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Abstract We analyze a class of norms defined via an optimal interpolation problem
involving the composition of norms and a linear operator. This construction, known
as infimal postcomposition in convex analysis, is shown to encompass various norms
which have been used as regularizers in machine learning, signal processing, and
statistics. In particular, these include the latent group lasso, the overlapping group
lasso, and certain norms used for learning tensors. We establish basic properties of
this class of norms and we provide dual norms. The extension to more general classes
of convex functions is also discussed. A stochastic block-coordinate version of the
Douglas-Rachford algorithm is devised to solve minimization problems involving
these regularizers. A prominent feature of the algorithm is that it yields iterates that
converge to a solution in the case of nonsmooth losses and random block updates.

� Patrick L. Combettes
plc@math.ncsu.edu

Andrew M. McDonald
a.mcdonald@cs.ucl.ac.uk

Charles A. Micchelli
charles micchelli@hotmail.com

Massimiliano Pontil
massimiliano.pontil@iit.it

1 Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

2 Department of Computer Science, University College London, London WC1E 6BT, UK

3 Department of Mathematics and Statistics, State University of New York, The University at
Albany, Albany, NY 12222, USA

4 Istituto Italiano di Tecnologia, 16163 Genoa, Italy

ORIGINAL PAPER

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0568-1&domain=pdf
mailto: plc@math.ncsu.edu
mailto: a.mcdonald@cs.ucl.ac.uk
mailto: charles_micchelli@hotmail.com
mailto: massimiliano.pontil@iit.it


696 Numer Algor (2019) 81:695–717

Finally, we present numerical experiments with problems employing the latent group
lasso penalty.

Keywords Block-coordinate proximal algorithm · Douglas-Rachford splitting ·
Infimal postcomposition · Latent group lasso · Machine learning · Optimal
interpolation norm

1 Introduction

In various areas of data analysis such as machine learning, statistics, and signal pro-
cessing, regularization is a standard tool used to promote known structure in the
solutions of an optimization problem. Structured sparsity regularizers have been of
particular interest, as a means to encourage specific sparsity patterns in regression
vectors, spectra of matrices, gradient of images, and signal decompositions. Impor-
tant examples include the group lasso [44] and related norms [18, 28, 48], spectral
regularizers for low-rank matrix learning and multitask learning [1, 19, 36], multiple
kernel learning [6, 30], regularizers for learning tensors [34, 39]. Structured sparsity
regularizers also arise in speech processing [4], high-dimensional inverse problems
[9], image decomposition [22], adaptive image interpolation [23], face reconstruction
[37], and hyperspectral imaging [47].

We introduce a general formulation which captures the above norms and allows us
to construct new ones via an optimal interpolation problem involving simpler norms
and a linear operator. Specifically, given two Banach spaces X and Y , a norm ‖ · ‖
on Y is constructed as

(∀y ∈ Y) ‖y‖ = inf
x∈X
Lx=y

|||F(x)|||, (1.1)

where F : X → R
m is a mapping the components of which are norms, |||·||| is a norm

on R
m, and L : X → Y is a linear operator. As we shall see, this concise formulation

encompasses many classes of regularizers, either via the norm (1.1) or the associated
dual norm. In particular, in machine learning, functions of the type described in (1.1)
have been investigated in [3, 18, 24, 29, 39]. This formulation also arises in image
recovery [8], in inverse problems [11], and in the theory of interpolation spaces [32,
41].

We provide basic properties (cf. Proposition 2.1 and Theorem 2.5) and examples
of this construction. We also consider the more general formulation

ϕ(y) = inf
x∈X
Lx=y

h
(
F(x)

)
, (1.2)

where h and the components of F are convex functions that satisfy certain properties.
Such constructs are found for instance in signal recovery formulations [8]. In convex
analysis, they are known as infimal postcomposition [7] and their importance was
first underlined in [33].
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On the numerical side, we shall take advantage of the fact that the mapping F

and the operator L can be composed of a large number of “simple” components
to create complex structures. Specifically, we present a general method to solve
optimization problems involving regularizers of the form (1.1) where ||| · ||| =
| · |1. This method is based on the stochastic block-coordinate Douglas-Rachford
iterative framework of [13, 14]. Unlike existing methods, this approach guaran-
tees convergence of the iterates to a solution even when none of the functions
present in the model is differentiable and when random coordinate updates are
performed.

The paper is organized as follows. In Section 2 we introduce the general class of
regularizers and establish some of their basic properties. In Section 3 we construct
a number of examples of norms within the proposed framework. In Section 4 we
present a random block-coordinate algorithm to solve learning problems involving
these regularizers. Finally, in Section 5, we report on numerical experiments with this
algorithm using the latent group lasso penalty.

Notation We introduce our notation and recall basic concepts from convex analysis
used throughout the paper; for details see [7, 45]. Let X be a real Banach space, let
‖ · ‖ be its norm, let X ∗ be its topological dual, and let 〈·, ·〉 be the canonical bilinear
form on X ×X ∗. If X 	= {0} and X is reflexive, it follows from James’ theorem that
the norm of X ∗ is defined by

(∀x∗ ∈ X ∗) ‖x∗‖∗ = max
x∈X‖x‖=1

〈x, x∗〉. (1.3)

The space of bounded linear operators from X to a Banach space Y is denoted
by B (X ,Y). Let ϕ : X → ]−∞, +∞]. The domain of ϕ is dom ϕ ={
x ∈ X

∣∣ ϕ(x) < +∞}
and the conjugate of ϕ is ϕ∗ : X ∗ → [−∞, +∞] : x∗ �→

supx∈X (〈x, x∗〉−ϕ(x)). �0(X ) denotes the set of lower semicontinuous convex func-
tions from X to ]−∞, +∞] with nonempty domain. If X is a Hilbert space, the
proximity operator of ϕ ∈ �0(X ) at x ∈ X is the unique minimizer, denoted by
proxϕx, of ϕ + ‖x − ·‖2/2. Given p ∈ [1, +∞], the �p norm on R

d is denoted by
| · |p. The associated dual norm is | · |q , where 1/p + 1/q = 1. Rm+ and R

m++ are the
positive and strictly positive m-dimensional orthant, respectively, and R

m− = −R
m+.

