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Abstract—RNA-binding proteins (RBPs) participate in all
stages of RNA life cycle from transcription, splicing, to trans-
lation. Under the ENCODE project, a large number of RBPs
were knocked down in human cancer cell lines, offering an
excellent opportunity to infer targets of RBPs. Taking both RBP
binding sites and RNA-seq profiles of RBP knockdown samples
as input, we present a pipeline to identify causal RBP—RNA
interactions. The pipeline employs a recent functional chi-square
test (FunChisq) that deciphers directional association, and utilizes
a novel functional index that measures the effect size of functional
dependency. We examined ~45 million RBP—RNA pairs in
leukemia (K562) and liver cancer (HepG2) cell lines for functional
patterns as causal interaction candidates. Here, we report a total
of 936,707 RBP—RNA pairs in the two cell lines that show
statistically significant linear or nonlinear functional patterns.
About 31% of these pairs have supportive biological evidence
from other sources, suggesting the effectiveness of the pipeline.
The interactions constitute RBP specific regulatory networks that
may potentially represent core mechanisms in the two cancers.
The pipeline is implemented through an R interface with pre-
computed results and data libraries for users to query specific
networks and visualize RBP—RNA interactions. Such networks
serve as a useful resource for studying RNA dysregulation in
cancer.

Index Terms—functional dependency, causal interactions,
RNA-binding protein, RNA regulatory network, liver cancer,
leukemia.

I. INTRODUCTION

A transcribed pre-mRNA is subject to further processing
mediated by RNA-binding proteins (RBPs) [1]. These pro-
cesses include splicing, editing, and polyadenylation, in which
an RBP plays important regulatory roles. Anomaly in RBP
functioning within human cells can lead to disorders such as
neurodegeneration, autoimmune diseases, and cancer [2].

By obtaining physical evidence of direct RBP-RNA binding
via the cross-linking immunoprecipitation (CLIP) technology,
previous studies inferred protein-RNA interactions [3]-[6].
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However, binding activity does not necessarily lead to changed
gene expression.

Transcriptome profiling in response to perturbed RBPs can
offer necessary dynamics to identify direct/indirect causal
RBP—RNA relationships. The ENCODE consortium [7] fa-
cilitates such dynamic RNA-seq profiles in liver cancer and
leukemia cell lines by shRNA induced silencing of ~250
RBPs. They also mapped genome-wide binding sites of the
RPBs with a high accuracy [2] using enhanced crosslinking
immunoprecipitation (eCLIP).

To process the perturbed RBP datasets from ENCODE,
we introduce a network inference pipeline to isolate potential
causal RBP—RNA interactions. In the pipeline, we chose the
functional chi-square (FunChisq) test [8], [9] for the task of
functional dependency inference. FunChisq is a model-free
method without an assumption on the parametric form of a
function. Using FunChisq for causal inference is based on
the causality-by-functionality principle, which Nobel laureate
Herbert A. Simon and philosopher Nicholas Rescher stated as
that a causal relation between variables is “a function of one
variable (cause) on to another (the effect)” [10]. A related exact
functional test [11] has been established to test directional
association. It uses the same statistic but computes an exact
p-value instead of estimating it from an asymptotic null distri-
bution. We also utilize a novel functional index derived from
FunChisq to measure the effect size—the strength of functional
dependency. Using both the effect size and the significance
level of functional association caters better functional patterns
that are strong and unlikely arise by chance.

We examined a total of ~45 million RBP—RNA pairs and
report top 936,707 significant functional patterns, out of which
259,979 RBP—RNA are direct interactions with eCLIP bind-
ing evidence, 25,019 are consistent with Pathway Commons
interaction database and an additional 651,709 patterns are
testable hypotheses of indirect/direct effect for future studies.
We provide directed RNA regulatory networks of a few top-



tier interactions in leukemia and liver cancer cell lines. The
entire analysis has been implemented into a pipeline and
wrapped into an interactive R program that generates networks
and interaction scatter plots for RBPs of interest using pre-
processed data libraries. Our work thus provides a resource
to study RNA regulatory networks centered around RBPs in
cancer.

II. METHODS

Our overarching approach is based on a recent statistical
method, FunChisq, which makes no assumption on the un-
derlying functional form in inferring functional relationships.
It identifies promising interaction patterns that are directional
and maximize functional dependency. The statistical signifi-
cance is based on the p-value of the FunChisq test and the
effect size is measured by the functional index.

