
Fast and Efficient Distributed Computation of
Hamiltonian Cycles in Random Graphs

Soumyottam Chatterjee, Reza Fathi, Gopal Pandurangan, Nguyen Dinh Pham
Department of Computer Science, University of Houston, Houston, Texas, 77204, USA

soumyottam@acm.org, rfathi@cs.uh.edu, gopalpandurangan@gmail.com, aphamdn@gmail.com

Abstract—We present fast and efficient randomized distributed
algorithms to find Hamiltonian cycles in random graphs. In
particular, we present a randomized distributed algorithm for
the G(n, p) random graph model, with number of nodes n
and p = c lnn

nδ
(for any constant 0 < δ ≤ 1 and for a

suitably large constant c > 0), that finds a Hamiltonian cycle
with high probability in Õ(nδ) rounds.1 Our algorithm works
in the (synchronous) CONGEST model (i.e., only O(logn)-
sized messages are communicated per edge per round) and its
computational cost per node is sublinear (in n) per round and
is fully-distributed (each node uses only o(n) memory and all
nodes’ computations are essentially balanced). Our algorithm
improves over the previous best known result in terms of both
the running time as well as the edge sparsity of the graphs where
it can succeed; in particular, the denser the random graph, the
smaller is the running time.

I. INTRODUCTION

Finding Hamiltonian cycles (or paths) in graphs (networks)
is one of the fundamental graph problems. Hamiltonian cycle
(HC) is a cycle in the graph that passes through each node
exactly once. The decision problem is NP-complete [13] (in
fact, it is one of Karp’s six basic NP-complete problems) and
hence unlikely to have a polynomial time algorithm in the
sequential setting. In this paper, we focus on the distributed
computation of Hamiltonian cycles (or paths) in a (undirected)
graph. In particular, our goal is to find a fast, efficient, and
fully distributed algorithm for the Hamiltonian cycle problem.
By “fast”, we mean running in a small number of rounds
(ideally, sublinear in n, where n is the number of nodes
in the network). By “efficient”, we mean that only small-
sized messages (say, at most O(log n)-sized messages) are
exchanged per edge per round, and the per-round computation
per node should also be small, i.e., sublinear in n. The latter
means that the local (i.e., “within node”) computation is also
efficient. By “fully-distributed”, we (informally) mean that no
one node (or a small set of nodes) does all the non-trivial
(local) computation and all the local computations are (more
or less) balanced (formally we enforce this by assuming that
each node’s memory is limited to o(n)).

Since the HC problem is NP-complete, there is not much
hope of achieving a fast and efficient distributed algorithm
(even if we allow polynomial time local computation per
round and even without caring whether it is fully-distributed

Supported, in part, by NSF grants CCF-1527867, CCF-1540512, IIS-
1633720, CCF-1717075, and BSF award 2016419.

1The notation Õ hides a polylog(n) factor.

or not) in arbitrary graphs, even if we allow polynomial
number of rounds (since the total local computation time over
all nodes is at most polynomial). However, the problem is
reasonable and, yet challenging, when we consider random
graphs, where efficient sequential algorithms (nearly linear
time) for computing Hamiltonian cycles are known.

Despite the importance of the Hamiltonian cycle problem,
there has been only some previous work in the distributed
setting. The work of Das Sarma et al [24] (see also [8]) showed
an important lower bound for the HC problem for general
graphs in the CONGEST model of distributed computing [23]
(described in detail in Section I-A), a standard model where
there is a bandwidth restriction on the edges (typically, only
O(log n)-sized messages are allowed per edge per round,
where n is the graph/network size). They showed that any
deterministic algorithm (this was extended to hold even for
randomized algorithms in [8]) needs at least Ω̃(D +

√
n)

rounds, where D is the graph diameter2. Note that this lower
bound holds even if every node’s local computation is free (i.e.,
there is no restriction on the within node computation cost in
a round — this is the usual assumption in the CONGEST
model [23]). It is important to note that this lower bound is
for general graphs; more precisely, it holds for a family of
graphs constructed in a special way.

Somewhat surprisingly, no non-trivial upper bounds are
known for the distributed HC problem in the CONGEST
model. A trivial upper bound in the CONGEST model is O(m)
where m is the number of edges of the graph (cf. Section
I-A). It is not known if one can get a (O(D) + o(n))-round
algorithm or even a (O(D) + o(m))-round algorithm for HC
in general graphs, where D is the graph diameter (note that
D is a lower bound [24]). In this paper, we show that we can
obtain significantly faster (truly sublinear in n) algorithms, i.e.,
running in time O(nδ) rounds (where 0 < δ < 1) in random
graphs.

We focus on the G(n, p) random graph model[9], a popular
and well-studied model of random graphs with a long history
in the study of graph algorithms (see e.g., [3], [12] and the
references therein). Random graphs such as G(n, p) and its
variants and generalizations (e.g., the Chung-Lu model [6])
have been used extensively to model and analyze real-world
networks. In the G(n, p) random graph model, there are n
nodes and the probability that an edge exists between any two

2The notation Ω̃ hides a 1/polylogn factor.

nodes is p (independent of other edges). A remarkable property
of G(n, p) model is that if p is above a certain threshold, then
with high probability (whp)3, a Hamiltonian cycle (HC) exists.
More precisely, it is known that, with high probability, for n
sufficiently large, there exists a HC in G(n, p) if p ≥ c lnn

n , for
any constant c > 1 [21]; in fact, not one, but it can be shown
that exponential number of Hamiltonian cycles exist [14], [7]
for p above this threshold 4 It is worth noting that the above
threshold for p is (essentially) the same as the threshold for
connectivity of a G(n, p) random graph.

Since it is known that Hamiltonian cycles exists in G(n, p)
random graphs, there has been work in devising efficient
algorithms for finding Hamiltonian cycles in these graphs.
This is a non-trivial task, even though as mentioned earlier
that there are exponential number of HCs present. Angluin
and Valiant [1], in a seminal paper (see also [20]), gave a
sequential algorithm to find a HC in a G(n, p) graph that runs
in O(n(log n)2) time, when p ≥ c lnn

n , for some sufficiently
large constant (say c ≥ 36). This is essentially the best possible
as far as the sequential running time is concerned as it is almost
linear. The algorithm of Angluin and Valiant is randomized.
Bollobas, Fenner, and Frieze [4] give a deterministic sequential
algorithm for finding Hamilton cycles in random graphs (in
the related G(n,M) random graph model, which is a uniform
distribution over all graphs on n vertices and M edges), but
the running time is essentially O(n4) and succeeds with high
probability (in graphs where the number of edges is above the
threshold of existence of Hamiltonian cycle). In the context
of parallel algorithms, MacKenzie et al in [19] proposed a
parallel algorithm which uses O(n

log ∗n) processes and runs in
O(log∗ n) time. In the distributed setting, the only prior work
we are aware of is the work of Levy et al [18] which gives
a distributed algorithm to find a HC in O(n

3
4+ε) time when

p = ω(
√
logn

n
1
4

).
In this paper, we propose a fast, efficient, and fully decen-

tralized (as defined earlier) distributed algorithm that finds a
HC with high probability and runs in time significantly faster
than the prior work of [18] as well as works for all ranges
of p; in particular, the denser the graph, the faster will be
our algorithms. Our distributed algorithms that run on random
graphs are themselves randomized (i.e., they make random
choices during the course of the algorithm) and hence the
high probability bounds are both with respect to the random
input and the random choices of the algorithm.