2 A class of norms

We establish the mathematical foundation of our framework, starting with a scheme
to construct convex functions on Y .

Proposition 2.1 Let X , Y , and Z be reflexive real Banach spaces, let K be a
nonempty closed convex cone in Z , let L : X → Y be linear and bounded, and let
F : X → Z be K-convex in the sense that

(∀α ∈ ]0, 1[)(∀x ∈ X )(∀y ∈ X ) F
(
αx + (1 − α)y

)− αF(x) − (1 − α)F (y) ∈ K.

(2.1)
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Let h : Z → ]−∞, +∞] be a convex function such that dom h ∩ ran F 	= ∅ and

(∀z1 ∈ ran F)(∀z2 ∈ ran F) z1 − z2 ∈ K ⇒ h(z1) � h(z2). (2.2)

Define
ϕ : Y → [−∞, +∞] : y �→ inf

x∈X
Lx=y

h
(
F(x)

)
. (2.3)

Then the following hold:

(i) ϕ is convex.
(ii) Suppose that F is continuous, that the cone generated by ran L∗ −dom (h◦F)∗

is a closed vector subspace of X ∗, and that h is lower semicontinuous. Then
ϕ ∈ �0(Y).

Proof Set f = h ◦ F .

(i): It is enough to show that f is convex, as this will imply that ϕ is likewise
[7, Proposition 12.36(ii)]. Let α ∈ ]0, 1[, and let x and y be points in X .
Combining (2.1) and (2.2) yields

h
(
F(αx + (1 − α)y)

)
� h

(
αF(x) + (1 − α)F (y)

)
. (2.4)

Therefore, by convexity of h, we obtain

(h ◦ F)
(
αx + (1 − α)y

)
� α(h ◦ F)(x) + (1 − α)(h ◦ F)(y), (2.5)

which establishes the convexity of f .
(ii): We first derive from [7, Lemma 1.28] that f is lower semicontinuous. Thus,

f ∈ �0(X ) and, since the cone generated by ran L∗ − dom f ∗ is a closed
vector subspace of X ∗, it follows from [45, Theorem 2.8.3(vii)] and the same
arguments used in the Hilbertian case in [7, Corollary 25.44(i)] that ϕ ∈ �0(Y).

We are now ready to define a class of norms induced by optimal interpolation,
which will be the main focus of the present paper.

Assumption 2.2 Y is a real Banach space and m is a strictly positive integer. For
every j ∈ {1, . . . , m}, Xj is a reflexive real Banach space with norm ‖ · ‖j . A generic
element in X = X1 × · · · × Xm is denoted by x = (x1, . . . , xm). Furthermore:

(i) F : X → R
m : x �→ (‖x1‖1, . . . , ‖xm‖m).

(ii) ||| · ||| is a norm on Rm which is monotone in the sense that
(∀a ∈ R

m+
)(∀b ∈ R

m+
)

a − b ∈ R
m− ⇒ |||a||| � |||b|||. (2.6)

(iii) For every j ∈ {1, . . . , m}, Lj ∈ B (Xj ,Y), L : X → Y : x �→ L1x1 + · · · +
Lmxm, and ran L = Y .

Set

(∀y ∈ Y) ‖y‖ = inf
x∈X
Lx=y

|||F(x)||| = inf
x1∈X1,...,xm∈Xm

L1x1+···+Lmxm=y

∣∣∣∣∣∣(‖x1‖1, . . . , ‖xm‖m

)∣∣∣∣∣∣.

(2.7)
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Proposition 2.3 Consider the setting of Assumption 2.2 and set n = ||| · ||| ◦F . Then
the following hold:

(i) n is a norm on X .
(ii) The dual norm of n at x∗ ∈ X ∗ is n∗(x∗) = |||(‖x∗

1‖1∗, . . . , ‖x∗
m‖m∗)|||∗.

Proof Let x ∈ X and x∗ ∈ X ∗.

(i): We first deduce from Assumption 2.2(i) that

(∀α ∈ R) n(αx) = |||(‖αx1‖1, . . . , ‖αxm‖m)|||
= |||(|α| ‖x1‖1, . . . , |α| ‖xm‖m)|||
= |α| |||(‖x1‖1, . . . , ‖xm‖m)|||
= |α| |||F(x)|||
= |α| n(x) (2.8)

and that

n(x) = 0 ⇔ F(x) = 0

⇔ (∀j ∈ {1, . . . , m}) ‖xj‖j = 0

⇔ (∀j ∈ {1, . . . , m}) xj = 0

⇔ x = 0. (2.9)

To check the triangle inequality, let z ∈ X . By Assumption 2.2(i), F(x + z) −
F(x) − F(z) ∈ R

m−. Hence, we derive from (2.6) that

n(x + z) = |||F(x + z)||| � |||F(x) + F(z)||| � |||F(x)||| + |||F(z)||| = n(x) + n(z).
(2.10)

(ii): Suppose that n(x) = 1, set b = (‖x∗
j ‖j∗)1�j�m, and observe that

〈x, x∗〉 =
m∑

j=1

〈xj , x
∗
j 〉 �

m∑

j=1

‖xj‖j ‖x∗
j ‖j∗ = F(x)�b � |||b|||∗. (2.11)

Taking the supremum over all such vectors x, we obtain n∗(x∗) � |||b|||∗.
However, by (1.3), since b ∈ [0, +∞[m, there exists a = (αj )1�j�m ∈
[0, +∞[m such that |||a||| = 1 and a�b = |||b|||∗. Likewise, for every j ∈
{1, . . . , m}, there exists zj ∈ Xj such that ‖zj‖j = 1 and ‖x∗

j ‖j∗ = 〈zj , x
∗
j 〉.

Now set x = (xj )1�j�m, where (∀j ∈ {1, . . . , m}) xj = αjzj . Then

n(x) = ∣∣∣∣∣∣(‖α1z1‖1, . . . , ‖αmzm‖m

)∣∣∣∣∣∣ = ∣∣∣∣∣∣(α1, . . . , αm

)∣∣∣∣∣∣ = |||a||| = 1
(2.12)
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and therefore

n∗(x∗) = sup
w∈X

n(w)=1

〈w, x∗〉 � 〈x, x∗〉 =
m∑

j=1

〈xj , x
∗
j 〉 =

m∑

j=1

αj 〈zj , x
∗
j 〉

=
m∑

j=1

αj‖x∗
j ‖j∗ = a�b = |||b|||∗. (2.13)

We conclude that n∗(x∗) = |||b|||∗.

