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Abstract—RNA-binding proteins (RBPs) participate in all
stages of RNA life cycle from transcription, splicing, to trans-
lation. Under the ENCODE project, a large number of RBPs
were knocked down in human cancer cell lines, offering an
excellent opportunity to infer targets of RBPs. Taking both RBP
binding sites and RNA-seq profiles of RBP knockdown samples
as input, we present a pipeline to identify causal RBP→RNA
interactions. The pipeline employs a recent functional chi-square
test (FunChisq) that deciphers directional association, and utilizes
a novel functional index that measures the effect size of functional
dependency. We examined ~45 million RBP→RNA pairs in
leukemia (K562) and liver cancer (HepG2) cell lines for functional
patterns as causal interaction candidates. Here, we report a total
of 936,707 RBP→RNA pairs in the two cell lines that show
statistically significant linear or nonlinear functional patterns.
About 31% of these pairs have supportive biological evidence
from other sources, suggesting the effectiveness of the pipeline.
The interactions constitute RBP specific regulatory networks that
may potentially represent core mechanisms in the two cancers.
The pipeline is implemented through an R interface with pre-
computed results and data libraries for users to query specific
networks and visualize RBP→RNA interactions. Such networks
serve as a useful resource for studying RNA dysregulation in
cancer.

Index Terms—functional dependency, causal interactions,
RNA-binding protein, RNA regulatory network, liver cancer,
leukemia.

I. INTRODUCTION

A transcribed pre-mRNA is subject to further processing

mediated by RNA-binding proteins (RBPs) [1]. These pro-

cesses include splicing, editing, and polyadenylation, in which

an RBP plays important regulatory roles. Anomaly in RBP

functioning within human cells can lead to disorders such as

neurodegeneration, autoimmune diseases, and cancer [2].

By obtaining physical evidence of direct RBP-RNA binding

via the cross-linking immunoprecipitation (CLIP) technology,

previous studies inferred protein-RNA interactions [3]–[6].

∗: Authors of equal contribution.

However, binding activity does not necessarily lead to changed

gene expression.

Transcriptome profiling in response to perturbed RBPs can

offer necessary dynamics to identify direct/indirect causal

RBP→RNA relationships. The ENCODE consortium [7] fa-

cilitates such dynamic RNA-seq profiles in liver cancer and

leukemia cell lines by shRNA induced silencing of ~250

RBPs. They also mapped genome-wide binding sites of the

RPBs with a high accuracy [2] using enhanced crosslinking

immunoprecipitation (eCLIP).

To process the perturbed RBP datasets from ENCODE,

we introduce a network inference pipeline to isolate potential

causal RBP→RNA interactions. In the pipeline, we chose the

functional chi-square (FunChisq) test [8], [9] for the task of

functional dependency inference. FunChisq is a model-free

method without an assumption on the parametric form of a

function. Using FunChisq for causal inference is based on

the causality-by-functionality principle, which Nobel laureate

Herbert A. Simon and philosopher Nicholas Rescher stated as

that a causal relation between variables is “a function of one

variable (cause) on to another (the effect)” [10]. A related exact

functional test [11] has been established to test directional

association. It uses the same statistic but computes an exact

p-value instead of estimating it from an asymptotic null distri-

bution. We also utilize a novel functional index derived from

FunChisq to measure the effect size—the strength of functional

dependency. Using both the effect size and the significance

level of functional association caters better functional patterns

that are strong and unlikely arise by chance.

We examined a total of ~45 million RBP→RNA pairs and

report top 936,707 significant functional patterns, out of which

259,979 RBP→RNA are direct interactions with eCLIP bind-

ing evidence, 25,019 are consistent with Pathway Commons

interaction database and an additional 651,709 patterns are

testable hypotheses of indirect/direct effect for future studies.

We provide directed RNA regulatory networks of a few top-
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tier interactions in leukemia and liver cancer cell lines. The

entire analysis has been implemented into a pipeline and

wrapped into an interactive R program that generates networks

and interaction scatter plots for RBPs of interest using pre-

processed data libraries. Our work thus provides a resource

to study RNA regulatory networks centered around RBPs in

cancer.

