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Abstract—This paper addresses the problem of clock skew
and offset estimation for the IEEE 1588 precision time protocol.
Built on the classical two-way message exchange scheme, IEEE
1588 is a prominent synchronization protocol for packet switched
networks. Due to the presence of random queuing delays in a
packet switched network, the joint recovery of clock skew and
offset from the received packet timestamps can be viewed as a
statistical estimation problem. Recently, assuming perfect clock
skew information, minimax optimum clock offset estimators were
developed for IEEE 1588. Building on this work, we first develop
joint optimum invariant clock skew and offset estimators for
IEEE 1588 for known queuing delay statistics and unlimited com-
putational complexity. We then show the developed estimators are
minimax optimum, i.e., these estimators minimize the maximum
skew normalized mean square estimation error over all possible
values of the unknown parameters. Minimax optimum estima-
tors that utilize information from past timestamps to improve
accuracy are also introduced. The developed optimum estimators
provide useful fundamental limits for evaluating the performance
of clock skew and offset estimation schemes. These performance
limits can aid system designers to develop algorithms with the
desired computational complexity that achieve performance close
to the performance of the optimum estimators. If a designer finds
an approach with a complexity they find acceptable and which
provides performance close to the optimum performance, they
can use it and know they have near optimum performance. This is
precisely the approach used in communications when comparing
to capacity.

Index Terms—Time synchronization, IEEE 1588 Precision
Time Protocol, Optimum Invariant Estimation, Minimax Esti-
mation, Cellular networks.

I. INTRODUCTION

Precise synchronization of events is essential to ensure the
proper functioning of a distributed network as it ensures a
common time frame for all the nodes in the network. The
IEEE 1588 Precision Time Protocol (PTP) [1] is a popular
time synchronization protocol for synchronizing slave clocks
to a master clock. It is cost effective and offers accuracy
comparable to Global Positioning System (GPS)-based timing.
PTP is utilized in various applications including electrical
grid networks [2], cellular base station synchronization in 4G
Long Term Evaluation (LTE) [3], substation communication
networks [4] and industrial control [5]. In this paper, we will
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develop clock synchronization algorithms for PTP in a packet
switched network.

The clock time at the slave node can be modeled math-
ematically, as a function c(t) of the master node’s clock
time t. When the clocks at the slave and master node are
synchronized, then c(t) = t. However, in practice these
clocks are not synchronized, implying a synchronization error
e(t) = |c(t) − t|, that tends to grow over large time scales.
In general, the clock time of the slave node is modeled as
c(t) = φt + δ [6]–[10], where φ and δ denote the relative
clock skew and offset of the slave’s clock time with respect
to the master’s clock time respectively.

A number of time synchronization protocols including
PTP, Timing Protocol for Sensor Networks (TPSN) [11], and
Lightweight Time Synchronization (LTS) [12] are built on
the classical two-way message exchange scheme. In these
protocols, the slave node exchanges a series of synchronization
packets with the master node and uses the packet timestamps
to estimate φ and δ. The messages traveling between the
master and slave nodes can encounter several intermediate
switches and routers, accumulating delays at each node. The
main factors contributing to the overall delay are: (1) the fixed
propagation and processing delays at the intermediate nodes
along the network path between the master and slave nodes
and (2) the random queuing delays at each such node. This
randomness in the overall network traversal time is referred
to as Packet Delay Variation (PDV) [10], and the problem
of estimating φ and δ, while combating the noise in the
observations that occurs due to PDV is called the “Clock Skew
and Offset Estimation” (CSOE) problem. Maximum-likelihood
(ML)-based CSOE schemes have been proposed in [6]–[8].

Previously, assuming complete knowledge of the clock skew
and a known affine relationship between the fixed path delays,
members of our research team studied estimators for clock
offset. In particular, Guruswamy et al. [10] developed optimum
invariant clock offset estimators for PTP under the squared
error loss function. Further, in [13], we developed robust clock
offset estimation schemes for PTP in the presence of unknown
path asymmetries. In [14], Guruswamy et al. developed an
approximate approach for estimating the clock skew and
offset. However, the approximate approach is not optimum.
In this paper, assuming complete knowledge of the statistical
information describing the PDV and unlimited computational
complexity, we develop the joint optimum invariant clock skew
and offset estimators for PTP.

To study the CSOE problem, we consider three observation
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models, namely the known fixed delays model (K-model),
the standard model (S-model) and the multi-block model (M-
model), to describe the observations available to the slave node
in our work. Under the K-model, we assume that the fixed
delays in both the forward and reverse directions are known
to the slave node, while under the S-model, we assume that the
fixed path delays are unknown, but there is a prior relationship
between the fixed path delays. Further, under the M-model,
we assume a prior known relationship between the fixed path
delays, as well additional timestamps that contain the same
clock skew, but different clock offsets. For all the considered
observation models, the problem of estimating the clock skew
and offset in the presence of PDV falls under a variant of
the location-scale parameter estimation problem [15], with the
unknown clock skew as the scale parameter and the unknown
clock offset as the location parameter. Fixing the loss function
as the skew-normalized squared error loss and assuming
complete knowledge of the statistical information describing
the PDV along with unlimited computational complexity,
we use invariant decision theory (see chapter 6 of [15]) to
design the optimum invariant CSOE scheme for the considered
observation models. Then, using results from [15]–[17], we
show that the developed optimum invariant CSOE schemes are
minimax optimum for the skew-normalized squared error loss,
i.e., these estimators minimize the maximum skew normalized
mean square estimation error over all possible values of the
unknown parameters.

In this paper, we focus our numerical results on the LTE
backhaul network scenario. In this scenario, PTP is used
to synchronize the cellular base stations using the mobile
backhaul networks. The optimum approaches are general, so
they can be applied to other applications, for example smart
grids. In the cellular base station application, the backhaul net-
works are leased from commercial Internet Service Providers
(ISPs), and the network is shared with other commercial
and non-commercial users. The background traffic generated
by these users often results in PDV for the synchronization
packets. Based on an extensive study [10] employing a detailed
simulation package we built based on the recommendations
by standard committees focused on IEEE 1588, the popular
models for the probability density functions (pdfs) of the
random variables describing the PDV that were considered in
the literature (Gaussian, exponential, Weibull, and log-normal
[9]) do not always provide a close match to the queuing
delay pdfs [10]. In this paper, we use the pdfs obtained from
the simulation package to evaluate the performance of the
considered clock skew and offset estimators. Our key new
contributions in this paper are as follows:

1) Optimum invariant clock skew and offset estimators:
Given the joint pdf of the random variables describing
the PDV and without complexity limitations, we develop
the optimum invariant clock skew and offset estimators
for PTP under the considered observation models.

2) Minimax optimum clock skew and offset estimators: The
developed optimum invariant estimators are shown to be
minimax optimum.

The developed optimum estimators are very useful to un-

derstand the possible performance when we have the complete
statistical information on the queuing delays and unlimited
computational complexity. As the previously proposed ap-
proaches to solve the IEEE 1588 timing synchronization
problem are all invariant, the optimum estimators can provide
useful performance benchmarks for evaluating the perfor-
mance of these CSOE schemes. The performance comparison
between the realistic schemes and the optimum estimators are
performed off-line, where complexity is not a stringent issue.

To demonstrate the utility of the results given in this paper,
we use the developed optimum estimators in a robust approach
[18] that does not require complete information on the pdf
of the queuing delays but requires unlimited computational
complexity. Simulation results indicate that there is no sig-
nificant loss in performance for the robust estimator when
compared to the optimum scheme. These results illustrate how
the developed optimum estimator can help us understand the
performance loss due to incomplete knowledge of the queuing
delay pdfs. The results can also help in evaluating limited
complexity approaches. If a designer finds an approach with
an acceptable computational complexity that exhibits perfor-
mance close to the optimum estimators, they can use it and
know they have near optimum performance. This is precisely
the approach used in communications when comparing to
capacity.