Remark 2.4 Let y ∈ Y and set C = {
x ∈ X

∣∣ Lx = y
}
. Since ran L = Y , we have

C 	= ∅. Now let dC be the distance function to the affine subspace C associated with
the norm n = ||| · ||| ◦ F (see Proposition 2.3), that is,

(∀z ∈ X ) dC(z) = inf
x∈C

n(z − x). (2.14)

It follows from (2.7) that

dC(0) = inf
x∈C

n(x − 0) = inf
x∈C

n(x) = ‖y‖. (2.15)

Thus, the function ‖ · ‖ in (2.7) is defined via a minimal norm interpolation process,
that is, the optimization problem underlying (2.7) is that of minimizing the norm
n over the affine subspace C. Optimal interpolation and, in particular, the problem
of finding a minimal norm interpolant to a finite set of points has a long history in
approximation theory; see, e.g., [10] and the references therein.

In the next result we show that the construction described in Assumption 2.2 does
provide a norm, and we compute its dual norm.

Theorem 2.5 Consider the setting of Assumption 2.2. Then the following hold:

(i) ‖ · ‖ is a norm on Y .
(ii) Suppose that Y is finite-dimensional. Then the dual norm of ‖ · ‖ at y∗ ∈ Y∗ is

‖y∗‖∗ = ∣∣∣∣∣∣(‖L∗
1y

∗‖1∗, . . . , ‖L∗
my∗‖m∗

)∣∣∣∣∣∣∗. (2.16)

Proof Set n = ||| · ||| ◦ F and recall from Proposition 2.3 that n is a norm.

(i): We first note that, since ran L = Y , dom ‖ · ‖ = Y . Next, we derive from (2.7)
that, for every y ∈ Y and every α ∈ R� {0},

‖αy‖ = inf
x∈X

Lx=αy

n(x) = |α| inf
x∈X

L(x/α)=y

n(x/α) = |α| ‖y‖. (2.17)

On the other hand, it is clear that F satisfies (2.1) with K = R
m−, that

||| · ||| satisfies (2.2), and that (2.7) assumes the same form as (2.3). Hence, by
Proposition 2.1(i), the function ‖ · ‖ is convex. In view of (2.17), we therefore
have, for every (y, z) ∈ Y × Y , ‖y + z‖ � ‖y‖ + ‖z‖. Now let y ∈ Y be such
that ‖y‖ = 0 and set C = {

x ∈ X
∣∣ Lx = y

}
. Then it follows from (2.15) that
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dC(0) = 0 and, since C is closed, we get 0 ∈ C. Therefore, y = L0 = 0.
Altogether, ‖ · ‖ is a norm.

(ii): Let y∗ ∈ Y∗. Then

‖y∗‖∗ = max
{〈y, y∗〉 ∣∣ y ∈ Y, ‖y‖ = 1

}

= max
{
〈y, y∗〉

∣∣∣ y ∈ Y, min
x∈X , Lx=y

n(x) = 1
}

= max
{〈Lx, y∗〉 ∣∣ x ∈ X , n(x) = 1

}

= max
{〈x, L∗y∗〉 ∣∣ x ∈ X , n(x) = 1

}

= n∗(L∗y∗). (2.18)

We conclude by applying Proposition 2.3.

We illustrate the construction (2.7) via two examples.

Example 2.6 In Theorem 2.5 suppose that m = 2, that X1 and X2 are continuously
embedded in the same topological vector space Y , that L1 and L2 are the canonical
injections, and that ||| · ||| = | · |1. Then (2.7) becomes

(∀y ∈ Y) ‖y‖ = min
x1∈X1,x2∈X2

x1+x2=y

(‖x1‖1 + ‖x2‖2
)
. (2.19)

In other words, ‖ · ‖ represents the infimal convolution of the norms ‖ · ‖1 and ‖ · ‖2.
This type of construct is central is the theory of interpolation spaces [32, 41]. If we
replace the �1 norm by the �p norm for some p ∈ ]1, +∞[ above, we obtain,

(∀y ∈ Y) ‖y‖ = min
x1∈Y1, x2∈Y2

x1+x2=y

(‖x1‖p

1 + ‖x2‖p

2

)1/p
. (2.20)

This formulation also arises in the area of interpolation spaces [16, 32].

Example 2.7 Let H be a real Hilbert space with norm ‖ · ‖H, which is identified with
its dual. In Theorem 2.5 suppose that X1 = · · · = Xm = H, let p and q be numbers
in ]1, +∞[ such that 1/p + 1/q = 1, and let ||| · ||| = | · |p. Then (2.7) becomes

(∀y ∈ Y) ‖y‖ =
⎛

⎜
⎝ min

x1∈H,...,xm∈H∑m
j=1 Lj xj =y

m∑

j=1

‖xj‖p

H

⎞

⎟
⎠

1/p

. (2.21)

Furthermore, if H is finite-dimensional, the dual norm at y∗ ∈ Y is given by (2.16) as

‖y∗‖∗ =
⎛

⎝
m∑

j=1

∥∥L∗
j y

∗∥∥q

H

⎞

⎠

1/q

. (2.22)

This construction is discussed in [24, Theorem 7].
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Remark 2.8 Any norm ‖ · ‖ on Y can trivially be written in the form of (2.7) by
letting m = 1, X1 = Y , ‖ · ‖1 = ‖ · ‖, L1 = Id , and ||| · ||| = | · |. However, we
are interested in exploiting the structure of the construction (2.7) in cases in which
the norms ||| · ||| and (‖ · ‖j )1�j�m are chosen from a “simple” class and give rise,
via the optimal interpolation problem (2.7), to a “complex” norm ‖ · ‖. In particular,
when using proximal splitting methods, the computation of prox‖·‖ will typically not
be easy whereas that of the operators (prox‖·‖j

)1�j�m will be. This will be exploited
in Section 4 to devise an efficient block-coordinate splitting algorithm in the case
when ||| · ||| = | · |1.