A. Functional chi-square test

Given n samples of discrete random variables X and Y of r
and s levels respectively, we test whether Y is a non-constant
function of X, ie.,Y = f(X)and Y #c (ceR).IfYisa
function of X, we call X parent variable and Y child variable.

The test operates on contingency tables with observed
counts of variable X and Y. In a r X s contingency table, let
n;; be the observed count of X =i and Y =j,i=1,...,r
and j =1,...,s. Let n;. be the sum of row 4 and n.; be the
sum of column j.

Definition 1. Given n samples of variables X and Y, the
FunChisq statistic is defined by [8], [11]

=[S el g
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The theoretical foundation of FunChisq is described in [8],
[11]. We summarize the main results here. x3(X — Y)
asymptotically follows a chi-square distribution Wlth (r—1)x
(s — 1) degrees of freedom under the null hypothesis that YV’
is independent of X and the assumption that Y is uniformly
distributed. The statistic is minimized to zero when X and Y
are empirically independent.

The FunChisq statistic has asymmetric functional
optimality—given the column (Y) sums, it is maximized
only if Y is a non-constant function of X (Theorem 8 [8]).
This property is not claimed by any other known causal
inference method to the best of our knowledge. FunChisq has
recently outperformed state-of-the-art techniques in a causal
network inference challenge [9]. The functional chi-square
test represents a paradigm shift from Pearson’s chi-square
test [12] by differentiating the direction of association.
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B. Functional index

In addition to using the p-value for statistical significance,
some measure of effect size is important in hypothesis test-
ing [13]. In the FunChisq test, the effect size needs to
reflect the extent of Y being a function of X. We introduce

186

the functional index to measure the strength of functional
dependency of Y on X.

Definition 2. We define the functional index &5 by the ratio
of FunChisq statistic Xfc (X —=Y) to the maximum attainable
FunChisq subtracting the column chi-square:

B XX = Y)
v \/n(s —D—(Y) ?

where x*(Y') is the column marginal chi-square of Y defined
within the second pair of square brackets in Eq. (1).

When a contingency table is multiplied by a linear fac-
tor, the FunChisq statistic in the numerator, the maximum
attainable FunChisq, and the marginal chi-square of Y in the
denominator all scale linearly with the factor. Thus &f € [0, 1]
is independent of linear scaling of a pattern, making it suitable
to capture the effect size of a function pattern. A larger &y
indicates stronger functional dependency.

C. A pipeline to scrutinize RBP—RNA interactions

We integrate the two statistics into a pipeline for delineating
RNA regulatory networks. In the context of RBP—RNA in-
teractions, the pipeline promotes patterns where the transcript
abundance of an RNA is similar to a non-constant function
of the transcript abundance of a RBP. This is distinctively
different from associative statistical methods such as Pearson’s
chi-square, correlation, or mutual information. Figure 1 shows
the pipeline for scrutinizing RBP—RNA interactions in a
given cell line. The input to the pipeline includes:

i Transcript quantification files obtained from the RNA-
seq data of each RBP knockdown sample.
ii RBP binding sites from eCLIP data.

Six main steps of the pipeline are summarized below:

1) Form a matrix of transcript expression (in TPM) for all
RNA transcripts.

2) Log-transform the data iteratively until a followup
Shapiro test [14] reports a statistic greater than or
equal to 0.9 which indicates that the log-transformed
gene expression is normally distributed. If log-transform
decreases or makes no change to the Shapiro test statistic
of gene, no log-transform is applied.

3) Discretize the log-transformed data for each transcript
using the R package ‘Ckmeans.ld.dp’ [15], [16]. The
number of discrete levels is computed by the R package
‘mclust’ [17] based on Bayesian information criterion.

4) Pick a representative transcript for each parent RBP by
choosing the major transcribed isoform with a maximum
median expression. The representative transcript helps in
integrating the transcript expression profile to the gene
binding site profile offered by eCLIP.

5) Apply the FunChisq test on all possible pairs of RBP
and RNA transcripts. Those pairs with p-value < 0.05
and &y in the top 1% of all interactions (§y > 0.48) are
considered potential causal relationships.
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Fig. 1. Overview of major steps taken to scrutinize RBP—RNA interactions. The star * representative transcript for each RBP was picked from the log
transformed data by selecting the transcript with the maximum median expression.