II. METHODS

Our overarching approach is based on a recent statistical

method, FunChisq, which makes no assumption on the un-

derlying functional form in inferring functional relationships.

It identifies promising interaction patterns that are directional

and maximize functional dependency. The statistical signifi-

cance is based on the p-value of the FunChisq test and the

effect size is measured by the functional index.

A. Functional chi-square test

Given n samples of discrete random variables X and Y of r
and s levels respectively, we test whether Y is a non-constant

function of X , i.e., Y = f(X) and Y �= c (c ∈ R). If Y is a

function of X , we call X parent variable and Y child variable.

The test operates on contingency tables with observed

counts of variable X and Y . In a r× s contingency table, let

nij be the observed count of X = i and Y = j, i = 1, . . . , r
and j = 1, . . . , s. Let ni· be the sum of row i and n·j be the

sum of column j.

Definition 1. Given n samples of variables X and Y , the
FunChisq statistic is defined by [8], [11]

χ2
f (X → Y ) =

⎡
⎣

r∑
i=1

s∑
j=1

(nij − ni·/s)2

ni·/s

⎤
⎦−

⎡
⎣

s∑
j=1

(n·j − n/s)2

n/s

⎤
⎦ (1)

The theoretical foundation of FunChisq is described in [8],

[11]. We summarize the main results here. χ2
f (X → Y )

asymptotically follows a chi-square distribution with (r−1)×
(s − 1) degrees of freedom under the null hypothesis that Y
is independent of X and the assumption that Y is uniformly

distributed. The statistic is minimized to zero when X and Y
are empirically independent.

The FunChisq statistic has asymmetric functional

optimality—given the column (Y ) sums, it is maximized

only if Y is a non-constant function of X (Theorem 8 [8]).

This property is not claimed by any other known causal

inference method to the best of our knowledge. FunChisq has

recently outperformed state-of-the-art techniques in a causal

network inference challenge [9]. The functional chi-square

test represents a paradigm shift from Pearson’s chi-square

test [12] by differentiating the direction of association.

B. Functional index

In addition to using the p-value for statistical significance,

some measure of effect size is important in hypothesis test-

ing [13]. In the FunChisq test, the effect size needs to

reflect the extent of Y being a function of X . We introduce

the functional index to measure the strength of functional

dependency of Y on X .

Definition 2. We define the functional index ξf by the ratio
of FunChisq statistic χ2

f (X → Y ) to the maximum attainable
FunChisq subtracting the column chi-square:

ξf =

√
χ2
f (X → Y )

n(s− 1)− χ2(Y )
(2)

where χ2(Y ) is the column marginal chi-square of Y defined
within the second pair of square brackets in Eq. (1).

When a contingency table is multiplied by a linear fac-

tor, the FunChisq statistic in the numerator, the maximum

attainable FunChisq, and the marginal chi-square of Y in the

denominator all scale linearly with the factor. Thus ξf ∈ [0, 1]
is independent of linear scaling of a pattern, making it suitable

to capture the effect size of a function pattern. A larger ξf
indicates stronger functional dependency.

C. A pipeline to scrutinize RBP→RNA interactions

We integrate the two statistics into a pipeline for delineating

RNA regulatory networks. In the context of RBP→RNA in-

teractions, the pipeline promotes patterns where the transcript

abundance of an RNA is similar to a non-constant function

of the transcript abundance of a RBP. This is distinctively

different from associative statistical methods such as Pearson’s

chi-square, correlation, or mutual information. Figure 1 shows

the pipeline for scrutinizing RBP→RNA interactions in a

given cell line. The input to the pipeline includes:

i Transcript quantification files obtained from the RNA-

seq data of each RBP knockdown sample.

ii RBP binding sites from eCLIP data.

Six main steps of the pipeline are summarized below:

1) Form a matrix of transcript expression (in TPM) for all

RNA transcripts.