3 Examples

Our objective is to illustrate the fact that the construct presented in Assumption 2.2
contains in a single framework a number of existing regularizers. For simplicity, we
focus on the norms captured by Example 2.7. Our main aim here is not to derive new
regularizers but, rather, to show that our analysis captures existing ones and to derive
their dual norms.

3.1 Latent group lasso

Notation 3.1 The support of y = (ηi)1�i�d ∈ R
d is supp(y) ={

i ∈ {1, . . . , d} ∣∣ ηi 	= 0
}
. For every ∅ 	= G ⊂ {1, . . . , d} and y ∈ R

d , we set
r = card G and let y|G denote the vector in R

r obtained by retaining the components
of y indexed by G, i.e., y|G = (ηi)i∈G. Finally, ei is the ith standard unit vector in
R

d .

The example we consider is known as the latent group lasso (LGL), or group lasso
with overlap, which goes back to [18]. For every j ∈ {1, . . . , m}, fix (pj , qj ) ∈
[1, +∞] × [1, +∞] such that 1/pj + 1/qj = 1. Let (Gj )1�j�m be a covering of
{1, . . . , d} and define the vector space

Z = {
(zj )1�j�m

∣∣ (∀j ∈ {1, . . . , m}) zj ∈ R
d and supp(zj ) ⊂ Gj

}
. (3.1)

The latent group lasso penalty is defined, for y ∈ R
d , as

‖y‖LGL = min

{ m∑

j=1

|zj |pj

∣∣∣ (zj )1�j�m ∈ Z,

m∑

j=1

zj = y

}
. (3.2)

The optimal interpolation problem (3.2) seeks a decomposition of y in terms of
vectors (zj )1�j�m the support sets of which are restricted to the corresponding group
of variables in Gj . If the groups overlap then the decomposition is not necessarily
unique, and the variational formulation involves those zj for which

∑m
j=1 |zj |pj

is
minimal. On the other hand, if the groups are pairwise disjoint, that is (Gj )1�j�m
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forms a partition of {1, . . . , d}, the latent group lasso norm coincides with the
“standard” group lasso norm [44], which is defined as

(∀y ∈ R
d
) ‖y‖GL =

m∑

j=1

∣∣y|Gj

∣∣
pj

. (3.3)

The norms (3.2) and (3.3) are presented in [18] and [44] respectively in the case
that p1 = · · · = pm = p and q1 = · · · = qm = q. In general, (3.2) has no
closed form expression due to the overlapping of the groups. However, in special
cases which exhibit additional structure, it can be computed in a finite number of
steps. An important example is provided by the (k, p)-support norm [26], in which
the groups consist of all subsets of {1, . . . , d} of cardinality no greater than k, for
some k ∈ {1, . . . , d}. The case p = 2 has been studied in [2] and [25].

Example 3.2 In the above setting, for every j ∈ {1, . . . , m}, set rj = card Gj . The
latent group lasso penalty (3.2) is a norm of the form (2.7) with Y = R

d , |||·||| = |·|1,
and, for every j ∈ {1, . . . , m}, Xj = R

rj , ‖ · ‖j = | · |pj
and Lj = [ei | i ∈ Gj ] is

a d × rj matrix. The change of variables zj = Ljxj then yields (3.2). Furthermore,
the dual norm is given by

(∀y∗ ∈ R
d
) ‖y∗‖LGL∗ = max

1�j�m
‖y∗|Gj

‖qj
. (3.4)

This follows from (2.16) by noting that ||| · |||∗ = | · |∞ and, for all j ∈ {1 . . . , m},
‖ · ‖j∗ = | · |qj

and L∗
j y

∗ = y∗|Gj
.

3.2 Overlapping group lasso

An alternative generalization of the group lasso norm (3.3) is the overlapping group
lasso [20, 48], which we denote by ‖·‖OGL. It has the same expression as (3.3), except
that we drop the restriction that the groups (Gj )1�j�m form a partition of {1, . . . , d}.
Our next result establishes that the overlapping group lasso penalty is captured by a
dual norm of type (2.16). We continue to use Notation 3.1.

Example 3.3 For every j ∈ {1, . . . , m}, let (pj , qj ) ∈ [1, +∞] × [1, +∞] be such
that 1/pj + 1/qj = 1. Let (Gj )1�j�m be a covering of {1, . . . , d} and let ||| · ||| =
| · |∞. For every j ∈ {1, . . . , m}, set rj = card Gj , ‖ · ‖j = | · |qj

, and Lj = [ei | i ∈
Gj ]. Then the norm (2.7) evaluated at y ∈ R

d is

‖y‖ = inf

{
max

1�j�m
|xj |qj

∣∣∣
m∑

j=1

Ljxj = y

}
. (3.5)

In addition, since ||| · |||∗ = | · |1 and, for every j ∈ {1, . . . , m}, ‖ · ‖j∗ = | · |pj
and

|L�
j y∗|pj

= |y∗|Gj
|pj

, (2.16) yields ‖ · ‖∗ = ‖ · ‖OGL.

Remark 3.4 The case p = +∞ corresponds to the iCAP penalty of [48]. We can
also consider other choices for the matrices (Lj )1�j�m. For example, an appropriate
choice gives various total variation penalties [31]. A further example is obtained by
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choosing m = 1 and L1 to be the incidence matrix of a graph, a setting which has
been considered in the context of semi-supervised learning [17]. In particular, for
p = 1, this corresponds to the fused lasso penalty [38].

Remark 3.5 We have seen that the norm (2.7) captures the latent group lasso when
||| · ||| = | · |1, while the dual norm (2.16) captures the overlapping group lasso
when ||| · ||| = | · |∞. A natural extension of either setting is to choose ||| · ||| to be
the k Ky-Fan norm for some k ∈ {1, . . . , m}. In other words we choose, for every
x ∈ R

m, |||x||| = ∑k
j=1 |x|↓j , where |x|↓ ∈ R

m is the vector obtained by reordering
the components of x so that they are decreasing in absolute value. Note that, if k = 1,
then ||| · ||| = | · |∞ and, if k = m, then ||| · ||| = | · |1.

