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Abstract—In this paper we develop efficient methods for
devising lower complexity receivers that can achieve perfor-
mance close to the full complexity receivers for passive/active
multiple-input-multiple-output (MIMO) radar. The method
employed eliminates some parts of the test statistic to lower
either hardware or software complexity. For the case of spa-
tially uncorrelated reflection coefficients and spatially white
clutter-plus-noise, the test statistic requires the computation
of a set of matched filters, each matched to a signal from a
different transmitter. In this case our method is equivalent
to selecting a specific set of transmitters to provide optimum
performance. In the more general case of correlated clutter-
plus-noise and reflection coefficients, then the test statistic
requires the computation of a larger set of matched filters.
These matched filters correlate the clutter-plus-noise free
signal received at one receive antenna due to the signal
transmitted from some transmit antenna and the signal
received at another receive antenna. In the more general
case our algorithm picks the best of these matched filters to
implement when the total number of these matched filters
one can implement is limited.

Index Terms—MIMO radar, matched filter, transmitter se-
lection, target detection.

I. INTRODUCTION

The performance of multiple-input-multiple-output
(MIMO) radar systems has been widely investigated
since 2004 [1]-[11]. MIMO radar can benefit from ad-
ditional spatial separated antennas since it can observe
a target from different directions [12]. Passive radar has
also attracted attention over the past few years [13]-[15]
due to the advantages of low cost, low probability of
intercept, etc. In passive radar, existing illuminators of
opportunity be employed to save the cost and energy
on transmission.

Passive MIMO radar [16] employs multiple existing
illuminators and multiple receivers. In recent work,
the performance of passive MIMO radar systems has
been investigated intensively. Target detection using the
generalized likelihood ratio test has been studied with
[16] or without [17] the consideration of direct-path
signals. The modified Cramér-Rao lower bounds for
target parameter estimation are derived in [18], [19].
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In [18], universal mobile telecommunications system
(UMTS) signals are used to estimate target delay and
Doppler, and in [19], the authors studied target velocity
and location estimation from L-band digital aeronautical
communication system signals. The work in [20] inves-
tigated the ambiguity function for UMTS-based passive
radar under both coherent and non-coherent processing.
In [21], target tracking is studied for passive MIMO
radar.

Passive and active MIMO radar implementations re-
quire large hardware and software complexity when a
large number of transmitters are present, so that the low-
er complexity approaches studied here, like transmitter
selection approaches, are of considerable interest. Our
problem is somewhat similar to antenna selection. In
[22], [23], the antenna selection strategies for minimizing
the average error probability in a communication system
have been investigated when maximum likelihood or
zero forcing receiver is used. In [24], the authors consider
the optimal antenna subset selection in a communication
system with space-time coding in flat fading channels
based on exact or statistical channel knowledge. The
work in [25] investigated the optimal antenna selection
for maximizing the channel capacity in a communication
system under the assumption that only the long-term
channel statistics are known. In [26], a geometry-based
sensor selection method is investigated for Kalman fil-
tering. In [27], statistical information is used to select
transmitters in a MIMO radar for improving target de-
tection performance by increasing the total amount of
average incoming energy. In [28]-[30], antenna selection
in distributed MIMO radar for target localization by
minimizing the trace of Cramér-Rao bound is studied.
The optimal antenna selection and placement based on
Fisher information matrix for estimating target location
is investigated in [31]. In [32], the antenna selection for
minimizing the volume of an 7-confidence ellipsoid of
estimation error is presented.

For MIMO radar systems, the hardware and soft-
ware complexity depends heavily on the number of
matched filters (MFs) employed. For many practical
scenarios, when the number of transmitters is large
and the clutter-plus-noise is non-ideal, the number of
candidate matched MFs and the associated hardware
(e.g., adder and multiplier) required is typically large.
It is necessary to control the complexity and cost and to
simultaneously achieve the best possible performance.
The proposed method can be used in active MIMO



radar systems. If the location of the illuminators of
opportunity are known, the statistical properties of the
target reflection coefficients and clutter-plus-noise are
learned or estimated, and the direct-path signals trans-
mitted from different illuminators can be well estimated,
we can also use the approach in passive MIMO radar.
We derive the log-likelihood ratio (LLR) function for a
general case accounting for possibly correlated target
reflection coefficients and clutter-plus-noise, and show
that a limited-complexity receiver can be achieved by
matched filter (MF) selection.

For the spatially uncorrelated reflection coefficients
and spatially white clutter-plus-noise, we show that
the MF selection is equivalent to selecting a subset
of transmitters to provide optimum performance. We
first consider the case where the signals transmitted by
the transmitters are mutually orthogonal and maintain
orthogonality for different delays and prove that at each
receiver selecting the MFs corresponding to the largest
signal-to-clutter-plus-noise ratios (SCNRs) leads to the
best detection performance. Then, we consider the case
where the transmitted signals may not be mutually
orthogonal. For a special case where each receiver selects
one ME, a closed-form solution is presented. When each
receiver selects an arbitrary number of MFs, a closed-
form solution is not available to optimize detection
probability. In these cases, suboptimal criteria such as
Kullback-Leibler (KL) distance and divergence [12] can
be employed. In this paper, we use KL distance as
a low complexity approximate measure for detection
performance considering that it is typically used in
the Neyman-Pearson settings [33]. A greedy algorithm
adopted from [34]-[36] is considered in this paper. Nu-
merical experiments justify our approach.

The rest of the paper is organized as follows. The
signal model for target detection is presented in Section
II, where the likelihood ratio test is derived. The lower-
complexity receiver design method is introduced in Sec-
tion III. Transmitter selection is studied in Section IV.
Numerical examples are presented in Section V. Finally,
Section VI concludes the paper.

