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Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role
in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students
spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly
beneficial for learning. For this reason, it becomes increasingly pertinent to identify the key differences
between unproductive and productive persistence toward informing interventions in computer-based learning
environments. In this study, we use a classification model to distinguish between productive persistence and
wheel-spinning in ASSISTments, an online math learning platform. Our results indicate that there are two
types of students who wheel-spin: first, students who do not request any hints in at least one problem but
request more than one bottom-out hint across any 8 problems in the problem set; second, students who never
request two or more bottom out hints across any 8 problems, do not request any hints in at least one problem,
but who engage in relatively short delays between solving problems of the same skill. These findings suggest
that encouraging students to both engage in spaced practice and use bottom-out hints sparingly is likely helpful
for reducing their wheel-spinning and improving learning. These findings also provide insight on when
students are struggling and how to make students’ persistence more productive.
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1. INTRODUCTION

Studies outside of the educational domain have long documented the links between non-
cognitive factors or skills and their effect on success in work and personal health (e.g., Barrick
& Mount, 1991; Bowles, Gintis & Osborne, 2001; Nyhus & Pons, 2005; Chiteji, 2010). While
there are various theoretical definitions and terms that describe non-cognitive skills within
personality and social psychology, these can generally be viewed as personality and behavioral
traits or “patterns of thoughts, feelings and behavior” (Borghans, Duckworth, Heckman & ter
Weel, 2008, p.3) that individuals develop through the course of their lives (Garcia, 2014). A
broadly accepted model of personality traits is the Five-Factor model (FF), which consists of the
overarching traits of agreeableness, conscientiousness, emotional stability, extraversion and
autonomy (McCrae & Costa, 1987; Digman, 1990).

Some common examples of non-cognitive skills include traits like conscientiousness,
persistence, grit, and self-control (Laursen, 2015; Heckman, Hsee & Rubinstein, 2001; Brunello
& Schlotter, 2011). Non-cognitive factors have long been considered important among educators
(Montessori, 1912), with increasing support for this belief based on evidence for the importance
of these factors for students’ achievement in school (Bowles & Gintis, 1976; Klein, Spady &
Weiss, 1991; Heckman et al., 2001). With academic interest in measuring the role of such non-
cognitive factors in academic achievement, researchers are increasingly exploring the
development of alternative methods and instruments that measure them both quantitatively and
qualitatively.

One factor that is increasingly thought to be important is whether a student is able to persist
or persevere during learning. Persistence is defined as the ability to maintain an action or
complete a task regardless of the person’s inclination towards the task (Cloninger, Svrakic, &
Przybeck, 1993; Duckworth et al., 2007) and is one of the main facets of conscientiousness. As
one of the overarching personality traits in the FF model, conscientiousness has been found to
predict success more strongly than the other traits in the FF model (Barrick & Mount, 1991;
Goldberg, 1990; John & Srivastava, 1999; McCrae & Costa, 1987). While there has been
research on persistence and the larger trait of conscientiousness in the context of the workplace
for quite some time (Barrick & Mount, 1991; Tett, Jackson & Rothstein, 1991; Bowles, Gintis
& Osborne, 2001; Nyhus & Pons, 2005; Carneiro, Crawford and Goodman, 2007), recent studies
have shown that persistence and conscientiousness in educational or academic settings is
associated with academic achievement (Borghans, Meijers & ter Weel, 2006; Paunonen &
Ashton, 2001; Poropat, 2009), creativity (Prabhu, Sutton & Sauser, 2008) and long-term
academic outcomes such as later schooling and future earnings (Heckman et al., 2001; Deke &
Haimson, 2006; Poropat, 2009).

However, recent research has suggested that not all persistence is positive. Beck & Gong
(2013) suggest that some persistence may be “wheel-spinning,” defined as when a student spends
too much time struggling to learn a topic without achieving mastery. A student who persists
unsuccessfully may eventually face reduced motivation (Sedek & Kofta, 1990). Ultimately,
wheel-spinning may be associated with the failure to seek help when it is needed, often called
“help avoidance” (Dillon, 1988), a behavior generally thought to be associated with poorer
learning outcomes (Nelson-Le Gall, 1981), though in some situations it is actually associated
with more robust learning (Baker, Gowda, & Corbett, 2011), likely due to incomplete
understanding of when help is actually needed.

As such, we have two related phenomena -- productive persistence and unproductive
persistence (also called wheel-spinning). We want to encourage students to persist productively
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but may want to prevent them from persisting when the eventual outcome is negative. We may
instead wish to encourage these students to stop and seek help or take other corrective actions.
The problem is that, in current models, these two situations are indistinguishable. We do not
know if a student is persisting productively or unproductively until they have reached a point of
failing or succeeding -- and in many cases, the indicator of eventual success may be far in the
future.

In this paper, we attempt to use educational data mining to distinguish productive and
unproductive persistence from each other, early enough in the learning process that intervention
is still feasible. We do so by identifying which persistence is productive or unproductive and
then attempting to differentiate these students by their behavior (or the context of their learning)
midway through the learning process. We develop this model in the context of the online
mathematics learning platform ASSISTments and discuss the possible implications of our
models for future classroom interventions in mathematics learning.

2. LITERATURE REVIEW

2.1. MATHEMATICS LEARNING IN COMPUTER-BASED ENVIRONMENTS

Computer-based and online learning platforms are increasingly being used to create
customizable and personalized learning environments for students' individual needs and abilities,
particularly in mathematics learning. Despite variations in the types and formats of these
computer-based environments, the use of educational technology in mathematics learning has
generally been found to have small but significant effects on improving students' academic
achievement, particularly with intelligent tutoring systems (see reviews by Steenbergen-Hu &
Cooper, 2013; Cheung & Slavin, 2011; Ma, Adesope, Nesbit & Liu, 2014). For example, studies
conducted around specific intelligent tutoring systems in mathematics have found significant
effects on student achievement in math, such as the SimCalc program (Roschelle, Tatar,
Schectman, Hegedus, Hopkins, Knudson & Stroter, 2007), the ASSISTments platform (Feng,
Roschelle, Heffernan, Fairman & Murphy, 2014; Roschelle, Feng, Murphy & Mason, 2016) and
the Cognitive Tutors in Mathematics (Aleven & Koedinger, 2002; Ritter, Anderson &
Koedinger, 2007; Pane, Griffin, McCaffrey & Karam, 2013). Other intelligent tutoring systems
that have been found to improve student achievement in mathematics include Wayang Outpost
(Arroyo, Woolf, Royer, Tai, & English, 2010) and the ALEKS system, which has also been found
to be effective in reducing knowledge gaps in mathematics learning (Huang, Craig, Xie, Graesser
& Hu, 2015). Meta-analyses (e.g., Steenbergen-Hu & Cooper, 2013; Cheung & Slavin, 2013;
Ma, Adesope, Nesbit & Liu, 2014; Kulik & Fletcher, 2016) have found evidence that despite
differences in platforms and formats, intelligent tutoring systems, in general, have been shown
to produce positive effects on student achievement in mathematics. These effects have also been
found across different populations and length of use of these intelligent tutoring systems

2.2. ASSESSING STUDENT PERSISTENCE AND WHEEL-SPINNING IN COMPUTER-
BASED ENVIRONMENTS

With a recent resurgence of interest in the role of personality traits in academic achievement and
success, more work has been done to create validated measures of non-cognitive skills such as
persistence and self-control. Most notably, Duckworth et al. (2007) coined a personality
construct named grit, which overlaps with the traditionally measured facet of conscientiousness
but was posited to be distinct in other aspects (Duckworth et al., 2007; Duckworth & Quinn,
2009). Duckworth et al. (2007) developed a self-report measure of grit, which has been found to
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have positive relationships with overall achievement and long-term success (Duckworth et al.,
2007; Strayhorn, 2014). Other personality researchers, however, have conceptualized
conscientiousness as an over-arching personality trait that encompasses other traits like grit,
persistence, and industriousness (MacCann & Roberts, 2010; Crede, Tynan & Harms, 2017).
Within personality psychology, persistence is considered a personality trait and one of four
dimensions of temperament (Cloninger, Svrakic, & Przybeck, 1993; De Fruyt, Van De Wiele &
Van Heeringen, 2000). Persistence is defined as the act of persevering in a task despite fatigue
or frustration and in the face of obstacles (Cloninger et al., 1993; Rank, Pace & Frese, 2004).
Like grit, it has been found to be strongly correlated with conscientiousness (Crede et al., 2017;
De Fruyt et al., 2000; Roberts, Chernyshenko, Stark & Goldberg, 2005), with scales/sub-scales
assessing persistence included within self-report and survey measures of conscientiousness in
personality and social psychology (De Fruyt et al., 2000; Roberts et al., 2005). Complementing
these self-report measures, alternate types of instruments have been employed to assess student
persistence and perseverance during learning tasks. For example, Eisenberger and Leonard
(1980) created a performance-based measure of persistence, using a perceptual comparison task,
which involves the individual detecting as many differences as possible between two pictures.
The amount of time spent on each difference was used to measure persistence (Eisenberger &
Leonard, 1980).