3.3 Polyhedral norms

A norm on Y = R
d is polyhedral (or is a block-norm) if its closed unit ball B

is a polyhedron, i.e., a finite intersection of closed affine half-spaces. Examples of
polyhedral norms used in data processing can be found in [26, 46, 48]. In this case,
B is bounded, symmetric with respect to the origin, and it has a finite, even number
of extreme points. Let us recall a couple of useful facts.

Fact 3.6 [42, Theorem 1] Let ‖ · ‖ be a polyhedral norm on Y = R
d and let

(bj )1�j�m be the extreme points of its closed unit ball. Then

(∀y ∈ Y) ‖y‖ = min
(ξj )1�j�m∈Rm

∑m
j=1 ξj bj =y

m∑

j=1

|ξj |. (3.6)

Fact 3.7 [42, Theorem 2] Let ‖ · ‖ be a polyhedral norm on Y = R
d , let B be its

closed unit ball, and let B� = {
y∗ ∈ R

d
∣∣ (∀y ∈ B) y�y∗ � 1

}
be the polar set of

B. Then B� is a bounded polyhedron and, if (b∗
j )1�j�r denote its extreme points,

(∀y ∈ R
d
) ‖y‖ = max

1�j�r
y�b∗

j . (3.7)

It follows from Fact 3.6 that polyhedral norms are special cases of (2.7). Indeed,
(3.6) is derived from (2.7) by choosing ||| · ||| = | · |1 and (∀j ∈ {1, . . . , m})
Xj = R, ‖ · ‖j = | · |, and Lj : ξ �→ ξbj . In addition, since a linear function on
a nonempty compact convex set attains its maximum at an extreme point of the set
[33, Corollary 32.3.2], the dual norm is given by

(∀y∗ ∈ R
d
) ‖y∗‖∗ = max

y∈B
y�y∗ = max

1�j�m
b�
j y∗. (3.8)

Note that (3.8) is the dual counterpart of (3.7).
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3.4 �-norms

Assume that Y = R
d . Families of norms parameterized by a nonempty, con-

vex, and bounded set � ⊂ R
d++ were considered in [5, 25, 28]. As shown in

[27, Proposition 2], the expressions

(∀y ∈ R
d
) ‖y‖� = inf

θ∈�

√〈
y | diag(θ)−1y

〉
(3.9)

and
(∀y∗ ∈ R

d
) ‖y∗‖�∗ = sup

θ∈�

√〈y∗ | diag(θ)y∗〉 (3.10)

define dual norms. Examples of norms which are included in this family are the �p-
norms, and the k-support norm mentioned above [2]. Next, we relate �-norms to our
framework.

Proposition 3.8 Let (θj )1�j�m be vectors in R
d+ and let � be a subset of Rd++

such that � = conv{θ1, . . . , θm}. Then the norms defined in (3.9) and (3.10) can
be written in the form (2.7) and (2.16) respectively, with ||| · ||| = | · |1 and (∀j ∈
{1, . . . , m}) ‖ · ‖j = | · |2 and Lj = diag(

√
θj ), where the

√· operator is understood
componentwise.

Proof We have ||| · |||∗ = | · |∞ and (∀j ∈ {1, . . . , m}) ‖ · ‖j∗ = | · |2. Now set
(∀j ∈ {1, . . . , m}) Lj = diag(

√
θj ) and Xj = R

d . Then we derive from (2.16) that
(∀y∗ ∈ R

d
) ‖y∗‖2∗ = max

1�j�m
|L�

j y∗|22
= max

1�j�m

〈
y∗ | diag(θj )y

∗〉

= max
θ∈�

〈
y∗ | diag(θ)y∗〉 (3.11)

= sup
θ∈�

〈
y∗ | diag(θ)y∗〉, (3.12)

where equality (3.11) results from the fact that, in R
d , a linear function on a nonempty

compact convex set attains its maximum at an extreme point of the set [33, Corol-
lary 32.3.2]. This establishes (3.10). As noted above, (3.10) is the dual of (3.9). It
follows that (3.9) is of the form (2.7).

3.5 Tensor norms

A number of regularizers have been proposed to learn low rank tensors; see [15,
34, 35, 40, 43] and the references therein. In this section, we discuss two promi-
nent examples that fit our framework. We first recall some notions from multilinear
algebra [21]. Let Y ∈ R

d1×···×dm be an m-mode real tensor, that is,

Y = [
Yi1,...,im

]
1�i1�d1,...,1�im�dm

. (3.13)
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Now let j ∈ {1, . . . , m}. A mode-j fiber is a vector composed of elements
of Y obtained by fixing all indices except those corresponding to the j th. Set
rj = ∏

k 	=j dk . The mode-j matricization Mj(Y ) of a tensor Y is the dj × rj
matrix obtained by arranging the mode-j fibers of Y such that each of them forms
a column of Mj(Y ). By way of example, a 3-mode tensor Y ∈ R

3×4×2 admits the
matricizations: M1(Y ) ∈ R

3×8, M2(Y ) ∈ R
4×6, and M3(Y ) ∈ R

2×12. Note that
Mj : Rd1×···×dm → R

dj ×rj is a linear operator. Its adjoint M∗
j : Rdj ×rj → R

d1×···×dm

is the reverse matricization along mode j .
Recall that the nuclear norm (or trace norm) of a matrix, ‖ · ‖nuc, is the sum of its

singular values. Its dual norm is the spectral norm ‖ · ‖sp which provides the largest
singular value. The overlapped nuclear norm [34, 40] is defined as the sum of the
nuclear norms of the mode-j matricizations, namely

(∀Y ∈ R
d1×···×dm

) ‖Y‖ONN =
m∑

j=1

‖Mj(Y )‖nuc. (3.14)

Example 3.9 Let Y = R
d1×···×dm and ||| · ||| = | · |∞. In addition, for every j ∈

{1, . . . , m}, set Xj = R
dj ×rj , ‖ · ‖j = ‖ · ‖sp, and Lj = M∗

j . Then (2.7) becomes

(∀Y ∈ R
d1×···×dm

) ‖Y‖ = inf

{
max

1�j�m
‖Xj‖sp

∣∣∣
m∑

j=1

M∗
j Xj = Y

}
. (3.15)

In addition, since ||| · |||∗ = | · |1 and, for every j ∈ {1, . . . , m}, ‖ · ‖j∗ = ‖ · ‖nuc and
L∗

j = Mj , (2.16) yields ‖ · ‖∗ = ‖ · ‖ONN.