Notations: We use bold upper case, bold lower case, and
italic lettering to denote matrices, column vectors and scalars
respectively. The notations (.)T and ⊗ denote the transpose
and Kronecker product, respectively. IN stands for a N -
dimensional identity matrix and 1N denotes a column vector
of length N with all the elements equal to 1. Further, R denotes
the set of real numbers, R+ denotes the set of positive real
numbers, R+

0 denotes the set of non-negative real numbers and
IA(x) denotes the indicator function having the value 1 when
x ∈ A and 0 when x /∈ A.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a scenario where the slave clock has a clock offset
δ and a clock skew φ with respect to its master clock. To
help the slave determine δ and φ, PTP allows a two-way
message exchange between the master and slave node, which
we now describe. The master node initiates a two-way message
exchange by sending a sync packet to the slave at time t1. The
value of t1 is later communicated to the slave via a follow up
message. The slave node records the time of reception of the
sync message as t2. The slave node sends a delay req message
to the master node while recording the time of transmission
as t3. The master records the time of arrival of the delay req
packet at time t4 and this value is later communicated to the
slave using a delay resp packet. The relationship between the
timestamps is given by

t2 = (t1 + dms + w1)φ+ δ, (1)
t3 = (t4 − dsm − w2)φ+ δ, (2)

where dms and dsm denote the fixed propagation delays, while
w1 and w2 model the random queuing delays. Assuming
the values of δ, φ, dms and dsm remain constant over the
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duration of P two-way message exchanges, we can collect
the timestamps from multiple two-way message exchanges to
estimate δ and φ [6]–[9]. We denote these timestamps as

t2i = (t1i + dms + w1i)φ+ δ, (3)
t3i = (t4i − dsm − w2i)φ+ δ (4)

for i = 1, 2, · · · , P . Define wk = [wk1, wk2, · · · , wkP ]
for k = 1, 2 and tk = [tk1, tk2, · · · , tkP ] for k =
1, 2, 3, 4. The joint pdf of wk is defined as fwk

(wk) =
fk(wk1, wk2, · · · , wkP ) for k = 1, 2. We next consider three
observation models based on the amount of information avail-
able regarding the fixed path delays.

1) Known fixed delay model (K-Model): In this model, we
assume complete knowledge of the fixed-path delays dms and
dsm. The received timestamps shown in (3) and (4) can be
arranged in vector form as follows

y = uφ+ δ12P , (5)

where we have y = [t2, t3]
T , and u = [u1,u2]

T , u1 =
(t1 +w1 + dms1

T
P ) and u2 = (t4 −w2 − dsm1TP ). Further,

we have fu(u) = fu1
(u1)fu2

(u2) with fu1
(u1) = fw1

(u1−
t1 − dms1

T
P ) and fu2

(u2) = fw2
(t4 − u2 − dsm1TP ). The

unknown parameters in this model are φ and δ.
2) Standard model (S-Model): Freris et al. [19] provided

some necessary conditions for obtaining a unique solution for
the system of equations given in (3) and (4), when the com-
plete information regarding the fixed delays is not available.
We need to know either one of the fixed path delays (either
dms or dsm), or have a prior known affine relationship between
the fixed delays (see Theorem 4 in [19]). Hence, in this model,
we assume a prior known affine relationship between the fixed
path delays. Let dms = d and dsm = a0dms + c0, where
the parameter d is unknown, but the constants a0 and c0 are
known. The received time stamps shown in (3) and (4) can be
arranged in vector form as

y = (hd+ v)φ+ δ12P , (6)

where v = [v1,v2]
T , v1 = (t1 + w1), v2 = (t4 − c01

T
P −

w2), h = [1TP ,−a01TP ]T , and y = [t2, t3]
T . Further, we have

fv(v) = fv1
(v1)fv2

(v2) with fv1
(v1) = fw1

(v1 − t1) and
fv2

(v2) = fw2
(t4 − v2 − c01

T
P ). The unknown parameters in

this model are φ, d and δ.
3) Multiblock model (M-Model): Here we assume, as in the

S-model, that there is a prior known affine relationship between
the fixed path delays, i.e., dms = d and dsm = a0dms + c0,
where the parameter d is unknown, but the constants a0 and c0
are known. Suppose we refer to the set of timestamps obtained
from P two-way message exchanges as a block. In this model,
we further assume that in addition to the current block, we
have additional timestamps from B previous blocks. The clock
offset δ is modeled as being constant within each block, but
varying between different blocks. However, the parameters d
and φ are modeled as constant across all B + 1 blocks. This
model is representative of scenarios where changes in the clock
skew φ, occur over longer time scales than changes in the clock

offset δ. We denote the timestamps in the past blocks using
the notation

t2ij = (t1ij + d+ w1ij)φ+ δj , (7)
t3ij = (t4ij − a0d− c0 − w2ij)φ+ δj (8)

for i = 1, 2, · · · , P and j = 1, 2, · · · , B, and the timestamps
in the current block as

t2i = (t1i + d+ w1i)φ+ δ, (9)
t3i = (t4i − a0d− c0 − w2i)φ+ δ (10)

for i = 1, 2, · · · , P . In (10), δ denotes the clock offset of
the current block which we want to estimate along with the
clock skew φ. In (8), δj denotes the clock offset corresponding
to the jth previous block i.e., δB corresponds to the clock
offset of the ‘oldest’ block. For notational convenience, we
define tkj = [tk1j , tk2j , · · · , tkPj ] for k = 1, 2, 3, 4 and j =
1, 2, · · · , B and wkj = [wk1j , wk2j , · · · , wkPj ] for k = 1, 2
and j = 1, 2, · · · , B. The complete set of timestamps from
the (B + 1) blocks can be arranged in vector form as

y = (hMd+ z)φ+ (δ ⊗ 12P ), (11)

where δ = [δ, δ1, δ2, · · · , δB ]; y = [y1,y2]
T with

y1 = [t2, t21, · · · , t2B ] and y2 = [t3, t31, · · · , t3B ];
hM = [1TP (B+1),−a01

T
P (B+1)]

T ; and z =

[z1, z11, · · · , z1B , z2, z21, · · · , z2B ]T with z1 = (t1 + w1),
z1j = (t1j+w1j) for j = 1, 2, · · · , B, z2 = (t4−w2−c01TP )
and z2j = (t4j − w2j − c01

T
P ) for j = 1, 2, · · · , B.

Further assuming the timestamps across different
blocks are independent and the time stamps have
identical pdfs over all blocks for both the forward
and reverse path, we have fz(z) = fz1

(z1)fz2
(z2)

with fz1(z1) = fw1(z1 − t1)
∏B
j=1 fw1(z1j − t1j) and

fz2
(z2) = fw2

(t4−z2− c01TP )
∏B
j=1 fw2

(t4j −z2j − c01TP ).
The unknown parameters in this model are φ, d and δ.

Given any of the observation models, the CSOE problem is
to estimate φ and δ from the received time stamps. We now
state all the assumptions made in our work.

Assumption 1: All the queuing delays are strictly positive
random variables and have finite support.

Assumption 2: The queuing delays in the forward and
reverse path are independent, the pdfs of the random variables
describing the queuing delays are assumed to be completely
known and we assume unlimited computational complexity.

Assumption 3: For the K-model and S-model, the parame-
ters d, φ, and δ are assumed to be constant over P two-way
message exchanges.