With the evolution and development of computer-based and online learning environments,
recent educational research has delved into the assessment of non-cognitive skills on these
platforms as well. One notable contribution to the research in this area is the creation of
performance-based assessments of student persistence within the context of video games
(Ventura & Shute, 2013). Ventura and colleagues created a measure of persistence within an
educational game known as Physics Playground, an open-ended game that encourages the
applications of qualitative Physics concepts to achieve game objectives. In their study, 154
students were recruited to play the Physics Playground game over 4 hours, split into five 45-
minute sessions, and a game-based assessment (GBA) of player persistence was measured with
data logs of these gameplay sessions, using an evidence-centered design (ECD) process (Kim,
Almond & Shute, 2016). The measure of persistence was based on the amount of time spent on
unsolved trials among all the playgrounds attempted within a player’s log file, across all five
sessions of gameplay. To validate this game-based measure of persistence, a performance-based
measure was adapted from Eisenberger and Leonard’s (1980) measure, an anagram riddle task
(ART; Ventura & Shute, 2013), in conjunction with a student self-report survey of persistence
using a 5-point Likert scale.

The results of this study showed that the amount of time on unsolved trials within Physics
Playground was significantly correlated with the performance-based measure of persistence in
the form of an ART task, and this relationship was more pronounced among players who
struggled in Physics Playground. In addition, both the game-based assessment and ART task
measure of persistence predicted student learning within Physics Playground, even after
controlling for other factors such as gender, video game experience, enjoyment of the game and
prior knowledge of related Physics concepts. This was in contrast to student self-reports of
persistence, which were not found to significantly predict learning within Physics Playground,
suggesting that behavioral measures of persistence within the game may be more useful than
self-report measures.

Persistence despite failure may be beneficial or detrimental to learning, however, as there may
be instances of both productive and non-productive persistence. While productive persistence
that leads to mastery is a desirable trait during learning, non-productive persistence could instead
lead to poorer learning (Beck & Rodrigo, 2014). Beck & Gong (2013) termed such instances of
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non-productive persistence as “wheel-spinning,” defined as when a student spends too much
time struggling to learn a topic without achieving mastery. Specifically, Beck & Gong (2013)
identified wheel-spinning as occurring among students who had 10 or more skill opportunities
without mastering a given mathematics concept and found that approximately 38% of students
did not master a given skill after 10 practice opportunities and were thus potentially wheel-
spinning. With this definition, the researchers developed a wheel-spinning detector for the
ASSISTments online learning platform, which identified specific student actions and features
occurring during learning that indicate wheel-spinning. One limitation of this wheel-spinning
detector was that it was built based on students’ mastery of a given skill after more than 10 skill
opportunities. However, this definition does not account for students who may have achieved
mastery by eliciting external help or who obtained the correct answers from a teacher or fellow
student. It also does not consider the possibility that some difficult skills may legitimately need
more than 10 practice opportunities for students to master. To ensure that student mastery of a
given concept or skill is identified accurately, we base our definition of wheel-spinning not just
on initial performance but also on retention of the skill learned over time using a delayed test.

Wheel-spinning detectors have also been developed recently in two other studies within other
online learning environments. A detector of wheel-spinning was developed on data from 122
students who used Cognitive Tutor Geometry (Matsuda et al., 2016). In this study, Matsuda and
colleagues only retained student-skill response sequences that had five or more practice
opportunities, with the rationale that there was not enough data to identify wheel-spinning with
five or fewer practice opportunities; this left a total of approximately 3000 student-skill
sequences. The researchers first asked human coders to identify students who were wheel-
spinning based on students’ response data. Using this human coding, they developed a neural
network-based model to compute the likelihood of wheel-spinning, attempting to differentiate
wheel-spinning students from non-wheel-spinning students, among the students who did not
master the skill. While this detector had high recall values, its precision values were relatively
low, at around 25%. As such, this detector tended to identify most unsuccessful students as
wheel-spinning, even when the human coders did not agree. Additionally, this work by Matsuda
and colleagues (2016) differs from the work presented in the current paper in that it did not
attempt to distinguish wheel-spinning students from successfully persistent students but instead
distinguished wheel-spinning students from non-wheel-spinning students who failed to master
the skill (presumably for other reasons).

In addition to intelligent tutoring systems, work has been conducted to identify wheel-
spinning within Physics Playground. In this context, mastery was defined as having achieved the
game level objectives, which manifested in the form of a silver badge (for completing a level) or
a gold badge (for completing a level with an elegant solution). Given the open-ended nature of
the Physics Playground environment, wheel-spinning was operationalized in various ways. For
example, a student was defined to be wheel-spinning if he/she made attempts within a
playground level that took more than 15 minutes or attempts after achieving a silver badge that
did not lead to a gold badge. Based on these operationalizations, researchers made use of machine
learning models to create detectors of student wheel-spinning within the game environment, with
a predictive accuracy of 82.9% (Palaoag et al., 2016), which was higher than the baseline of
73.4%. The baseline of 73.4% was taken from predicting that every data point was the majority
class, as 73.4% of data points were originally labeled as not wheel-spinning. However, as with
previous efforts, this work did not specifically distinguish wheel-spinning students from
successfully persistent students.

In our current study, we focus on the problem of distinguishing wheel-spinning from
productive persistence. Differentiating between whether a persistent student will eventually learn
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the skill or not is valuable for selecting interventions; a wheel-spinning student should probably
be encouraged to seek help, whether from the system or their teacher, whereas a productively
persistent student should probably be left alone. We do this in the context of the ASSISTments
system which is discussed below. ASSISTments has several advantages for studying this
problem. One of the foremost is a capability to test whether the student can retain their
knowledge over time, known as the ARRS system. This enables us to distinguish between
students who appear to have achieved mastery but have simply obtained shallow knowledge (or
perhaps answers from a classmate) and students whose hard-won mastery is genuine. In the
following sections we discuss the ASSISTments platform, ARRS, and the detector developed to
make this differentiation.

3. ASSISTMENTS

The ASSISTments platform is a free online formative assessment and tutoring system for middle
school students. While ASSISTments can be used in a range of domains, it is primarily used for
mathematics. Teachers use ASSISTments to assess students’ knowledge of mathematical
concepts and skills while facilitating their learning of these concepts. The system provides
teachers with formative assessments of the students’ learning progress in their acquisition of
specific knowledge components within a mathematics topic. Currently, the ASSISTments
platform has been adopted by 650 teachers across the United States, with an average of over
5,000 student users a day and over 50,000 student users a year

In this study, we make use of data obtained from students learning within Skill Builders
(Hefternan & Heffernan, 2014), a type of math problem set where students complete several
problems related to the same skill. The problems in a problem set may be based on more than
one problem template. Problem templates are a problem design for multiple problems where the
same problem cover story or design is used, but the values change within each problem. In our
current sample, a given student encounters between 1 and 340 problems within the same problem
set throughout the course of a year. Within this range, however, half the students encounter
between 6 and 22 problems in a problem set, and the median number of problems that students
encounter in a problem set is 11. Additionally, for each problem (i.e., original problem), students
have the opportunity to access hints or scaffolding questions. Hints provide a sequence of clues
to help students solve an original problem. The last hint in each hint sequence (called the bottom-
out hint) provides students with the answer to the original problem. ASSISTments also contains
scaffolding questions, which break down the original problem into individual steps. These
scaffolds are answered in a strict progression, where students must correctly answer the first
scaffolding question in order to proceed to the next one. Once all scaffolding questions are
completed, students may be prompted to answer the original question again.

Each Skill Builder is based on a single skill mapped to the U.S. Mathematics Common Core
standards. Students need to answer three questions correctly in a row within a Skill Builder in
order to be considered as having ‘mastered’ the specific skill that the Skill Builder covers. When
the student has completed a Skill Builder, a single-item test is administered after a pre-defined
period of time, with a gradually increasing space in between reassessments. This test, consisting
of one randomly selected item from a problem template included in the problem set, is delivered
through the Automatic Reassessment and Relearning System (ARRS) (Heffernan Heffernan,
Dietz, Soffer, Pellegrino, Goldman & Dailey, 2012), and aims to assess the student’s retention
of the particular skill over time. If the student does not answer this test correctly, he or she will
be assigned the corresponding Skill Builder to re-learn the forgotten material.
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4. METHODOLOGY

In these analyses, we make use of student data from ASSISTments Skill Builders in the school
year of 2014-2015. Data from a total of 23,896 students from 298 different middle schools were
used in this set of analyses. These 23,896 students attempted 619 Skill Builder problem sets.