Now let {αj }1�j�m ⊂ ]0, +∞[. The scaled latent nuclear norm is defined by (see
[39] and [43] for special cases)

(∀Y ∈ R
d1×···×dm

) ‖Y‖LNN = inf

{ m∑

j=1

1

αj

‖Xj‖nuc

∣∣∣
m∑

j=1

M∗
j Xj = Y

}
. (3.16)

Our next example captures this norm.

Example 3.10 The latent nuclear norm (3.16) is of the form (2.7) with Y =
R

d1×···×dm , ||| · ||| = | · |1 and, for every j ∈ {1, . . . , m}, Xj = R
dj ×rj , ‖ · ‖j =

‖ · ‖nuc/αj , and Lj = M∗
j . Furthermore, (2.16) yields the dual norm

(∀Y ∗ ∈ R
d1×···×dm

) ‖Y ∗‖LNN∗ = max
1�j�m

αj‖Mj(Y
∗)‖sp. (3.17)
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4 Random block-coordinate algorithm

4.1 Overview

The purpose of this section is to address some of the numerical aspects associated
with the class of norms introduced in Assumption 2.2 in the case when ||| · ||| = | · |1,
which reduces (2.7) to

(∀y ∈ Y) ‖y‖ = inf
x1∈X1,...,xm∈Xm

L1x1+···+Lmxm=y

‖x1‖1 + · · · + ‖xm‖m. (4.1)

Since such norms are nonsmooth convex functions, they could in principle be han-
dled via their proximity operators in the context of proximal splitting algorithms [7,
12]. However, the proximity operator of the composite norm ‖ · ‖ in (4.1) is usually
intractable, which makes this direct approach unviable. We circumvent this problem
by formulating the problem in such a way that it involves only the proximity operators
of the norms (‖ · ‖j )1�j�m, which will typically be available in closed form.

The main features of the algorithmic approach we propose are the following:

• It can handle general nonsmooth formulations: the functions present in the model
need not be differentiable.

• It adapts the recent approach proposed in [13, 14] to devise a block-coordinate
algorithm which allows us to select arbitrarily the blocks of norms (‖ ·‖j )1�j�m

to be activated over the course of the iterations. This makes the method amenable
to the processing of very large data sets in a flexible manner by adapting the
computational load of each iteration to the available computing resources.

• The computations are broken down to the evaluation of simple proximity opera-
tors of the norms (‖·‖j )1�j�m and of those appearing in the loss function, while
the linear operators (Lj )1�j�m are applied separately.

• Knowledge of the norms of the operators (Lj )1�j�m is not required.
• Convergence of the iterates to a solution of the minimization problem under

consideration is guaranteed.

4.2 Problem formulation

We consider the standard linear problem in which a vector y in a real Hilbert space
Y is to be inferred from n noisy linear observations

⎧
⎪⎨

⎪⎩

β1 = 〈y, a∗
1 〉 + ζ1

...

βn = 〈y, a∗
n〉 + ζn,

(4.2)
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where (a∗
i )1�i�n ∈ (Y∗)n are known and (ζi)1�i�n ∈ R

n models unknown pertur-
bations. This model captures various problems in supervised learning and in inverse
problems. A common variational formulation associated with (4.2) is the regularized
convex minimization problem

minimize
y∈Y

n∑

i=1

�i(〈y, a∗
i 〉, βi) + λ‖y‖, (4.3)

where ‖ · ‖ is a norm fulfilling Assumption 2.2 with ||| · ||| = | · |1 (see (4.1)),
λ ∈ ]0, +∞[ is a regularization parameter, and, for every i ∈ {1, . . . , n} and every
β ∈ R, �i(·, β) ∈ �0(R). We also assume that each Xj is finite-dimensional and
can be equipped with a norm ‖ · ‖j that makes it a Euclidean space. We designate by
H the Euclidean space obtained by renorming X = X1 × · · · × Xm with the norm

x = (xj )1�j�m �→
√∑m

j=1 ‖xj‖2
j . In this setting, (4.3) becomes

minimize
y∈Y

x1∈X1,...,xm∈Xm∑m
j=1 Lj xj =y

n∑

i=1

�i(〈y, a∗
i 〉, βi) + λ

m∑

j=1

‖xj‖j . (4.4)

One can therefore first obtain a solution (xj )1�j�m to the problem

minimize
x1∈X1,...,xm∈Xm

n∑

i=1

�i

( m∑

j=1

〈Ljxj , a
∗
i 〉, βi

)
+ λ

m∑

j=1

‖xj‖j (4.5)

and then

y =
m∑

j=1

Ljxj solves (4.4). (4.6)

To make the structure of (4.5) more apparent, let us introduce the functions


 : X → ]−∞, +∞] : x �→ λ

m∑

j=1

‖xj‖j (4.7)

and

� : Rm → ]−∞, +∞] : (η1, . . . , ηn) �→
n∑

i=1

ψi(ηi), (4.8)

where, for every i ∈ {1, . . . , n},
ψi : R → ]−∞, +∞] : ηi �→ �i(ηi, βi). (4.9)
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Let us also define

A : Y → R
n : y �→ (〈y, a∗

i 〉)1�i�n and B : H → R
n : x �→

m∑

j=1

Bjxj , (4.10)

where, for every j ∈ {1, . . . , m},

Bj = ALj ∈ B (Xj ,R
n). (4.11)

Then, recalling from Assumption 2.2 that L : H → Y : x �→ ∑m
j=1 Ljxj , we have

B = AL ∈ B (H,Rn) and we can thus rewrite (4.4) as

minimize
x∈H


(x) + �(Bx). (4.12)

Note that our hypotheses imply that 
 ∈ �0(H) and � ∈ �0(R
n).

4.3 Douglas-Rachford splitting in a product space

We work in the direct Hilbert sum H = H ⊕ R
n. Let us introduce the functions

{
F : H → ]−∞, +∞] : (x, r) �→ 
(x) + �(r)

G = ιV , where V = gra B = {
(x, r) ∈ H

∣∣ Bx = r
}
.