II. SIGNAL MODEL FOR TARGET DETECTION

Consider a MIMO radar system with M transmitters
and N receivers located at known positions (¢ ., Yt.m),
m = M and (%rn,Yrn), n = ., N, re-
spectively. The signal from the m-th transmitter is as-
sumed known or perfectly estimated! and written as
VEmsm (t), m = 1,2,..,M, where fT\sm t)2dt = 1,
E,, is the transmitted energy, and 7T is the observation
interval. Consider a possible static target in the cell-

IThe case with imperfectly estimated waveforms is considered in
numerical experiments.

under-test located at (z,y). The received signal at the
n-th single antenna receiver can be written as

Z ﬂmn
Rt m
in which w,(t) represents the clutter-plus-noise, as-
sumed to be temporally white zero-mean complex Gaus-
sian such that E{w;(t)w}(u)} = N;;0(t — u), where Nj;
is the (4, j)-th element of a positive definite Hermitian
matrix N, and E{-} denotes expectation. The reflec-
tion coefficient f3,,, is complex Gaussian distributed
with zero-mean and variance ¢2,, while being inde-
pendent of the clutter-plus-noise components. The ter-
m R, is the distance between the m-th transmitter
and the target, R,, is the distance between the n-
th receiver and the target, and 7,,, is the time delay
between the m-th transmitter and the n-th receiver.
They satisfy Rim = /(Tt,m — )2 + (Ytm — ¥)2, Ren =

\/(Iﬁn - 56)2 + (yr,n - y)2/ and Tmn = (Rt,m + Rr,n) /C/
where c is the speed of light. Define

E=1[€1, &8, @)

where Sn = [£1n7 ---7£Mn]T/ and gmn = 5mn\/m/(Rt,m
R,,). Define the covariance matrix of ¢ as E{¢¢7} = A,
which is a positive definite Hermitian matrix. Note that
for correlated target reflection coefficients, A is non-
diagonal, while for spatially uncorrelated target reflec-
tion cofficients, A is diagonal. From (1), the target detec-
tion problem can be formulated as

Ho rp(t) =wp(t), teT, ©)]

M
) = Z €mn5m(t

m=1

Em Sm(t - Tmn) + wn(t)7 teT (1)

Hy it — Tmn) +wn(t), t€T. (4)

Assuming the MN received waveforms s,,(t — Timn)
(m=1,..,M and n =1, ..., N) are linearly independent
(extensions are possible), the signals can be represented
by their components in terms of a set of basis functions.
The log-likelihood ratio (LLR) that considers these com-
ponents as observations is given by (see Appendix A for
complete derivation)

L=C+z"(NoE) - (N@E+TATY) Nz, (5

and the test statistic is given by

T=2"(N®E)'- (N®E+TAT) Nz (6
where ® denotes Kronecker product, the constant C' =
In(Det(N ® E)) — In(Det(N ® E + WAPH)), in which
Det(-) denotes determinant, = is an M N x M N matrix

with the ((ny — 1)M + my, (ng — 1)M + my)-th element
(n1,n2 =1,...,N and m;, mq =1, ..., M) given by

':‘(nl—l)M+m1,(n2—l)M+m2

— [ st~
i

Tmansa )dt, (7)

Trnang )Sma (E —



and ¥ = Diag{%¥y,..., ¥x}, where ¥,, is an MN x M
matrix whose m-th column is the ((n — 1)M + m)-th
column of E. In (6), the MN? x 1 complex Gaussian
vector

x=[af, ... zy]" 8)

collects all the MF outputs, where ,, = [111, .., Tarnn] T
is an MN x 1 vector with the ((n’ — 1)M + m)-th
element (m = 1,..,M and n’ = 1,...,N) given by

Trnim = [ 5 (t = Tt )7 (t)dt.

III. LIMITED-COMPLEXITY RECEIVER DESIGN

From (6), we see that the test statistic and hence
the detection performance is dependent on the received
signals only via the MF output vector . The size of x
determines the complexity of the associated hardware or
software. We propose to select a subset of the vector x
for subsequent processing to reduce complexity. Before
proceeding, define a selection vector

; ©)

where a,, = [ai1n,-..,arnna]T, in which a0 € {1,0}
indicating whether or not the signal associated with the
(m,n')-th transmitter to receiver path is processed at the
n-th receiver. Define a selection matrix

J(a) £ D1ag{J1 (al), ceey JN(aN)}
where Diag{-} denotes a block diagonal matrix and
J,(a,) = diag {a,},

in which diag,{-} represents a diagonal matrix with the
argument on its diagonal, but with the all-zero rows
removed [37], [38]. The size of J,,(a,,) is u, x M N, where

(12)

a?al,. . al)"

(10)

(11)

Un = HanHO

is the number of paths to be processed at receiver n
and || - ||p denotes the {y-norm operator. Assume that
at least one path is processed at each receiver, such
that u, > 1 for all n. For a given selection, the MFs
corresponding to the zero elements in a are no longer
needed and the associated hardware or software can
be saved. Accordingly, the MF output vector is reduced
from x to J(a)x. Then the test statistic is changed from
(6) to

T, = (J(a)2)" ((J(amoﬂ(a))‘l

— (J(@)2,J"(a) " >J(a)a:, (13)

where
o =E{zz? M} =N@E (14)
and
2 =E{zz|H,} = N E + TATH. (15)

For the special case, where signals associated with all
paths are processed, (13) is equivalent to the test statis-

tic in (6). From (13), we see that ij:lun MFs, (1 +
SN ) N w, multipliers, and (14 20 u,)(—1 +
22[:1 uy) adders are required.

The test statistic 7 is compared to a threshold 7,
such that a decision for #; is made if Ty > v and H,
otherwise. Suppose, to limit the cost, receiver n can at
most process signals associated with A, (A4, < MN)
paths, namely u,, < A,. If the Neyman-Pearson criterion
is employed and «(Pra4, a) is chosen to provide a false
alarm probability Pr4 when a particular a is employed,
the optimal selection can be obtained by solving the
following optimization problem
(16a)

max

f Pr(Ts > v(Pra,a)[H1)
P ac{0,1} MN?2
s.t.

