanding educational performance, there

are several interesting followup questions. First, we found a

general pattern of logistic regression benefiting from transfer

learning, while the results for decision trees were more mixed.

Is this trend a general one, or is it particular to our data set

and set of features? Similarly, how would other classifiers such

as random forests or decision stumps perform? Would they

benefit from the constructed features or not? The first step here

of exploring transfer learning is useful, but the field needs a

better understanding of under what circumstances features will

transfer to new learners.

The second area of investigation centers around the differing

benefits transfer learners gain. When the features aligned with

the task, e.g. stopout features for predicting stopout, both

decision trees and logistic regression showed benefit. However,

when the features were less aligned, such as wheel spinning

features being used to predict stopout, results were more

mixed. There are several next questions to ask in this area.
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First, how broadly applicable are the learnt feature sets? Would

they show improvement over raw features predicting less-

related tasks should as learner affect? Second, is it feasible

to train a neural network with multiple outputs to encourage

it to learn features that are more broadly applicable (e.g.

through multi-task learning [38])? In this way, a major area of

research could be training networks on a variety of outputs and

using the learnt features for a variety of novel research topics.

Removing humans from feature generation may result in less

interpretable features, but might result in both more accurate

models and novel features we have not yet hand-discovered.

The final area we think worth pursuing is understanding the

large dropoff in performance from predicting current problem

set wheel spinning and stopout, to predicting next problem

set wheel spinning and stopout. Some of the decrease in

performance is fundamental to any prediction task: predictions

further in the future have more uncertainty than about near-

term events. How much of the decrease is a fundamental

limitation, and how much is due to their not being as much

prior art in longer-term predictions? Is it possible to increase

accuracy on later problem sets to an AUC of 0.7 with better

feature construction or model choices, or are there fundamental

limits to how accurately we can predict student performance?

VII. CONTRIBUTIONS AND CONCLUSIONS

This paper makes two contributions with regards to transfer

learning. First, we have found that in some instances transfer

learning works better than the original features. We were

surprised that machine-learnt features, designed to work with

a neural network, were applicable to a decision tree. Given

the identical model forms, it was less surprising the features

improved performance of logistic regression models. The

second contribution is that transfer learning (sometimes) works

for non-identical tasks. Using LSTM-stopout features for pre-

dicting wheel spinning, and vice versa, performance improved

for the logistic regression models and sometimes improved for

the decision tree models. This finding demonstrates that it is

possible to automatically construct features that are applicable

to new prediction tasks.

This paper also makes contributions with respect to pre-

dicting longer-term events. Earlier work on student modeling

focused on immediate events such as predicting how the

student would perform on the current problem. Later work

lengthened the prediction interval to see how a student would

perform on a problem set, which was composed of many

problems. This work increases the temporal interval to predict

how a student will perform on the next problem set. In many

ways, this work is a greater increase than going from current

problem to current problem set, as in both cases the predictive

model has information of how the student is performing on this

skill. For predicting the next problem set, the model is unsure

how the student will perform on the skill. Thus the predictive

task is comparably more difficult.

In conclusion, this paper focuses on providing an early

warning to predict which students will struggle. Providing

help and additional learning resources to students who are

struggling to learn is an integral part of any learning system.

Identifying students who are going to struggle is crucial for

helping these students; the sooner we know if a student is

going to wheel spin or stopout, the better we can provide the

right kind of help to the students. Prevention is better than

cure, likewise it is better to prevent the student from wheel

spinning or stopout than providing them with remedies later

on. From our results, we can say that our models are good at

identifying the stopout and wheel spinning behavior early from

the actions of the students in the current assignment. From our

models we can understand student persistence in the form of

wheel spinning and stopout. Using these concepts, we can try

to make students persist longer if they are not persisting long

enough. Or we could stop them from persisting if we identify

that they have been struggling for a long time. We can use

these models to provide intervention at an early stage of the

assignment such as when the model detects the behavior after

an action made by the student. If the model predicts if the

student is going to wheel spin, we could stop providing the

student with more problems for the day. Instead, we could

point the student to a learning resource such as class notes or

video. Similarly, if the model predicts if a student is going to

stopout, we could try to lower the difficultly of the problems so

that the student gains confidence in solving problems instead

of stopping out. By using the detectors for next assignment

behaviors, we are detecting vulnerable students an assignment

early.
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