The objective of the analyses was to build machine learning models that differentiate between
students who were persisting productively from those who were wheel-spinning during their
work on the Skill Builder problem sets. Both of these groups are considered to be persistent, but
one group’s persistence appears to produce positive results, while the other group’s persistence
does not.

First, we operationally defined students who are persistent to be those who worked on 10 or
more problems within a single problem set, regardless of mastery. This cut-off was selected in
part based on the design of the system, where students are stopped from working on the problem
set after they have attempted 10 problems in a problem set within a day. For a student to continue
to the 11th problem in the problem set, he/she must return to the same problem set on a
subsequent day.

From the set of persistent student-problem set pairs, we then identified instances of productive
persistence and wheel-spinning. Given that our data were collected over the span of a whole
year, there have been instances where students were able to attempt the same problem set more
than once throughout the year. Students were thus able to achieve the mastery criteria of
answering three problems correctly in a row - and then attempt the corresponding ARRS test -
more than once throughout the year within a single problem set. For tractability, we therefore
limit our measure of whether a student is productive or wheel-spinning to the student’s first
ARRS test outcome and its corresponding set of three problems answered correctly in a row.

As shown in Table 1, our operational definitions of productive persistence and wheel-spinning
were based on two measures of learning, mastery (three correct problems in a row) and retention
of knowledge (ARRS test). Specifically, students are classified as productively persistent if they
answered three problems correctly in a row on or after the 10th problem in a problem set and
passed the ARRS test. Conversely, students are classified as unproductively persistent if they
answered three problems correctly in a row on or after the 10th problem but did not pass the
ARRS test. These students demonstrated correct performance immediately on a problem set but
not in the longer-term. Similarly, students who completed 10 problems but did not answer three
problems correctly in a row on or after the 10th problem and, as a result, never received an ARRS
test administered to them, were also considered to be unproductively persistent.

Since the administration of the ARRS test could be customized by teachers, data from students
who successfully answered three problems right in a row but were not given an ARRS test due
to teacher customizations were considered to be missing data. It is worth noting that success on
the ARRS test can be noisy — it is possible to get an incorrect answer by slipping or a correct
answer by guessing (Baker, Corbett, & Aleven, 2008). As with all operational measures, this
measure is therefore imperfect, but can still provide a basis for attempting to predict whether a
student’s persistence will be productive.

In sum, the original dataset consisted of 287,093 student-problem set pairs in total. Of this
initial dataset, however, 211,612 student-problem set pairs were removed because they achieved
three correct problems in a row at any point in time but did not attempt a corresponding ARRS
test. Of the remaining 75,481 student-problem set pairs, only 8,948 student problem set pairs
were considered persistent, i.e., having attempted 10 or more problems in a problem set,
regardless of mastery. In other words, 66,533 students were excluded from the dataset because
they either achieved mastery before attempting 10 or more problems, or they quit the problem
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set before attempting 10 problems and without achieving mastery. The majority of these non-
persistent students (56.2%) mastered the problem set before reaching their tenth problem. The
remaining 43.8% of the non-persistent student-problem set pairs quit the problem set without
achieving mastery, before attempting their tenth problem.

The final dataset used in our analyses thus consisted of 8,948 student-problem set pairs that
were defined as persistent student-problem set pairs and used to build the final models. Within
this final dataset, 2,093 student-problem set pairs were instances defined as productive
persistence, while 6,855 student-problem set pairs were defined as wheel-spinning based on our
criteria.

According to our definition, then, 9.1% of the total 75,481 student-problem set pairs that had
ARRS information involved wheel-spinning, a much lower proportion of wheel-spinning than
reported in earlier papers defining wheel-spinning as whether the student took a large number of
problems to learn a skill (Beck & Gong, 2013). According to Beck and Gong’s (2013) definition,
where any student who completes more than 10 problems without getting 3 correct in a row and
achieving mastery is wheel-spinning, 46.9% of the total 75,481 student problem set pairs that
had ARRS information would have been considered wheel-spinning. When considering the
original dataset containing all student-problem set pairs, 12.3% of the original 287,093 student-
problem set pairs would have been considered wheel-spinning based on Beck and Gong’s
definition. Since many of these students do indeed eventually get three correct in a row and are
then able to pass a retention test, we would argue that Beck and Gong’s definition contains a
great deal of productive persistence. Not all students who struggle are spinning their wheels.

Table 1: Criteria of productive persistence and wheel-spinning, using performance metrics in
the Skill Builder system.

Three Correct in
Ten or more a Row (Mastery) First ARRS Test Definition
Problems on or after the
10" Problem
Yes Yes Passed Productl.ve persistence
(this paper)
Yes No N/A
Wheel-spinning
Yes Yes Failed (this paper)
Wheel-spinning
Yes Any Any (Beck & Gong)
Neither Wheel-Spinning
No Any Any nor Productive
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5. DATA ANALYSES

5.1. FEATURE ENGINEERING AND FEATURE OPTIMIZATION

In this study, we leveraged a feature set previously created for another analysis (Baker,
Goldstein, & Heffernan, 2011). Appendix A provides a list of 25 initially generated core features,
which are related to student use of hints in a problem set, the number of student attempts, the
number of skill opportunities, and features involving the time between these student actions.
These features were identified from within the ASSISTments Skill Builder platform and provide
evidence regarding student persistence and learning. Some of these core features which will end
up playing important roles in the final model included:

1. Total number of unique problems student has attempted relative to each skill
(totalSkillOpportunities)

2. Number of wrong attempts made in the last 5 problems (pastSWrongCount)

3. Number of attempts made to solve each problem within a problem set (attemptCount)

4. Amount of time since the current problem set was last seen by the student
(timeBetweenProblems)

5. Total number of hints requested within a problem set (hintTotal)

6. Number of bottom-out hints requested in the last 8 problems (past§BottomOut)

Table 2 shows some descriptive statistics for these core features, while similar statistics for the
rest of the core features used can be found in Appendix B.

Table 2: Descriptive statistics for selected core features used during feature engineering

Selected Core Features Minimum Maximum Average Star}dz}rd
Deviation
totalSkillOpportunities 1 10 4.993 2.736
past5WrongCount 0 5 1.490 1.032
attemptCount
(including only hint, 0 151 2.318 2.195
scaffolding and answers)
timeBetweenProblems (in 0 3,538,408,440 | 878,281.196 | 2,393,403.523
seconds)
hintTotal 0 19 1.529 0.984
past8BottomOut 0 8 0.343 0.408

A total of 125 problem-set-level features were then generated from these core features based on
their minimum, maximum, average, sum and standard deviations across the problem set prior to
the student having reached the 10-problem threshold for being persistent.

44 Journal of Educational Data Mining, Volume 10, No 1, 2018



Given that the dataset included student data for a whole year, where students could attempt
each problem set multiple times throughout the year, the range of values for some of these core
features varied quite widely. For instance, the amount of time since the current problem set was
last seen by the student (timeBetweenProblems) ranged from a few minutes to several weeks.
For most of the core features, however, the range of values obtained were more constrained.
Core features such as the number of bottom-out hints requested in the last 8 problems
(past8BottomOut), or the number of wrong attempts made in the last 5 problems
(past5WrongCount) could only range from 0 to 8 and 0 to 5 respectively.

5.2. MACHINE LEARNING

After developing the feature set, we built a set of models predicting a binary variable: whether
the student persisted productively or unproductively (i.e., wheel-spinning). We built the model
using RapidMiner 5.3 data-mining software (Mierswa et al., 2006), using the Weka J48 decision
tree algorithm, an algorithm that has been previously used in building detectors of engagement,
affect, and meta-cognitive constructs. Feature selection was conducted using an outer-loop
forward selection process, attempting to determine the cross-validated goodness of specific sets
of features. It is worth noting that conducting outer-loop forward selection tends to have an
upward bias relative to true training- test splits.

The multi-feature models were validated using 10-fold student-level batch cross-validation,
using AUC ROC as the primary measure of model goodness. The AUC ROC metric was
computed using the A' implementation (Baker, 2008), rather than computing the integral of the
area under the curve, to avoid having artificially high AUC ROC estimates due to having multiple
data points with the same goodness, a feature of the integration-based estimates currently
available in most packages (Baker, 2015). A model with AUC ROC of 0.5 performs at chance,
and a model with AUC ROC of 1.0 performs perfectly. It is worth noting that AUC ROC takes
model confidence into consideration.