1<up,<A,,n=1,....,N (16b)

The solution of P; provides guidance to system design-
ers on how to maximize detection performance with
limited budget for a general case where the target reflec-
tion coefficients and the clutter-plus-noise components
can be correlated. For simplification and to get insight,
next we concentrate on the case of spatially uncorrelated
coefficients and spatially white clutter-plus-noise.

IV. TRANSMITTER SELECTION FOR PASSIVE/ ACTIVE
MIMO RADAR

In this section, we consider the case under the assump-
tion of spatially uncorrelated target reflection coefficients
and spatially white clutter-plus-noise components. In
this case, the previously discussed limited-complexity re-
ceiver is equivalent to the transmitter selection problem
for passive/active radar, as shown in the sequel.

For spatially uncorrelated target reflection coefficients,
the covariance matrix A of € in (2) can be written as

A:Diag{Al,...,AN}, (17)
where
o2 Fy o2, Euy
A, = dia 1n R . 18
g{ (Rt,er,n)Q (Rt,]WRT,n)2} ( )

in which diag{-} denotes a diagonal matrix. For spatially
white clutter-plus-noise, the covariance matrix defined
after (1) can be reduced to

N = diag{Nll,Ngg...,NNN} é N()IN, (19)

where N;; = Ny, i =1, ..., N is the power spectral density
(PSD) of w;(t) and Iy is a N x N identity matrix.

Substituting (17), (18) and (19) into (6), the test statistic
becomes?

N
1 1y
T = N > @l (Bn+ NoA )y, (20)
n=1

2Even if the M N received waveforms s$m(t — Tmn) are not linear
independent, the test statistic in (20) is also make sense because the
matrix Z,, + NoA; ! in (20) is always invertible.



where 2, is an M x M matrix with the (i, j)-th element

given by =, ; jy = [ 57 (t — Tin)s;(t — Tjn)dt and
Ty = [xlna -~-a-rJ\4n]T (21)
is now reduced to M x 1 dimensional, in which
Ton = / sy (t — Tynn ) (t)dt. (22)
T

Therefore, in this case the MF output vector in (8) is
reduced to M N x 1 dimensional, given by

7-’3%]T = [$11,$217 mCUMN]T' (23)

It is seen from (21) that at the n-th receiver, the MF
output vector x, has M elements, each corresponding
to the contribution due to a given transmitter. Thus,
the selection of a subset of z = [z7T,...,2%]T implies
the selection of transmitters at each of the receivers.

Accordingly, we redefine

x=[x],..

) aMn]T (24)

and the overall selection vector in (9) is now reduced to
an M N x 1 transmitter selection vector,

a, = [aln,

7a%]T = [a117a217"'7aMN]Ta (25)

where a,,,, € {0,1} indicates whether or not transmitter
m is selected for processing at receiver n.
The test statistic after transmitter selection can be
written as
N

T, = Z(Jn(an)wn)H ( (Jn(an)EomJg(an))71

n=1

a=lal,..

_ (Jn(an)zl,n.],?(an))1>Jn(an)wm (26)

where the selection matrix

Jn(a,) = diag {ain,...,ann} (27)
is u,, x M dimensional,
Son = E{znz) [Ho} = NoEn, (28)
and
Sin=Eaazl [Hi} = EpAnE] + NoEn. (29)

Next, we first assume the waveforms are orthogonal
and provide a closed-form solution to the optimization
problem P;. Then, for non-orthogonal waveforms, sub-
optimal solutions based on KL distance are presented.

A. Orthogonal Waveforms

Assume the transmitted signals are mutually orthog-
onal and maintain orthogonality for any delay 7 of
interest, namely,

/ Smy (t)sy,, (t —7)dt =0, for my # my, V7. (30)
-

Thus, E,, = Iy; and the test statistic in (26) can be written
as

N

1 _
=3 S (Inlan)an)” {Jn(an)(NoAnl
n=1

+I]\/I)71J7’{(an):| Jn(an)wn, (31)
= i i QEmU%mamn 2 |-T'mn‘2‘ (32)

n—1m—1 NO(Emen + NO(Rt,mRr,n) )

N M 9

_ Z Emamnamn ‘xmn‘{ (33)

NO(EmUmnamn + NO(Rt mRr n) )

n=1m=

where the last equality is obtained considering that
the an,, in the numerator of (32) equals either 0 or
1, hence adding an @, in the denominator as per
(33) does not change the result. Define the signal-to-
clutter-plus-noise ratio (SCNR) of the (m,n)-th path as
Nmn = mo'gnn/NO(Rt,mRr,n)Q‘

Then, (33) can be rewritten as a function of the SCNRs
as follows

N M
=22 Gum (34)
n=1m=1

where (nn = mkﬂmnpl and Pmn = NMmnGmn 18
non-negative. For later use, define p, = [pin, ..., parn]”
the transmitter selection vector weighted by SCNRs, p =
o1, .. p3]", and 1 = [n11, 121 ]

Denote the cumulative distribution function (cdf)
of Gun under H;(i = Oor 1) by F¢  i1# (2 pmn) =
Pr(Cmn < 2,H,;). It is easy to see that when p,,,, =0,

1 z>20
FCm,n|7'li(zvpmn = 0) = { 0 2<0

Recall from (22) that z,,, ~ CN(0,Ny) under Hy and

(35)

Tomn ~ CN(0,No(1 + Nmn)) under H;. Thus, when
Pmn > 0, it can be shown that (,,,, ~ %)@ under

Ho and (p ~ 25" X3 under H;, so the corresponding
Ft,..1#: (2, pmn) can be obtained based on the cumulative
distribution function (cdf) of the Chi-squared x3 distri-
bution.