6) The filtered RBP-RNA pairs were placed into one of the
three categories: 1) absolute direct interactions, if the
eCLIP data for the RBP shows binding evidence to the
RNA; 2) hypothetical indirect interaction, if the eCLIP
data for the RBP shows no binding to the RNA (these
were removed from consideration) and 3) hypothetical
direct/indirect interactions, if there is no eCLIP available
for the RBP.

The output of the pipeline is a list of statistically significant
RBP — RNA interactions.

D. Implementation

Both the FunChisq test and functional index are available
in the R package ‘FunChisq’ [18], freely downloadable from
Comprehensive R Archive Network (CRAN). The pipeline was
implemented in the R programming language [19]. It offers
an easy to use interface with pre-computed results and data
libraries that can generate and visualize networks for RBPs
and RNAs of interest. The source code and auxiliary data are
provided in Additional file 2.

III. RESULTS

A. Cancer transcriptome in response to RNA-binding protein
knockdown

The shRNA knockdown RNA-seq dataset from EN-
CODE [7] has a total of 221 unique RBPs knocked down
in myelogenous leukemia (K562) with 22 wild type samples

(control) and 225 unique RBPs knocked down in hepatocel-
lular carcinoma (HepG2) with 24 wild type samples. Each
sample in both cell lines had 2 or 4 replicates with RNA
abundance in the unit of TPM measured for about 195K RNA
transcripts. We only considered samples that were annotated
with the latest GRCh38 human reference genome.

We integrated eCLIP data from ENCODE to (filter
RBP—RNA interactions that also have evidence of physical
binding. The eCLIP data include 174 samples collected from
87 knockdown RBPs in K562 cell line and 140 samples for
70 RBPs in HepG2 cell line. We removed those RBP—RNA
interactions that had insignificant binding or no binding ac-
cording to the available eCLIP data. The interactions that had
no eCLIP data available were considered predictions. Finally
we report a list of all interactions with functional index £y in
the top 1% of all interactions ({; > 0.48) and adjusted p-value
< 0.05 in Additional file 1.

B. Summary of statistically significant RBP—RNA interac-
tions in cancer

Out of about 45 million total RBP-RNA pairs, approx-
imately 13 million in the HepG2 cell line were found to
have a p-value less than 0.05 after Benjamini-Hochberg cor-
rection [20]. Taking the top 1% based on the effect size,
functional index ({; > 0.48), gave 390,166 pairs, out of which
83,490 had eCLIP binding evidence and the rest 306,676
with no binding information available are hypothesized to be
indirect/direct interactions.
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In the K562 cell line, another approximately 13 million
RBP-RNA pairs were found to have an adjusted p-value of
less than 0.05. The top 1% (§y > 0.48) of 546,541 pairs
contained 176,489 pairs with eCLIP binding evidence for
direct interactions and 370,052 without binding information
hypothesized to be direct/indirect interactions.

Out of the 676,728 interaction patterns with no binding
information, 25,019 patterns were found consistent with inter-
action patterns in Pathway Commons interaction database [21].
To report the most promising potential interaction patterns we
used the £; scores of top 2162 known interactions (top 5%
of 25,019 interactions from Pathway Commons) to further
threshold &7 at 0.74 which resulted in a list of 16,100 putative
interactions (Additional file 1).

C. An RNA regulatory network inferred for hepatocellular
carcinoma

Figure 2a illustrates a subset of an RNA regulatory net-
work, by choosing top 50 RBP—RNA interactions sorted
in decreasing order of functional index (£y), in HepG2 cell
line. The network contains five RBPs and 44 target RNAs.
DDX6 has strong directional interactions to 28 RNA targets,
followed by HNRNPA1 with 18 RNA targets, DDX3X with
three RNA targets, and a pair of RBPs, SRSF1 and HNRNPM,
that are direct targets of each other. Increasing the number of
top interactions picked for the network would subsequently
add more RBP—RNA edges to figure 2a. DEAD-box heli-
case 6 (DDX6) is a known oncogene to B-cell non-Hodgkin
lymphoma in COSMIC Cancer Gene Census version 85, but
its role in liver cancer is not clear except that it promotes
hepatitis C virus replication [22]. Mediated by EGFR, het-
erogeneous nuclear ribonucleoprotein A1 (HNRNPAI1) up-
regulates the IR-A:IR-B ratio which signals the proliferative
effect in human hepatocellular carcinoma [23]. DEAD-box
helicase 3 X-linked (DDX3X) is a known tumor suppressor
gene to chronic lymphocytic leukemia and medulloblastoma.
Proteomics analysis suggests that DDX3X is up-regulated in
liver diseases including liver cancer [24].

