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Abstract—The increased usage of computer-based learning
platforms and online tools in classrooms presents new opportu-
nities to not only study the underlying constructs involved in the
learning process, but also use this information to identify and
aid struggling students. Many learning platforms, particularly
those driving or supplementing instruction, are only able to
provide aid to students who interact with the system. With this
in mind, student persistence emerges as a prominent learning
construct contributing to students success when learning new
material. Conversely, high persistence is not always productive
for students, where additional practice does not help the student
move toward a state of mastery of the material. In this paper,
we apply a transfer learning methodology using deep learning
and traditional modeling techniques to study high and low
representations of unproductive persistence. We focus on two
prominent problems in the fields of educational data mining
and learner analytics representing low persistence, character-
ized as student ‘‘stopout,” and unproductive high persistence,
operationalized through student ‘“wheel spinning,” in an effort
to better understand the relationship between these measures
of unproductive persistence (i.e. stopout and wheel spinning)
and develop early detectors of these behaviors. We find that
models developed to detect each within and across-assignment
stopout and wheel spinning are able to learn sets of features
that generalize to predict the other. We further observe how
these models perform at each learning opportunity within student
assignments to identify when interventions may be deployed
to best aid students who are likely to exhibit unproductive
persistence.

Index Terms—Early detection, Wheel Spinning, Stopout,
Transfer learning, Deep learning , Persistence

I. INTRODUCTION

He use of digital learning environments in schools has led

to new opportunities to study influential student learning
constructs both longitudinally and at fine levels of granularity.
Digital learning environments have emerged to take advantage
of these opportunities, providing researchers with the tools and
data to better understand such learning processes while simul-
taneously providing a platform through which that research
can be implemented and deployed to improve students learning
experiences. As is the case for many, if not all, learning
platforms, particularly those that aim to drive or supplement
teacher instruction, are only able to provide aid to students
who interact with the system; it is for this same reason that
human tutors often employ a range of techniques to maintain
student engagement and encourage student persistence when
approaching difficult content [1]. This reinforces the need
to better understand student persistence during the learning
process so as to develop better detectors of struggling students

and subsequently develop interventions to promote productive
learning strategies.

When approaching difficult content, it is essential for
students to exhibit high persistence by working through a
sufficient number of practice problems in order to successfully
learn the material. In this way, the construct of persistence
plays an important role in student success as has been studied
through research pertaining to grit [2], perseverance [3], and
productive failure [4]. Students who fail to complete their work
after only a small number of problems, defined in this paper
as students exhibiting “stopout,” are missing opportunities
to learn difficult material through additional practice; this is
particularly the case when students exhibit stopout early in an
assignment, within, for example, the first few problems.

Although the presence of persistence is essential for students
to overcome learning obstacles, there are cases where high per-
sistence can be unproductive. This negative aspect of exhibit-
ing high unproductive persistence has been operationalized in
previous works through a behavior known as “wheel spinning”
[5]. Wheel spinning describes the case when a student persists
in a particular learning task yet is unable to reach a state of
mastery within a reasonable timeframe.

Both stopout and wheel spinning represent unproductive
examples of student persistence; in one case, stopout repre-
sents students who are not exhibiting enough persistence to
succeed while wheel spinning represents too much persistence
where it would likely benefit the student to stop and seek
additional aid from an instructor or tutor. For this reason,
we define stopout and wheel spinning as mutually exclusive
measures within a single assignment. As previous works have
defined wheel spinning behavior as a student reaching the
tenth problem, or learning opportunity, of a mastery-based
assignment (discussed further in Section 3), students are only
considered to have stopped out of an assignment if done before
the tenth problem; it is important to emphasize this definition
as each measure in this way represents what we consider to
be unproductive learning behavior.

It is important to be able to detect when students are likely
to exhibit stopout or wheel spinning behavior in order to
develop interventions to promote persistence when it is likely
beneficial to students and to also suggest additional help when
such persistence is unlikely to lead to success. In light of this
importance, however, deploying an intervention once stopout
is detected is likely not very impactful as the student has
already ceased interaction with the system, and similarly, in
the case of wheel spinning, deploying an intervention at the
moment of detection is likely too late as the student has already

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2019.2912162, IEEE

Transactions on Learning Technologies

JOURNAL OF IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES

wasted time and effort (and perhaps has become frustrated). It
is with these scenarios in mind that it becomes imperative to
deploy such interventions preemptively in anticipation of such
behavior and address potential causes of stopout and wheel
spinning behavior before the student exhibits unproductive
forms of high and low persistence. As will be discussed
further in the Background Section, recent applications of deep
learning in the context of education has led to promising
results, supporting the exploration of such models for the task
of developing early detectors of these student behaviors.

It is the goal of this work to explore the early detection
of unproductive persistence as operationalized through wheel
spinning and stopout. Using machine learning techniques
including the application of deep learning in conjunction with
both model and outcome transfer learning methods, we explore
the relationship between learned predictors of wheel spinning
and stopout both within an assignment and across assignments.
With this goal in mind, we seek to address the following
research questions:

1) How do temporal deep learning models compare to
traditional methods in the task of predicting wheel
spinning and stopout behavior both within- and across-
assignments?

2) Are learned predictors of each wheel spinning and
stopout behavior also predictive of the other respective
behavior (e.g. are predictors of wheel spinning also
predictive of stopout as well as the reverse)?

3) How does recency affect the performance of models
predicting each within and across assignment wheel
spinning and stopout?