Assumption 4: In the case of the M-model, we assume
the queuing delays across different blocks are independent
from blocks to block and have identical pdfs for each of the
(B + 1) blocks in both the forward and reverse path. Also,
the parameters φ and d are assumed to be constant over all
(B+1) blocks, while the clock offset is assumed to be constant
for a block, but is varying from block to block. The value of
B can be chosen according to the time interval across which
the clock skew φ, can be assumed to be constant.
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III. STATISTICAL PRELIMINARIES

In this section, we present some important definitions for
characterizing the performance of estimators along with some
useful results regarding invariant estimators. It is assumed
throughout this section that the observed data x ∈ RN
is characterized by the pdf f(x|θ), which depends upon
the vector of unknown parameters θ with the corresponding
parameter space Θ ⊆ RM . Suppose we are interested in
estimating a scalar cTθ, where c ∈ RM is a constant vector.
Let ψ denote an estimator of cTθ, ψ(x) denote the estimate
of cTθ obtained using the estimator ψ on x, and L(ψ(x),θ)
denote the considered loss function. The performance of the
estimator ψ can be characterized by [16]:

1) The conditional risk of an estimator

R(ψ,θ) =

∫
RN

L(ψ(x),θ)f(x|θ)dx, (12)

2) The maximum risk of an estimator

M(ψ) = sup
θ∈Θ

R(ψ,θ), (13)

3) The average risk of an estimator

B(ψ, p) =

∫
θ∈Θ

R(ψ,θ)p(θ)dΘ, (14)

where p(θ) is a prior distribution defined over θ ∈ Θ.
See Chapter 6 of [15] for definitions of a group, invariant

loss function and an invariant estimator. We now present an
important theorem regarding the conditional risk of invariant
estimators.

Theorem 1 (Section 6.2.3, [15]). For an invariant loss func-
tion, the conditional risk of an invariant estimator ψ of cTθ,
is constant for all θ ∈ Θ.

Remark. If ψ is an invariant estimator of cTθ, we have

R(ψ,θ) = M(ψ) = B(ψ, p), (15)

for any p(θ) defined over θ ∈ Θ.
For an invariant loss function, we can construct the optimum

(or minimum conditional risk) invariant estimator using the
theory from [15]. An attractive property of optimum invariant
estimators is that they frequently turn out to be minimax
optimum [15]. We now present the definition of a minimax
estimator from [16].

Definition 1 (Minimax estimators). An estimator ψMinMax

of cTθ is said to be a minimax estimator of cTθ for the
considered loss function, if

M(ψMinMax) = inf
ψ

M(ψ) = inf
ψ

sup
θ∈Θ

R(ψ,θ). (16)

In this paper, assuming complete knowledge of the joint
queuing delay pdfs and unlimited computational complexity,
we use the concepts of invariant estimation theory to design
the optimum invariant CSOE schemes under the considered
observation models. As we are primarily interested in esti-
mating δ and φ, we consider the skew normalized squared
error loss functions defined by

L1(aδ,θ) =
(aδ − δ)2

φ2
, (17)

and

L2(aφ,θ) =
(aφ − φ)2

φ2
(18)

for δ and φ, respectively1. In (17) and (18), aδ and aφ
denote estimates of δ and φ, respectively, θ = [φ, δ] in
the case of the K-model, θ = [φ, d, δ] for the S-model
and θ = [φ, d, δ, δ1, · · · , δB ] for the M-model. We then use
results from [15]–[17] to show the derived optimum invariant
estimators of δ and φ are minimax optimum.

IV. OPTIMUM INVARIANT CSOE SCHEME UNDER
K-MODEL

In this section, we apply invariant decision theory to derive
an optimum invariant estimator of φ and δ for the K-model
assuming complete knowledge of the joint queuing delay pdfs
and unlimited computational complexity. Recall from (5), the
observations under the K-model can be represented as

y = uφ+ δ12P , (19)

where y ∈ R2P , u ∈ R2P , φ ∈ R+ and δ ∈ R. Let θ = [φ, δ]
denote the vector of unknown parameters. The parameter space
of θ, denoted by Θ, is given by

Θ = {(φ, δ) : φ ∈ R+, δ ∈ R}. (20)

From (5), we have f(y|θ) = 1
φ2P

fw1

(
t2−δ1T

P

φ − dms1
T
P − t1

)
fw2

(
δ1T

P−t3
φ − dsm1TP + t4

)
,

where the factor 1
φ2P comes from the Jacobian of the

transformation of the random variable.
Let FKModel denote the class of all pdfs f(y|θ) for θ ∈

Θ. The class of such pdfs is invariant under the group of
location-scale transformations (see Example 5, Section 6.2.1,
[15]) GKModel, on R2P , defined as

GKModel = {ga,b(m) : ga,b(m) = am+ b12P ,

∀(a, b) ∈ R+ × R}, (21)

where m ∈ R2P , since yg = ga,b(y) has the pdf
1

(aφ)2P
fu

(
yg−(aδ+b)12P

aφ

)
which has the scale and shift

parameters (aφ, aδ + b) as opposed to the parameters (φ, δ)
for f(y|θ). This shows that the group, ḠKModel, of induced
transformations is given by

ḠKModel = {ḡa,b((φ, δ)) : ḡa,b((φ, δ)) = (aφ, (aδ + b)),

∀(a, b) ∈ R+ × R}, (22)

where φ ∈ R+ and δ ∈ R.
Let δ̂I and φ̂I denote estimators of δ and φ, respectively

and let δ̂I(y) and φ̂I(y) denote the estimates obtained from
the received data y characterized by the pdf f(y|θ) =
1
φ2P fu

(
y−δ12P

φ

)
. The estimators φ̂I(y) and δ̂I(y) are invari-

ant under GKModel from (21) if for all (a, b) ∈ R+ × R

δ̂I(ga,b(y)) = δ̂I(ay + b12P ) = aδ̂I(y) + b, (23)

φ̂I(ga,b(y)) = φ̂I(ay + b12P ) = aφ̂I(y). (24)

1As seen in equations (5), (6) and (11), the unknown clock skew φ is
multiplied with the random queuing delays. Hence, we fix our loss function
as the skew normalized squared error loss.
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Thus the scaling and shifting factors a and b scale and shift
the estimators as one might expect. Further, the loss functions
defined in (17) and (18) for δ and φ, respectively, are invariant
under GKModel from (21), since

(δ̂I(y)− δ)2

φ2
=

(
δ̂I(ga,b(y))− (aδ + b)

)2

a2φ2
, (25)

and

(φ̂I(y)− φ)2

φ2
=

(
φ̂I(ga,b(y))− aφ

)2

a2φ2
(26)

for all ga,b ∈ GKModel. We now present the minimax optimum
estimators of δ and φ under the K-model.

Proposition 1. The optimum (or minimum conditional risk)
invariant estimators of δ and φ, denoted by δ̂MinRisk and
φ̂MinRisk, respectively, under GKModel defined in (21), for
the skew-normalized squared error loss functions defined in
(17) and (18), respectively, are given by

δ̂MinRisk(y) =

∫
R+

∫
R

δ
φ3 f(y|θ)dδdφ∫

R+

∫
R

1
φ3 f(y|θ)dδdφ

, (27)

and

φ̂MinRisk(y) =

∫
R+

∫
R

1
φ2 f(y|θ)dδdφ∫

R+

∫
R

1
φ3 f(y|θ)dδdφ

, (28)

respectively, where f(y|θ) = 1
φ2P

fw1

(
t2−δ1T

P

φ − dms1
T
P − t1

)
fw2

(
δ1T

P−t3
φ − dsm1TP + t4

)
.

Further, the derived optimum invariant estimators are
minimax for the skew-normalized squared error loss (see
Appendix A for proof).

We now present an important result with regards to the mean
square estimation error performance of the minimax optimum
estimators when compared to ML estimators. Let δ̂ and φ̂
denote estimators of δ and φ, respectively. The Mean Square
estimation Errors (MSEs) of δ̂ and φ̂, denoted by MSE(δ̂) and
MSE(φ̂), respectively, are defined as

MSE(δ̂) = E
{
(δ̂ − δ)2|θ

}
, (29)

and

MSE(φ̂) = E
{
(φ̂− φ)2|θ

}
, (30)

where E{.} denotes the expectation operator and θ is the
vector of unknown parameters.

Proposition 2. Let δ̂MLE and φ̂MLE denote the ML estima-
tors of δ and φ, respectively. Under the K-model, the MSE of
δ̂MLE is always greater than or equal to the MSE of δ̂MinRisk.
Also, under the K-model, the MSE of φ̂MLE is always greater
than or equal to the MSE of φ̂MinRisk.