We also created a precision-recall curve to identify the tradeoffs between precision and recall
at different confidence thresholds of the model of unproductive persistence. Using a precision-
recall curve facilitates understanding how well the model functions across its predictive range,
rather than at just one point, and can also be used to choose an optimal threshold for interventions
with different costs or benefits (Davis & Goadrich, 2016). Precision represents the proportion of
instances identified as wheel-spinning that are true instances of wheel-spinning, while recall
represents the proportion of instances of true wheel-spinning, which were identified as wheel-
spinning. To put it another way, precision indicates how good the model is at avoiding false
positives, while recall indicates how good the model is at avoiding false negatives. Together,
precision and recall provide an indication of the model’s balance between these two types of
errors (Davis & Goadrich, 2006).

After creating the J48 decision tree with the initial set of features, we conducted further
analysis of its structure. We specifically focused on the features selected in the top nodes in the
J48 decision tree, as these play a particularly important role in the tree’s process of evaluating
specific data points. Presenting a complete analysis of the decision tree structure is outside the
scope of a journal paper, as the tree structure was very large (see Appendix C).

The J48 decision tree was built using the WEKA implementation of the C4.5 algorithm,
referred to as J48, in the RapidMiner software (Quinlan, 1993). We used the default parameters
in RapidMiner: the confidence threshold for pruning: 0.25, and the minimum number of
instances per leaf: 2. The pruning approach of the C4.5 algorithm is based on an estimated error
rate of misclassifications at every node of the decision tree. If estimates indicate the tree will be
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more accurate if subtrees are removed, the children of a particular node can be replaced with a
single node, simplifying the classification structure and improving error rate.

6. RESULTS

6.1. MULTI-FEATURE MODEL

The J48 model achieved an AUC ROC value of 0.684. Upon visual inspection, J48 also produced
good precision-recall curves. The standard error for the AUC ROC metric for J48 was computed
to be 0.003 (using the approach in Hanley & McNeil, 1982). This J48-based model used a
combination of 15 features (see Appendix D for a description of each of these features). The
final decision tree generated using this algorithm had 95 leaf nodes and 189 decision nodes. The
precision-recall curve generated for the J48 model of wheel-spinning is shown in Figure 1.

Precision-Recall curve
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Figure 1: A precision-recall curve for the J48 model’s predictions of wheel-spinning

From the precision-recall curve shown in Figure 1, there appears to be a clear tradeoff between
precision and recall across thresholds, though the relationship is non-monotonic. The highest
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precision (nearly 0.90) is seen for relatively low values of recall (between 0.20 and 0.40). These
high precision values remain stable as recall increases to 0.7, and only drop slightly afterwards.
Overall, it can be seen that the precision of the J48 model (the proportion of true positive
predictions out of all positive predictions) remains high (above 0.75) even at high recall values
—up to 100% recall.

When analyzing the features in the tree individually, only one feature from the J48 multi-
feature model performed at a goodness substantially above chance, the standard deviation of the
amount of time since the current problem set was last encountered by the student (std-
timeBetweenProblems: AUC ROC = 0.554). As the 15-feature model achieved considerably
better predictive performance than the performance of each single feature, this suggests that it is
in the interaction of our features that wheel-spinning and productive persistence can be
differentiated.

6.2. TOP 3 FEATURES IN J48 DECISION TREE

We can better understand the pattern of relationships that distinguish wheel-spinning from
productive persistence by examining the top nodes of the J48 decision tree. This tree has only
leaves on one side of the first- and second-level nodes. As such, we can focus on the features in
the three top nodes of the tree, which form a single branch. The tree spreads out below these
levels. These features are as follows:

e Minimum number of hints requested in any problem in the problem set (min- hintTotal)
e Maximum number of bottom-out hints requested in the last 8 problems, as a rolling
average across sets of 8 problems (max-past8BottomOut)

e Standard deviation of the amount of time since the current problem set was last seen
by the student (std-timeBetweenProblems)

The second and third of these features deserves a bit of further examination. Both of these
features only include actions in the current problem set — neither feature cuts across problems
sets. The feature max-past8Bottomout refers to the maximum number of bottom-out hints
requested in the most recent 8 problems within the sequence of 10 problems in this problem set.
The possible values for this variable may hence range from 0 to § in any given problem set. A
value of 0 is obtained when no bottom out hints were requested at all within the most recent 8
problems, whereas a value of 8 is obtained when a bottom-out hint is requested within each of
the most recent 8 problems. It is worth noting that because this variable only takes into account
the most recent 8 problems within a sequence of 10 problems in the problem set, it is possible to
request more than 1 bottom-out hint in the whole 10-problem sequence and still produce a max-
past8BottomOut value of 1; specifically, when the student requests 1 bottom-out hint right at the
beginning of the 10-problem sequence, and 1 more at the end of the sequence. Figure 2 illustrates
some of these scenarios, where ‘1’ refers to a problem in which a student requested a bottom-
out while ‘0’ refers to when he/she does not.

The std-timeBetweenProblems variable gives the amount of variation in how much time the
student takes between each problem encountered in this problem set. Figure 3 shows examples
of student-skill pairs that represent low and high values of this feature in the Distributive Property
problem set. Specifically, a low value for std-timeBetweenProblems indicates that the amount
of times spent between problems in this problem set are relatively similar. The first and second
students in Figure 3 show patterns, in the first 10 problems attempted, of student-skill pairs that
are defined as wheel-spinning. The first student, for example, illustrates a sequence where a few
problems were attempted in a row in the Distributive Property problem set, followed by a break

47 Journal of Educational Data Mining, Volume 10, No 1, 2018



of around 12 days before several more problems were attempted in the same problem set. This
pattern would result in a relatively low std-timeBetweenProblems value (compared to other
students in our data set). Similarly, the student-skill pair in the second example encounters short
periods between problem-solving within the problem set, alternating between a 12-day delay and
2-day delay across the first 10 problems. While both the second and third students have the same
values for mean-timeBetweenProblems, their differing patterns in how the first 10 problems
were attempted over time led to contrasting values of std-timeBetweenProblems. In the third
example, the student attempted several problems within the first 10 problems on the same day,
followed by a break of nearly two weeks, before attempting a few more problems in the problem
set. This is then followed by a long delay of over a month before more problems in this set were
attempted — resulting in a higher std-timeBetweenProblems value relative to the other two
student-skill pairs.

1 Bottom-out hint 2 Bottom-out hints

requested requested

0 0

0 1

0 0

0 0

1 0

0 | Tally of last 0 Tally of last
0 8 problems 0 8 problems
0 0

0 0

0 1

Total max- - Total max- B
past8BottomOut = 1 past8BottomOut = 1

Figure 2: Two scenarios where the value max-past8Bottomout is equal to 1.

As shown in Figure 3, the second and third examples have the same mean-
timeBetweenProblems value but differing std-timeBetweenProblems values, suggesting that the
same average length of time between solving problems can be associated with different
variations of time since a problem set is last seen by a student. When comparing the individual
effects between these two features on wheel-spinning, the performance of the J48 model with
only std-timeBetweenProblems (cross-validated AUC ROC = 0.544) was very similar to the
performance of a similar model with only mean-timeBetweenProblems (cross-validated AUC
ROC= 0.538). These findings thus suggest that std-timeBetweenProblems is about equally as
predictive of wheel-spinning as mean-timeBetweenProblems. As such, a multi-feature model
with mean-timeBetweenProblems will likely yield a similar AUC performance to our current
model. We focus on std-timeBetweenProblems in our analysis solely because it was the feature
found in the top levels of the automatically-discovered decision tree.
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Student 1
mean-timeBetweenProblems = 1.34 days, std-timeBetweenProblems = 3.8 days

< 2-week delay between solving problems

\

12 days

Student 2

mean-timeBetweenProblems = 4.5 days, std-timeBetweenProblems =4.3 days

< 2-week delay between solving problems

12 days

<2 K2 82 K2 9

Student 3

mean-timeBetweenProblems = 4.5 days, std-timeBet r =10.7 days

Prahbl,

> 1-month delay between solving problems

12 days 38 days

Figure 3: Example of low and high values of std-timeBetweenProblems.

Based on analyses of the top three nodes described above, we found that a considerable
proportion of the data is explained by two feature combinations of these three features. Both of
feature combinations were associated with high probabilities of wheel-spinning, indicating that
there are two distinct types of students who are likely to unproductively persist in the tutoring
system.

Based on the two feature combinations, students are more likely to be wheel-spinning in a
problem set if they don’t request hints for one problem and if, on other problems, they request at
least one bottom out hint. Additionally, students who request less bottom-out hints are also likely
to be wheel-spinning if the students spend consistently short amounts of time between the
problems they encounter in a problem set.