We give a brief overview of our results. In Section II,
we give two fast (truly sublinear in n), efficient and fully
decentralized algorithms. The first algorithm, is a bit simpler,
and works for p ≥ c lnn√

n
and runs in Õ(

√
n) rounds. The

second algorithm works for p = c lnn
nδ

, for any fixed constant
δ ∈ (0, 1), and for a suitably large constant c, and runs in

3Throughout, by “with high probability (whp)”, we mean a probability at
least 1 − 1/nc, for some constant c > 0, where n is the number of nodes.

4Actually, the “real” threshold for Hamiltonian cycles is p ≥
lnn+ln lnn+ω(1)

n
, if one wants to show the existence of HC asymptotically

almost surely [3]. We use a slight larger threshold, since we want algorithms
that succeed to find a HC whp.

Õ(nδ) rounds. (Our algorithm will also work for δ = 1, with
running time Õ(n).) Both algorithms work in the CONGEST
model and are fully distributed, i.e., no node (or a few nodes)
does all the computation (since the memory size of each node
is restricted to be o(n) — cf. Section I-A). In contrast, in Sec-
tion III-A, we present a (conceptually) much simpler upcast
algorithm that uses a fairly generic “centralized” approach.
In this algorithm, each node samples Θ(log n) random edges
among all its incident edges and upcasts it to a central node
(which is the root of a Breadth First Tree) which locally
computes a HC and then broadcasts the HC edges back to the
respective nodes by downcast. Note that, in this approach, all
the non-trivial (local) computation is done at a central node
and hence the algorithm is not fully distributed (some node
needs at least Ω(n) memory), although the algorithm works
in the CONGEST model. We show that this algorithm also
runs in time Õ(nδ) rounds for p = c lnn

nδ
.

Before we describe our algorithms, we detail our distributed
computing Model (Section I-A) and discuss other related work
(Section I-B). We conclude with open questions in Section IV.

A. Distributed Computing Model

We model the communication network as an undirected,
unweighted, connected graph G = (V,E), where |V | = n
and |E| = m. Every node has limited initial knowledge.
Specifically, assume that each node is associated with a distinct
identity number (e.g., its IP address). At the beginning of the
computation, each node v accepts as input its own identity
number and the identity numbers of its neighbors in G. We
also assume that the number of nodes and edges i.e., n and
m (respectively) are given as inputs. (In any case, nodes can
compute them easily through broadcast in O(D), where D is
the network diameter.) The nodes are only allowed to commu-
nicate through the edges of the graph G. We assume that the
communication occurs in synchronous rounds. (In particular,
all the nodes wake up simultaneously at the beginning of round
1, and from this point on the nodes always know the number
of the current round.) We will use only small-sized messages.
In particular, in each round, each node v is allowed to send a
message of size O(log n) bits through each edge e = (v, u)
that is adjacent to v.5 The message will arrive to u at the end of
the current round. This is a widely used standard model known
as the CONGEST model to study distributed algorithms (e.g.,
see [23], [22]) and captures the bandwidth constraints inherent
in real-world computer networks.

We focus on minimizing the running time, i.e., the number
of rounds of distributed communication. Note that the compu-
tation that is performed by the nodes locally is “free”, i.e., it
does not affect the number of rounds; however, as mentioned
earlier, we will only perform sublinear (in n) cost computation
locally at any node.

5Our algorithms can be easily generalized if B bits are allowed (for any
pre-specified parameter B) to be sent through each edge in a round. Typically,
as assumed here, B = O(logn), which is the number of bits needed to send
a node id in a n-node network.

(a) Phase1 (b) Phase2

Fig. 1: Algorithm DHC1 builds HC in two phases. Phase 1
constructs

√
n sub HCs in parallel. Phase 2 combines all sub

HCs by building a HC over the graph of hyper nodes.

We note that in the CONGEST model, it is rather trivial to
solve a problem in O(m) rounds, where m is the number of
edges in the network, since the entire topology (all the edges)
can be collected at one node and the problem solved locally.
The goal is to design faster algorithms. Our algorithms work
in the CONGEST model of distributed computing. We note
that our bounds are non-trivial in the CONGEST model.6

In Section II, we consider fully-distributed algorithms,
where there is a restriction on the amount of memory each
node can have: each node is allowed only o(n) memory.
This restriction, in effect, rules out “centralized” approaches
such as collecting global information at one particular node
and then locally solving the problem. In our fully-distributed
algorithms, each node’s (local) computation is more or less
balanced. Fully-distributed algorithms are quite useful, since
they can be be efficiently converted to work in other distributed
models for Big Data computing such as the k-machine model
[16] as well as MapReduce [15].

In Section III-A, we consider algorithms where we don’t
have any restriction on the memory size at any node nor we
restrict the local computation cost to be sublinear (note that
this restriction turns out to be not so important for the bounds
that we obtain, as one can run sublinear cost local computation
over sublinear number of rounds). However, the algorithms
still follow the CONGEST model (i.e., there is bandwidth
restriction).

We make a note on the output of our distributed algorithms:
at the end, each node will know which of its incident edges
belong to the HC (exactly two of them).

B. Other Related Work

There are several algorithms for finding a HC in random
graphs (both G(n, p) and its closely related variant G(n,M)
random graphs), e.g., we refer to the survey due to Frieze
[11]. There also have been work on parallel algorithms for
finding Hamiltonian cycles in G(n, p) random graphs. Frieze
[10] proposed two algorithms for EREW-PRAM machines: the
first uses O(n log n) processors and runs in O(log2 n) time,

6In contrast, in the LOCAL model — where there is no bandwidth
constraint — all problems can be trivially solved in O(D) rounds by
collecting all the topological information at one node.

while the second one uses O(n log2 n) processors and runs ins
O((log log n)2) time. MacKenzie and Stout [19] gave an algo-
rithm for Arbitrary CRCW-PRAM machines that operates in
O(log∗ n) average time and requires O(n/ log∗ n) processors.
All these parallel algorithms assume p is a constant.