Figure 2b—e shows four RBP—RNA interaction patterns
that exhibit functional dependency. They are reinforced by
eCLIP physical binding and have literature support from pre-
vious studies. Reportedly, HNRNPA1 and SRSF11 (figure 2b)
are both splicing repressors [25] and can inhibit SMN2 exon
7 inclusion [26]. In Figure 2c, when HNRNPK is knocked
down, the child RPL10 has no consequential expression which
indicates causal association. The overall pattern suggests that
HNRNPK may function as a switch. Indeed, RPL10 mutation
carries 62 significantly regulated candidates, HNRNPK being
one of them [27]. In Figure 2d, both HNRNPA1 and NCBP2
belong to the human spliceosome pathway (hsa03040) [28].
In Figure 2e, over-expression of HNRNPM promotes exon 7
inclusion of both SMN2 and SMN1 pre-mRNA. It contacts an
enhancer on exon 7, which was previously shown to provide
a binding site for TRA2B. Evidently HNRNPM and TRA2B
contact an overlapped sequence on exon 7 [29].
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D. An RNA regulatory network inferred for leukemia

Figure 3a illustrates a subset of an RNA regulatory network,
by choosing top 50 RBP—RNA interactions sorted in the de-
creasing order of £y, in K562 cell line. The network highlights
NONO and NPM1 as the two RBPs having the strongest func-
tional influence on 32 and 18 RNAs, respectively. Their targets
share 13 common RNAs suggesting some synergy between the
two RBPs. Increasing the number of top interactions picked for
the network would subsequently add more RBP—RNA edges
to figure 3a. Non-POU domain containing octamer binding
(NONO) gene is recently shown to promote migration and
invasion of THP-1 cell line [30] derived from an acute
monocytic leukemia patient. Nucleophosmin 1 (NPM1) is a
clinically tested molecular genetic marker for acute myeloid
leukemia [31]. It is categorized as oncogene and fusion gene
in COSMIC Cancer Gene Census version 85.

Figure 3b—e shows visualizes four RBP—RNA interaction
patterns that exhibit functional dependency, are reinforced by
eCLIP evidence and have literature support. In Figure 3b, both
NONO and EIF3L are involved in the functional network of
molecular transportation of human high choroid plexus epithe-
lium expression gene sub-dataset [32]. In Figure 3c, EIF4G2
and SRRM1 are both included in the human RNA-transport
pathway (hsa030313) [33]. Related to the NPM1—RPL31
and NPM1—RPLI10A interactions in Figure 3d and 3e, three
RNAs coding for ribosomal protein, RPL31, RPLIOA and
RPL36A were found to be exclusively present in chronic myel-
ogenous leukemia-specific NPM1 co-expressed gene pairs and
were absent in normal-specific co-expressed gene pairs. This
is interesting as NPM1 protein is a well-recognized key player
in ribosome biogenesis and transport [34].

It is interesting that the top 50 interactions centers around
only two RBPs in RBP—RNA networks of both liver cancer
(Figure 2a) and leukemia cell line (Figure 3a). The two net-
works apparently do not share the most significant RBP—RNA
interactions.

IV. CONCLUSIONS

In summary, we provide a pipeline that exploits the dy-
namics in ENCODE shRNA knockdown data sets to identify
causal relationships. The pipeline uses FunChisq and a novel
functional index that reveal functional RBP—RNA interaction
patterns in HepG2 and K562 cell lines. With adjusted p-value
< 0.05, we chose top 1% of all interactions ({; > 0.48) to
recapture 259,979 direct RBP—RNA interactions with eCLIP
binding evidence, 25,019 known interactions and 651,709
predicted putative interactions out of which 16,100 are most
promising. The networks provide a map of how RNAs are
regulated by RBPs in cancer from the ENCODE data. The
most active interactions differ greatly between the two dif-
ferent cancer types we studied. We revealed potentially new
RBPs involved in cancer and the mechanism by which they
may influence other genes. Lastly, the R interface provided
is a useful visualization tool to study the behavior of RBP(s)
and RNAC(s) of interest as captured in the ENCODE data sets.
Both the computational tools and the RNA regulatory networks
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