The first feature combination indicates that students are likely to be wheel-spinning when
they do not request any hints in at least one problem within the problem set but request more
bottom-out hints in the last 8§ problems within the sequence of 10.
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Table 3: Relationships between the first combination of features at the top of the tree and wheel-
spinning within the J48 model.

Likely to be | Number of
Selected Features Feature Descriptions Wl‘leel.— Instances Labeled
Spinning as Wheel-
When Spinning
min-hintTotal Minimum nuI.nber of hints requested in ~ 0 2544 out of 2856
any problem in the problem set
student-problem
Maximum number of bottom-out hints set pairs (89.07%)
max-past8BottomOut | requested in the last 8 problems within >1
the current problem set

While the first feature combination indicates that more bottom-out hint requests are associated
with more wheel-spinning, wheel-spinning can still occur with fewer bottom-out hint requests.
The second feature combination indicates that, even when the maximum number of bottom-out
hint requests is 1 or 0, students can still wheel-spin if they do not request any hints in at least one
problem and the standard deviation value of the amount of time since the current problem set
was last seen is less than or equal to 2.53 days. The probability of wheel-spinning for the second

feature combination is lower than the first feature combination.

Table 4: Relationships between the second combination of features at the top of the tree and
wheel-spinning within the J48 model

:)Jelkve&:z;:l Number of Instances
Selected Features Feature Descriptions Spinning ISJa.b ell.ed as Wheel-
When pinning
Minimum number of hints
min-hintTotal requested in any problem in the =0
problem set
Maximum number of bottom-out 5027 out of 6457
max-past8BottomOut hints reques.te('i in the last 8 1 student-problem set
problems within the current pairs (77.85%)
problem set
Standard deviation of the amount
std- . . <=2.153
. of time since the current problem
timeBetweenProblems days
set was last seen by the student

We discuss these three selected features (min-hintTotal, max-past8BottomOut, and std-
timeBetweenProblems) and their relationships with student wheel-spinning in the Skill Builders
in greater detail in the next section. We will also discuss the goodness of our full 15-feature
model in comparison to a smaller model made up of a combination of these three features alone.
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6.3. EXPLORING MODEL FEATURES

To gain a better understanding of the range of values for the features at the top nodes of our
prediction model, we present graphs showing the frequencies of student-problem set pairs at
their respective values for the 3 features of min-hintTotal, max-past§BottomOut, and std-
timeBetweenProblems. Included in these graphs are also the corresponding proportions of
wheel-spinning students across the value ranges for these features (Figures 4, 5 and 6
respectively).

In the case of min-hintTotal, Figure 4 shows a unimodal distribution. In general, most
students do not request any hints in at least one problem. The corresponding proportion of
student-problem set pairs that were wheel-spinning based on our operational definition, for
each range of values in min-hintTotal, is represented by the line graph in Figure 4. Here we
can see that the proportion of student wheel-spinning is much lower if the minimum
number of hints requested in any problem increases beyond 1.

std-timeSinceSkill Proportion of WS
6000 0.7
5000 06

0.5
4000

0.4
3000

0.3
2000

0.2
1000 0.1

0 0
0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000 More

std-timeSinceSkil| emm=Proportion of WS
Std-timeSinceSkill

Standard deviation of the amount of time (in minutes) since the current problem set
was last seen

Figure 4: Figure showing a) a histogram of the minimum number of hints requested in any
problem across student-problem set pairs (min-hintTotal), and b) the proportion of student-
problem set pairs identified as wheel-spinning for each min-hintTotal range of values.

As shown in the histogram for max-past8BottomOut in Figure 5, the distribution for this
feature is relatively skewed to the right. Most students do not make any bottom-out hint requests
in the last 8 problems within the sequence of 10 problems. The second most frequent number of
bottom-out hint requests is 1, with 2 as the third most frequent. The proportion of students who
were wheel-spinning across the values of bottom-out hints requested is represented with a line
graph and shows a steady decrease in the proportion of student wheel-spinning as the maximum
number of bottom-out hints requested in the past 8 problems increases.
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Figure 5: Figure showing a) a histogram of the maximum number of bottom-out hints
requested in the last 8 problems across student-problem set pairs, and b) the proportion of
student-problem set pairs identified as wheel-spinning for each max-past8BottomOut range of
values.

From Figure 6, the most frequent range of standard deviation values for the amount of time
between problems of the same skill is 0 — this means that the student started the next problem
immediately after completing the previous problem in the system, for every case within the
problem set. However, many student-problem set pairs have standard deviation values of 100,000
minutes or more (approximately 69 days or more). The line graph in Figure 6 thus shows the
proportion of students defined as wheel-spinning to be highest at very low standard deviation
values of the length of time spent between encountering problems in a problem set. This implies
that students who have consistent short delays between problems in a problem set are more likely
to be wheel-spinning.
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Figure 6: Graph showing a) a histogram of the standard deviation for the amount of time since
the current set was last seen (std-timeBetweenProblems) across student problem set pairs, and b)
the proportion of student-problem sets pairs identified as wheel-spinning for each std-
timeBetweenProblems range of values.

To further explore the performance of these three features selected in the J48 decision tree
model, we computed the performance of a prediction model using the J48 algorithm but using
only the top three selected features: min-hintTotal, max- past§BottomOut, and std-
timeBetweenProblems. The J48 decision tree generated with this pared-down model contains 11
decision nodes (see Appendix E). Wheel-spinning is likely to occur when students do not request
any hints in at least one problem, never request two or more bottom out hints across any
problems, and there is less variation in the delay between solving problems within the same
problem set. 76.49% of instances (5958 out of 7789 student-problem set pairs) with this feature
combination were labeled as wheel-spinning.

However, the highest probability of wheel-spinning was associated with a branch that included
a singleton node, max-past8§BottomOut. Students with more bottom-out hints requested in the
last 8 problems are more likely to wheel-spin. About 89.74% of instances (2781 out of 3099
student- problem set pairs) were included in this branch. These results match the findings from
the 15-feature model, which indicate a nuanced relationship between wheel-spinning and the use
of bottom-out hints.

A comparison of the performances between the 3-feature model (Cross-validated AUC ROC
= (0.628) and the original 15-feature model (Cross-validated AUC ROC = 0.684) shows that the
pared-down model performed somewhat worse than the original one. This difference in
goodness suggests that there are interactions present between variables in the 15-feature model
that contribute to the model goodness and suggests that wheel-spinning and productive
persistence are better differentiated with a combination of the 15 selected features, compared to
a combination of the top three selected features.
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7. DISCUSSION

Persistence plays a significant role in learning, and it is important for teachers and students to
understand when sustained effort is productive or unproductive. This is an increasingly pertinent
issue to investigate in the context of online learning systems such as intelligent tutoring systems,
where it has been argued that a large percentage of students engage in wheel-spinning or
unproductive persistence (Beck & Gong, 2013). In this paper, we attempt to address this issue
by creating models to differentiate between wheel-spinning and productive persistence in the
ASSISTments tutoring platform, using educational data mining techniques.

In general, our findings indicate (unsurprisingly) that no single-feature model performed as
well as our 15-feature model. This multi-feature model was reasonably effective in predicting
whether or not a student will engage in wheel-spinning, achieving AUC ROC of 0.684. By
comparison, the AUC performance of gaming detectors has been found to be around 0.80 (Baker,
Corbett, Koedinger & Roll, 2006; Pardos et al., 2014), which is only slightly better than the
current performance. Sensor-free affect detectors of student affective states in ASSISTments,
found to be effective in several-year longitudinal prediction (San Pedro et al., 2013), have had
AUC values ranging between from 0.63-0.74 (Pardos et al., 2014), slightly lower than the current
value of our multi-feature model. AUC values in the 0.74-0.81 range are used in medical
decision-making with real-world impact, such as the choice of which anti-retroviral therapy to
use for HIV patients (Revell et al.,, 2013). As such, while there is considerable room for
improvement in the models presented here, they are at a level of goodness where they can be
used for basic research and intervention, given appropriate caution.

The findings presented here suggest that there is more predictive power in the combination of
features, rather than each of the features alone. Upon further analysis of the J48 decision tree,
two specific combinations of features were found to be associated with wheel-spinning,
indicating two primary types of wheel-spinning students. First, students are likely to wheel-spin
when they do not request any hints in at least one problem but request more bottom-out hints.
However, a second group of wheel-spinning students request fewer bottom-out hints. These
students are likely to wheel-spin when they have less variation in the amount of time spent
between problems of the same skill.