(4.13)

Using the variable x = (x, r), we reduce (4.12) to the problem

minimize
x∈H

F (x) + G(x) (4.14)

involving the sum of two functions in �0(H) and which can be solved with the
Douglas-Rachford algorithm [7, Section 27.2]. Let y0 ∈ H, let γ ∈ ]0, +∞[,
and let (μk)k∈N be a sequence in ]0, 2[ such that

∑
k∈N μk(2 − μk) = +∞. The

Douglas-Rachford algorithm

for k = 0, 1, . . .⎢⎢⎢
⎣

xk = proxγGyk

zk = proxγF (2xk − yk)

yk+1 = yk + μk(zk − xk)

(4.15)

produces a sequence (xk)k∈N which converges to a solution to (4.14) [7, Corol-
lary 27.4]. However, by [7, Proposition 24.11 and Example 29.19(i)],

proxF : (x, r) �→ (
prox
x, prox�r

)
, (4.16)

and

proxG : (u, s) �→ (x, Bx), where x = u − B∗(Id +BB∗)−1(Bu − s) (4.17)
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is the projection operator onto V . Hence, upon setting R = B∗(Id +BB∗)−1, we can
rewrite (4.15) as

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

qk = Buk − sk
xk = uk − Rqk

rk = Bxk

vk = proxγ
(2xk − uk)

tk = proxγ�(2rk − sk)

uk+1 = uk + μk(vk − xk)

sk+1 = sk + μk(tk − rk),

(4.18)

where we have set xk = (xk, rk), yk = (uk, sk), and zk = (vk, tk). It follows from
the above result that (xk)k∈N converges to a solution to (4.12). Let us now express
(4.18) in terms of the original variables of problem (4.5). To this end set, for every
j ∈ {1, . . . , m},

Rj = B∗
j (Id +BB∗)−1 = B∗

j

(
Id +

m∑

j=1

BjB
∗
j

)−1

. (4.19)

Moreover, let us denote by xj,k ∈ Xj the j th component of xk , and by uj,k ∈ Xj the
j th component of uk . Furthermore, we denote by ρi,k ∈ R the ith component of rk ,
and by σi,k ∈ R the ith component of sk . Then (4.18) becomes

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

qk = ∑m
j=1 Bjuj,k − sk

for j = 1, . . . , m⌊
xj,k = uj,k − Rjqk

uj,k+1 = uj,k + μk

(
proxγ λ‖·‖j

(2xj,k − uj,k) − xj,k

)

rk = ∑m
j=1 Bjxj,k

for i = 1, . . . , n⌊
σi,k+1 = σi,k + μk

(
proxγψi

(2ρi,k − σi,k) − ρi,k

)
.

(4.20)

In large-scale problems, a possible drawback of this approach is that m+n proximity
operators must be evaluated at each iteration, which can lead to impractical imple-
mentations in terms of computations and/or memory requirements. The analysis of
[13, Corollary 5.5] shows that the proximity operators in (4.20) can be sampled by
sweeping through the indices in {1, . . . , m} and {1, . . . , n} randomly while preserv-
ing the convergence of the iterates. This results in partial updates of the variables
which lead to significantly lighter iterations and remarkable flexibility in the imple-
mentation of the algorithm. Thus, a variable uj,k is updated at iteration k depending
on whether a random activation variable εj,k takes on the value 1 or 0 (each compo-
nent σi,k of the vector sk is randomly updated according to the same strategy). The
method resulting from this random sampling scheme is presented in the next theorem.

Theorem 4.1 Let D = {0, 1}m+n
� {0}, let γ ∈ ]0, +∞[, let (μk)k∈N be a sequence

in ]0, 2[ such that infk∈N μk > 0 and supk∈N μk < 2, let (uj,0)1�j�m ∈ H, let s0 =
(σi,0)1�i�n ∈ R

n, and let (εk)k∈N = (ε1,k . . . , εm+n,k)k∈N be identically distributed
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D-valued random variables such that, for every i ∈ {1, . . . , m+n}, Prob[εi,0 = 1] >

0. Iterate

for j = 1, . . . , m⌊
bj,0 = Bjuj,0

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

qk = ∑m
j=1 bj,k − sk

for j = 1, . . . , m⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

xj,k = uj,k − Rjqk

if εj,k = 1⌊
uj,k+1 = uj,k + μk

(
proxγ λ‖·‖j

(2xj,k − uj,k) − xj,k

)

bj,k+1 = Bjuj,k+1

if εj,k = 0⌊
uj,k+1 = uj,k

bj,k+1 = bj,k

rk = ∑m
j=1 Bjxj,k

for i = 1, . . . , n⎢⎢⎢⎢⎢⎢
⎣

if εm+i,k = 1⌊
σi,k+1 = σi,k + μk

(
proxγψi

(2ρi,k − σi,k) − ρi,k

)

if εm+i,k = 0⌊
σi,k+1 = σi,k.

(4.21)

Suppose that the random sequences (εk)k∈N and (uk, sk)k∈N are independent. Then,
for every j ∈ {1, . . . , m}, (xj,k)k∈N converges almost surely to a vector xj and y =∑m

j=1 Ljxj is a solution to (4.3).

Proof It follows from [13, Corollary 5.5] that (x1,k, . . . , xm,k)k∈N converges almost
surely to a solution to (4.5). In turn, as seen in (4.6), y solves (4.4) and hence (4.3).

Remark 4.2 The operators (Rj )1�j�m of (4.19) are computed off-line only once and
they intervene in algorithm (4.21) only via matrix-vector multiplications.

Remark 4.3 It follows from the result of [13] that, under suitable qualification con-
ditions, the conclusions of Theorem 4.1 remain true for a general choice of the
functions fj ∈ �0(Xj ) instead of ‖ · ‖j , and when L does not have full rank. This
allows us to solve the more general versions of (4.4) in which the regularizer is not a
norm but a function of the form (2.3).

5 Numerical experiments

In this section we present numerical experiments applying the random sweep-
ing stochastic block algorithm outlined in Section 4 to sparse problems in which
the regularization penalty is a norm fitting our framework, as described in
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Assumption 2.2. The goal of these experiments is to show concrete applications of
the class of norms discussed in the paper and to illustrate the behavior of the proposed
random block-iterative proximal splitting algorithm. Let us stress that these appear
to be the first numerical experiments on this kind of block-coordinate method for
completely nonsmooth optimization problems with converging sequences of iterates.