The focus of this work is on exploring the relationship
between representations of unproductive student persistence
in an effort to develop early detectors of such behaviors. The
following section will first describe existing works that have
previously studied behaviors of student attrition and wheel
spinning in addition to previous applications of deep learning
in the context of education. We will then describe the source
and attributes of the data used in this work before detailing the
applied methodology and analyses conducted to study these
student behaviors. The results of these analyses will then
be discussed with particular focus on the early detection of
each within and across-assignment stopout and wheel spinning
behaviors. Finally, we will discuss the potential future work,
highlight the contributions of this work, and discuss final
conclusions from the conducted analyses.

II. BACKGROUND
A. Wheel Spinning

Several previous works have explored and have attempted
to model student wheel spinning behavior in several plat-
forms including Cognitive tutor [6] and ASSISTments [5]
[7], while other work has explored policies to help prevent
wheel spinning [8]. As described in the Introduction Section,
wheel spinning is the behavior in which a student exhibits
high persistence in a learning task, but unable to obtain
sufficient understanding of the learning materials. The term
“wheel spinning” is analogous to a car that is stuck in snow

or mud; despite devoting effort into moving, the wheels will
spin without getting anywhere.

In this work, we will be using the definition of wheel
spinning given in the work of Beck and Gong [5] as failing
to reach mastery after seeing ten learning opportunities. It is
for this reason that prior work observing wheel spinning has
pertained to student interactions with mastery-based assign-
ments. Mastery-based assignments, as opposed to traditional
assignments that require students to answer all assigned prob-
lems, instead require students to demonstrate a sufficient level
of understanding, or mastery, of the assigned material in order
to complete the assignment. In the case of ASSISTments, this
threshold of understanding, by default, requires students to
simply answer three consecutive problems correctly on the
first attempt without the use of computer-provided aid.

Previous attempts to model wheel spinning have observed
student activity on mastery-based assignments at the problem-
level to predict whether the student will eventually wheel spin
in that assignment [7]. The model was trained on expert-
generated features describing each problem and student recent
actions to estimate the likelihood of a student wheel spinning
on the current assignment. We hypothesize that such a model
is likely to perform better on later problems in an assignment
than earlier problems, but previous works have reported an
average model performance across all opportunities, or prob-
lems.

This paper attempts to, in part, build upon this previous
body of work to build models to predict wheel spinning using
a finer-granularity of data (e.g. at the action-level), observe
wheel spinning behavior (as well as stopout which will be
described next) over longer periods (e.g. across assignments),
and observe how model performance changes over consecutive
problems.

B. Student Attrition and Stopout

Student attrition, more commonly characterized by student
dropout, has received a large amount of attention in recent
years as a problem in education, largely due to its prominence
in digital environments such as Massive Open Online Courses
(MOQOCs) [9] [10] [11] [12] [13]. In such systems, it has
been observed that a large portion of students do not complete
their courses; such behavior is called dropout. Surveys have
shown multiple reasoning behind low persistence in MOOCs
which vary from learners to learners. For example, some
may quit due to insufficient background knowledge or the
difficulty of content, but other may get interrupted due to
time management or scheduling, or simply stop coming back
because they learned all they want to know [14]. Student
attrition within MOOCs has also been previously studied
through the development of a deep learning model, named
“GritNet,” that was found to outperform existing baseline
methods [15] and even transfer across courses [16]. While
these areas have, as described, received a large amount of
attention, the characteristics of persistence and the reasoning
for attrition in MOOC:s differs greatly from that observed in
K-12 classrooms as most students do not exhibit dropout in
the same manner.
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Dropout is not common within traditional K-12 classroom
context (i.e., mandatory education) as attendance and gradua-
tion are often enforced and encouraged by the parents. Instead,
student attrition and low persistence are observed in a form
of students not completing certain learning tasks; we call
this behavior “’stopout”. The main difference between stopout
and dropout is that when a student stopouts, they are still
in the course and may choose to complete the subsequent
assignments, while learners are defined as dropout when the
do not come back to finish the course.

When Student attrition at the assignment level, in many
cases, prevents students from sufficiently learning the material
and subsequently may lead to further difficulty when learn-
ing post-requisite skills (e.g. see [17]), but also introduces
a range of other issues pertaining to the development and
deployment of effective learning interventions. As students
exhibiting stopout behavior cease interaction with the learning
environment, aid cannot be given to the student through the
platform, relying solely then on external sources, such as the
teacher, to help the student. Missing or incomplete student
data caused by attrition makes it difficult to study the learning
process (as no data can be recorded for students who are
not interacting with the system), measure the effectiveness of
interventions through randomized controlled trials [18], and,
as the cause of stopout is often difficult to identify, develop
effective interventions to support more productive persistence.
For these reasons, it is important to build models to help
identify students likely to exhibit stopout preemptively so that
we can better understand the early signs of the behavior and
develop interventions to prevent it.

C. Deep Learning in Educational Contexts

The use of deep learning methods in the context of edu-
cation and learning analytics has led to a growing body of
research focusing on better modeling student behavior and
performance. Within this domain, a large number of such
works have begun to utilize recurrent neural networks (RNNs)
[19], for their ability to model complex temporal patterns of
student behaviors. These models have shown great promise
in recent works modeling student knowledge and short-term
performance [20] [21] [22], predicting student graduation [15]
and real-time performance [16] in MOOCs, detecting student
affective state [23], and predicting long-term outcomes [24]
[25].

Despite the often-reported high performance of these mod-
els as applied to their respective tasks in education, the large
number of learned parameters and complex model structures
often make them difficult to interpret. While this difficulty
applies to the learned parameters of the model, this does not
mean that the estimates produced by the models are similarly
uninterpretable and can be utilized to explore student behavior
over time at fine levels of granularity (e.g. see [26]). Something
as simple as observing the estimates themselves, or even model
performance, over time can lead to better insights into the
modeled behaviors as well as when action may best be taken
through intervention.