Hence, the cdf of the test statistic in (34) under hy-
pothsis #; can be calculated by [39]

FTS\'Hi(va) PT( Z‘H )

=F¢ 1 1m; (2, p11) * Feor 12, (2, p21) * ... % FgMN\Hi (2, pmn) (36)

:/ Feyma (2 = 221 — . — 2mn, p11)
RMN—1
dFCzl\Hi(va le)"'dFCMN\Hi(ZMN’ PMN) (37)

where * denotes the convolution operator®, and RMV 1
means the (M N — 1)-dimensional real space since there
are (M N — 1) convolution operators in (36).

Lemma 1. Denote by p(1),p2)--> p(un) the decreasing
sequence of nonnegative pi1,po1,..., PN and define p =
[p(l),p(g).,.,p(MN)]T. Let o and 3 be two feasible solutions
for Py, and correspondingly po = a ©nand pg = B0,
where © denotes Hadamard product. If po = pg, where ">’

3The convolution between two cdfs Fj(z) and F»(z) is defined as
Fl( * F2 Z) f_ F1 Z — )dFQ(y).



means element-wise no less than*, then, for the hypothesis
testing problem characterized by the test statistic in (34), the
detection probability under Neyman-Pearson criterion satisfies

Pp(pa) = Pp(pg) (38)

where Pp(p) = Pr(Ts > ~|H1) and ~ is determined by the
required level of false alarm probability Pp 4 and the weighted
transmitter selection vector p.

Proof. Tt can be proved (see Appendix B) that Pp(p) is
a strictly monotone increasing function with respect to
any element p,,, (m =1,...,M,n =1,...,N) of p when
all the other elements are fixed.

From (36), according to the commutative law of con-
volution,

= FCll‘Hi(Z’pall) Lk FCMN|'H1'(vaOLJWN)

= FCll\'Hq‘, (Z7pa(1)) *

FT5|'Hi(Z»pa)
K FCMN\H1, (vaa(MN))

= FTS|Hi(Zap7a)a (39)
where 7 = 0 or 1. Then
Prpa=1—Fr 3,(7, Pa) =1 — Fr 3, (7, Pa).  (40)
From (40), v(Pra, pa) = 7(Pra, Pa), and
PD(pa) =1- FTS‘H1 (’Y(PFA7pOL)7pa)
=1—Fpjnu,(7(Pra, Pa); Pa) = Pp(Pa)- (41)
Similarly,
Po(pg) = Pp(75)- 2)
Because po)y = pak), for all k, k = 1,..., M N, then,

based on the monoton1c1ty of Pp(p), it is clear that

Pp(pa) = Pp(pa)- (43)

Then from (41), (42) and (43),
Pp(pa) = Pp(pa) = Pp(pg) = Pp(ps) (44)
which completes the proof. O

From Lemma 1, the following conclusion follows.

Theorem 1. Under the assumption of uncorrelated target
reflection coefficients, spatially white clutter-plus noise, and
orthogonal transmitted waveforms, the optimal solution of P4
can be obtained by selecting the transmitters corresponding to

the A, largest5 SCNRs at receiver n, n =1,..., N, i.e.,
* 1, m € Sn
Gmn = { 0, else, (45)

where S, denotes the index set of m associated with the A,
largest My in L, = {Mns -, Min }-

4When po >~ pg, the k-th element pg (k) Of pa is no less than the
k-th element pg(y) of pg forall k, k =1,..., MN.

51f two transmitters, say the mi-th and ma-th transmitter (m; <
mg), lead to the same SCNR 7y, n = Nmqn, then the one with lower
index is selected first such that we select the m1-th transmitter before
the mao-th transmitter.

B. General Waveforms

This section generalizes the discussion to possibly
non-orthogonal transmitted waveforms. First, we con-
sider a special case where each receiver selects one trans-
mitter, a closed-form solution is presented. Further, when
each receiver selects an arbitrary number of transmitters,
KL distance as a suboptimal criterion is employed.

1) General Waveforms with A,=1: First, we consider the
case where A, = 1 for n = 1,..., N. For each n, there
is only one non-zero element in the set {a1n,...,anmn} ,
leading to u,, = 1 and the J,(a,) in (27) becomes an
1 x M dimensional row vector. Thus, the terms in (26)
can be simplified to

(46)

M
)xn - E AmnTmn
m=1

and from (24) and (27), recalling that a,,, equals either
0 or 1, we have

-1 -1

|:Jn(an)20>anT(an):| - [Jn(an)zl,nJg(an)}

M -1 M -1
= <Z EO,n,(m,m)amn> - <Z E1,n,(m,m)amn>

m=1 m=1

()
m=1 2O,TL,(W”LJTL) Zl,n,(m,m)

where ¥; ,, (mm) (i = 0 or 1) denotes the (m,m)-th
element of the matrix X, ,,. From (18), (28) and (29),

(47)

= NOEn,(mm)
= NO/ S:n(t - Tmn)sm(t - Tmn)dt
T

20,n,(m,m)

(48)

and
M M

E1,1’L.,(m,m,) = NOEn,(m,m) + Z Z En,(m,i)An,(i,j)En,(j,m)
i=1 j=1

M
E; Uzn"—‘n (i, m)|
_ N+ 3 BiinlEnm

(Rt,er,n) (49)

where Z,, ; ;) and A, (; ;) denote the (i, j)-th element of
E, and A,, respectively. Substituting (46)-(49) into (26),
we obtain

Q a

M=

= § Imnlmn, >
m=1

n

OmnOmn

2
xT 714 . N :Z:mn
 No(L+ omn) !

WE
M:

Il
—
3

n n

M

N

OmnQAmn

(50)

Mz

2
=~ |Tmn| ,
11 N0(1+anamn)| |

3
Il

where 0., = 32V, W From (22), we see that

for the case of general waveform, z,,, ~ CN(0,No)
under Hy and z,,, ~ CN(0,(1 + 0mn)No) under H;.
The terms z,,,,, are mutually independent for different n.