With regard to distributed algorithms, as mentioned earlier,
the only prior work we are aware of is the work of Levy et
al.[18] which gives a fully distributed algorithm to find a HC
in O(n

3
4+ε) time when p = ω(

√
logn

n
1
4

). Their algorithm (based
on the algorithm of MacKenzie and Stout [19]) works in three
phases: finding an initial cycle, finding

√
n disjoint paths, and

finally patching paths into the cycle to build the HC. Our
fully distributed algorithms (Section II) follow a different and
a simpler approach and are significantly faster, while working
for all ranges of p above the HC threshold.

II. FULLY-DISTRIBUTED ALGORITHMS

In this section, we give two fast, efficient, fully-distributed
algorithms for the Hamiltonian cycle problem. The first algo-
rithm, in Section II-A, is a distributed algorithm for the case
of p = c lnn√

n
(throughout, c will be a large enough constant,

say bigger than 54) and runs in time Õ(
√
n) rounds whp.

(In fact, the algorithm will work for any p ≥ c lnn√
n

, but for
simplicity we will fix p = c lnn√

n
.) This algorithm works in the

CONGEST model and is fully distributed, i.e., each node’s
local computation memory is o(n) and the computation cost
per node per round is also o(n). This algorithm is somewhat
simpler, contains some of the main ideas, and is also useful in
understanding the second algorithm. The second algorithm, in
Section II-B, is more general, and works for p = c lnn

nδ
, for any

0 < δ ≤ 1 and runs in Õ(nδ) rounds. Both algorithms have
two phases; while the first phase is similar for both algorithms,
the second phase for the second algorithm is more involved.

Before we go into the details of our algorithms, we will
give the main intuition. Our algorithm is inspired by the well-
studied rotation algorithm (the rotation is a simple operation
described in Section II-A) that was used by Angluin and
Valiant to develop a fast sequential algorithm for the G(n, p)
random graph for p ≥ c lnn

n (for some suitably large constant
c, say c > 36). However, this algorithm seems inherently
sequential, since it tries to extend the cycle one edge at a
time; hence the running time under this approach is at least
Ω(n). To get a sublinear time, we follow a two-phase strategy
which works in somewhat denser graphs, i.e., p = c lnn

nδ
, for

any 0 < δ < 1. In Phase 1, we partition the graph into
disjoint random subgraphs each of size (approximately) Θ(nδ)
(there will be Θ(n1−δ) subgraphs). The intuition behind this
partition is that each subgraph will have a HC of its own (of
length equal to the size of the subgraph) whp, since it satisfies
the threshold for Hamiltonian cycle (note that p = c lnn

nδ
).

We use a distributed implementation of the rotation algorithm
to find the Hamiltonian (sub)cycles independently in each of
subgraphs — this takes time essentially linear in the size of the
subgraphs, i.e., Õ(nδ). In Phase 2, we stitch the cycles without
taking too much additional time, i.e., in Õ(nδ) time. When

v1 v2 vj vj+1 vh−1 vh v1 v2 vj vh vh−1 vj+1

Fig. 2: Path Rotation: Extending from the head node (vh), we
encounter a node (vj) on the path. The right side shows the
rotated path.

p = c lnn√
n

, the case is special, since the number of subgraphs
and the size of each subgraph is balanced, so the stitching can
be done by essentially implementing a modification of Phase
1 as follows. Take two adjacent nodes from each subgraph
cycle and find a Hamiltonian cycle between the chosen nodes
(this has to be done carefully, so that it can be combined with
the subgraph cycles to form a HC over all the nodes). Since
p = c lnn√

n
, and the number of chosen nodes is Θ(

√
n), whp a

HC exists between the chosen nodes and we can find it using
a strategy similar to Phase 1. For general p, we note, that we
cannot just simply stitch as described above, since p is much
smaller than the needed threshold. Hence, we do the stitching
in stages, as described in Section II-B.

A. The Algorithm for p = c lnn√
n

Our first algorithm, called the Distributed Hamiltonian Cy-
cle Algorithm 1 (DHC1), works for a random graph G(n, p =
c lnn√
n

), where c is a suitably large constant.
1) High-Level Description of DHC1: Given a random

graph G(n, c lnn√
n

), our algorithm works in two phases. In
Phase 1, the graph is partitioned into

√
n subgraphs Gi, each of

Θ(
√
n) nodes. Then each subgraph constructs its own Hamil-

tonian cycle Ci, independently in parallel. In Phase 2, the
algorithm finds a Hamiltonian cycle connecting C1, · · · , C√n.
This is done as follows: for each Ci, pick only one edge
ei = (vi, ui), call this a hypernode (edges inside oval shapes
in Figure 1). Consider the graph G′ of

√
n hypernodes ei, a

hypernode uses ui as the incoming port, and vi as the outgoing
port. In other words, we only look at the edges (vj , ui) and
(vi, uj) for any pair ei 6= ej . The algorithm constructs a
Hamiltonian cycle in G′ which is easy to see completes the
Hamiltonian cycle in G (See Figure 1).

In Phase 1 (as well as in Phase 2, for constructing a HC
in G′), the cycles are constructed locally: each node becomes
aware of its predecessor and successor after the construction.
For convenience, each node also maintains an index of its
position in the cycle. The resulting Hamiltonian cycle is
hierarchical. Each node maintains its index subcyc in the
subgraph cycle. In Phase 2, if a node is part of a hypernode,
it maintains an extra index hypcyc in the cycle constructed in
Phase 2. When traversing the cycle, if a node has a hypcyc
link, follow it, otherwise follow the subcyc link.

We next describe the distributed algorithm for constructing
a HC in the

√
n-sized subgraph. This distributed algorithm

which we call Distributed Rotation Algorithm (DRA) is based
on the well-known randomized algorithm for finding a Hamil-
tonian cycle that uses so called rotation steps [20] (See Figure
2).

2) The DRA algorithm: Consider a graph G with n nodes.
We construct a Hamiltonian path v1, v2, · · · , vn; if there is an
edge connecting vn and v1, then we have a Hamiltonian cycle.
We will grow the path sequentially by a simple randomized
algorithm. For a path v1, · · · , vh, let vh be the head. Initially,
we choose a random v1 which is also the initial head. The head
picks a random edge (vh, u), say, which has not previously
been used.

If u 6∈ {v1, · · · , vh}, add node u to the path
and set it as the new head. If u is some vj , then
we rotate the path: v1, · · · , vj , vj+1, · · · , vh becomes
v1, · · · , vj , vh, vh−1, · · · , vj+1 and vj+1 is the new head. The
rotation can be implemented by just a renumbering: for vi,
where j + 1 ≤ i ≤ h, reassign i ← h + j + 1 − i. In a
distributed setting, we can implement an efficient procedure:
vj broadcasts the values h and j then every node can renumber
itself accordingly. Notice that the required time for broadcast
is the diameter D of the graph, and we will give bounds for
D in the analysis.