Proof. In the K-model, we have θ = [φ, δ]. Let φ̂MLE(y)
and δ̂MLE(y) denote the ML estimates obtained from y
characterized by the pdf f(y|θ) = 1

φ2P fu(
y−δ12P

φ ). We have

θ̂MLE(y) = [φ̂MLE(y), δ̂MLE(y)]

= argmax  
θ

logL(θ|y), (31)

where L(θ|y) is the likelihood function and is equal to f(y|θ).
Let ga,b ∈ GKModel from (21) and define yg = ga,b(y). From
(22), the corresponding transformation of the parameter vector
θ is given by θg = ḡa,b(θ) = (aφ, (aδ + b)). From the
functional invariance of ML estimators [20] (see Chapter 7,
Theorem 7.2.10), we have θ̂MLE(yg) = ḡa,b(θ̂MLE(y)). So,
we have the following relationship

δ̂MLE(yg) = aδ̂MLE(y) + b, (32)

and

φ̂MLE(yg) = aφ̂MLE(y). (33)

As this holds true for all ga,b ∈ GKModel from (21), the
ML estimators of δ and φ are invariant under GKModel as
they satisfy (23) and (24). Hence, for the skew-normalized
loss function defined in (17), we have

R(δ̂MinRisk,θ) ≤ R(δ̂MLE ,θ), (34)

since δ̂MinRisk is the optimum invariant estimator under
GKModel in (21) and achieves the minimum conditional risk
among all estimators that are invariant under GKModel (see
Proposition 1). From (34), we have∫

R2P

(δ̂MinRisk(y)− δ)2

φ2
f(y|θ)dy ≤∫

R2P

(δ̂MLE(y)− δ)2

φ2
f(y|θ)dy, (35)

=⇒
∫
R2P

(δ̂MinRisk(y)− δ)2f(y|θ)dy ≤∫
R2P

(δ̂MLE(y)− δ)2f(y|θ)dy, (36)

implies

MSE(δ̂MinRisk) ≤ MSE(δ̂MLE). (37)

Following similar steps, we can show that MSE(φ̂MinRisk) ≤
MSE(φ̂MLE).

V. OPTIMUM INVARIANT CSOE SCHEME UNDER S-MODEL

In this section, we apply invariant decision theory to derive
an optimum invariant estimator of φ and δ under the S-model
assuming complete knowledge of the joint queuing delay pdfs
and unlimited computational complexity. Recall from (6), the
observations under the S-model can be represented as

y = (hd+ v)φ+ δ12P , (38)

where y ∈ R2P , v ∈ R2P , φ ∈ R+ and δ ∈ R. As
the unknown fixed delay d is always non-negative, we have
d ∈ R+

0 . However, it is not possible to design invariant esti-
mators under this constraint, as we cannot construct a group
of transformations for which the class of pdfs in the S-model
is invariant under the constructed group of transformations.
Hence, we assume d ∈ R, but later we see this is not a problem
as we derive the minimax optimum estimator in Proposition
3. Let θ = [φ, d, δ] denote the vector of unknown parameters.
The unrestricted parameter space of θ, denoted by Θ, is given
by

Θ = {(φ, d, δ) : φ ∈ R+, d ∈ R, δ ∈ R}, (39)
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and the restricted parameter space of θ, denoted by Θ∗, is
given by

Θ∗ = {(φ, d, δ) : φ ∈ R+, d ∈ R+
0 , δ ∈ R}. (40)

From (6), we have f(y|θ) = 1
φ2P

fw1

(
t2−δ1T

P

φ − d1TP − t1
)
fw2

(
δ1T

P−t3
φ + t4 − (a0d+ c0)1

T
P

)
.

Let FSModel denote the class of all pdfs f(y|θ) for θ ∈
Θ. The class of such pdfs is invariant under the group of
transformations GSModel, on R2P , defined as

GSModel = {ga,b,c(m) : ga,b,c(m) = a(m+ hb) + c12P ,

∀(a, b, c) ∈ R+ × R× R}, (41)

where m ∈ R2P , since yg = ga,b,c(y) has the pdf 1
(aφ)2P

fv

(
yg−(aδ+c)12P

aφ − h
(
d+ b

φ

))
which has the parameters

(aφ, (d+ b/φ), aδ+ c) as opposed to the parameters (φ, d, δ)
for f(y|θ). This shows that the group, ḠSModel, of induced
transformations on Θ is given by

ḠSModel = {ḡa,b,c((φ, d, δ)) : ḡa,b,c((φ, d, δ))
= (aφ, (d+ b/φ), (aδ + c))

∀(a, b, c) ∈ R+ × R× R}, (42)

where φ ∈ R+, d ∈ R and δ ∈ R. Thus the transformations
modify the three parameters but the pdf can still be represented
in the same general class of pdfs which have some values for
these parameters.

Let δ̂I and φ̂I denote estimators of δ and φ, respectively
and let δ̂I(y) and φ̂I(y) denote the estimates obtained from
the received data y characterized by the pdf f(y|θ) =
1
φ2P fv

(
y−δ12P

φ − hd
)

. The estimators φ̂I(y) and δ̂I(y) are
invariant under GSModel from (41), if for all (a, b, c) ∈
R+ × R× R,

δ̂I(ga,b,c(y)) = δ̂I(a(y + hb) + c12P ) = (aδ̂I(y) + c),

(43)
φ̂I(ga,b,c(y)) = φ̂I(a(y + hb) + c12P ) = aφ̂I(y). (44)

Note that, by design, the estimators φ̂I(y) and δ̂I(y) are
invariant to the parameter d (since the changes in d in (43)
and (44) do not affect δ̂I and φ̂I ), i.e., the estimates, as well
as the performance of the estimators, are not affected by the
value of d. Further, the skew-normalized loss functions defined
in (17) and (18) for δ and φ, respectively, are invariant under
GSModel from (41), since

(δ̂I(y)− δ)2

φ2
=

(
δ̂I(ga,b,c(y))− (aδ + c)

)2

a2φ2
, (45)

and

(φ̂I(y)− φ)2

φ2
=

(
φ̂I(ga,b,c(y))− aφ

)2

a2φ2
(46)

for all ga,b,c ∈ GSModel. We now present the minimax
optimum estimators of δ and φ under the S-model.

Proposition 3. The optimum (or minimum conditional risk)
invariant estimators of δ and φ, denoted by δ̂MinRisk and

φ̂MinRisk, respectively, under GSModel defined in (41), for the
skew normalized squared error loss functions defined in (17)
and (18) respectively, are given by

δ̂MinRisk(y) =

∫
R+

∫
R2

δ
φ2 f(y|θ)d(d)dδdφ∫

R+

∫
R2

1
φ2 f(y|θ)d(d)dδdφ

, (47)

and

φ̂MinRisk(y) =

∫
R+

∫
R2

1
φf(y|θ)d(d)dδdφ∫

R+

∫
R2

1
φ2 f(y|θ)d(d)dδdφ

, (48)

respectively, where f(y|θ) = 1
φ2P

fw1

(
t2−δ1T

P

φ − d1TP − t1
)
fw2

(
δ1T

P−t3
φ + t4 − (a0d+ c0)1

T
P

)
.

Further, the derived optimum invariant estimators are minimax
for the skew-normalized squared error loss in the restricted
parameter space Θ∗ (see Appendix B for proof). Also,
the optimum invariant estimators are optimum in terms of
acheiving the lowest MSE among all estimators invariant
under GSModel defined in (41).

A desirable property of any estimator of δ and φ is for it to
be asymptotically consistent. We now present an important
result regarding the invariance of asymptotically consistent
estimators.

Proposition 4. Any consistent estimator of φ and δ obtained
from solving (38) is asymptotically invariant under GSModel

defined in (41).