2) Log-transform the data iteratively until a followup

Shapiro test [14] reports a statistic greater than or

equal to 0.9 which indicates that the log-transformed

gene expression is normally distributed. If log-transform

decreases or makes no change to the Shapiro test statistic

of gene, no log-transform is applied.

3) Discretize the log-transformed data for each transcript

using the R package ‘Ckmeans.1d.dp’ [15], [16]. The

number of discrete levels is computed by the R package

‘mclust’ [17] based on Bayesian information criterion.

4) Pick a representative transcript for each parent RBP by

choosing the major transcribed isoform with a maximum

median expression. The representative transcript helps in

integrating the transcript expression profile to the gene

binding site profile offered by eCLIP.

5) Apply the FunChisq test on all possible pairs of RBP

and RNA transcripts. Those pairs with p-value ≤ 0.05
and ξf in the top 1% of all interactions (ξf ≥ 0.48) are

considered potential causal relationships.
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Fig. 1. Overview of major steps taken to scrutinize RBP→RNA interactions. The star * representative transcript for each RBP was picked from the log
transformed data by selecting the transcript with the maximum median expression.

6) The filtered RBP-RNA pairs were placed into one of the

three categories: 1) absolute direct interactions, if the

eCLIP data for the RBP shows binding evidence to the

RNA; 2) hypothetical indirect interaction, if the eCLIP

data for the RBP shows no binding to the RNA (these

were removed from consideration) and 3) hypothetical

direct/indirect interactions, if there is no eCLIP available

for the RBP.

The output of the pipeline is a list of statistically significant

RBP → RNA interactions.

D. Implementation

Both the FunChisq test and functional index are available

in the R package ‘FunChisq’ [18], freely downloadable from

Comprehensive R Archive Network (CRAN). The pipeline was

implemented in the R programming language [19]. It offers

an easy to use interface with pre-computed results and data

libraries that can generate and visualize networks for RBPs

and RNAs of interest. The source code and auxiliary data are

provided in Additional file 2.

III. RESULTS

A. Cancer transcriptome in response to RNA-binding protein
knockdown

The shRNA knockdown RNA-seq dataset from EN-

CODE [7] has a total of 221 unique RBPs knocked down

in myelogenous leukemia (K562) with 22 wild type samples

(control) and 225 unique RBPs knocked down in hepatocel-

lular carcinoma (HepG2) with 24 wild type samples. Each

sample in both cell lines had 2 or 4 replicates with RNA

abundance in the unit of TPM measured for about 195K RNA

transcripts. We only considered samples that were annotated

with the latest GRCh38 human reference genome.
We integrated eCLIP data from ENCODE to filter

RBP→RNA interactions that also have evidence of physical

binding. The eCLIP data include 174 samples collected from

87 knockdown RBPs in K562 cell line and 140 samples for

70 RBPs in HepG2 cell line. We removed those RBP→RNA

interactions that had insignificant binding or no binding ac-

cording to the available eCLIP data. The interactions that had

no eCLIP data available were considered predictions. Finally

we report a list of all interactions with functional index ξf in

the top 1% of all interactions (ξf ≥ 0.48) and adjusted p-value

≤ 0.05 in Additional file 1.

B. Summary of statistically significant RBP→RNA interac-
tions in cancer

Out of about 45 million total RBP-RNA pairs, approx-

imately 13 million in the HepG2 cell line were found to

have a p-value less than 0.05 after Benjamini-Hochberg cor-

rection [20]. Taking the top 1% based on the effect size,

functional index (ξf ≥ 0.48), gave 390,166 pairs, out of which

83,490 had eCLIP binding evidence and the rest 306,676

with no binding information available are hypothesized to be

indirect/direct interactions.
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In the K562 cell line, another approximately 13 million

RBP-RNA pairs were found to have an adjusted p-value of

less than 0.05. The top 1% (ξf ≥ 0.48) of 546,541 pairs

contained 176,489 pairs with eCLIP binding evidence for

direct interactions and 370,052 without binding information

hypothesized to be direct/indirect interactions.