The Distributed Rotation Algorithm (DRA) is given in
Algorithm 1, where we initialize the algorithm by assigning
any one node to be the head. The DHC1 algorithm pseudocode
is given in Algorithm 2. Notice that we initialize 2 position
indexes for each node, and construct the (overall) Hamiltonian
cycle by multiple calls to Algorithm 1.

3) Analysis: We first state the main theorem, which gives
the probability of success and the expected runtime of the
DHC1 algorithm.

Theorem 1. For a G(n, p) with p = c lnn√
n

with c ≥ 86, the
DHC1 algorithm successfully builds a Hamiltonian cycle with
probability (1−O(1

n)), in O(
√
n ln2 n

ln lnn) rounds.

The next theorem describes the performance of the Dis-
tributed Rotation Algorithm (DRA), a key subroutine of the
DHC1 algorithm. This result will be used in both Phase 1
and Phase 2 of DHC1 to bound its runtime. To simplify the
analysis, we will state the run time in this theorem in terms
of the number of steps, where each step is one rotation or
growing the path by one node. For the moment, we ignore the
cost of broadcast, which we will later account for in the main
theorem.

Theorem 2. Given a G(n, p) graph where p ≥ 86 lnn
n , the

DRA algorithm constructs a Hamiltonian Cycle in 7n lnn
steps with probability of success 1−O(1

n3).

Proof. We follow the approach as described in [20] which
we refer to for more details. The main idea is to relate the
algorithm to a coupon collector process, where the goal is to
collect n different coupons and in each step the probability
of collecting a particular coupon is 1/n (independent of other
coupons) and it is known that all coupons can be collected
in O(n lnn) steps whp. Here, the n coupons represent the n
nodes and collecting all the coupons is analogous to building
a HC. Since the rotation algorithm does not give uniform 1/n
probability, to apply the coupon collector model, we relax the
analysis as follows.

Algorithm 1 Distributed Rotation Algorithm (DRA) Algorithm

1: function DRA(G(V,E), cycindex) . code for each node v ∈ V , use cycindex for path index
2: Init
3: v.unused← all edges to neighbors
4: v.cycindex← 0
5: only one v becomes head, v.cycindex← 1

6: while v.unused 6= ∅ do
7: if v is head then
8: (v, u)← random edge from v.unused
9: v.unused← v.unused− {(v, u)}

10: send to u: progress(pos = v.cycindex)

11: OnReceive message progress(pos)
12: if pos = |V | and v.cycindex = 1 then return Success
13: v.unused← v.unused− {(sender, v)}
14: if v.cycindex = 0 then . first time visiting v
15: become head: v.cycindex← pos+ 1
16: else . v is already on the path
17: broadcast: rotation(h = pos, j = v.cycindex)

18: OnReceive message rotation(h, j)
19: if j < v.cycindex ≤ h then
20: v.cycindex← h+ j + 1− v.cycindex
21: if v.cycindex = h then
22: v becomes headreturn

Considered a relaxed algorithm such that every node has
equal probability of 1

n to be chosen in every step of growing
the path (this relaxation is described in [20]). Note that, in fact,
the algorithm is more efficient in choosing a new node. We will
not restate all the details here, except for the key technique.
Remember that the edge probability is p, and this implies a
dependency between two nodes. Under the relaxed algorithm,
let each node have a list of edges, called “unused” edges,
which is selected independently at random, with probability
q. The technical part is how to convert p to q, such that the
“unused” edges is a subset of the true edges. All the subtleties
can be found in [20], for convenience, we cite q here: q =
1−
√

1− p ≥ p/2. We are now ready for the proof, where we
want to improve the analysis of [20]. In particular, by allowing
larger runtime, but still in O(n lnn), we can reduce the failure
probability to O(1/n3). This technique can be extended to
achieve failure probability in O(1/nα), with a given constant
α.

The relaxed algorithm has two scenarios of failure:

• E1: The algorithm runs for 7n lnn steps while no unused
edges in any vertex becomes empty, and fails to construct
a Hamiltonian cycle.

• E2: At least one vertex runs out of unused edges during
7n lnn steps.

For event E1, equal probability of 1/n gives: the probability
of not seeing a node after 4n lnn steps is:(

1− 1

n

)4n lnn

≤ 1

n4
.

Using union bound, the probability of failure to meet all n
nodes after 4n lnn steps is: O

(
1
n3

)
.

Now, in order to close the cycle, the head needs to visit the
tail, which happens with probability 1

n . After 3n lnn steps,
the probability of failure to complete the cycle is at most:(

1− 1

n

)3n lnn

≤ 1

n3
.

In total, Pr(E1) ≤ 2
n3 = O

(
1
n3

)
.

For event E2, we break it into two sub events:

• E2.1: At least 21 lnn edges are removed from at least one
node during 7n lnn steps.

• E2.2: At least one node has fewer than 21 lnn edges in
its initial unused list.

Consider E2.1 and look at a node v. Let X be the number of
edges removed at v during 7n lnn steps. We have E[X] =
1
n ∗ 7n lnn = 7 lnn. Using Chernoff bound,

Pr(X ≥ 21 lnn)) = Pr(X ≥ (1 + 2)7 lnn)

≤
(
e2

33

)7 lnn

≤
(

1

e4/7

)7 lnn

= O

(
1

n4

)
.

Using union bound, Pr(E2.1) = O
(

1
n3

)
.

Consider E2.2. Let Y be the initial number of edges in the
unused edges list of a node. We have E[Y] = q(n − 1) ≥

Algorithm 2 Distributed Hamiltonian Cycle Algorithm 1 (DHC1)

1: function DHC1(G(V,E))
2: Init
3: n← |V |
4: foreach v ∈ V : set v.subcyc and v.hypcyc to 0

5: Phase 1
6: v.color ← random[1, · · · ,

√
n]

7: Gi(Vi, Ei) is a subgraph with nodes in color i
8: foreach Gi:
9: Ci ← DRA(Gi, cycindex = subcyc)

10: Phase 2
11: foreach Ci:
12: pick a random ui ∈ Ci
13: vi ← predecessor(ui)
14: hypernodei ← [ui, vi]
15: G′: graph of all hypernodei, edges: all pairs (vj , uk), j 6= k

16: C ′ ← DRA(G′, cycindex = hypcyc)
17: return

(43 lnn
n)(n− 1) ≥ 42 lnn. Using Chernoff’s bound:

Pr(Y ≤ 21 lnn) = Pr(Y ≤ (1− 1

2
)42 lnn)

≤ exp

(
−
(
1
2

)2
42 lnn

2

)
= O

(
1

n4

)
.

Using union bound for n nodes, Pr(E2.2) = O
(

1
n3

)
.