Despite the slightly worse performance of the 3-feature model compared to our original 15
feature model, our analysis of the J48 decision tree suggests that each of the selected three
features are particularly important for providing implications that can help guide intervention.
First, we found that less variation in the number of days since the current problem set was last
seen was associated with greater wheel-spinning. Specifically, students are more likely to wheel-
spin if they have consistently shorter periods of time between each problem attempt. For
instance, students are more likely to wheel-spin when they encounter less than 2-week delays
across the first 10 problems. In contrast, wheel-spinning is less likely to occur if, for example, a
student has already attempted several problems but does not return to attempt more problems
until after a month. Such differences in student behavior may have implications on the discussion
of whether massed practice is beneficial for students who are at risk of being unable to achieve
mastery in a problem set. Previous research has shown the benefits of spacing in the domains of
math problem solving (Rohrer & Taylor, 2006; Rohrer, Dedrick, & Burgess, 2014), and second
language acquisition (see review by Cepeda et al., 2006). Additionally, our finding about the time
between encountering problems also relates to empirical evidence showing that interleaved
practice, where the opportunities to learn a different skill is spaced (abcbcacab), is more
advantageous than blocked practice, where the opportunities to learn a given skill are massed
(aaabbbccc). Specifically, Rohrer, Dedrick, and Burgess (2014) showed that students in the
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interleaved group significantly outperformed the students in the blocked group on a final test
about volume, with math test performance of 63% for the interleaved group compared to 20%
for the blocked group. Asawhole, our findings along with prior literature suggest that practicing
math problems in a spaced fashion can potentially help learners improve learning and reduce
their wheel-spinning. By spacing work to a greater degree within ASSISTments (and related
platforms), we may be able to reduce wheel-spinning.

Our findings also indicate that not requesting any hints in at least one problem was related to
greater wheel-spinning. This result aligns with what previous literature has shown about the
relationship between students’ help avoidance and their learning. In particular, Aleven et al.
(2006) found that avoiding the use of help was negatively correlated with post-test scores when
controlling for pre-test scores. As such, students who wheel-spin and avoid hints could
potentially be struggling to realize they need support to learn the math content. This information
may be useful in helping teachers identify students who may need additional support towards
achieving content mastery and retention.

Finally, our results show that the relationship between the number of bottom-out hints
requested and wheel-spinning is more nuanced than the other two features. On the one hand,
when at least one problem has no hint requests, heavy use of bottom-out hints in the last 8
problems leads to more wheel-spinning. Previous studies indicate that the incautious use of
bottom-out hints is associated with gaming (Baker, Walonski, Heffernan, Roll, Corbett &
Koedinger, 2008). As such, the type of student represented by this feature combination may be
gaming the system. It is possible that students who game the system are less likely to read the
intermediate hints (i.e., clues about how to solve the problem) because requesting bottom-out
hints could provide them with the answer (Aleven & Koedinger, 2000). On the other hand, fewer
bottom-out hint requests in the last 8 problems is associated with more wheel-spinning, when
there are no hint requests in at least one problem and there is less variation in the length of time
spent between attempting problems in the same problem set. It is possible that the type of student
represented by this feature combination may not be checking the correct answers from the
bottom-out hints to learn the math content effectively. It is hence worthy of teachers’ time to pay
attention to students’ use of the bottom-out hints in Skill Builders problem sets and to try and
identify possible patterns in students' use of this type of hint, as this type of behavior may be
indicative of a student who is at-risk of wheel-spinning later on. Future work is also needed to
further investigate how bottom-out hint requests relate to student wheel-spinning in various
circumstances and conditions.

From our results, it is also worth noting that among the top three features found to predict
student wheel-spinning, min-hintTotal and max-past8BottomOut are features specific to the
student, while std-timeBetweenProblems may also be contingent on the teacher’s choices around
when to assign specific skill builders to students. As such, further analyses and randomized
controlled trials (RCTs) may be conducted to investigate the specific conditions in which student
wheel-spinning occurs. In general, it is important to note that each of the findings obtained here
is correlational. Conducting small-scale randomized controlled trials (RCTs) based on our
findings will have the benefit of helping to establish which of these findings is causal at the same
time as possibly enhancing student learning outcomes.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we developed automated models that can differentiate between productive and
unproductive persistence, in order to understand the differences between these two modes of
engagement. As shown in our results, we found that a combination of features — the minimum
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number of hints requested in any problem, the maximum number of bottom-out hints requested
in the last 8 problems, and the standard deviation of the amount of time since the current problem
set was last seen by the student — distinguishes students who productively persist from those who
wheel-spin.

These findings make a potentially important contribution in unbundling the concept of
persistence, by encouraging students to exercise sustained effort when it's beneficial and
supporting them when it is not. For instance, productively persistent students are likely to benefit
from learning environments that promote tenacity. Determining which students are productively
persisting could help indicate when research findings of how to enhance grit are most appropriate
and helpful. Previous research suggests that developing students’ growth mindset can be an
effective strategy to promote grit (Laursen, 2015). As such, students who are already being
productive when they are persistent -- but are not being persistent frequently enough -- may
likely stick with challenging problems, if teachers emphasize and praise their efforts over ability.

While most studies have investigated the benefits of grit, less work has examined how to
identify and prevent unproductive persistence. Our findings contribute to this gap in the
literature, in helping identify students who unproductively persist, and distinguishing this
behavior from productive persistence that should be encouraged. As indicated in our results,
when students avoid hints in at least one problem but request more bottom-out hints in the last
8 problems, they are more likely to engage in unproductive persistence.

Our results also indicate that wheel-spinning is likely to occur with fewer bottom-out hint
requests, when students avoid hints in at least one problem and study according to a massed
schedule, with less than a 2-week delay between problem-solving. These findings imply that
studying math content in a more spaced fashion may likely reduce students’ likelihood of wheel-
spinning and scaffold them towards a productive path to learning. Additionally, the findings on
the minimum number of hint requests in any problem and the number of bottom-out hint requests
in the last 8 problems can provide actionable information on discriminating between
unproductive and productive persistence, enabling teachers to identify which students are in
most need of additional support. In this way, modeling wheel-spinning can help fine-tune
interventions based on each student’s needs, supporting learners who persist within and beyond
tutoring systems.

While the findings in this study provide valuable insight into the student and program factors
that are associated with unproductive persistence, several improvements may be made to our
model in future work. For example, the thresholds used in our definition of wheel-spinning,
despite extending beyond the amount of work completed to include indicators of eventual success
at the skill, remain somewhat arbitrary. Although the cut-off of 10 problems maps to current
practice within the ASSISTments system, other thresholds may better capture student persistence.
As such, we plan to examine the threshold of wheel-spinning further, by creating a range of
possible cut-offs for persistence (e.g., 8 through 14 problems) and determining whether the
predictors of wheel-spinning differ significantly across these thresholds. Given that our
operationalization of persistence was largely based on the context of the ASSISTments platform,
where 10 problems is a meaningful transition point (since the system asks the learner to take a
break if 10 problems are completed without mastery), further research should investigate whether
other cut-offs for persistence are relevant when distinguishing wheel-spinning from productive
persistence in other platforms. In addition, there are other indicators of student success in the
long-term that may be relevant (cf. Pardos et al., 2014). It may also be worth using probabilistic
labels of some sort, instead of treating students who complete only 9 problems as non-persistent.

Relatedly, it is an open question whether the behavioral predictors of wheel-spinning and
productive persistence differ across platforms. We may expect spaced practice to increase the
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effectiveness of persistence in other systems as well, based on the extensive literature on the
benefits of spaced practice for retention. The heavy use of bottom-out hints has similarly been
found to be detrimental to robust learning in other platforms. However, other factors may be
expected to emerge as important as well. Future work in this area is critically important to better
understand how persistence, wheel-spinning, and productive persistence should be defined and
understood across learning platforms.

Further work is also needed to understand the differences and similarities of the constructs
studied here to broader understanding of related constructs. To this end, we plan to correlate our
predictions of productive persistence to other well-known measures of tenacity, such as grit. We
also plan to correlate the incidence of students’ wheel-spinning to their affective states (cf. Beck
& Rodrigo, 2014). Further work in this area can help us determine the potential role of affect in
encouraging persistence through adversity.