Proof. For any fixed value of d, a scale or shift transformation
on the observations would lead to corresponding estimates of
δ and φ obtained from a consistent clock skew and offset
estimator to be scaled or shifted for asymptotically large
sample sizes, since any consistent estimator always converges
towards the real value of the parameter. Hence, any consistent
estimator of φ and δ obtained from solving (38) is asymptot-
ically invariant under GSModel defined in (41) as they satisfy
(43) and (44).

Remark. For a fixed value of d, the ML-estimator of φ and δ
under the S-model is invariant under GSModel defined in (41) as
any shift or scale transformation of the observations results in
the corresponding transformation of the ML estimate of φ and
δ (due to the functional invariance property of ML estimators).
Following steps similar to those given in Proposition 2, we can
show that the ML-estimators under the S-model have a MSE
greater than or equal to the optimum invariant estimators under
the S-model.

A. Imprecise Knowledge of Queuing Delay pdfs

We now consider a case where the queuing
delay pdfs are not known perfectly. To this end,
we assume that there K possible pdfs, defined by
the set

{(
f
(1)
w1 (.), f

(1)
w2 (.)

)
,
(
f
(2)
w1 (.), f

(2)
w2 (.)

)
, · · ·(

f
(K)
w1 (.), f

(K)
w2 (.)

)}
. We use the idea discussed in [18]

along with the proposed optimum estimator to construct a
robust estimator. The robust clock skew and offset estimator
of φ and δ obtained from the observations y are given by
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δ̂robust(y) =

∑K
k=1 ck(y)δ̂

(k)(y)∑K
k=1 ck(y)

, (49)

and

φ̂robust(y) =

∑K
k=1 ck(y)φ̂

(k)(y)∑K
k=1 ck(y)

, (50)

where δ̂(k)(y) and φ̂(k)(y) denote the optimum invariant
estimates of δ and φ under the kth scenario, obtained using
Proposition 3 and the queuing delay pdfs

(
f
(k)
w1 (.), f

(k)
w2 (.)

)
.

The weights ck(y) are based on the likelihood function
f(y|θ), and are defined as

ck(y) = 1
(φ̂(k)(y))2P

f
(k)
w1

(
t2−δ̂(k)(y)1T

P

φ̂(k)(y)
− d̂

(k)
est1

T
P − t1

)
f
(k)
w2

(
δ̂(k)(y)1T

P−t3

φ̂(k)(y)
+ t4 − (a0d̂

(k)
est + c0)1

T
P

)
, (51)

where d̂
(k)
est is an estimate of d corresponding to the kth

scenario and the constants a0 and c0 were defined in Sec-
tion II. To obtain d̂

(k)
est, we use δ̂(k) and φ̂(k) to calculate

z1 =

(
(t2−δ̂(k)1T

P )
φ̂(k)

− t1
)

and z2 =

(
t4 −

(t3−δ̂(k)1T
P )

φ̂(k)

)
. We

now have

z1 ≈ d1P +w1, (52)

and

z2 ≈ (a0d+ c0)1P +w2. (53)

The problem of estimating d from z1 and z2 falls under
the class of location parameter estimation problems. Hence,
we use the optimum invariant location parameter estimator
proposed in [10] to calculate d̂(k)est, given by

d̂
(k)
est =

∫
R df

(k)
w1 (z1 − d1TP )f

(k)
w2 (z2 − (a0d+ c0)1

T
P )d(d)∫

R f
(k)
w1 (z1 − d1TP )f

(k)
w2 (z2 − (a0d+ c0)1TP )d(d)

.

(54)

The weights ck(y) are chosen as a function of likelihood in
order to give more weight to the more plausible models, i.e.,
we assign higher weight when the assumed pdf of the queuing
delays is judged to be closer to the actual queuing delay pdf.
As the estimators δ̂robust and φ̂robust are linear combination
of estimates that are invariant under GSModel defined in (41),
the robust clock skew and offset estimators presented in (49)
and (50) are invariant under GSModel.

VI. OPTIMUM INVARIANT CSOE SCHEME UNDER
M-MODEL

In this section, we apply invariant decision theory to derive
an optimum invariant estimator of φ and δ under the M-model
assuming complete knowledge of the joint queuing delay pdfs
and unlimited computational complexity. Recall from (11), the
observations under the M-model can be represented as

y = (hMd+ z)φ+ (δ ⊗ 12P ), (55)

where y ∈ R2P (B+1), z ∈ R2P (B+1), φ ∈ R+, δ =
[δ, δ1, δ2, · · · , δB ] ∈ RB+1 and hM is a known vector defined

in Section II and is given by hM = [1TP (B+1),−a01
T
P (B+1)]

T .
Let θ = [φ, d, δ, δ1, · · · , δB ] denote the vector of unknown
parameters. The unrestricted parameter space of θ, denoted
by Θ, is given by

Θ = {(φ, d, δ) : φ ∈ R+, d ∈ R, δ ∈ RB+1}, (56)

and the restricted parameter space of θ, denoted by Θ∗, is
given by,

Θ∗ = {(φ, d, δ) : φ ∈ R+, d ∈ R+
0 , δ ∈ RB+1} (57)

From (11), the conditional pdf of y is given by

f(y|θ) =
1

φ2P (B+1)
fz

(
y − (δ ⊗ 12P )

φ
− hMd

)
, (58)

=
1

φ2P (B+1)
fw1

(
t2 − δ1TP

φ
− d1TP − t1

)
fw2

(
δ1TP − t3

φ
+ t4 − (a0d+ c0)1

T
P

)
B∏
j=1

[
fw1

(
t2j − δj1

T
P

φ
− d1TP − t1i

)
fw2

(
δj1

T
P − t3j
φ

+ t4j − (a0d+ c0)1
T
P

)]
,

(59)

where a0 and c0 are known constants defined in Section II.
Let FMModel denote the class of all pdfs f(y|θ) for θ ∈

Θ. The class of such pdfs is invariant under the group of
transformations GMModel, on R2P (B+1), defined as

GMModel = {ga,b,c(m) : ga,b,c(m) =

(m+ hMb)a+ c⊗ 12P ,

∀(a, b, c) ∈ R+ × R× RB+1}, (60)

where m ∈ R2P (B+1), since yg = ga,b,c(y) has a pdf
given by 1

(aφ)2P (B+1) fz

(
yg−((aδ+c)⊗12P )

aφ − hM
(
d+ b

φ

))
.

The corresponding group of induced transformations on Θ,
denoted by ḠMModel, is given by

ḠMModel = {ḡa,b,c((φ, d, δ)) : ḡa,b,c((φ, d, δ)) =
(aφ, (d+ b/φ), (aδ + c)),

∀(a, b, c) ∈ R+ × R× RB+1}, (61)

where φ ∈ R+, d ∈ R and δ ∈ RB+1. Note the similarity to
(42).

Let δ̂I and φ̂I denote estimators of δ and φ, respectively and
let δ̂I(y) and φ̂I(y) denote the estimates obtained from the
received data y characterized by the pdf f(y|θ) = 1

φ2P (B+1)

fz

(
y−(δ⊗12P )

φ − hMd
)

. Let c = [c1, c2, · · · , cB+1] ∈ RB+1.

The estimators φ̂I(y) and δ̂I(y) are invariant under GMModel

from (60), if for all (a, b, c) ∈ R+ × R× RB+1,

δ̂I(ga,b,c(y)) = δ̂I(a(y + hMb) + c⊗ 12P )

= aδ̂I(y) + c1, (62)

φ̂I(ga,b,c(y)) = φ̂I(a(y + hMb) + c⊗ 12P )

= aφ̂I(y). (63)
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Note that the estimators φ̂I(y) and δ̂I(y) are invariant to
the parameter d, i.e., the estimates, as well as the performance
of the estimators, are not affected by the value of d. Further,
the skew-normalized loss functions defined in (17) and (18)
for δ and φ respectively, are invariant under GMModel from
(60), since

(δ̂I(y)− δ)2

φ2
=

(
δ̂I(ga,b,c(y))− (aδ + c1)

)2

a2φ2
, (64)

and

(φ̂I(y)− φ)2

φ2
=

(
φ̂I(ga,b,c(y))− aφ

)2

a2φ2
(65)

for all ga,b,c ∈ GMModel. We now present the minimax
optimum estimators of δ and φ under the M-model.