Union over the failure events, the failure probability is less
than: Pr(E1) + Pr(E2.1) + Pr(E2.2) = O(4

n3).

Having analyzed the DRA algorithm, we return to the
discussion of our DHC1 algorithm.

Analysis of Phase 1: Each subgraph Gi uses the DRA
algorithm to independently construct (in parallel) its Hamilto-
nian cycle Ci. Because each subgraph performs the algorithm
independently, this phase is fully parallelized, and the expected
runtime will be the expected runtime of the largest subgraph.
For the failure probability, we can simply use a union bound.
We state the following theorem for Phase 1.

Lemma 3. For a G(n, p) with p ≥ c lnn√
n

where c ≥ 86, Phase
1 of the algorithm succeeds with probability 1 − O(1/n), in
O(
√
n lnn) steps.

To prove Lemma 3, we will show that each partition has
size in Θ(

√
n) and is sufficiently dense for the success of the

DRA algorithm. In particular, we introduce the following:

Definition 1. Let A be the event that all partitions have size
a
√
n, where a ∈ [12 ,

3
2].

Lemma 4. DHC1 algorithm in Phase 1 (line 5) partitions
nodes such that event A happens with probability at least
1−O(1

n).

Proof. Consider any single color. Let X be a random variable
representing the number of nodes with that color. Let Xi, i =

1, · · · , n be indicator random variables of values 0, 1: Xi = 1
if node i choses that color, Xi = 0 otherwise. By linearity
of expectation, we have E[X] = E[

∑
Xi] =

∑
E[Xi] =

n 1√
n

=
√
n.

In order to show that X is concentrated around its expec-
tation, 1

2E[X] ≤ X ≤ 3
2E[X], we apply Chernoff bound:

Pr(|X −
√
n| ≥ 1

2

√
n) ≤ 2e

−(1
2
)2
√
n

3 = 2e
−
√
n

12 .

With
√
n partitions, by union bound, we have:

Pr(¬A) ≤
√
n× 2e

−
√
n

12 = O

(
1

n

)
.

Lemma 5. When event A happens, Phase 1 succeeds with
probability 1−O(1

n).

Proof. By Lemma 4, each partition has size of a
√
n, where

1
2 ≤ a ≤ 3

2 . Consider a partition with n′ vertices as a
random graph with probability p′. It is easy to show that
p′ ≥ 86 lnn′/n′, as follows. The probability for the presence
of an edge in this partition is the same as in the original graph.
We have:

p′ = p ≥ 86
lnn√
n

= 86
ln n′2

a2

n′

a

= 86a
2 lnn′ − ln a2

n′
.

When 1/2 ≤ a < 1, then p′ ≥ 86a 2 lnn′

n′ ≥ 86 lnn′

n′ .
When 1 ≤ a ≤ 3/2, then p′ ≥ 86a 2 lnn′

2an′ = 86 lnn′

n′ , using
the fact that x − y > x

2z , for x sufficiently large and small
constants y, z such that z > 1.

Applying theorem 2, the probability of failing for this
partition is O(1

(
√
n)3

). Using union bound, the probability of
failure in phase 1 is at most:

√
n×O(1

(
√
n)3

) = O(1
n).

Proof of Lemma 3. By Lemma 5 and Lemma 4, the probabil-
ity of failure for phase 1 of is O(1

n).
For the runtime of this phase, we apply Theorem 2. Consider

a partition of size a
√
n, the runtime is: 7a

√
n ln(a

√
n). Each

partition executes Algorithm 1 in parallel, the runtime is
dominated by the largest partition. Sine a ≤ 3

2 , the runtime of
phase 1 is: O(

√
n lnn).

Analysis of Phase 2: In this phase, we apply the DRA
algorithm on the G′ graph of hypernodes. We only need to
show that G′ is dense enough to apply Theorem 2. We have
the following lemma.

Lemma 6. For a G(n, p) with p ≥ c lnn√
n

where c ≥ 86,
Phase 2 of the DHC1 algorithm succeeds with probability
O
(

1− 1

n
3
2

)
, in O(

√
n lnn) steps.

Proof. The graph G′ constructed according to the algorithm
is a random graph with n′ =

√
n and the edge probability p′.

Consider a pair (ei = [vi, ui], ej = [vj , uj]) of hypernodes, by
construction, the probability to have an edge between them is:
p′ = 1− (1− p)2 ≥ p, where p is the probability for an edge
between two nodes in the orginial G graph.

p′ ≥ p ≥ 86
lnn√
n
> 86

lnn′

n′
.

Applying Theorem 2 this phase succeeds with probability
O
(

1− 1

n
3
2

)
in O(

√
n lnn) steps.

Proof of Theorem 1. The proof of the main theorem then
follows trivially, by Lemma 3 and Lemma 6. The probability
of success is:

O

(
1− 1

n

)
O

(
1− 1

n3/2

)
= O

(
1− 1

n

)
.

The number of steps in each phase is: O(
√
n lnn). In the

worst case, consider we have broadcast in every step, then,
the number of rounds is the number of steps multiplied by
O(D) where D is the diameter of the graph executing the DRA
algorithm. In both Phase 1 and Phase 2, the graphs are random
graphs under the model G(n′, p′) where p′ ≥ 86 lnn′/n′,
and n′ = Θ(

√
n). By [5], the diameter of these graphs is

Θ(lnn′

ln lnn′) = Θ(lnn
ln lnn).

Therefore, the number of rounds is bounded by:

O

(√
n

(lnn)2

ln lnn

)
.

B. The Algorithm for p = c lnn
nδ

We proved that for a G(n, p) with p = c lnn√
n

, the DHC1
algorithm 2 finds a Hamiltonian cycle in Õ(

√
n) times. It

is natural to ask the question: what is the performance on
sparser graphs? Consider a G(n, p) random graph where
p = O(c lnn

nδ
), for any δ ∈ (0, 1). If we divide the graph

into n1−δ partitions, each of size nδ , then Phase 1 of the
DHC1 algorithm will work. However, Phase 2 will not, since

Merge step 1

Merge step 2

Merge step k

Fig. 3: Phase 2 of the DHC2 algorithm: Merging pairs of
cycles in a tree-like fashion. There are O(log n) merge steps,
in each step, all HC pairs merge in parallel. The figure also
shows how a pair of cycles are merged into a larger cycle by
choosing two bridge edges.

the graph of hypernodes is too sparse, under the threshold
required for the presence of an Hamiltonian cycle in Phase 2.

We present a general algorithm 3 called DHC2 that finds
a Hamiltonian cycle in random graphs G(n, p) where p =
O(c lnn

nδ
), where c is a suitably large constant. This algorithm

also has two phases. Phase 1 is essentially a generalization
of Phase 1 of DHC1, with n1−δ partitions. In phase 2 of
DHC2, we recursively merge pairs of two disjoint cycles (in
parallel) until the final cycle is formed. Figure 3 depicts these
merging steps. It follows that the algorithm constructs the final
Hamiltonian cycle if it always successes in merging. We will
show that this probability is very high. But let’s first describe
the merging procedure.