In investigating how these constructs relate to one another, we can better understand the
different trajectories of student persistence and identify potential protective factors to support
successful learning. Our findings represent the first step in this direction by differentiating
between unproductive and productive persistence towards developing research-based practice
that enhances productive struggle and minimizes wheel-spinning.
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APPENDIX A: LIST OF CORE FEATURES BEFORE FEATURE ENGINEERING

Core Features

Description

attemptCount

The number of attempts a student made within problem
(including only answer, hint and scaffold actions).

endsWithAutoScaffolding

Problem ends with automatic scaffolding

endsWithScaffolding

Problem ends with scaffolding

IsHelpRequest

First response is a help request

isHelpRequestScaffolding

Whether or not the first response to a scaffolding problem is
a help request

pastSHelpRequest Number of last 5 first responses that included a help request
past5WrongCount Number of last 5 first responses that were wrong
past8HelpRequest Number of last 8 first responses that included a help request
past§WrongCount Cumulative count of the number of first responses to a

problem that were wrong answers in the past 8 problems

timeTakenOnScaffolding

First response time taken on scaffolding problems

totalSkillOpportunitiesScaffolding

The total number of scaffolding problems divided by the
unique problems the user has encountered relevant to the
current problem set

Whether or not the first response was made during school

workingInSchool hours (between 7:00 am and 3:00 pm)
hintTotal Total number of hints requested in any problem in the problem
set
past8BottomOut Number Qf bo‘Ftom-out hints requested within the last 8
problems in a given problem set
Whether or not a problem requires the correct answer to be
responselsChosen . . .
chosen from a list of answers (e.g., multiple choice)
responselsFillln Response is filled in (No list of answers available)
. Second to last hint is used — indicates a hint that gives
stiHintUsed considerable detail but is not quite bottom-out
63 Journal of Educational Data Mining, Volume 10, No 1, 2018




Length of time since a problem involving this skill type was

timeBetweenProblems last seen

timeTaken Time spent on the current step

total Attempted The total number of problems attempted in the tutor so far
totalPastWrongCount Total first responses wrong attempts in the tutor so far.

totalPercentPastWrong

The percentage of all past problems that were incorrect on a
given problem set

totalSkillOpportunities

The total number of unique problems the user has encountered
relevant to the current problem set

totalSkillOpportunitiesByScaffolding

Total scaffolding opportunities for this problem set so far

total TimeOnSkill

Total time spent on this problem set across all problems
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APPENDIX B: DESCRIPTIVE STATISTICS OF CORE FEATURES

Core feature Min Max Average (S]teilil;ltii‘:;g
attemptCount 0 151 2.3178 2.1952
endsWithAutoScaffolding 0 1 0.0471 0.0778
endsWithScaffolding 0 1 0.0078 0.0223
IsHelpRequest 0 1 0.0192 0.0752
isHelpRequestScaffolding 0 1 0.0125 0.0226
pastSHelpRequest 0 5 0.2414 0.2187
pastSWrongCount 0 5 1.4902 1.0316
past8HelpRequest 0 8 0.2908 0.2351
past8 WrongCount 0 8 1.7783 1.2986
ti.meTakenOnScaffolding 0 10000 47448 16.7044
(in seconds)

totalSkillOpportunitiesScaffolding 0 9 0.2602 0.2896
workingInSchool 0 1 0.5610 0.1127
hintTotal 0 19 1.5291 0.9838
past8BottomOut 0 8 0.3433 0.4084
responselsChosen 0 1 0.1623 0.0771
responselsFillln 0 1 0.2715 0.0719
stiHintUsed 0 1 0.0024 0.0067
timeBetweenProblems (in seconds) 0 | 3538408440 | 878281.1959 | 2393403.5228
timeTaken (in seconds) 0 10000 279.4849 1044.1036
total Attempted 0 929 83.2187 2.7345
totalPastWrongCount 0 23 2.6548 1.5706
totalPercentPastWrong (in percent) 0 100 0.0728 0.1742
totalSkillOpportunities 1 10 4.9928 2.7359
totalSkillOpportunitiesByScaffolding 0 10 0.1867 0.2470
total TimeOnSkill (in seconds) 0 102746 3301.1382 18410.8700
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APPENDIX C: J48 DECISION TREE OF THE 15-FEATURE MODEL

amin-hintTotal <=0

amax-past§BottomOut <=1
std-timeBetweenProblems <=218115.7837
sum-responselsChosen <= 26

amax-total Attempted <= 18: 1 (898.0/172.0)
amax-total Attempted > 18

amax-total Attempted <= 491
sum-IsHelpRequestScaffolding <= 2
amax-totalSkillOpportunities <= 6
amax-totalSkillOpportunities <= 1

66

amax-responselsChosen <=0

| sum-totalAttempted <= 126: 0 (7.0/2.0)

| sum-totalAttempted > 126: 1 (5.0)
amax-responselsChosen > 0

| sum-responselsChosen <= 4: 0 (20.0/6.0)
| sum-responselsChosen > 4: 1 (2.0)

amax-totalSkillOpportunities > 1

sum-Past8 WrongCount <= 34
std-timeBetweenProblems <= 6.988398

| amax-totalPercentPastWrong <= 0.9

| | sum-totalAttempted <= 422

| | | sum-totalAttempted <=209: 1 (2.0)

| | | sum-totalAttempted > 209: 0 (5.0)

| | sum-totalAttempted > 422: 1 (20.0)

| amax-totalPercentPastWrong > 0.9: 0 (4.0)
std-timeBetweenProblems > 6.988398: 1 (161.0/12.0)
sum-Past§ WrongCount > 34
std-totalSkillOpportunitiesByScaffolding <= 0

| amax-totalPercentPastWrong <= 0.363636: 1 (5.0/1.0)
| amax-totalPercentPastWrong > 0.363636

| | std-WorkingInSchool <=0.278325: 1 (3.0/1.0)

| | std-WorkingInSchool > 0.278325: 0 (4.0)
std-totalSkillOpportunitiesByScaffolding > 0: 0 (3.0)

amax-totalSkillOpportunities > 6
amax-past§BottomOut <= 0

std-totalSkillOpportunitiesByScaffolding <=2.18526
amax-responselsChosen <= 0
| std-totalSkillOpportunitiesByScaffolding <= 0.964126: 1 (992.0/344.0)
| std-totalSkillOpportunitiesByScaffolding > 0.964126
| | std-timeBetweenProblems <=23.786277: 0 (86.0/31.0)
| | std-timeBetweenProblems > 23.786277
| | std-timeBetweenProblems <= 13108.93518: 1 (15.0/1.0)
[ ] | std-timeBetweenProblems > 13108.93518
| | | | sum-Past8 WrongCount <=30: 1 (3.0/1.0)
| | | | sum-Past§ WrongCount > 30: 0 (5.0/1.0)
amax-responselsChosen > 0
amax-totalSkillOpportunities <= 9
amax-totalPercentPastWrong <= 0.9: 1 (26.0/3.0)
amax-totalPercentPastWrong > 0.9
| std-totalSkillOpportunitiesByScaffolding <= 1.022268
| | mean-totalAttempted <= 105.538462
| | | mean-totalAttempted <= 67.8: 0 (2.0)
| | | mean-totalAttempted > 67.8: 1 (2.0)

| mean-total Attempted > 105.538462: 0 (5.0)
| std-totalSkillOpportunitiesByScaffolding > 1.022268
| | sum-totalAttempted <= 756: 0 (4.0/1.0)
| | sum-totalAttempted > 756: 1 (8.0)
amax-totalSkillOpportunities > 9: 1 (603.0/196.0)
d-totalSkillOpportunitiesByScaffolding > 2.18526
amax-totalPercentPastWrong <= 0.363636
| sum-responselsChosen <= 3:1 (9.0/2.0)
| sum-responselsChosen > 3: 0 (2.0)
amax-totalPercentPastWrong > 0.363636: 0 (22.0/1.0)

=

S

amax-past8§BottomOut > 0

amax-total Attempted <= 121: 1 (1060.0/281.0)

amax-total Attempted > 121

amax-total Attempted <= 302

| amax-responselsChosen <= 0: 1 (207.0/86.0)

| amax-responselsChosen > 0

| | sum-Past8WrongCount <= 92

| | | sum-responselsChosen <=10

| | | | std-WorkingIlnSchool <=0.438019

| | ] || sum-IsHelpRequestScaffolding <=1

| ]| ]| std-timeBetweenProblems <=37505.97416
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el sum-Past8WrongCount <= 35

| sum-Past8 WrongCount <= 28

\
| | | std-totaSkillOpportunitiesByScaffolding <=0.943037: 0 (3.0)

| | | std-totalSkillOpportunitiesByScaffolding > 0.943037: 1 (3.0/1.0)
| | sum-Past8WrongCount > 28: 1 (6.0)

| sum-Past§ WrongCount > 35

| | sum-Past8WrongCount <= 56: 0 (9.0)