The setting we consider is binary classification with the hinge loss and a latent
group lasso penalty [18]. Each data matrix A ∈ R

n×d is generated with i.i.d. Gaussian
entries and each row ai of A is normalized to have unit �2 norm. Similarly, the true
model vector y ∈ R

d is sparse and its nonzero entries are generated randomly on the
unit �2 sphere. The n observations are then obtained as βi = sign(〈y | ai〉). To induce
classification errors, a randomly chosen subset of the observations have their sign
reversed, with the value of the noise determining the size of the subset, expressed as
a percentage of the total observations. For the implementation of the algorithm, we
require the proximity operators of the functions ‖ · ‖j and ψi in Theorem 4.1. In this
case, these are the �2-norm and the hinge loss, which have straightforward proximity
operators [7]. More precisely, (4.4) assumes the form

minimize
y∈Y

x1∈X1,...,xm∈Xm∑m
j=1 Lj xj =y

n∑

i=1

max
{
0, 1 − βi〈y | ai〉

}+ λ

m∑

j=1

‖xj‖j . (5.1)

In large-scale applications it is not possible to activate all the functions and all
the blocks at each iteration due to computing and memory limitations. The random
sweeping algorithm (4.21) allows us to activate only some of the blocks by toggling
the activation variables (εj,k)1�j�m and (εm+i,k)1�i�n. The vectors are updated only
when the corresponding activation variable is equal to 1; otherwise it is equal to

Table 1 Time, iterations, and normalized iterations averaged over 20 runs for hinge loss classification
with the latent group lasso

Activation Time (s) Actual Normalized

rate iterations iterations

1.0 24912 14515 14515

0.9 24517 16047 14443

0.8 26124 18080 14464

0.7 28975 20633 14443

0.6 28223 23872 14323

0.5 29304 28308 14154

0.4 36983 34392 13757

0.3 38100 44080 13224

0.2 50484 62664 12533

0.1 62213 100829 10083

A ∈ R
1000×10000 and m = 1429
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0 and no update takes place. In our experiments we always activate the variables
(εm+i,k)1�i�n as they are associated to the set of training points which is small in
sparsity regularization problems. On the other hand, only a fraction α of the variables
(εj,k)1�j�m are activated, which is achieved by sampling, at each iteration k, a subset
of �mα� distinct indices in {1, . . . , m}. In light of Theorem 4.1, convergence of the
iterates is guaranteed for every α ∈ ]0, 1]. It is natural to ask to what extent these
partial updates slow down the algorithm with respect to the hypothetical fully updated
version in which sufficient computational power and memory are available.

To investigate this question, in our first experiment A ∈ R
1000×10000, the true

model vector y has sparsity 95%, and we apply a 25% classification error rate. The
relaxation parameters (μk)k∈N are all set to 1.99, the proximal parameter γ is set
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Fig. 1 Objective for hinge loss classification with the latent group lasso (top), and distance to solution for
the same (bottom)
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to 0.1, and the regularization parameter λ is set to 0.1. As a stopping rule for the
algorithm we use

|xk+1 − xk|2
|xk|2 � 10−6. (5.2)

We employ the chain latent group lasso penalty, whereby the groups define contigu-
ous sequences of length 10, with an overlap of length 3, and the number of groups is
1429. Table 1 presents the time, number of iterations, and number of iterations nor-
malized by the activation rate for the hinge loss and latent group lasso penalty for
values of the activation parameter α in {0.1, 0.2, . . . , 1.0}. These quantities have been
averaged over 20 independent trials. The normalized iteration numbers are obtained
by multiplying the actual iteration number by the activation rate α in order to fairly
quantify the global computational effort. Indeed, scaling the iterations by the acti-
vation rate allows for a fair comparison between regimes since the computational
load of the algorithm per iteration is proportional to the number of activated blocks.
We observe that, while the absolute number of iterations naturally increases as the
activation rate decreases, the normalized number of iterations is remarkably stable
across the different regimes. Thus, in large-scale problems in which memory space
and processing power are limited, the standard optimization algorithm (4.20) with
full activation rate is not suitable, whereas our random sweeping procedure can be
easily implemented. Interestingly, Table 1 indicates that the normalized number of
iterations is not affected. Figure 1 depicts (top) the objective values for the problem
and (bottom) the distance to the limiting solution for various activation rates. We note
that the paths are similar for all activation rates, and the convergence is similarly fast.
This reinforces our findings that partial activation of the blocks does not lead to any
deterioration in normalized performance.

As a second experiment, we revisit the above problem using the k-support norm
penalty of [2], which is a special case of Example 3.2. Here, A ∈ R

20×25, k = 4, and

Table 2 Time, iterations, and normalized iterations averaged over 20 runs for hinge loss classification
with the k-support norm

Activation Time (s) Actual Normalized

rate iterations iterations

1.0 388 463 463

0.8 446 681 544

0.6 454 894 536

0.4 482 1281 512

0.2 423 2557 511

0.1 469 4851 485

0.05 1054 9402 470

0.010 1625 41633 416

0.005 1907 77066 385

A ∈ R
20×25, k = 4, and m = 12650
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α ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. The number of groups is m =
d!/(k!(d − k)!) = 12650. Even in this relatively small size problem, the number of
groups m considerably exceeds both d and n. Table 2 shows the same metrics as the
first experiment. We again observe that performance is stable as α varies.

6 Conclusion

We have investigated a general class of norms induced via an infimal postcomposition
operation involving simpler norms and linear operators. Using tools from convex
analysis, we have described properties of this class of regularizers and highlighted
them with several concrete examples which have been used in different fields of
data analysis. In terms of directions of future research, it would be interesting to
further study conditions under which our framework can be extended to generate
regularizers by means of more general functions and/or possibly nonlinear operators
such as spectral functions. Algorithms to address this extended setting should also
be investigated. From a statistical point of view, it would be valuable to characterize
complexity measures for our regularizers, such as their Rademacher complexity, as
this plays a central role in the study of estimation bounds.
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