To merge the cycles, we define a rule for pairing them,
then describe the merging by finding a “bridge” between
a pair of two cycles, as explained below. Let’s have the
cycles indexed by colors: HC1, HC2, ...,HCn1−δ . The pairing
rule is to match two consecutive cycles, from left to right:
(HC1, HC2), · · · , (HC2k+1, HC2k+2), · · · , at most one cycle
will be left out. Each pair merges independently in parallel,
then every node (thus every cycle, including the left out one),
updates their respective colors: color ← dcolor/2e. Therefore,
the next merge step can progress with the same pairing rule,
and every cycle is aware of its pair in all steps. It is clear that
we need dlog(n1−δ)e = O(log(n)) merge steps. To merge
two cycles, we need to pick one “bridge” between them. Let
ei = (vi, ui) ∈ HCi and ej = (vj , uj) ∈ HCj where
(HCi, HCj) is a pair. If there are two edges (vi, vj) and
(ui, uj) or two edges (vi, uj) and (ui, vj) in G(n, p), then
we say (ei, ej) is a bridge of (HCi, HCj). The idea is, that
each node can check if it is part of a bridge, in parallel. Then
within HCi and HCj , each node broadcasts the discovered
bridge. This is done so as to choose one unique bridge per
pair (since there may be more than one bridge per pair). Each
cycle choses the smallest bridge (say, based on the IDs of the
bridge nodes). Once a bridge is chosen, for example, merging
is done by each node independently updating its cycindex,
and updating color (as mentioned above) for the next merging
step. For efficiency, in a pair, only the cycle with smaller color

Algorithm 3 Distributed Hamiltonian Cycle Algorithm 2 (DHC2). Code for v ∈ G(V,E).

1: Phase 1
2: Run phase 1 of algorithm 2, using n1−δ colors
3: Phase 2
4: for i = 1 · · · dlog n1−δe do
5: if v.color is odd then . v is an active node
6: send message verify(succ(v)) to all its neighbors with color v.color + 1
7: OnReceive ∪{verified(u, u′)}
8: Select the smallest (u, u′), construct candidate bridge: candidate← ((v, u′), (u, succ(v)))
9: Broadcast candidate within v’s partition

10: if candidate = min(∪candidates) then
11: Send message buildBridge to u
12: Broadcast Renumbring inside HC
13: OnReceive message verify(u) . only passive nodes receive this type message
14: ask succ(v) and pred(v) if they have u as their (v.color − 1) neighbor
15: if succ(v) (or pred(v)) confirmed, set u′ to succ(v) (or pred(v)) , reply to sender: verified(v, u′)

16: OnReceive message buildBridge
17: Broadcast Renumbring HC
18: v.color ← dv.color/2e

will initiate the process, as shown in algorithm 3.
Also, to avoid cluttering the algorithm 3, we did not specify

the renumbering process. This is trivial, given the bridge, and
the size of the two cycles. Initially, each cycle performs a
broadcast, so that its member nodes get to know the cycle
size. Then, this information is attached to the bridge building
message. From that onwards, every node can keep track of the
size of the cycle that it is part of until the merging process is
finished.

Lemma 7. Phase 1 of the DHC2 algorithm succeeds in
O(nδ lnn) steps, with probability at least 1−O(1

n).

Proof. Similar to Lemma 4, it is easy to see that all partitions
have size concentrated around the expected size, which is
Θ(nδ). Consider a single color, let X be the random variable
of the size of the corresponding partition. Let Xi be indicator
random variables: Xi = 1 if node i choses that color, 0 other
wise. By linearity of expectation we have E[X] = n

n1−δ = nδ .
Chernoff’s bound gives:

Pr(|X − nδ)| ≥ 1

2
nδ) ≤ 2e−n

δ/12.

By union bound, all n1−δ partitions have sizes in Θ(nδ), with
probability:

O
(
n1−δ2e−n

δ/12
)

= O

(
1

n

)
.

Consider a partition with size: n′ = Θ(nδ), as a random graph
with edge probability p′. We have:

p′ = p = O

(
lnn

nδ

)
= O

(
1

δ

lnn′

n′

)
= O

(
lnn′

n′

)
.

By Theorem 2, note that we can reduce the probability of
failure to O

(
1

n2−δ

)
by increasing the number of steps by some

factor of (2−δ). Thus, the number of required steps is: O((2−
δ)n′ lnn′) = O(nδ lnn).

Using union bound for n1−δ partitions, the probability of
failure is bounded above by:

n1−δ ×O
(

1

n2−δ

)
= O

(
1

n

)
.

To prove that Phase 2 of the DHC2 algorithm succeeds, we
will first show the probability of success for merge step 1.

Lemma 8. The merging of np
lnn = n1−δ Hamiltonian cycles

in the first merging step of Phase 2 will be successful, with
very high probability.

Proof. Consider two partitions with two cycles C,C ′, each
with expected size nδ . Fix an edge e in C, the probability that
e has a bridge to a fixed edge in C ′ is at least p2. Consider
the set S′ of all non-adjacent edges in C ′, such that |S′| is
maximal, The probability that e does not have any bridge to
C ′ is at most the probability that e does not have any bridge
to S′:

(1− p2)n
δ/2 = O

((
1− (lnn)2

(nδ)2

)nδ/2)

= O

((
e−(lnn)

2
)1/(2√nδ))

= O
(
n
− lnn

2nδ/2

)
.

Consider the set S of all non-adjacent edges in C, such that |S|
is maximal, the probability that all edges in S has no bridge

to C ′ is:

O

((
n
− lnn

2nδ/2

)nδ/2)
= O

(
n−n

δ/2 lnn
)
.

The above is the bound for the probability that C and C ′ fail
to merge. We have n1−δ/2 pairs to merge, thus, union bound
gives the failure probability:

n1−δ

2
×O

(
n−n

δ/2 lnn
)

= O
(
n−n

δ/2 lnn+1−δ
)
.

Lemma 9. Phase 2 of the HHC algorithm is successful with
very high probability which is 1− o(1/n).

Proof. Observe that after merging, the size of the Hamiltonian
cycles increase, thus, in successive merge steps, the probability
of failure becomes smaller than that in the first step. Using
Lemma 8, with O(log n) merge steps, union bound of the
failure of Phase 2 is:

O
(

lnn · n−n
δ/2 lnn+1−δ

)
= o

(
1

n

)
.

Theorem 10. The DHC2 algorithm succeeds with probability
1−O(1

n) in Õ(nδ) steps.