Recall that A,, = 1, so the correlation between different
MF outputs at receiver n can be ignored. Note that the
only difference between (34) and (50) is that all the terms
Nmn associated with (34) are changed to o¢,,,,. Hence, by
changing the term 7,,,,, in Theorem 1 to g,,,, the optimal
solution for the case A; = Ay =, ..., Ay =1 is given by

N 1, meS

else, (51)

where S,, = argmax{o,}, n =1,...,N.
m

2) General Waveform with general A,: Now we study
a more general case where A, > 1 for certain n. Since
for this case, analytically evaluating detection probability
is intractable, it is difficult to solve P;. An alternative
way is to change the objective fuction from the detection
probability to some other heuristic criteria [12], [37].
Based on Stein’s lemma, for a fixed value Pr4 [37], [38],

ln(PM(a))a'—s>' — DKL((J,)7 for PM(G,) —0 (52)

where “3" means converges almost surely. Py/(a) =1 —
Pr(Ts > v(Pra,a)|H1) denotes the probability of miss
and

Dr(@= [ (““"’) o @)y (53)

Py, (y)

denotes the KL distance between py 3, (y) and py 3, (y),
in which

T

y= [yl .y\] (54)

and y,, = J,(a,)x,. So the KL-distance is a reasonable
metric to characterise the detection performance in the
Neyman-Pearson settings. Next, we use the KL-distance
as the alternate to facilitate the evaluation and optimiza-
tion.

It is obvious that y,, n = 1,..., N are mutually inde-
pendent for different n under both #y and #;. Therefore

H Py, 1. (Yn)

where py 3, (y) and py, |3, (yn) are the probability den-
sity functions (pdfs) of y and y,, (n =1, ..., N) under H;
(¢ = 0,1), respectively. Thus, the KL distance between
Py, (y) and py 3, (y) in (53) can be written as

Pyn|H1Yn
DKL 7/ In ( Y ) D yn
Z P ) H v 1
> p )
— /ln < Yn|H1 Yn
n=1 panHO yn)
X H /p?/kU‘il yk dyk)

k#n

N (pynml(yn)

/—\A

|~

) Py, #1 (Yn)dYn

)pyn\Hl (yn)dyn

— Py (3o (Yn)
N
=Y D (an), (56)
n=1

where
DEI(a,) = /hlpynﬂl(y”)
pyn‘HO (yn)

is the KL distance between the two distributions
Py, 17, (Yn) and py 12, (yn). The distributions of y,, n =

Py, |#H, (Yn)dyn (57)

1,2,...,N, under the two hypotheses are

YalHo ~ CN (0, J(an) S0, d " (an) ) (58)
and

YalHy ~ CN (0,0 (a) 100 (an)),  (59)
n=1,2,.., N, where 3 ,, and X ,, are given in (28) and

(29). Inserting (58) and (59) into (57), we obtain [40]

DI (a,) =Tt (I (@) B1 0 T (@) (T (@) B0, T (a)) )
Det(Jn(an)El,nJg:(an))

" Det(J (@n)Zo,n T (an))

U, (60)

where Tr(-) denotes trace.
The KL-optimal transmitter selection can be obtained
by solving the optimization problem

DKL(a)
1<u, <A,,n=12..N

max

P, ac{0,1}MN
s.t.

From (56) and (61), we see that solving P is equivalent

to solving the following N optimization problems. For
n=1,.,N,

(61)

max DXl(a,) st. 1<u, <A, (62)
a,e{0,1}M
Considering that, from (11),
Jl(a,)d,(a,) = diag{ain, ..., anm}, (63)

we change the optimization variable in (62) from a,, to
J,, where J,, has one unit element per row and all the
other elements are zeros such that J,J! = I, . Then,
an alternative optimization problem is obtained

max DEEL(J,) (64a)
st. J,JF=1,, (64b)
J, € {0, 1}unxM (64c)
1<u, <Ay, (64d)

where n =1, ..., N.

Since solving (64) is NP hard [40], we employ a
greedy-based method [29], [34]-[36] to find a suboptimal
solution. In the greedy-based method, the rows of the
selection matrix J,, are determined one by one. Initially,
we consider selecting just a single row of J,, and use
(64a) to compute

51 = arg max
J1EQ
M} and e, is the ji-th row of the
Once j; is obtained, we set J,, = =e;
and Q = Q) j;. Then, we move on to select the second

DrIL(L(ej1)7 (65)

where Q = {1,2,...,
identity matrix I,.



row of J,, and use (64a) again to compute

52 = arg max foL([Jg, e;‘-FQ]T). (66)
Jj2€Q
Once j, is obtained, we set J,, = [JT ,€.]7 and Q =

Q \32 Next, we select the third row of J,, to get 73, SO
on and so forth, up to the A,-th step. The greedy-based
algorithm is summarized in Algorithm 1.

Algorithm 1 Greedy-Based Algorithm

Input: 3¢, 31, and A4,, n=1,...,N.
Forn=1:N do
Set 1 ={1,2,..., M} and use (64a) to compute
J1 = arg max DEL(e;,).
J1EQ _
Set Jn=671 and Q = Q\ j;.
Fori=2:A, do
Use (64a) to compute
ji = argmaXDrlL(L([']g;v eji]T)'
Ji€Q _
Set J,, = [Jg,e%]T and Q = Q) j;.
End for '
Set Gpmn=[JLJn]  and @, = [Gin, ..., dan)”
End for ’
Output: a = [a7,..
selection vector.

"’T}T

ayl", which is the resulting

Complexity: Assume A, (n = 1,...,N) are fixed con-
stants. For Algorithm 1, at the i-th iteration, we need
to compute DXL as per (64a) (M — i) times, where the
complexity for computing (64a) is on the order of O(i?),
so the complexity at the i-th step is on the order of
O(i3(M —i)) = O(M). Thus, the total complexity of using
Algorithm 1 is on the order of O(M N). For comparison,
suppose we let |la,| = A, and use exhaustive search,

then we need to compute (64a) i\([ = O(M*")
times and the complexity for computing (64a) is on the
order of O(A2). So the total complexity of using the brute
force method is O(Y.N , MArA3) = O(XN, MA»).