The high complexity of deep network structures allows
the model to learn rich feature embeddings, either explicitly

(e.g. [27]) or implicitly (e.g. [25]), that better describe the
data to make better-informed model estimates. In this way,
such models also support the application of transfer learning
[28] to better understand the relationship between outcomes
of interest by providing the means to observe how learned
features generalize across prediction tasks.

III. DATASET

The data used in this work is comprised of students working
with ASSISTments during the 2016-2017 academic year. AS-
SISTments is a web-based learning platform that provides the
tools for teachers to assign classwork or homework content
for which students receive immediate correctness feedback
[29]. While working through each assignment, many problems
supply students with optional on-demand computer-provided
aid; hints, of which there may be from O up to several
available, supply students with an instructional message, while
scaffolding, when available, breaks the problem into smaller
steps to solve. In addition to these, the system provides a
“bottom-out” hint for every problem that supplies the students
with the correct answer if the student is unable to solve the
problem as students are not allowed to progress to subsequent
problems until the correct response is entered inside ASSIST-
ments.

ASSISTments is used by several thousands of distinct
students daily, most of which being in 6th-8th grade solving
primarily mathematics content, providing a dataset of suffi-
cient scale and variation to apply deep learning methods that
often require such data. While the majority of students are
of late-middle-school age, the dataset itself is comprised of
all users of the system during the aforementioned academic
year. The data is filtered to include only student interaction
with mastery-based assignments, known as “skill builders” in
the system, where the completion threshold is designated to
simply require students to answer three consecutive problems
correctly without the use of computer-provided aid (i.e., with-
out hints, scaffolding, or bottom-out hints). In recognition of
wheel spinning as an undesirable learning behavior, the system
implements a “daily limit,” stopping students on the skill
builder assignment for the day if the completion threshold is
not reached by the tenth problem (except in the case where the
student is about to reach the threshold on or directly following
the tenth problem); the system provides the student with an
instruction to seek additional help and return to the assignment
on the subsequent day.

As teachers using the system assign a range of content,
both made available through the system as well as self-
built material, we include data from skill builder assignments
where at least 10 students started the assignment and the
overall completion rate is at least 70%. These limitations
help to remove outliers such as sample classes and optional
supplementary assignments where the teacher does not require
every student to complete. These outlier cases are excluded as
we would argue that attrition due to such factors is not stopout
as we have defined it within this task (e.g. low unproductive
persistence).
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Feature Name

Description

Action Type

One-hot encoding of the action (attempt, help request, etc.)

Attempt Count

The number of attempts made up to the current action

Hint Count

The number of hints requested up to the current action

Problem Count

The number of problems seen up to the current action

Probability of Action

The probability of the current action given the problem

Probability of Action
Given Action Count

The probability of the current action given both the problem
and the number of actions taken in the problem

Probability of Response

When an attempt, the probability of a student answering with
the specific response given the problem

Probability of Response
Given Action Count

When an attempt, the probability of a student answering with
the specific response given the problem and number of actions
taken in the problem

Cumulative Log Likelihood
of Response

The cumulative log likelihood of a student answering with the
specific response on the problem

Normalized Time Taken

The amount of time since the last action, z-scored within action
type and problem

Used Penultimate Hint

Whether the second-to-last hint has been seen before the
current action

Used Bottom Out Hint

Whether the student has seen the last hint (containing the answer)

before the current action

Correctness or incorrectness if the current action is an attempt, or

Correctness .
a non-attempt (as a 3-value one-hot encoding)

One-hot encoding describing the previous three actions taken

Preceding 3 Actions ; )
excluding the current action

Current and
Preceding 2 Actions

One-hot encoding describing the previous three actions taken
including the current action (current and previous 2)

TABLE I: Description of the generated action-level features.

A. Features spinning behavior. Again as emphasized in the Introduction,
we define stopout to occur only if a student fails to complete
the assignment and stops out before the tenth problem. Attri-
tion exhibited after the tenth problem is not labeled as stopout
behavior, but rather would be characterized as wheel spinning
(as the tenth problem was reached without completing the
mastery assignment). In this way, any student with ten or
more problems, unless completion was reached precisely on
the tenth item, is labeled as having exhibited wheel spinning
behavior.

The labels of each stopout and wheel spinning are rep-
resented as separate binary values and, while calculated at
the student-assignment level, are applied to each row of the
dataset. In this way, all models reported in this paper are
predicting wheel spinning and stopout at each action taken
by a student, similar to the problem-level estimates observed
in previous works [5] [7]. While we do not expect that such
models will perform at the same level of accuracy for all
actions, this level of prediction will allow for the study of

The data consists of action-level data recorded by the
system, describing a fine-grained level of interaction with the
content. As such, each row of the data describes a single
action taken by a student pertaining to problem answering,
or attempts, as well as hint requesting within the system in
addition to time-related measures, probability of each response
(e.g. identifying common wrong answers), and recency infor-
mation (e.g. preceding actions taken). From the 15 features
generated, a one-hot encoding was applied to all categorical
features, resulting in a total of 86 features to use as input into
our models. A brief description of each of these features is
provided in Table I.

B. Wheel Spinning and Stopout Labels

The labels of wheel spinning and stopout are applied to the
data largely following previous definitions of these behaviors,
although with a small number of edge-case exceptions that ¢
are detailed here to avoid ambiguity. As we hypothesize that Such performance over time.
wheel spinning and stopout are, respectively, representations
of high and low unproductive persistence, as emphasized in

he Introducti h defined th behavi tuall Number of Distinct Students 12,714
the Introduction, we have defined these behaviors as mutua
R ’ L. Y Number of Student Assignments 123,539
exclusive. Wheel spinning occurs when students have not -
Number of Rows (Actions) 1,055,588

reached a sufficient threshold of understanding by the tenth
learning opportunity; we acknowledge that this threshold of
ten problems to define wheel spinning behavior is rather
arbitrary (and perhaps worth refinement in future work), but is
used here for consistency with previous works studying wheel

Percent Assignments with Wheel Spinning 4.85%

Percent Assignments with Stopout 4.72%

TABLE II: The notable descriptives of the dataset.
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Fig. 1: A simplified representation of the LSTM model
structure, illustrating how information flows from previous
timesteps to inform each model estimate.