Proposition 5. The optimum (or minimum conditional risk)
invariant estimators of δ and φ, denoted by δ̂MinRisk and
φ̂MinRisk, respectively, under GMModel defined in (60), for
the skew normalized squared error loss functions defined in
(17) and (18) are given by

δ̂MinRisk(y) =

∫
R+

∫
RB+2

δ
φ2 f(y|θ)dθ∫

R+

∫
RB+2

1
φ2 f(y|θ)dθ

, (66)

and

φ̂MinRisk(y) =

∫
R+

∫
RB+2

1
φf(y|θ)dθ∫

R+

∫
RB+2

1
φ2 f(y|θ)dθ

, (67)

respectively, where f(y|θ) is defined in (59). Further, the
derived optimum invariant estimators are minimax for the
skew-normalized squared error loss in the restricted parameter
space Θ∗.

Outline of the Proof. Following steps similar to those in
Appendix B, we can show that the right invariant prior,
denoted by πr(θ), for GMModel defined in (61) is given by
πr(θ) = IR+(φ)IR(d)IRB+1(δ). Using the obtained πr(θ)
and following similar steps to those in Appendix B, we can
obtain the optimum invariant estimators and show that they
are minimax optimum.

VII. SIMULATION RESULTS

In this section, we illustrate the performance of the optimum
estimators via numerical simulations in the LTE backhaul net-
work scenario described in Section I. PTP is sometimes used
in conjunction with Synchronous Ethernet (SyncE) for cellular
base station synchronization in 4G LTE networks. Although
the SyncE standards are now mature, much of the deployed
base of Ethernet equipment does not support it [21]. PTP is the
primary option for synchronization to operators with packet
backhaul networks that do not support SyncE [21], [22]. For
simplicity, we assume symmetric network conditions in the
forward and reverse paths, i.e., fw1

(.) = fw2
(.) = fw(.).

Also, we assume the queuing delay samples are independent
and identically distributed.

We follow the approach given in [10] for generating the
random queuing delays in LTE backhaul networks. Specifi-
cally, we assume a Gigabit Ethernet network consisting of a

Traffic Model Packet Sizes (in Bytes) % of total traffic
TM-1 {64, 576, 1518} {80%, 5%, 15%}
TM-2 {64, 576, 1518} {30%, 10%, 60%}

TABLE I: Composition of background packets in the consid-
ered traffic models.

cascade of 10 switches between the master and slave nodes.
A two-class non-preemptive priority queue is used to model
the traffic at each switch. The network traffic at the switch
comprises of the lower priority background traffic and the
higher priority synchronization messages. We assume cross-
traffic flows, where new background traffic is injected at each
switch and this traffic exits at the subsequent switch. The
arrival times and size of background traffic packets injected
at each switch are assumed to be statistically independent.
We use Traffic Model 1 (TM-1) and Traffic Model 2 (TM-2)
from the ITU-T specification G.8261 [23], described in Table
I, for generating the background traffic at each switch. The
interarrival times between packets in background traffic are
assumed to follow an exponential distribution, and we set the
rate parameter of each exponential distribution accordingly to
obtain the desired load factor, i.e., the percentage of the total
capacity consumed by background traffic [10]. The empirical
pdf of the PDV in the backhaul networks was obtained in [10]
for different load factors. The timestamps t1i and t3i are set to
40i µs and 40i µs+20µs, respectively, for i = 0, 1, · · · , P−1.
For a given value of parameters {φ, d, δ}, the timestamps t2i
and t4i are then generated using the appropriate equations, for
example (3) and (4), assuming dms = d and dsm = a0d+ c0,
where a0 and c0 are known constants.

A. Considered CSOE schemes
We now briefly describe the various CSOE schemes avail-

able in the literature for which we also evaluate performance:
1) Least Squares Estimate (LSE): We assume the K-model

for this CSOE scheme. In this scheme, we assume prior
information of the mean and variance of fw(.). We use the
least squares estimator to get an estimate of φ and δ from
(5). It can be shown that the least squares CSOE scheme is
invariant under GKModel defined in (21).

2) Local Maximum Likelihood Estimate (LMLE): We as-
sume the K-model for this CSOE scheme. As discussed in
Proposition 2, the ML estimate under the K-model is obtaining
by finding the value of parameter vector that maximizes the
likelihood function (see (31)). However, for small values of
P , the likelihood function need not always be concave. The
likelihood function is shown in Figure 1 for a TM-1 network
scenario under 40% load for φ = 1 and δ = 0 for different
values of P . We see that for small values of P , the likelihood
function is not necessarily concave and sometimes it has many
local maxima. In our simulations, we use the solution obtained
from the least squares estimate as the initial point in the search
for the ML estimate. The obtained solution is called the Local
Maximum Likelihood Estimate since we cannot guarantee a
global maximum.
Remark. We should mention here that we have used the K-
model for the least squares and ML-based CSOE schemes. We
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conjecture that this provides a lower bound on the performance
of these CSOE schemes under the S-model, as the presence
of additional unknown nuisance parameters would generally
degrade the performance of an estimation scheme.

B. Performance metric

We now describe the metric used for illustrating the per-
formance of the considered CSOE schemes. Let δ̂ and φ̂
denote estimators of δ and φ, respectively. The skew Nor-
malized Root Mean Square estimation Error (NRMSE) of δ̂
and φ̂, denoted by NRMSE(δ̂) and NRMSE(φ̂), respectively,

are defined as
√

MSE(δ̂)
φ and

√
MSE(φ̂)
φ , respectively, where

MSE(δ̂) and MSE(φ̂) are defined in (29). In our results,
we use the NRMSE(δ̂) and NRMSE(φ̂) metrics to evaluate
performance. Also, note that the risk of the estimators δ̂ and
φ̂ under the skew normalized squared error loss are given
by R(δ̂,θ) = (NRMSE(δ̂))2 and R(φ̂,θ) = (NRMSE(φ̂))2,
respectively.
Remark. In scenarios where analytical expressions for the
queuing delay pdfs fw1

(.) and fw2
(.) are known, it might

be possible to further simplify the integrals in Proposition 1,
3 and 5. However, in the general case of arbitrary queuing
delay pdfs fw1

(.) and fw2
(.), these integrals are computed by

approximating them with Riemann summations. In such cases,
the computational complexity associated with the optimum
estimators will depend on the number of bins used in the
Riemann summations. Typically, this computational complex-
ity is significantly higher than that of conventional ML-based
estimators. The performance comparison between the realistic
schemes and the optimum estimators can be performed off-
line, where complexity is not a stringent issue.

In this paper, we approximate the integral over R+ using
Riemann sums by setting the width of the Riemann summation
bins to 0.01 and the limits of the integral to [0.5, 2]. Also,
we approximate the integral over R using Riemann sums by
setting the width of the Riemann summation bins to 0.01 µs
and the limits of the integral to [−20 µs, 20 µs].