V. NUMERICAL EXPERIMENTS

In this section, numerical examples are presented to
illustrate our findings. We set the transmitted energy
E,, = 10% for all m, m = 1,..,M. The transmitted
waveforms are s,,(t) = %exp(j%rfmt)ﬂ <t<T,
where T' = 1ms and f,, is the frequency of the m-th
transmitter. Define f = [fi, f2,..., f;] as the frequency
vector. The target is located at (z,y)=(0, 0) km. The
variance of the reflection coefficient associated with the
(m,n)-th path is set as 02,, = 10 for all m and n, and
the PSD of the clutter-plus-noise is set as N;;=10~° for all
i, i =1,...,N. All curves are obtained using 10* Monte
Carlo simulations.

A. Optimal Selection for Orthogonal Waveforms

Assume M = 3 transmitters located at (z¢1,¥:,1)=(0,
1) km/ (xt,Q;yt,Q): (0/ 2) km/ and (xt.ﬁ)yt,S) :(0/ 3) km/

TABLE I: Detection probability for different selections

Selection Combination | SCNR (dB) Pp
{<1,1><1,2>} {10,10} 0.8798
{<1,1><2,2>} {10,3.98} | 0.7286
{<1,1>,<3,2>} {10,0.46} | 0.6868
{<2,1>,<1,2>} {3.98,10} | 0.7422
{<2,1>,<2,2>} {3.98,3.98} | 0.4354
{<2,1>,<3,2>} {3.98,0.46} | 0.3196
{<3,1>,<1,2>} {0.46,10} | 0.6785
{<3,1>,<2,2>} {0.46,3.98} | 0.3117
{<3,1>,<3,2>} {0.46,0.46} | 0.1880

respectively. The N = 2 receivers are located at (z,1,
yr1)=(-1, 0) km and (z,1,yr2)=(1, 0) km. Suppose the
number of transmitters that can be selected at the re-
ceivers are A; = Ay = 1. The target reflection coefficients
and the clutter-plus-noise are spatially white. Let the
frequency vector be f = [12, 2 3] which ensures
that the waveforms are approximately orthogonal. The
false alarm probability is 1072. Table I shows the de-
tection performance of all selection schemes. Denote by
< m,n > the m-th transmitter being selected at the n-th
receiver. We can see that higher detection probability can
be achieved when the subset of the selected transmitters
have larger SCNRs. For example, the corresponding
SCNRs of the selection {< 2,1 >,< 1,2 >} are {3.98,10}
dB, which is larger than the the corresponding SCNRs of
the selection {< 3,1 >, < 3,2 >}, which are {0.46,0.46}
dB. The resulting detection probabilities are 0.7422 and
0.1880 respectively. Clearly, the former selection with
higher SCNRs has larger detection probability. We can
see that optimal selection is {< 1,1 >, < 1,2 >}, and the
corresponding SCNRs are the largest, which agrees with
Theorem 1.

B. Optimal Selection for Non-orthogonal Waveforms

The previous results assumed orthogonal signals. Nex-
t, we remove this assumption to investigate the general
case. Assume there are M = 4 transmitters located at
(l't,layt,l):(ol 1.5) km, (w2, yt,2)= (0, -1.5) km, (43, yt,s)
=(0, 3) km and (x¢4,yt4) =(0, -3) km, respectively. The
N = 2 receivers located at (z,1,y,1)=(-1, 0) km and
(r1,Yr2)=(1, 0) km. We consider three scenarios. The

10 10 30 30

frequency vector f for each scenario is [, &, 7, 7| (Sc.

1), [32, 19,10 0] (Sc. 2) and [42, 22, 30 2] (Sc. 3). In Fig.
1, the selection combinations are {< 1,1 > /< 1,2 >}
Sel. 1), {< 1,1 >,<2,1>,<1,2>,<2,2>} (Sel. 2), {<
1,1 >,<3,1><1,2><3,2>} (Sel. 3) and all trans-
mitters being selected (Sel. 4). The other parameters are
the same as those in the previous example. In scenario 1,
we can see that the corresponding SCNRs of selection 2,
{6.48,6.48,6.48,6.48} dB are larger than the correspond-
ing SCNRs of selection 3 , {6.48,0.46,6.48,0.46} dB, but
the later selection has better detection performance, so
the selection which has the best performance in terms
of the ROCs may not correspond to choosing the largest
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Fig. 2: The ROC curves (averaged over a hundred d-
ifferent realizations of transmitter replacement) of the
optimal selection, KL-based selection, Algorithm 1-based
selection, random selection and worst selection.

SCNRs when the transmitted waveforms are not orthog-
onal. In scenario 2, where all the transmitted waveforms
are the same, we can see the detection performance of
selection 1 is almost the same with selection 4 (which
selects all the transmitters), which indicates that selecting
only some of the transmitters as opposed to all of them
may lose very little performance. In scenario 3, the
waveforms are approximately orthogonal. We can see
that detection performance in scenario 3 is best among
the three scenarios if we select all transmitters while
the detection performance of the optimal selection in
scenario 3 performs poorly if the number of transmitter
that can be selected is A; = A5 = 1.