For this work, four labels are applied to the data correspond-
ing to within and across-assignment indicators. In other words,
a within-assignment wheel spinning and stopout (whether
the student exhibits each behavior on the current assignment
on which a student is working) is applied in addition to
indicators of wheel spinning and stopout on the subsequent
assignment. In both cases, a label is applied to each row
of the data, again, corresponding to a single action taken
by the student. In this way, next assignment wheel spinning
and stopout behavior will be predicted from, for example,
the first action of the previous assignment, then the second
action, and so on. Similarly, as there is no included indication
of the subject matter of the subsequent assignment, models
of across-assignment representations of wheel spinning and
stopout behavior is inherently capturing student-level (e.g.
content agnostic) representations of such behavior.

The resulting dataset, as described by Table II, contains over
100 thousand student assignments from over 12 thousands
students, resulting in approximately 1 million actions to be
used by our models.

IV. METHODOLOGY

The methods used in this paper aim to address the research
questions outlined in the Introduction Section centered on
the application of a deep learning model in conjunction with
transfer learning to predict both within and across-assignment
representations of unproductive persistence. In this way, we
develop a recurrent deep learning model as a means of learning
a rich set of embedded features that are predictive of one
outcome (i.e., wheel spinning) in order to then observe how
well such features generalize to predict the other outcome
(i.e., stopout). This section will detail the models used to
accomplish this goal as well as the set of methods applied in
addressing our research questions outlined in the Introduction.

A. Building Models of Wheel Spinning and Stopout

In order to predict within and across-assignment wheel
spinning and stopout behavior, we utilize a type of RNN called

a Long-Short Term Memory (LSTM) network [30], in addition
to a traditional decision tree model and logistic regression.
Previous works focused on predicting wheel spinning behavior
have utilized a logistic regression approach using a large set
of engineered features [5] [7]. While a set of engineered
features are also utilized in this work, the previous models
of wheel spinning have attempted to model at the problem
level and included a larger set of contextual features that
describe prior performance on each knowledge component, or
skill, in the assignment; the set of features we use here allow
us to observe student-level representations of each behavior
and future work can certainly expand on this to include more
contextual, content-based features.

For each of the four labels applied to the dataset, a separate
logistic regression, decision tree, and LSTM model is trained
to predict the respective label. For all models trained in this
work, we evaluate each using a stratified 10-fold student-level
cross validation (utilizing the same folds in all models for fair
comparisons). Given the large imbalance of stopout and wheel
spinning labels (as most students do not exhibit such behavior
per assignment), we stratified each fold by first clustering
students based on the percentage of assignments in which
each exhibited wheel spinning and stopout behavior, and then
folding each cluster into 10 even folds.

In the case of the more traditional decision tree and logistic
regression models, the raw features are presented as input
to the model, with each action delivered as an independent
training sample; again, the outcome is predicted at each action
of the student within the system. The resulting performance of
each model is then calculated across all samples within each
fold and averaged across the 10 folds. The traditional mod-
els were implemented using the Scikit-Learn library [31] in
Python using the default hyperparameters, with the exception
of the max depth of the decision tree having been restricted
to 3 levels to avoid potential overfitting; these settings were
used for all logistic and decision tree models described in this
work.

The LSTM model, however, as a temporal model, differs
slightly in terms of how samples are presented to the model
as input during the training procedure. In this case, samples are
grouped by student assignment, with each sample representing
a series of actions taken by a student within each assignment.
The entire series of assignment-actions are presented to the
model and a series of estimates (of equal length to the input)
is produced. In this way, the model is trained as a sequence-
to-sequence model with a dynamic, yet finite, sequence length
(as students completed a varying number of problems). The
model attempts to learn temporal relationships within each
student assignment to better inform its estimates, but still
produces the same number of outputs as the traditional models.
Similarly, as some of the features represent recent activity, the
comparison of the models will help reveal aspects of these
temporal relationships; comparing the LSTM and traditional
models, for example, will reveal if utilizing longer-term stu-
dent performance history lead to better model performance.

The LSTM model was developed using the Tensorflow
library [32] in Python with a 3 layer structure; the input layer
included 86 nodes corresponding with each of the available
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Fig. 2: A visual example of the transfer learning procedure. The hidden layer of the trained LSTM model is used as input to
train each a decision tree and logistic regression to predict each wheel spinning and stopout behavior.

action-level features which then was fed into a hidden layer
of 10 LSTM nodes and proceeded to an output layer of
1 output node to which a sigmoid activation function is
applied. Minimal hyperparameter tuning was conducted for
this network in an effort to reduce the chances of providing
an unfair advantage to the model; for sake of reproducibility,
the model used an Adam update function [33], cross entropy
cost function, step size of 0.001, a batch size of 32, and used
20% of the training set as a validation set to determine when
to cease model training.

B. Transfer Learning

Once each of the models is constructed and evaluated
in predicting within and across-assignment wheel spinning
and stopout behavior, we apply a transfer learning approach
to study the relationship between such constructs. We have
hypothesized that wheel spinning and stopout behavior are two
extreme measures of unproductive persistence. By employing
the use of transfer learning, we can test this hypothesis,
that the two measures are closely related, by observing how
well predictors of one behavior transfer to predict the other
behavior.