[ ] ] | | | | sum-Past§WrongCount > 56

| | | std-WorkingInSchool <=0.158114:1 (4.0/1.0)

| | | std-WorkingInSchool > 0.158114: 0 (3.0)
std-timeBetweenProblems > 37505.97416: 1 (4.0)
sum-IsHelpRequestScaffolding > 1

mean-total Attempted <= 187.12766: 1 (2.0)

mean-total Attempted > 187.12766: 0 (3.0/1.0)

| | | std-WorkingInSchool >0.438019: 1 (6.0)

| | sum-responselsChosen >10: 1 (20.0/2.0)

| | sum-Past8 WrongCount > 92

[ ] ] std-timeBetweenProblems <= 28605.3143

amax-totalPercentPastWrong <= 0.96: 0 (6.0)

amax-totalPercentPastWrong > 0.96

| sum-responselsChosen <= 13: 0 (6.0)

| sum-responselsChosen > 13: 1 (2.0)

std-timeBetweenProblems > 28605.3143: 1 (2.0)

amax-total Attempted > 302

std-WorkingInSchool <= 0.390205: 1 (30.0/2.0)

std-WorkingInSchool > 0.390205

sum-Past8 WrongCount <= 37: 0 (2.0)

sum-Past8 WrongCount > 37: 1 (3.0/1.0)

sum-IsHelpRequestScaffolding > 2

amax-total Attempted <= 307

amax-responselsChosen <=0

std-WorkingInSchool <= 0.162221: 1 (70.0/1.0)

std-WorkingInSchool > 0.162221

| sum-IsHelpRequestScaffolding <=7: 1 (15.0/1.0)

| sum-IsHelpRequestScaffolding > 7

| | std-timeBetweenProblems <=92.603468: 1 (4.0)

|| | std-timeBetweenProblems > 92.603468
|

| | sum-IsHelpRequestScaffolding <=21: 0 (6.0)

| | sum-IsHelpRequestScaffolding > 21: 1 (2.0)
amax-responselsChosen > 0: 1 (86.0/18.0)

amax-total Attempted > 307

sum-IsHelpRequestScaffolding <= 5: 1 (3.0)
sum-IsHelpRequestScaffolding > 5

| std-totalSkillOpportunitiesByScaffolding <= 1.542118: 0 (10.0/1.0)
| std-totalSkillOpportunitiesByScaffolding > 1.542118: 1 (3.0/1.0)
amax-total Attempted > 491: 1 (32.0)

sum-responselsChosen > 26: 1 (675.0/90.0)

std-timeBetweenProblems > 218115.7837

std-timeBetweenProblems <= 12799929.2

amax-totalSkillOpportunities <= 5

std-timeBetweenProblems <= 1820838.272

std-total SkillOpportunitiesByScaffolding <= 0

| sum-frPast§ WrongCount <= 48: 1 (76.0/9.0)

| sum-frPast§ WrongCount > 48: 0 (4.0/1.0)
std-totalSkillOpportunitiesByScaffolding > 0

| std-timeBetweenProblems <= 684764.2974: 0 (3.0)

| std-timeBetweenProblems > 684764.2974: 1 (3.0)
std-timeBetweenProblems > 1820838.272

sum-Past§ WrongCount <= 19

| std-WorkingInSchool <=0.357935

| | std-timeBetweenProblems <=3294065.607: 0 (2.0)

| | std-timeBetweenProblems > 3294065.607: 1 (3.0)

| std-WorkingInSchool > 0.357935: 0 (7.0)

sum-Past§ WrongCount > 19: 1 (4.0)

amax-totalSkillOpportunities > 5

amax-past§BottomOut <= 0

std-timeBetweenProblems <=2773779.763

amax-responselsChosen <= 0: 0 (228.0/107.0)
amax-responselsChosen > 0

| amax-totalPercentPastWrong <= 0.363636

| | sum-responselsChosen <=23

| | | std-WorkingInSchool <=0.347839

| | | | mean-totalAttempted <=47.181818: 0 (2.0)

} I | | mean-totalAttempted > 47.181818: 1 (5.0)
\
\

| std-WorkingInSchool > 0.347839: 0 (2.0)
| sum-responselsChosen > 23:1 (10.0)
amax-totalPercentPastWrong > 0.363636: 0 (85.0/41.0)
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std

std-timeBetweenProblems > 2773779.763

| amax-totalAttempted <= 502

| | std-timeBetweenProblems <= 8717502.941: 0 (65.0/11.0)
| | | std-timeBetweenProblems> 8717502.941: 1 (3.0)

| | amax-totalAttempted > 502: 1 (6.0/1.0)
amax-past§BottomOut > 0
amax-totalSkillOpportunities <= 8: 1 (20.0/4.0)
amax-totalSkillOpportunities > 8
sum-IsHelpRequestScaffolding <=0

amax-responselsChosen <= 0
amax-totalSkillOpportunities <=9

| std-WorkingInSchool <= 0.142857: 0 (5.0/1.0)

| std-WorkingInSchool > 0.142857: 1 (8.0/1.0)
amax-totalSkillOpportunities > 9: 1 (191.0/85.0)
amax-responselsChosen > 0
std-timeBetweenProblems <= 1505822.527

| amax-totalPercentPastWrong <=0.888889: 1 (8.0)
| amax-totalPercentPastWrong > 0.888889

| | amax-totalPercentPastWrong <=0.96: 0 (2.0)
| amax-totalPercentPastWrong > 0.96

| | amax-totalSkillOpportunities <=9: 0 (3.0/1.0)

| | amax-totalSkillOpportunities > 9

| | | sum-totalAttempted <= 2845

| | | | std-totalSkillOpportunitiesByScaffolding <= 0.57735

| 1| || std-WorkingInSchool <=0.156174: 0 (5.0/1.0)

| 1| || std-WorkingInSchool >0.156174: 1 (5.0)

| | | | std-totalSkillOpportunitiesByScaffolding > 0.57735: 0 (2.0)
| | | sum-totalAttempted >2845:1 (10.0)
std-timeBetweenProblems > 1505822.527

| amax-totalAttempted <=17: 1 (2.0)

| amax-totalAttempted > 17: 0 (25.0/4.0)

sum-IsHelpRequestScaffolding > 0

| sum-Past8 WrongCount <=28: 0 (5.0/1.0)
| sum-Past8 WrongCount > 28: 1 (10.0)
-timeBetweenProblems > 12799929.2: 1 (30.0/1.0)
amax-past8§BottomOut > 1: 1 (2544.0/312.0)

amin-hintTotal > 0: 1 (355.0/12.0)

Number of Leaves: 95 Size of the tree: 189
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APPENDIX D: FEATURES SELECTED WITH J48 DECISION TREE ALGORITHM

Features Description

(Maximum) Number of bottom-out hints requested

amax-past8BottomOut within the last 8 problems in a given problem set

(Maximum) Whether or not a problem requires the
amax-responselsChosen correct answer to be chosen from a list of answers (e.g.,
multiple choice)

(Maximum) The total number of problems attempted in

-total A
amax-total Attempted the tutor so far

amax- totalPercentPastWrong (Maximum) The percentage of all past problems that
were incorrect on a given problem set

(Maximum) The total number of unique problems the

- totalSkill rtuniti
amax- totalSkillOpportunities user has encountered relevant to the current problem set

(Mean) The total number of problems attempted in the

mean-total Attempted tutor so far

std- IsHelpRequestScaffolding | (Standard deviation) Whether or not the first response to
a scaffolding problem is a help request

(Standard deviation) Whether or not the first response
std-workingInSchool was made during or after school hours (between 7:00
a.m. and 3:00 p.m.)

(Standard Deviation) Length of time since a problem

std-timeBetweenProblems involving this skill type was last seen

std- totalSkillOpportunitiesBySc (Standard Deviation) The total number of scaffolding
affolding problems divided by the unique problems the user has
encountered relevant to the current problem set

sum- isHelpRequestScaffolding | (Sum) Whether or not the first response to a scaffolding
problem is a help request

(Sum) Cumulative count of the number of first
sum-past8 WrongCount responses to a problem that were wrong answers in the
past 8 problems
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sum-responselsChosen

sum-total Attempted

(Sum) Whether or not a problem requires the correct
answer to be chosen from a list of answers (e.g.,
multiple choice)

(Standard Deviation) The total number of problems
attempted in the tutor so far
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APPENDIX E: J48 DECISION TREE OF THE 3-FEATURE MODEL

71

amax-past§BottomOut = 1

| amin-hintTotal = 1

| | std-timeBetweenProblems =218115.7837: 1 (5224.0/1393.0)

| | std-timeBetweenProblems >218115.7837

| | | std-timeBetweenProblems = 12799929.2

| | | | std-timeBetweenProblems = 1820838.272: 1 (645.0/269.0)
| | | | std-timeBetweenProblems > 1820838.272: 0 (168.0/59.0)

| | | std-timeBetweenProblems > 12799929.2: 1 (30.0/1.0)

| amin-hintTotal > 1: 1 (100.0/3.0)

amax-past8BottomOut > 1: 1 (2781.0/318.0)

Number of Leaves : 6 Size of the tree: 11
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