Proof. By Lemma 7 and Lemma 9, the probability that the
DHC2 algorithm succeeds is:(

1−O
(

1

n

))(
1− o

(
1

n

))
= 1−O

(
1

n

)
.

To find the time complexity, we proceed similarly to the anal-
ysis of DHC1 algorithm: first calculate the number of steps,
then consider the number of rounds required for broadcast.

In Phase 1, the size of a subgraph is n′ = Θ(nδ), and the
edge probability is p′ = O(lnn′/n′), and by [5], the diameter
is O(lnn′

ln lnn′) = O(lnn
ln lnn).

In Phase 2, each merging takes constant number of rounds,
and the broadcast time depends on the diameter of a subgraph.
Observe that after each merging, we have a larger subgraph,
while the edge probability is fixed, thus relative to the size,
this larger subgraph is denser. Therefore we can bound the di-
ameter of the merged subgraphs by the diameter of subgraphs
in the first level, which is O(lnn

ln lnn).
The number of rounds for our DHC2 algorithm is then:

O

(
nδ lnn

lnn

ln lnn

)
+O

(
lnn

lnn

ln lnn

)
= O

(
nδ(lnn)2

ln lnn

)
.

III. THE UPCAST ALGORITHM: A CENTRALIZED
APPROACH

In this section we consider what perhaps is the simplest and
most obvious strategy of all — we collect “sufficiently large”

number of edges at some pre-designated root and then leave
it to the root to compute a Hamiltonian cycle.

A. The Upcast Algorithm

1) Elect a leader, call it v. This step takes O(D) rounds.
2) Construct a BFS tree rooted at v, and call it B. This step

takes O(D) rounds.
3) All nodes except v sample some c′ log n 7 of their

adjacent edges (for a sufficiently large constant c′) —
independently and randomly — and send the sampled
edges to v via the BFS tree constructed in the previous
step.

4) The root v computes a Hamiltonian cycle locally and
downcasts it to the rest of the nodes in G. This step takes
essentially the same number of rounds as the previous
(upcast) step.

The main technical challenge in the analysis is showing
that the upcast can be done in time Õ(1/p). This is done by
showing that in a BFS tree in a random graph, the sizes of
the subtrees rooted at every node are balanced (i.e., essentially
the same size) whp. This ensures that the congestion at each
node during upcast is balanced and is Õ(1/p).

B. Analysis for the special case when p = Θ(logn√
n

).

Let D be the diameter of G = (V,E). Then Corollary 7 in
[2] implies that

Fact 2. D = 2 when p = Θ(logn√
n

).

Thus Steps 1 and 2 take O(1) time in total. We claim that
Step 3 in the algorithm takes O(

√
n log2 n) rounds with high

probability.

For i ≥ 0, let Li be the nodes at level i in the BFS tree B.
That is, L0 = {v}, L1 = {w ∈ V | (v, w) ∈ E}, and L2 =
{w ∈ V | dist(v, w) = 2}. We note that L0 ∪ L1 ∪ L2 = V
by dint of Fact 2.

Lemma 11. c(1 − δ1)(1 − δ2)
√
n log n ≤ |L1| ≤ c(1 +

δ1)
√
n log n with high probability for any fixed constants

δ1, δ2 ∈ (0, 1).

Proof. As p = c logn√
n

, E[|L1|] = (n − 1)p = c(n−1) logn√
n

=

c
√
n log n − o(1) =⇒ (1 − δ2)c

√
n log n ≤ E[|L1|] ≤

c
√
n log n, for any fixed constant δ2 in (0, 1). A simple

application of Chernoff bound gives us

Pr(|L1| ≥ c(1 + δ1)
√
n log n)

≤ exp(−δ
2
1 · c(1− δ2)

√
n log n

3
)

= n−
δ21·c(1−δ2)

√
n

3 .

7all the logarithms are natural logarithms

Similarly,

Pr(|L1| ≤ c(1− δ1)(1− δ2)
√
n log n)

≤ exp(−δ
2
1 · c(1− δ2)

√
n log n

2
)

= n−
δ21·c(1−δ2)

√
n

2 .

Lemma 12. n− (1 + c(1 + δ1)
√
n log n) ≤ |L2| ≤ n− (1 +

c(1− δ1)(1− δ2)
√
n log n) with high probability for any fixed

constants δ1, δ2 ∈ (0, 1).

Proof. Follows directly from Fact 2 and Lemma 11.

For w ∈ L1, let ΓB(w) be the set of children of w in the
BFS tree B. Then

Lemma 13. (1 − δ3)(n − (1 + c(1 + δ1)
√
n log n))p ≤

|ΓB(w)| ≤ (1+δ3)(n−(1+c(1−δ1)(1−δ2)
√
n log n))p with

high probability for any fixed constants δ1, δ2, δ3 ∈ (0, 1).

Proof. Similar to that of Lemma 11.

Lemma 14. c(1− δ3)(1− δ4)(1− δ5)
√
n log n ≤ |ΓB(w)| ≤

c(1 + δ3)(1 + δ4)
√
n log n with high probability for any fixed

constants δ3, δ4, δ5 ∈ (0, 1).

Proof. Simplifying Lemma 13.

Since the “high probability” in Lemma 14 is actually
exponentially high 8 (please refer to the proof of Lemma 11),
we can take union bound over all w ∈ L1, and get

Lemma 15. The following statement holds with high proba-
bility: For all w ∈ L1, c(1 − δ3)(1 − δ4)(1 − δ5)

√
n log n ≤

|ΓB(w)| ≤ c(1 + δ3)(1 + δ4)
√
n log n for any fixed constants

δ3, δ4, δ5 ∈ (0, 1).

Lemma 16. The upcast process takes at most b
B · (c

′ log n+
cc′(1 + δ3)(1 + δ4)

√
n log2 n) rounds, where B is the band-

width of the network, each edge is encoded in b bits, and
0 < δ3, δ4 < 1 are fixed constants.

Proof. Follows directly from Lemma 15.

Usually we would have b = Θ(logn) and B = Θ(logn),
and that gives us the main result of this section —

Theorem 17. The Upcast algorithm solves the distributed
Hamiltonian Cycle problem in G(n, p) random graphs in
O(
√
n log2 n) rounds, when p = Θ(logn√

n
). Both the success

probability and the running time hold with high probability.

C. Analysis for the general case when p = Θ(logn
n1−ε) for some

constant ε ∈ (0, 1)

Let D be the diameter of the graph G = (V,E). Let K be
the smallest integer such that Kε ≥ 1, i.e., K def

= d 1ε e. Then
Klee and Larman showed that [17]

8that is ≥ 1 − 1
npoly(n) .

Fact 3. Pr(D(G) = K) → 1 as n → ∞, when p = c logn
n1−ε

for some positive constant c.

Thus Steps 1 and 2 in the upcast algorithm take O(1) time
in total. We claim that Step 3 takes O(logn

p) = O(n1−ε)
rounds.