For this task, we utilize the LSTM model as the basis for the
transfer learning method. As a recurrent network, the structure
allows the model to learn a rich set of features that attempt
to utilize complex temporal relationships in the data to make
better-informed estimates at each time step; this rich set of
features is stored in the network’s hidden layer and, though
not directly interpretable, this set of features is learned during
the model training process. This development of embedded
features is well-studied in other deep learning models, such
as those utilized for image processing [34] [35]. The LSTM
model, while not identifying lines and shapes as is found in

image processing tasks, learns temporal features that help to
distinguish between cases of positive and negative labels. The
LSTM model is trained as a sequence-to-sequence model (i.e.
many-to-many), allowing a set of features to be extracted for
each time step and subsequently presented as input into a
separate model; it is in this way that transfer occurs, where
the LSTM learns a set of features in its hidden layer that
are then transferred to another model that observes a different
prediction task. For example, as there are 10 nodes in the
hidden layer of the LSTM, the model learns 10 features from
the preceding sequence of action-level features (see Table I)
that distinguish positive from negative labels of the dependent
variable (i.e. either stopout or wheel spinning); the 10 features
are then extracted for each timestep and used as input to either
the decision tree or logistic regression model. A simplified
representation of this process is illustrated in Figure 2. The
logistic regression and decision tree models are then trained
to predict either stopout or wheel spinning at each timestep
(i.e. at each student action), using the features transferred from
the LSTM model.

With this methodology, four sets of transfer learning models
are compared for each within and across-assignment labels
of wheel spinning and stopout. These four sets compare
different combinations of features, gained by training the
LSTM model to predict either wheel spinning or stopout
behavior, and each outcome. First, the features learned by the
LSTM model to predict within assignment wheel spinning,
referred to henceforth as the “wheel spinning features,” are
presented to a decision tree model and a logistic regression to
predict within assignment wheel spinning; this task allows us
to identify first any potential differences to performance caused
by model transfer (it is not guaranteed that the subsequent
model will be able to effectively learn how to utilize the

1939-1382 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TLT.2019.2912162, IEEE

Transactions on Learning Technologies

JOURNAL OF IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES

DT LR LSTM
Features AUC RMSE AUC RMSE AUC RMSE
Raw 0.847 0.327 0.511 0.437 0.887 0.313
LSTM - Wheel Spinning 0.87 0.318 0.887 0.313 — —
LSTM - Stopout 0.679 0.388 0.708 0.39 — —

Majority Class Model RMSE: 0.482

TABLE III: Predicting Wheel Spinning in current assignment

DT LR LSTM
Features AUC RMSE AUC RMSE AUC RMSE
Raw 0.706 0.224 0.46 0.275 0.759 0.223
LSTM - Wheel Spinning 0.71 0.224 0.683 0.226 — —
LSTM - Stopout 0.747 0.223 0.757 0.222 — —

Majority Class Model RMSE: 0.234

TABLE IV: Predicting Stopout in current assignment

features as the output layer of the LSTM had). Secondly,
the wheel spinning features are again presented to a different
decision tree and logistic regression model which are then
trained to predict within-assignment stopout. The third set
of models then observes, conversely, how well the stopout
features, learned by the LSTM model trained to predict within
assignment stopout, transfer to a decision tree and logistic
regression model to again predict within assignment stopout.
Finally, the fourth set of models uses the stopout features
in a decision tree and logistic regression to predict wheel
spinning. It is important to clarify that this work does not
attempt to make the comparisons between within-assignment
features transferring to predict next assignment outcomes.

V. RESULTS
A. Metrics

We compare the results using two primary metrics of AUC
and RMSE in addition to, in the case of observing model
performance over time, Recall. There are several benefits to
using this particular range of measures to evaluate each model,
particularly in case of modeling wheel spinning and stopout
where there is a large imbalance amongst the labels (most
students do not exhibit such behaviors). In such cases of
imbalance, majority class models tend to appear to perform
well even when no distinction between classes is learned. To
prevent trained models from producing a low error by biasing
their estimates toward majority class, we use AUC to evaluate
model fit.

The use of AUC evaluates how well a model distinguishes
positive samples from negative samples; given an instance of
the positive class and the negative class, AUC can be thought
of as the probability the positive class will be the one with a
higher probability estimate. Therefore, the measure accounts
for sparseness of the positive class. The value is bounded
between 0 and 1, with higher values indicating better model
fit. Values close to 0.5 are indicative of the model performing
similar to random chance.

While AUC evaluates how well the model is able to
distinguish the classes, RMSE identifies the distance of each
estimate (in terms of error) from the true label; the metric
is calculated using the continuous-valued probability of each
class as produced by the model and comparing this against
the ground truth label. In this way, the model penalizes for
indecisiveness in the model. For example, if, for a set of
positive and negative labels the model produced all estimates
of 0.1 and 0.09 respectively, the AUC would indicate perfect
model fit while the RMSE would be comparatively poor (as
the error on the positive instances is very high). This metric,
however, does not account for majority class bias and should
therefore be compared in relation to the RMSE value of a
majority class model. The value of RMSE is bounded between
0 and 1 in this case (as all estimates are bounded within this
range and the labels are binary values), with lower values
indicating better model performance.