Out of the 676,728 interaction patterns with no binding

information, 25,019 patterns were found consistent with inter-

action patterns in Pathway Commons interaction database [21].

To report the most promising potential interaction patterns we

used the ξf scores of top 2162 known interactions (top 5%

of 25,019 interactions from Pathway Commons) to further

threshold ξf at 0.74 which resulted in a list of 16,100 putative

interactions (Additional file 1).

C. An RNA regulatory network inferred for hepatocellular
carcinoma

Figure 2a illustrates a subset of an RNA regulatory net-

work, by choosing top 50 RBP→RNA interactions sorted

in decreasing order of functional index (ξf ), in HepG2 cell

line. The network contains five RBPs and 44 target RNAs.

DDX6 has strong directional interactions to 28 RNA targets,

followed by HNRNPA1 with 18 RNA targets, DDX3X with

three RNA targets, and a pair of RBPs, SRSF1 and HNRNPM,

that are direct targets of each other. Increasing the number of

top interactions picked for the network would subsequently

add more RBP→RNA edges to figure 2a. DEAD-box heli-

case 6 (DDX6) is a known oncogene to B-cell non-Hodgkin

lymphoma in COSMIC Cancer Gene Census version 85, but

its role in liver cancer is not clear except that it promotes

hepatitis C virus replication [22]. Mediated by EGFR, het-

erogeneous nuclear ribonucleoprotein A1 (HNRNPA1) up-

regulates the IR-A:IR-B ratio which signals the proliferative

effect in human hepatocellular carcinoma [23]. DEAD-box

helicase 3 X-linked (DDX3X) is a known tumor suppressor

gene to chronic lymphocytic leukemia and medulloblastoma.

Proteomics analysis suggests that DDX3X is up-regulated in

liver diseases including liver cancer [24].

Figure 2b–e shows four RBP→RNA interaction patterns

that exhibit functional dependency. They are reinforced by

eCLIP physical binding and have literature support from pre-

vious studies. Reportedly, HNRNPA1 and SRSF11 (figure 2b)

are both splicing repressors [25] and can inhibit SMN2 exon

7 inclusion [26]. In Figure 2c, when HNRNPK is knocked

down, the child RPL10 has no consequential expression which

indicates causal association. The overall pattern suggests that

HNRNPK may function as a switch. Indeed, RPL10 mutation

carries 62 significantly regulated candidates, HNRNPK being

one of them [27]. In Figure 2d, both HNRNPA1 and NCBP2

belong to the human spliceosome pathway (hsa03040) [28].

In Figure 2e, over-expression of HNRNPM promotes exon 7

inclusion of both SMN2 and SMN1 pre-mRNA. It contacts an

enhancer on exon 7, which was previously shown to provide

a binding site for TRA2B. Evidently HNRNPM and TRA2B

contact an overlapped sequence on exon 7 [29].

D. An RNA regulatory network inferred for leukemia

Figure 3a illustrates a subset of an RNA regulatory network,

by choosing top 50 RBP→RNA interactions sorted in the de-

creasing order of ξf , in K562 cell line. The network highlights

NONO and NPM1 as the two RBPs having the strongest func-

tional influence on 32 and 18 RNAs, respectively. Their targets

share 13 common RNAs suggesting some synergy between the

two RBPs. Increasing the number of top interactions picked for

the network would subsequently add more RBP→RNA edges

to figure 3a. Non-POU domain containing octamer binding

(NONO) gene is recently shown to promote migration and

invasion of THP-1 cell line [30] derived from an acute

monocytic leukemia patient. Nucleophosmin 1 (NPM1) is a

clinically tested molecular genetic marker for acute myeloid

leukemia [31]. It is categorized as oncogene and fusion gene

in COSMIC Cancer Gene Census version 85.