C. KL-Based Selection for Non-orthogonal Waveforms

Now we consider the case where M = 8 transmitters
are randomly and uniformly located in a ring with inner
radius 2 km and outer radius 4 km. There are two re-
ceivers located at (x, 1, yr1)=(-1, 0) km and (z, 2, yr2)=(1,
0) km. The frequency vector is f = |55, 5=, ..., =). The
number of transmitters that can be selected at each
receiver is A; = Ay = 2. The other parameters are the
same as those in Fig. 1. In Fig. 2, the ROC curve averaged

1 o - -
;/I/' — — — Scenario 1
— — Scenario 2
05f Scenario 3|
if
ol
i
!
0.85 !
a® 08
0.75
0.7F
0.65
0.6 i i i i i i i i i
5 10 15 20 25 30 35 40 45 50

Number of selected transmitters A,

Fig. 3: Detection probabilities of the Algorithm 1-based
selection versus the number of selected transmitters.

over a hundred different realizations of transmitter re-
placement are plotted for the optimal selection (obtained
via exhaustive search), KL-based selection, Algorithm 1-
based selection, random selection and the worst selection
(obtained via exhaustive search). We can see that, for any
fixed Pra, the optimal and worst selection lead to the
largest and smallest Pp, as expected. The Pp obtained
using random selection is larger than the worst case. The
Pp for the KL-based selection is better than the random
selection. The Pp for the Algorithm 1-based selection
is almost on top of that for the KL-based selection. We
find that the ROC curves obtained using both the KL-
based and Algorithm 1-based methods are close enough
to the optimal selection, which implies the effectiveness
of these proposed methods.

D. Large Saving of Complexity

Consider the case where the reflection coefficients are
uncorrelated and the transmitted waveforms are non-
orthogonal. Assume there are M = 50 transmitters
randomly located in a ring with inner radius 4 km
and outer radius 6 km. A single receiver is located at
(r1,Yr1)=(0.5, 0) km. We consider three scenarios, the

frequency vector f for which are [53-, 0=, ... g] (Sce-
nario 1), (57, sb% ..., %] (Scenario 2) and [, 567, .-, 3]

(Scenario 3), respectively. Due to large number of trans-
mitters, the optimal selection based on exhaustive search
becomes infeasible. Thus, we employ Algorithm 1 in
this example to select transmitters. Letting Prs = 102,
for each scenario, the resulting Pp for five different
(random) transmitter placements are plotted versus the
allowed number A; of selected transmitters, as shown
in Fig. 3. It is seen that for all the tested scenarios and
transmitter placements, selecting A; = 6 transmitters
leads to almost the same Pp as selecting all transmitters.
Clearly, using the proposed method, a large saving of
complexity can be gained accordingly.

E. Extension

1) Correlated Reflections and Clutter-Plus-Noise: In Fig.
4, the parameters are the same with the case in Fig.
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Fig. 4: The ROC curves (averaged over a hundred d-
ifferent realizations of transmitter replacement) of the
optimal selection, KL-based selection, Algorithm 1-based
selection, random selection and worst selection under
correlated reflections and clutter-plus-noise.

2 except for the clutter-plus-noise and the reflection
coefficients are all not spatially white. The correlation of
clutter-plus-noise are set as N;;=107% for i = j and 1077
for i # j, 4,7 = 1,2, and the correlation of reflection
coefficients are set as E{S,,,8,,,} = 10 for m = m/,
n =n' and 1 otherwise. In Fig. 4, the ROC curve aver-
aged over a hundred different realizations of transmitter
replacement are plotted for the optimal selection, KL-
based selection, Algorithm 1-based selection, random
selection and the worst selection. We can see that, for any
fixed Pry, the optimal and worst selection lead to the
largest and smallest Pp, as expected. The Pp obtained
using random selection is larger than the worst case. The
Pp for the KL-based selection is better than the random
selection. The Pp for the Algorithm 1-based selection
is almost on top of that for the KL-based selection. We
find that the ROC curves obtained using both the KL-
based and Algorithm 1-based methods are close enough
to the optimal selection, which implies these proposed
methods are again effective in finding good approaches
without exhaustive search.

2) Imperfectly Estimated Waveforms: For passive radar,
the waveforms of the transmitted signals must be es-
timated. Now consider the case where the transmitted
signals are not estimated perfectly. Denote by 3, (¢)
the estimated waveform for the m-th (m = 1,..., M)
transmitted signal. Assume

B (1) = s (t) + em(t),0 < t < Ty (67)

where e,,(t) is the measurement error. Assume e, (t)
is a zero-mean complex Gaussian random process with
autocorrelation function

N,

€m

E{em(t1)er, (t2)} = { 0

t1 =12

RN (68)

Define the signal-to-error ratio (SER) for the m-th
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Fig. 5: Average detection probability for the optimal se-

lection, KL-based selection, Algorithm 1-based selection,

random selection and worst selection versus SER.

waveform as

sEr, _ do Ism®Pdt
N, T

We assume SER; = SER; =,...,= SERy;. In Fig. 5, the
Py 4 is fixed to 10~2, and the other parameters (including
the SCNR) are the same as those in Fig. 2, except for the
inaccurate waveform estimation. Thus, if the waveforms
were perfectly estimated, the Pp should take values on
the left hand side of Fig. 2. We plot the average detection
probability for the optimal selection, KL-based selection,
Algorithm 1-based selection, random selection and worst
selection versus SERs. From this figure, we see that
the detection probability obtained by both the KL-based
and Algorithm 1-based methods are close enough to the
optimal selection even in very low SER, which implies
these proposed methods are also effectiveness even if the
transmitted waveforms are estimated. For large enough
SER, it is seen that the Pp approaches the corresponding
values in Fig. 2 for the perfect estimated waveforms case,
as expected.

(69)

VI. CONCLUSION

We studied the limited-complexity receiver design for
passive/active MIMO radar, considering that usually
only a limited number of MFs can be implemented at
each receiver due to cost considerations. For a general
case with possibly nonorthogonal signals and possibly
correlated clutter-plus-noise and reflection coefficients,
we investigated the target detection performance un-
der the Neyman-Pearson criterion and formulated an
optimization problem to maximize the detection perfor-
mance for selecting a set of matched filters. For the case
of spatially white clutter-plus-noise and uncorrelated
reflection coefficients, we showed that the problem is
equivalent to selecting a subset of transmitters. When
the signals transmitted by different transmitters are mu-
tually orthogonal, we proved that the selection leading
to larger SCNRs can achieve larger detection probability.
Thus, at each receiver maximum detection probability



can be achieved if we select the transmitters corre-
sponding to the largest SCNRs. When the transmitted
waveforms are nonorthogonal, we replaced the original
objective function with the KL distance and showed
that the KL-based transmitter selection method can lead
to a detection performance that is close to the optimal
selection. Further, optimally selecting a few transmitters
can lead to almost the same performance as selecting all
transmitters. Simulations show that this method can also
be used in the more general case of correlated clutter-
plus-noise and reflection coefficients and in the case
where the waveform is estimated.