Finally, we will also report a value of recall when observing
the next assignment wheel spinning and next assignment
stopout models performance over time. Recall, as a measure
of accuracy in regard to the positive label (for all positive
cases, how many did the model successfully identify), helps
to identify model performance in identifying the positive cases
of wheel spinning and stopout. This is particularly important,
again, due to the large imbalance as it provides a means of
evaluating the models ability to identify cases of stopout and
wheel spinning behavior. The drawback of this metric is that it
does require a rounding threshold to be set, and as it is likely
the estimates are biased toward the majority class, a rounding
threshold of the model output mean is used rather than the
more traditional use of 0.5; in other words, values above the
mean are rounded up to identify a positive case of either wheel
spinning or stopout and estimates below the mean are rounded
down to identify a negative case of either measure. The value
of recall is also bounded between O and 1 with higher values
indicating better model performance.
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DT LR LSTM
Features AUC RMSE AUC RMSE AUC RMSE
Raw 0.581 0.238 0.539 0.273 0.600 0.251
LSTM - Next Assignment Wheel Spinning 0.595 0.250 0.601 0.250 — —
LSTM - Next Assignment Stopout 0.570 0.251 0.569 0.251 — —
Majority Class Model RMSE: 0.246

TABLE V: Predicting Wheel Spinning in next assignment

DT LR LSTM
Features AUC RMSE AUC RMSE AUC RMSE
Raw 0.545 0.209 0.492 0.25 0.557 0.221
LSTM - Next Assignment Wheel Spinning 0.547 0.221 0.548 0.221 — —
LSTM - Next Assignment Stopout 0.553 0.221 0.557 0.221 — —

Majority Class Model RMSE: 0.215

TABLE VI: Predicting Stopout in next assignment

B. Model Performance

Our results are recorded such that each of the Tables III-
VI record results of one outcome variable. Table III describes
the various models which where built to predict if a student is
going to wheel spin in the current assignment. The first model
was built using the raw features (i.e the original features of
the dataset as listed in Table I). We see that the LSTM model
performs the best with an AUC of 0.887 and an RMSE of
0.313. It is then followed by the decision tree model with
an AUC of 0.847 and RMSE of 0.327. The logistic regression
model does not perform well with a low AUC of 0.511, barely
better than chance performance.

The second and third model in Table III is built using
transfer learning, where we use the learned hidden layer of the
LSTM trained to predict wheel spinning. Its learned features
are used as input to the decision tree and logistic regression
models. This experiment demonstrates how well the learned
features transfer between models as well as generalize to
new outcomes. The main result is that both models show
improvement when trained using the features discovered by the
LSTM: decision trees see a slight improvement in both AUC
and RMSE, while logistic regression is greatly improved. We
see that the LSTM-Logistic Regression model with AUC of
0.887 (RMSE 0.313) performs better than the LSTM-Decision
tree model with AUC of 0.87 and RMSE 0.318. We can
observe that the transfer of the LSTM model over the Logistic
Regression model is resulting in the same AUC of the LSTM
with raw features, which is unsurprising as the output layer of
the LSTM is essentially a logistic regression model. The last
model is another transfer learning model, wherein the LSTM
which was built to predict stopout in the current assignment
is used to transfer its learned features to a decision tree and
a logistic regression model to predict wheel spinning. The
results were mixed, with the decision tree exhibiting little
benefit vs. using the raw features, while logistic regression
outperformed the raw features. It is interesting that the logistic
regression improved even when given features extracted for

a different learning activity. We observe that both of these
models performed well with an AUC of 0.679 and RMSE
of 0.388 in the case of the LSTM-decision tree model and
an AUC of 0.708 and RMSE 0.39 for the LSTM-logistic
regression model.

Similar to Table III, Table IV records the model perfor-
mance for predicting if a student is going to stopout in the
current assignment. The order is similar to Table III where in
the first row the original features were used to fit the decision
tree, logistic regression and the LSTM model. The LSTM
model seems to perform the best with an AUC of 0.759 and
RMSE of 0.223, followed by the decision tree and logistic
regression models with AUCs of 0.706 and 0.46, respectively.
The second model is the first of the transfer learning models
aimed at predicting within-assignment stopout. The learned
features of the LSTM to predict wheel spinning were trans-
ferred as input to a decision tree and logistic regression model
to predict the stopout. Despite using features learned for a
different prediction task, both the decision tree and logistic re-
gression showed improved performance over just using the raw
features. For decision trees, the benefit is slight with a trivial
increase in AUC. However, logistic regression demonstrated
a large performance gain with AUC improving from 0.46 to
0.683 and RMSE improving from 0.275 to 0.226. Finally using
the LSTM model which was built to predict stopout using the
raw features, we transferred its learned features as input to
a decision tree and logistic regression model to predict the
same stopout label. Both models show improvement over using
the LSTM stopout features. Both decision tree and logistic
regression show noticeable performance gains in AUC, with
smaller gains in RMSE.

Table V describes the results for the model built to predict if
a student is going to wheel spin in the next, rather than current,
assignment. Using the original features, the LSTM exhibits
an AUC of 0.600 (RMSE 0.251), followed by the decision
tree with an AUC of 0.581 (RMSE 0.238), and then the
logistic regression with an AUC of 0.539 (RMSE 0.273). The
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second row describes the performance of the transfer learning
models from the LSTM built to predict wheel spinning in next
assignment. This LSTM - decision tree model had an AUC
of 0.595 (RMSE 0.250) while the LSTM - logistic regression
model exhibited an AUC of 0.601 (RMSE 0.250). Similarly the
LSTM built to predict next assignment stopout is used to build
transfer learning models with the decision tree and logistic
regression for the task of predicting next assignment wheel
spinning. These models resulted in an AUC of 0.570 (RMSE
0.251) for the transferred decision tree model and an AUC of
0.569 (RMSE 0.251) for the logistic regression model. Again,
we observe the general pattern of learned features resulting in
better accuracy than the raw features. For logistic regression,
even features built for a stopout manage to outperform the raw
features, although this result does not hold for the decision
tree.