C. Numerical results

Figures 2 and 3 shows the NRMSE performance for the con-
sidered CSOE schemes for {φ, d, δ} = {1.01, 1 µs, 1.25 µs}
with dms = d and dsm = d + 1 µs for TM-1 and TM-
2 network scenarios. We see that the performance of all
the considered CSOE schemes improves with an increase
in the number of two-way message exchanges. Some key
observations are as follows:

1) Performance of minimax optimum estimators: Figure
2 compares the performance of the optimum estima-
tor under the K- and S-models, namely the the mini-
max optimum estimator under the K-model (Minimax-
K) and the minimax optimum estimator under the S-
model (Minimax-S), to the performance of other CSOE
schemes available in the literature. Interestingly, we
do not observe a significant loss in performance of
Minimax-S due to the unknown nuisance parameter d.
Further, we observe that the robust estimator described

in Section V (Robust-CSOE) exhibits a performance
close to the optimum estimators2 indicating that the
robust CSOE scheme is relatively robust to network
uncertainties. Figure 3 shows us the performance of
the minimax optimum estimator under the M-model
(Minimax-M) for different values of B for different
network scenarios. We observe a noticeable gain in
performance when estimating φ by using information
from the past blocks, since the additional timestamps
contain information regarding the clock skew φ. Also,
we observe a slight gain in performance when estimating
the clock offset δ. Although the previous blocks do
not provide us information regarding the current block’s
clock offset δ, the additional timestamps help in im-
proving the estimate of φ, which in turn provides a
performance gain when estimating the current block’s
clock offset δ.

2) Performance of the minimax optimum estimators for
different values of φ and δ: Figure 4 shows us the
performance of the minimax optimum estimator under
the K-model for different values of φ and δ. As ob-
served from the results, the performance of the optimum
invariant estimator is independent of the parameter val-
ues {φ, d, δ} since the conditional risk of an invariant
estimator is constant (see Theorem 1). Similarly, using
Theorem 1, we can infer that the performance of the
optimum invariant estimators under the S-model and M-
model are also independent of the parameter values.

3) Effect of width of Riemann summation bins: In our
simulation results, we set the width of the Riemann
summation bins to small values to ensure that the
additional error introduced due to the Riemann sum
approximation is small relative to the estimation error.
However, the computational complexity associated with
the developed optimum estimators depends on the total
number of bins (or the width of the Riemann summation
bins) used in the Riemann sum approximation. For
example, consider the optimum estimator under the K-
model. It is easy to see that when Riemann sums are
used, O(P 2Nb1Nb2) multiplications and O(Nb1Nb2)
additions are required per estimate, where Nb1 and
Nb2 denote the total number of Riemann sum bins
utilized in approximating the integral over R+ and the
integral over R, respectively. In Figure 5, we compare
the performance of the minimax optimum estimator
under the K-model for different values of the width of
the Riemann summation bins, when approximating the
integral over R. From Figure 5, we do not observe a
noticeable loss in performance when the width of the
Riemann summation bins is increased from 0.01 µs to
0.1 µs. However, there is a significant degradation in the
performance of the optimum estimator when the width
of the Riemann summation bins is increased to 0.5 µs or
higher. For a given bin width, there is always some large

2A total of 14 possible pdfs are assumed for the PDV
pdf consisting of pdfs corresponding to TM-1 and TM-2 at
{20%, 30%, 40%, 50%, 60%, 70%, 80%} load were assumed available
for the robust CSOE scheme.
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value of P above which the performance of the minimax
optimum estimator does not improve with an increasing
number of two-way message exchanges. Apparently, the
error in approximating the integral is much larger than
the estimation error with the exact integral at such P .

4) Effect of unknown path asymmetries: When designing
the optimum estimators, we assumed a prior known
relationship between the fixed path delays, dms and dsm.
We now study the possible performance loss that could
occur due to the presence of unknown path asymmetries.
Figure 6 compares the performance of the minimax
optimum estimator under the K-model in the presence
of such unknown path asymmetries, namely when the
estimator assumes that dms = dsm = d, when the actual
relationship is given by dms = d and dsm = d+ 1 µs.
From Figure 6, we observe a significant degradation in
the performance of the clock offset estimator as well
as a noticeable degradation in the performance of the
clock skew estimator. The loss in performance follows
from [24], [25], where it was shown that the presence
of unknown path asymmetries in PTP can result in
significant degradation of the performance of a clock
skew and offset estimation scheme. We note that the
loss can be very different in other cases.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have developed optimum invariant esti-
mators for the joint estimation of clock skew and offset in
the IEEE 1588 PTP for different observation models assuming
knowledge of queuing delay pdfs and unlimited computational
complexity. The performance benchmarks obtained from the
optimum estimators can aid system designers in searching
for algorithms with the desired computational complexity that
have near optimum performance. This is a topic of great
interest. Further, using the optimum estimator and assuming
unlimited computational complexity, we construct robust clock
skew and offset estimators for the S-model under scenarios
where the queuing delay pdfs are not entirely known. While
these estimators show some potential, much more study is
needed to fully understand their performance. Throughout
this paper, we assumed either the complete knowledge of the
fixed delays or a prior known affine relationship between the
fixed path delays. The presence of an unknown asymmetry
between the fixed path delays could significantly degrade the
performance of the developed CSOE schemes. Future work
can look into developing low complexity robust clock skew
and offset estimation schemes when there is an unknown
asymmetry between the fixed path delays.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. The optimum invariant estimator of δ under GKModel

in (21), denoted by δ̂MinRisk, can be obtained by solving (See
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Fig. 1: Likelihood function for various values of the parameter
for TM-1 under 40% load for φ = 1, δ = 0 for different values
of P .

Result 3 in Section 6.6.2 of [15])

δ̂MinRisk(y) = argmin  
δ̂

∫
Θ

L1(δ̂(y),θ)π
r(θ|y)dθ

=argmin  
δ̂

∫
Θ

(δ̂(y)− δ)2

φ2
πr(θ|y)dθ, (68)

where πr(θ|y) = f(y|θ)πr(θ)∫
Θ
f(y|θ)πr(θ)dθ

is the posterior density of
θ based on the right invariant prior πr on Θ (see Section
6.6.1, [15])3. The right invariant prior for the location-scale
group was derived in [15] (see Section 6.6). As GKModel

from (21) is a location-scale group, the right invariant prior
density for GKModel is given by πr(θ) = 1

φIR+(φ)IR(δ). To

3The right invariant prior density need not be an actual density [15] (See
section 6.6, page 409).
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Fig. 2: NRMSE of clock offset and clock skew for various
estimation schemes for {φ, d, δ} = {1.01, 1.0 µs, 1.25 µs}.

find δ̂MinRisk, we differentiate the objective function in (68)
with respect to δ̂(y), set the result equal to zero and solve for
δ̂MinRisk. We obtain

δ̂MinRisk(y) =

∫
R+

∫
R

δ
φ2π

r(θ|y)dθ∫
R+

∫
R

1
φ2πr(θ|y)dθ

=

∫
R+

∫
R

δ
φ3 f(y|θ)dθ∫

R+

∫
R

1
φ3 f(y|θ)dθ

.

(69)

Similarly, the optimum invariant estimator of φ under GKModel

in (21), denoted by φ̂MinRisk, can be obtained by

φ̂MinRisk(y) = argmin  
φ̂

∫
Θ

(φ̂(y)− φ)2

φ2
πr(θ|y)dθ. (70)

Using the same derivative-based approach, we obtain

φ̂MinRisk(y) =

∫
R+

∫
R

1
φ2 f(y|θ)dδdφ∫

R+

∫
R

1
φ3 f(y|θ)dδdφ

. (71)
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Fig. 3: NRMSE of clock offset and clock skew of mini-
max optimum estimator under the M-model for {φ, d, δ} =
{1.01, 1.0 µs, 1.25 µs} for different values of B past obser-
vation windows.

When the class of densities is invariant under the location-
scale group, it was shown in [15] that the optimum invariant
estimator of a parameter for an invariant loss function is
also a minimax estimator of the parameter for the considered
loss function. As the class of densities FKModel is invariant
under GKModel in (21) (a location-scale group), and the
scale invariant loss function is invariant under GKModel, the
optimum invariant estimators δ̂MinRisk and φ̂MinRisk, are
minimax optimum estimators of δ and φ, respectively, for the
skew-normalized squared error loss functions given in (17) and
(18).

APPENDIX B
PROOF OF PROPOSITION 3
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Fig. 4: NRMSE performance of minimax optimum estimator
under K-model for different parameter values. We have for
case 1, {φ, d, δ} = {1.01, 1.0µs, 1.25 µs}, for case 2.1,
{φ, d, δ} = {1.05, 1.0µs, 1.25 µs} and for case 3, {φ, d, δ} =
{0.95, 1.0µs,−1.25 µs}.