Figure 3b–e shows visualizes four RBP→RNA interaction

patterns that exhibit functional dependency, are reinforced by

eCLIP evidence and have literature support. In Figure 3b, both

NONO and EIF3L are involved in the functional network of

molecular transportation of human high choroid plexus epithe-

lium expression gene sub-dataset [32]. In Figure 3c, EIF4G2

and SRRM1 are both included in the human RNA-transport

pathway (hsa030313) [33]. Related to the NPM1→RPL31

and NPM1→RPL10A interactions in Figure 3d and 3e, three

RNAs coding for ribosomal protein, RPL31, RPL10A and

RPL36A were found to be exclusively present in chronic myel-

ogenous leukemia-specific NPM1 co-expressed gene pairs and

were absent in normal-specific co-expressed gene pairs. This

is interesting as NPM1 protein is a well-recognized key player

in ribosome biogenesis and transport [34].

It is interesting that the top 50 interactions centers around

only two RBPs in RBP→RNA networks of both liver cancer

(Figure 2a) and leukemia cell line (Figure 3a). The two net-

works apparently do not share the most significant RBP→RNA

interactions.

IV. CONCLUSIONS

In summary, we provide a pipeline that exploits the dy-

namics in ENCODE shRNA knockdown data sets to identify

causal relationships. The pipeline uses FunChisq and a novel

functional index that reveal functional RBP→RNA interaction

patterns in HepG2 and K562 cell lines. With adjusted p-value

≤ 0.05, we chose top 1% of all interactions (ξf ≥ 0.48) to

recapture 259,979 direct RBP→RNA interactions with eCLIP

binding evidence, 25,019 known interactions and 651,709

predicted putative interactions out of which 16,100 are most

promising. The networks provide a map of how RNAs are

regulated by RBPs in cancer from the ENCODE data. The

most active interactions differ greatly between the two dif-

ferent cancer types we studied. We revealed potentially new

RBPs involved in cancer and the mechanism by which they

may influence other genes. Lastly, the R interface provided

is a useful visualization tool to study the behavior of RBP(s)

and RNA(s) of interest as captured in the ENCODE data sets.

Both the computational tools and the RNA regulatory networks
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Fig. 2. An RNA regulatory network and four significant functional RBP→mRNA interaction patterns detected in HepG2 liver cancer. a) The directed
network contains 50 direct interactions among five RBPs and 44 RNAs. The red box nodes represent RBPs. The light blue round nodes represent RNA
transcripts. The orange solid arrows represent inferred direct RBP → RNA interactions with eCLIP binding evidence. b) HNRNPA1 promotes SRSF11. c)
HNRNPK has a switch-like influence on RPL10. d) HNRNPA1 inhibits NCBP2. e) HNRNPM linearly promotes TRA2B.
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Fig. 3. An RNA regulatory network and four significant RBP → mRNA functional interaction patterns detected in K562 leukemia cell line. a) The
directed network contains 50 direct interactions among two RBPs and 37 RNAs. The red box nodes represent RBPs. The light blue round nodes show RNA
transcripts. The orange solid arrows represent inferred direct RBP → RNA interactions with eCLIP binding evidence. b) NONO inhibits EIF3L. c) EIF4G2
inhibits SRRM1. d) NPM1 promotes RPL31. e) NPM1 promotes RPL10A.

reported here serve as a resource to study gene regulation and

cancer systems biology.
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ONLINE SUPPLEMENTARY FILES

1) Additional file 1 interactions-signif.tsv (79MB) —

All significant interactions between RBPs and RNAs,

with adjusted p-value ≤ 0.05 and conditional function

index ξf ≥ 0.48. The file can be downloaded at

https://www.cs.nmsu.edu/∼joemsong/BIBM2018/Additional file 1
interactions-signif.tsv

2) Additional file 2 ENCODE-RBP-to-mRNA V1.zip
(333MB) — This file contains an R interface with

pre-compiled data libraries and functions that can be

used to generate scatterplots and network of RBPs

and RNAs specified by user input. The file can be

downloaded at
https://www.cs.nmsu.edu/∼joemsong/BIBM2018/Additional file 2
ENCODE-RBP-to-mRNA V1.zip
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