Table VI describes the models built to predict if a student is
going to stopout in the next assignment. Following the similar
structure of the previous tables, the original features were
used to build a decision tree, logistic regression model and an
LSTM model. The results are not nearly as strong as shorter-
term predictions for the current assignment, but are still better
than chance, perhaps highlighting the difficulty of identifying
this behavior as early as the previous assignment without
contextual information as to the content of the subsequent
assignment. The LSTM again seemed to perform the best out
of the three with a not-so-high AUC of 0.557 (RMSE 0.221). It
was followed by the decision tree with a AUC of 0.545 (RMSE
0.209) and the logistic regression model with a below chance
AUC of 0.492 (RMSE 0.25). Following the raw features, we
use what was learned by the LSTM model built to predict
wheel spinning in the next assignment to transfer its learning to
a decision tree and a logistic regression model. These models
resulted with AUC of 0.547 (RMSE 0.221) and 0.548 (RMSE
0.221), respectively. We observe that there are few differences
between the two models. Next we use the LSTM model trained
to predict next assignment stopout to transfer its learning to a
decision tree and logistic regression model to predict the very
same label of next assignment stopout, resulting in AUCs of
0.553 (RMSE 0.221) and 0.557 (RMSE 0.221) respectively.

It is important to reiterate that each model is predicting the
respective label at each timestep. In other words, each behavior
is predicted at each student action. It is likely for this reason
that some models exhibit AUC values near chance; the poor
performance of the logistic regression model in Table III, for
example, and conversely high performance of the decision tree,
suggests that positive and negative labels of the behavior are
not linearly separable using the raw features alone and need
more information (such as the temporal features supplied by
the LSTM) in order to exhibit higher performance.

C. Observing Model Performance by Opportunity

In addition to observing model performance averaged over
all estimates, we further observe how model performance
changes at each learning opportunity, or problem, when
predicting each outcome measure. By observing how these
models perform at each learning opportunity, we can begin to
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identify how early in the preceding assignment we are likely
able to detect indicators of unproductive persistence in the
future; this can then help to 1) identify potential causes or
factors that may correlate with future unproductive persistence
and 2) begin to understand not only when but also what type of
intervention may be deployed to support productive learning
behaviors.

As the data is represented as a series of student actions, we
first take the mean model performance within each student
problem and plot this performance over the first ten problems
of the student assignments as shown in Figure 3. As the
number of students present at each opportunity changes due
to students either exhibiting stopout behavior or effectively
completing the assignment, it is important also to include con-
fidence intervals as each value will be less precisely measured
at each subsequent opportunity. In the case of RMSE, this
confidence interval is calculated by computing the square root
of the upper and lower bounds of the standard errors calculated
from the squared errors across estimates at each opportunity. In
the case of recall, the confidence bounds are computed using
a Wilson score interval [36] for the computed recall value at
each opportunity. The confidence bounds for AUC is computed
using pROC [37], an an open source R package.

We plot the model performance for each within next assign-
men t wheel spinning and next assignment stopout as estimated
using the LSTM model without transfer learning in Figures
4 and 6 respectively; we compare these, then to the model
performance for each within-assignment wheel spinning and
stopout depicted in Figures 3 and 5 respectively. It is important
to highlight, as was described in the Metrics Section, lower
RMSE values indicate better model performance while both
higher recall and higher AUC values are indicative of better
model performance; in this way, although both RMSE and
recall, for example, exhibit a general upward trend over each
subsequent opportunity, the metrics are contradictory in their
trend of model performance. This particular case observed in
Figure 4 would therefore suggest that, while the model is able
to correctly identify a larger number of students likely to wheel
spin by the end of the preceding assignment, the model is less
precise in its ability to do so. This is further supported by the
decrease in AUC observed in that figure, where the model is
likely mislabeling students who do not wheel spin on the next
assignment.

When predicting next assignment wheel spinning, as illus-
trated in Figure 4, the RMSE of the model is at its lowest
over the first three opportunities of students assignments.
This is not very surprising as, since the completion threshold
for the assignments is answering three consecutive problems
correctly, a large number of students will likely answer the
first three problems correctly and effectively complete the
assignment. Such students, although certainly dependent on
content, are probably less likely to exhibit wheel spinning
in future assignments than students exhibiting difficulty early
in the assignment; students who do not effectively learn
the material are likely to struggle to learn subsequent skills
that may require mastery of the prior content. The model
performance, in terms of RMSE, then steadily declines after
the third opportunity as it is likely biasing estimates toward the
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Fig. 3: The performance of the LSTM model in predicting within-assignment wheel spinning by opportunity.
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Fig. 4: The performance of the LSTM model in predicting next assignment wheel spinning by opportunity.

majority class. In regard to both recall and AUC, however, the
model is steadily improving with each subsequent opportunity,
suggesting that, while perhaps biased toward majority class,
the model is able to more effectively identify future cases of
wheel spinning behavior as students remain in the assignment.
The model’s recall does seem to plateau near the end of the
10 problem span, but the result suggests that by the end
of the assignment, it is able to identify 60% of the wheel
spinning students on the subsequent assignment (without even
knowing what that content will be). Presumably, the model
may be simply identifying cases where students who exhibit
wheel spinning within the current assignment are more likely
to wheel spin on subsequent assignments, particularly as the
students remaining in the assignment at the tenth opportunity
are wheel spinning (unless completion is reached on the tenth
item per our definition of the behavior).

In one sense, this suggests that, somewhat unsurprisingly,
an intervention aimed at preventing wheel spinning on a
subsequent assignment is likely to be most impactful at the
first sign of potential wheel spinning behavior on the current

assignment. In the case of our results, this seems to be around
the third learning opportunity, as illustrated by the recall and
metric in Figure 3. In that figure, the third opportunity exhibits
both the highest recall, suggesting that the model is able
to identify the cases where wheel spinning is exhibited by
the end of the assignment, and the lowest RMSE, which,
even with majority class bias, is the opportunity where all
metrics generally agree in terms of exhibiting good model
performance.