Proof. We first calculate the right invariant prior for GSModel,
defined in (41), as it is necessary for deriving the optimum
invariant estimator under GSModel. Let A ⊆ Θ and θ0 =
(φ0, d0, δ0) ∈ Θ, with Θ defined in (39). The right group
transformation of A by θ0 is given by [16]

Ar0 ={θr0 = (φr0 , dr0 , δr0) : θr0 = ḡφ,d,δ(θ0), (φ, d, δ) ∈ A},
(72)

={θr0 = (φφ0, d0 + d/φ0, φδ0 + δ) : (φ, d, δ) ∈ A},
(73)

with ḡφ,d,δ ∈ ḠSModel from (42). The right invariant prior, πr,
on GSModel from (41) is obtained by finding the function that
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Fig. 5: NRMSE performance of minimax optimum estimator
under K-model for different widths of Riemann summation
bins for {φ, d, δ} = {1.01, 1.0µs, 1.25 µs}.

satisfies4

∫
A
πr(θ)dθ =

∫
Ar0

πr(θr0)dθr0 , (74)

for all A ⊆ Θ, for all ḡφ,d,δ ∈ ḠSModel and for all θ0 =
(φ0, d0, δ0) ∈ Θ. The right invariant prior for ḠSModel is given
by πr(θ) = IR+(φ)IR(d)IR(δ). To see this, note that∫

A
1dθ =

∫
Ar0

dθ

dθr0
dθr0 =

∫
Ar0

1dθr0 , (75)

4The right invariant prior is invariant to the right transformation of the
parameters in the parameter space. Similarly, the left invariant prior can also
be constructed. However, we are interested only in the right invariant prior as
it is used in deriving the optimum invariant estimator.
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Fig. 6: NRMSE performance of minimax optimum estimator
under K-model in the presence of unknown path asymmetries
for {φ, d, δ} = {1.01, 1.0µs, 1.25 µs}.

since the Jacobian of the transformation in (73) is given by

dθr0
dθ

= det

⎛⎜⎝
⎡⎢⎣
∂φr0

∂φ

∂φr0

∂d

∂φr0

∂δ
∂dr0
∂φ

∂dr0
∂d

∂dr0
∂δ

∂δr0
∂φ

∂δr0
∂d

∂δr0
∂δ

⎤⎥⎦
⎞⎟⎠

= det

⎛⎝⎡⎣φ0 0 0
0 1/φ0 0
δ0 0 1

⎤⎦⎞⎠ = 1. (76)

The optimum invariant estimators of δ under GSModel from
(41), denoted by δ̂MinRisk, can now be obtained by solving

δ̂MinRisk(y) = argmin  
δ̂

∫
Θ

(δ̂(y)− δ)2

φ2
πr(θ|y)dθ, (77)

where πr(θ|y) = f(y|θ)πr(θ)∫
Θ
f(y|θ)πr(θ)dθ

and πr(θ) is the right

invariant prior corresponding to ḠSModel. To find δ̂MinRisk,

we differentiate the objective function in (77) with respect to
δ̂(y), set the result equal to zero and solve for δ̂(y). We have

δ̂MinRisk(y) =

∫
R+

∫
R2

δ
φ2π

r(θ|y)dθ∫
R+

∫
R2

1
φ2πr(θ|y)dθ

=

∫
R+

∫
R2

δ
φ2 f(y|θ)dθ∫

R+

∫
R2

1
φ2 f(y|θ)dθ

.

(78)

Similarly, the optimum invariant estimator of φ under GSModel

from (41), denoted by φ̂MinRisk, can be obtained by solving

φ̂MinRisk(y) = argmin  
φ̂

∫
Θ

(φ̂(y)− φ)2

φ2
πr(θ|y)dθ. (79)

Solving, we obtain

φ̂MinRisk(y) =

∫
R+

∫
R2

1
φf(y|θ)d(d)dδdφ∫

R+

∫
R2

1
φ2 f(y|θ)d(d)dδdφ

. (80)

Minimaxity of optimum invariant estimators in Θ:
We now show the derived optimum invariant estimators are
minimax in Θ for the considered loss function. Consider a
sequence of prior distributions, πk for θ, defined on Θ as
follows

πk(θ) =
I(0,k)(φ)I(−k,k)(d)I(−k,k)(δ)

Nk
, (81)

for k = 1, 2, · · · , and Nk =∫
Θ
I(0,k)(φ)I(−k,k)(d)I(−k,k)(δ)dθ. The support of πk

is given by

Θk = {(φ, d, δ) : φ ∈ (0, k), d ∈ (−k, k), δ ∈ (−k, k)}.
(82)

The optimal Bayes estimator of δ, denoted by δ̂πk
, for πk(θ)

and the loss function given in (17) is obtained by

δ̂πk
= argmin  

δ̂

B(δ̂, πk)

= argmin  
δ̂

∫
Θ

(δ̂(y)− δ)2

φ2
f(y|θ)πk(θ)dθ∫
Θ
f(y|θ)πk(θ)dθ

.(83)

Solving (83), we obtain

δ̂πk
(y) =

∫
Θk

δ
φ2 f(y|θ)dθ∫

Θk

1
φ2 f(y|θ)dθ

. (84)

As k → ∞, we see that Θk → Θ, δ̂πk
→ δ̂MinRisk, and

B(δ̂πk
, πk) → B(δ̂MinRisk, πk) = M(δ̂MinRisk), (85)

since δ̂MinRisk is an invariant estimator of δ (see (15) in
Section III). Let δ̂r denote an estimator of δ. For the loss
function given in (17), we have

M(δ̂r) ≥ B(δ̂r, πk) ≥ B(δ̂πk
, πk), (86)

since the optimal Bayes estimator for a prior πk(θ)
achieves the lowest average risk. Let k → ∞, we have
M(δ̂r) ≥ limk→∞ B(δ̂πk

, πk) = M(δ̂MinRisk). Hence, the
maximum risk of any estimator of δ is greater than or equal
to the maximum risk of δ̂MinRisk. Hence, δ̂MinRisk is a
minimax estimator of δ for the skew-normalized loss function
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defined in (17). Similarly, we can show that φ̂MinRisk is a
minimax estimator of φ for the skew-normalized loss function
defined in (18).

Minimaxity of optimum invariant estimators in Θ∗:
Marchand and Strawderman [17] gave conditions on ḠSModel

defined in (42), under which the optimum invariant esti-
mator remains minimax in the restricted parameter space,
Θ∗ defined in (40). If there exists a sequence of functions
{ḡak,bk,ck}∞k=1 ∈ ḠSModel from (42), such that

ḡak,bk,ck(Θ
∗) ⊆ ḡak+1,bk+1,ck+1

(Θ∗), (87)
∞⋃
k=1

ḡak,bk,ck(Θ
∗) = Θ, (88)

where ḡak,bk,ck(Θ
∗) = {ḡak,bk,ck(θ) : θ ∈ Θ∗}, then

δ̂MinRisk and φ̂MinRisk remains minimax in Θ∗ for the
considered loss functions (See Theorem 1 of [17]). Consider
the sequence of transformations from ḠSModel from (42),
defined as ḡak,bk,ck = ḡ1,−k,0 for k = 1, 2, · · · . We have

ḡak,bk,ck(Θ
∗) = {(φ, d, δ) : φ ∈ R+, d ≥ (−k/φ), δ ∈ R},

(89)

ḡak+1,bk+1,ck+1
(Θ∗) ={(φ, d, δ) : φ ∈ R+, d ≥ (−(k + 1)/φ),

δ ∈ R}. (90)

For this sequence of transformations, (87) and (88) are
satisfied. Hence, the optimum invariant estimators δ̂MinRisk

and φ̂MinRisk remain minimax in Θ∗ for the skew-normalized
squared error loss functions defined in (17) and (18).
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