In a graph G, we denote by Γk(x) the set of vertices in G
at distance k from a vertex x:

Γk(x)
def
= {y ∈ G | dist(x, y) = k}.

We define Nk(x) to be the set of vertices within distance k
of x:

Nk(x)
def
=

k⋃
i=0

Γi(x).

We can adapt Lemma 3 in [5] to show that

Lemma 18. For any constant δ > 0, with probability at least
1− 1

n3 , we have
1) |Γi(x)| ≤ (1 + δ)(np)i, ∀1 ≤ i ≤ D.
2) |Ni(x)| ≤ (1 + 2δ)(np)i, ∀1 ≤ i ≤ D.

Lemma 18 basically says that the BFS tree B is essentially
balanced. Hence an upcast algorithm would take O(bB · (1 +

δ)D · n logn
dv

) rounds, where δ is any fixed positive constant,
n = |B|, and dv is the degree of the root v. As D = K = d 1ε e
is a constant, this implies a time complexity of O(n logn

dv
).

But dv is concentrated around np with high probability. Thus
an upcast algorithm would take O(n logn

np) = O(logn
p) rounds

with high probability. That is the main theorem of this section:

Theorem 19. The Upcast algorithm solves the distributed
Hamiltonian Cycle problem in G(n, p) random graphs in
O(logn

p) = O(n1−ε) rounds, when p = Θ(logn
n1−ε) for some

constant ε ∈ (0, 1). Both the success probability and the
running time hold with high probability.

IV. CONCLUSION

We present fast and efficient distributed algorithms for the
fundamental Hamiltonian cycle problem in random graphs.
Our algorithm (DHC2) is fully-distributed and runs in truly
sublinear time — Õ(1

p) — for all ranges of p; in fact,
denser the graph, smaller the running time. We also present a
conceptually simpler upcast algorithm with the same running
time, but it is not fully-distributed, and does not achieve load-
balancing.

Our fully-distributed algorithms can be used to obtain effi-
cient algorithms in other distributed message-passing models
such as the k-machine model [16], which is a distributed model
for large-scale data computation. We also believe that the ideas
of this paper can be extended to obtain similarly fast and
efficient fully-distributed algorithms for other random graph
models such as the G(n,M) model and random regular graphs
[3].

Several open questions arise from our work. First, is it
possible to show non-trivial lower bounds for the HC problem

in random graphs? In particular, we conjecture that our upper
bounds are essentially tight (up to polylogarithmic factors).
Second, can we find a sublinear time, i.e., an algorithm running
in o(n) rounds for p = c lnn

n , i.e., at the threshold; or show
that this is not possible. Finally, nothing non-trivial is known
regarding upper bounds for general graphs.

REFERENCES

[1] Dana Angluin and Leslie G Valiant. Fast probabilistic algorithms for
hamiltonian circuits and matchings. Journal of Computer and system
Sciences, 18(2):155–193, 1979.

[2] Belá Bollobás. The diameter of random graphs. Transactions of the
American Mathematical Society, 267(1):41–52, 1981.

[3] Bela Bollobas. Random Graphs. Cambridge University Press, 2001.
[4] Bela Bollobas, Trevor I. Fenner, and Alan M. Frieze. An algorithm for

finding hamilton paths and cycles in random graphs. Combinatorica,
7(4):327–341, 1987.

[5] Fan Chung and Linyuan Lu. The diameter of sparse random graphs.
Advances in Applied Mathematics, 26(4):257–279, 2001.

[6] Fan Chung and Linyuan Lu. Complex Graphs and Networks (Cbms
Regional Conference Series in Mathematics). American Mathematical
Society, Boston, MA, USA, 2006.

[7] Colin Cooper and Alan M Frieze. On the number of hamilton cycles in
a random graph. Journal of Graph Theory, 13(6):719–735, 1989.

[8] Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pan-
durangan. Can quantum communication speed up distributed compu-
tation? In ACM Symposium on Principles of Distributed Computing,
PODC ’14, Paris, France, July 15-18, 2014, pages 166–175, 2014.

[9] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[10] Alan M. Frieze. Parallel algorithms for finding hamilton cycles in
random graphs. Information Processing Letters, 25(2):111–117, 1987.

[11] Alan M Frieze. Finding hamilton cycles in sparse random graphs.
Journal of Combinatorial Theory, Series B, 44(2):230–250, 1988.

[12] Alan M. Frieze and Colin McDiarmid. Algorithmic theory of random
graphs. Random Struct. Algorithms, 10(1-2):5–42, 1997.

[13] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990.

[14] Roman Glebov and Michael Krivelevich. On the number of hamilton
cycles in sparse random graphs. SIAM J. Discrete Math., 27(1):27–42,
2013.

[15] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of
computation for mapreduce. In Proceedings of the Twenty-first Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 938–
948, 2010.

[16] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter
Robinson. Distributed computation of large-scale graph problems. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015, pages 391–410, 2015.

[17] Victor Klee and David Larman. Diameters of random graphs. Canadian
Journal of Mathematics, 33(3):618–640, 1981.

[18] Eythan Levy, Guy Louchard, and Jordi Petit. A distributed algorithm
to find hamiltonian cycles in G(n, p) random graphs. In Workshop
on Combinatorial and Algorithmic aspects of networking, pages 63–74.
Springer, 2004.

[19] Philip D MacKenzie and Quentin F Stout. Optimal parallel construc-
tion of hamiltonian cycles and spanning trees in random graphs. In
Proceedings of the fifth annual ACM symposium on Parallel algorithms
and architectures, pages 224–229. ACM, 1993.

[20] Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomization and Probabilistic Techniques in Algorithms and Data
Analysis. Cambridge university press, 2017.

[21] Edgar M. Palmer. Graphical Evolution: An Introduction to the Theory
of Random Graphs. John Wiley & Sons, Inc., New York, NY, USA,
1985.

[22] Gopal Pandurangan and Maleq Khan. Algorithms and theory of
computation handbook. chapter Theory of Communication Networks,
pages 27–27. Chapman & Hall/CRC, 2010.

[23] David Peleg. Distributed Computing: A Locality-sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[24] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon
Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer.
Distributed verification and hardness of distributed approximation. SIAM
J. Comput., 41(5):1235–1265, 2012.

	Introduction
	Distributed Computing Model
	Other Related Work

	Fully-Distributed Algorithms
	The Algorithm for p = clnnn
	High-Level Description of DHC1
	The DRA algorithm
	Analysis

	The Algorithm for p = clnnn

	The Upcast Algorithm: A Centralized Approach
	The Upcast Algorithm
	Analysis for the special case when p = (lognn).
	Analysis for the general case when p = (lognn1 -) for some constant (0, 1)

	Conclusion
	References