The performance of the LSTM model in predicting next as-
signment stopout, as depicted in Figure 6, illustrates a similar
trend to that of the wheel spinning model. Although exhibiting
noticeably higher variation, the RMSE of the stopout model is
lowest within the first three learning opportunities and steadily
increases on subsequent opportunities. Recall again exhibits a
contradicting trend, exhibiting the worst performance over the
first three opportunities and then substantially increasing in
performance after the third opportunity, correctly identifying
approximately 59% of the students who stopout on the next
assignment. By the large confidence bounds on AUC, however,
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Fig. 6: The performance of the LSTM model in predicting next assignment stopout by opportunity.

it would appear that, similar to the AUC of the next assignment
wheel spinning model illustrated in Figure 4, the model has
difficulty distinguishing students likely to exhibit each of these
behaviors in the future.

In observing the within-assignment performance of this
model in Figure 5, however, another interesting trend can be
identified. Similar to the wheel spinning model, the metrics
appear to agree in terms of better model performance on the
third opportunity. However, the RMSE steadily improves and
both the recall and AUC metrics decrease somewhat steadily
after this point. This almost-inverse trend from what was seen
for the wheel spinning performance suggests, although not sur-
prisingly, that the model is unable to distinguish students likely
to stopout and persist on later opportunities; by our definition,
stopout can only occur within the first ten opportunities, but
also students present on later opportunities are demonstrating
persistence which may be hard for the model to identify when
stopout will occur in such cases.

VI. FUTURE WORK

Although this work advances the understanding of trans-
fer learning in understanding educational performance, there
are several interesting followup questions. First, we found a
general pattern of logistic regression benefiting from transfer
learning, while the results for decision trees were more mixed.
Is this trend a general one, or is it particular to our data set
and set of features? Similarly, how would other classifiers such
as random forests or decision stumps perform? Would they
benefit from the constructed features or not? The first step here
of exploring transfer learning is useful, but the field needs a
better understanding of under what circumstances features will
transfer to new learners.

The second area of investigation centers around the differing
benefits transfer learners gain. When the features aligned with
the task, e.g. stopout features for predicting stopout, both
decision trees and logistic regression showed benefit. However,
when the features were less aligned, such as wheel spinning
features being used to predict stopout, results were more
mixed. There are several next questions to ask in this area.
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First, how broadly applicable are the learnt feature sets? Would
they show improvement over raw features predicting less-
related tasks should as learner affect? Second, is it feasible
to train a neural network with multiple outputs to encourage
it to learn features that are more broadly applicable (e.g.
through multi-task learning [38])? In this way, a major area of
research could be training networks on a variety of outputs and
using the learnt features for a variety of novel research topics.
Removing humans from feature generation may result in less
interpretable features, but might result in both more accurate
models and novel features we have not yet hand-discovered.
The final area we think worth pursuing is understanding the
large dropoff in performance from predicting current problem
set wheel spinning and stopout, to predicting next problem
set wheel spinning and stopout. Some of the decrease in
performance is fundamental to any prediction task: predictions
further in the future have more uncertainty than about near-
term events. How much of the decrease is a fundamental
limitation, and how much is due to their not being as much
prior art in longer-term predictions? Is it possible to increase
accuracy on later problem sets to an AUC of 0.7 with better
feature construction or model choices, or are there fundamental
limits to how accurately we can predict student performance?

VII. CONTRIBUTIONS AND CONCLUSIONS

This paper makes two contributions with regards to transfer
learning. First, we have found that in some instances transfer
learning works better than the original features. We were
surprised that machine-learnt features, designed to work with
a neural network, were applicable to a decision tree. Given
the identical model forms, it was less surprising the features
improved performance of logistic regression models. The
second contribution is that transfer learning (sometimes) works
for non-identical tasks. Using LSTM-stopout features for pre-
dicting wheel spinning, and vice versa, performance improved
for the logistic regression models and sometimes improved for
the decision tree models. This finding demonstrates that it is
possible to automatically construct features that are applicable
to new prediction tasks.

This paper also makes contributions with respect to pre-
dicting longer-term events. Earlier work on student modeling
focused on immediate events such as predicting how the
student would perform on the current problem. Later work
lengthened the prediction interval to see how a student would
perform on a problem set, which was composed of many
problems. This work increases the temporal interval to predict
how a student will perform on the next problem set. In many
ways, this work is a greater increase than going from current
problem to current problem set, as in both cases the predictive
model has information of how the student is performing on this
skill. For predicting the next problem set, the model is unsure
how the student will perform on the skill. Thus the predictive
task is comparably more difficult.

In conclusion, this paper focuses on providing an early
warning to predict which students will struggle. Providing
help and additional learning resources to students who are
struggling to learn is an integral part of any learning system.
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Identifying students who are going to struggle is crucial for
helping these students; the sooner we know if a student is
going to wheel spin or stopout, the better we can provide the
right kind of help to the students. Prevention is better than
cure, likewise it is better to prevent the student from wheel
spinning or stopout than providing them with remedies later
on. From our results, we can say that our models are good at
identifying the stopout and wheel spinning behavior early from
the actions of the students in the current assignment. From our
models we can understand student persistence in the form of
wheel spinning and stopout. Using these concepts, we can try
to make students persist longer if they are not persisting long
enough. Or we could stop them from persisting if we identify
that they have been struggling for a long time. We can use
these models to provide intervention at an early stage of the
assignment such as when the model detects the behavior after
an action made by the student. If the model predicts if the
student is going to wheel spin, we could stop providing the
student with more problems for the day. Instead, we could
point the student to a learning resource such as class notes or
video. Similarly, if the model predicts if a student is going to
stopout, we could try to lower the difficultly of the problems so
that the student gains confidence in solving problems instead
of stopping out. By using the detectors for next assignment
behaviors, we are detecting vulnerable students an assignment
early.
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