APPENDIX A
DERIVATION OF LOG-LIKELIHOOD RATIO IN (5)

Define S £ {s;(t — Tmn),t € Tlm = 1,...M,n =
1,...,N}. Since the elements in S are linear independent,
the dimension of span (S) is K = M N, where span (S) is
the set of all linear combinations of the elements of S. Let
{#1(t), ..., 6 (t)} be an orthonormal basis of span (S). We
extend the set {¢1(t), ..., ok (t)} to a complete orthonor-
mal basis, which is {¢1(¢), ..., ox (t), px+1(t), ...}. Thus,

Z Trn®i(t

oo

:Z<Tn()¢k

k=1

ra(t) > gt (70)

where

P =< Ta(t), i (t) >2 /T ru (1) 650t 1)

is the inner product between r,,(t) and ¢ (¢).

Under Hg, Tk, can be written as ri,|Ho = < wy(t),
ér(t) >= Wiy, where wy, is complex Gaussian distribut-
ed [41] with zero-mean and variance 1, and

E{T’knTz/n/ |7‘[0} = E{wknw};/n/ |H0}
—E{ /T wa ()65 (1)dt /T Wi ()bw (Bt}

:/ / E{wn, (t)wy ()} i (¢) dar () dtdt’

TIT

:/ / Ny 8(t — )y, (8) g (¢ dtdt’
TJT

= Nnn’ékk’v (72)
where k and k' are positive integers, n,n’ = 1,..., N and
1 k=FK
S = { 0 Rik. (73)
Under H4, ri, can be written as
M
Trn|H1 =< Z EmnSm(t — Timn) + wn(t), di(t) >
m=1
M
m=1
Since {¢1(t),...,0x(t)} is a orthonormal basis of

span (S), in (74), Sy (t — Timy) can be written as
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M=

S (t — < Sm(t = Tmn), P (t) > éi(t)

T’mn) =

k=1

I
M=

Skmn ¢k (t) (75)

1

o =
Il

where Simn =< S (t

<M mnsm(t —

as

— Tmn), k() >. Hence, the term
Tmn), Ok(t) > in (74) can be written

M

< Z émnsm(t - Tmn)>¢k(t) >

m=1

=< Z Smn <Z 5k’mn¢k’ ) 7¢k(t) > (76)
k'=1
_ Zi\/nj: gmnskmn k <K
o { 0 k> K. @7
From (77), the equation (74) can be written as
inn +wen k<K
Tin|H1 = { uk"’swk—: e k> K (78)

where ug, = [Skin, .., Skmn)?. It is clear ul &, ~
CN(0,ul Ap,uj,), where A, = E{£,£7}. From (72)
and (78), we see that

]E{Tk’ﬂrz’n’ ‘Hl}

! Okle! k>Kork > K.
= { Wl A Wy + Nowibpr oK <K 79)
where A,y = E{¢,¢}. Define
rp 2 [rk1, TR2, ...,rkN]T (80)
and
Ry 2r],. . v} (81)
From (72) and (79), we see that ry, and rg,, (k # k)

are mutually independent for £ > K or k¥’ > K. Thus,
r and ri (k # k') are mutually independent for £ > K
or k' > K. Thus, the likelihood ratio is [41]

p(Ri|H1)
L= lim —/————*
i=oo p(Ri|Ho)
p(Rx|H1) p(riHi) _ p(Rx|H1) 82)
p(Rx|Ho) ZHOO. p(rilHo)  p(Rx|Ho)
Let
Vn = [F1n, ooy TEn) (83)
It is clear v! is the n-th row of Rx. Define
Y ng,i £ E{vn1 vn2|Hi}: (84)

where ¢ = 0,1. From (72), the (ki,k2)-th (k1,ke =
1,..., K) element of X, , 0 is
Yy in2,0,(k1,k2) = NVnyngOky ks (85)
Thus,
Yo, ms0 = Noyno I (86)
From (79), the (k1, k2)-th element of X, ,, 1 is
Yy a1, (k) = Wiy AnynoWhy + Ny Ok iy - (87)



Thus,

‘rnl,ng,l - annzIK + UnlAnlng Ug7 (88)

where U,, = [u1,, ..., ur,]?. Let v = [v] ...

(86) and (88), we obtain

,v%]7. From
E{vv" |Ho} = N ® Ix (89)

and

E{vv”[H1} = N @ Ix + @AD", (90)

where & = Diag(Uy, ...,Ux) and A = E{¢¢7}. So the
log-likelihood ratio is

p(Rx|H1) p(v|H1)
L=1 =1
Y p(Ric[Ho) " plv[Ho)
=C+o" ((N @Ix) ' — (N ® Ik + <I>A<1>H) _1) v,
91)
where
C =InDet(N ® Ix) —InDet(N ® Ix + ®A®")  (92)
is a constant. Define
s [81(?5—7’11)7...751»1(15—TMN)]T (93)
and
¢ = [61(t), ..., px (1)) (94)
From (75), we obtain
s=So. (95)
where the S a K x K matrix whose k-row is
Sk = [Sku,...,sk]u]\]]. (96)

Let x,, be a K x 1 vector with the (n'(M — 1) + m)-th
(m=1,..,M,n" =1,...,N) element

Tmnn =< Tn(t), Sm(t — Tonnr) > . 97)
Define

rn(t), s >

< n(t), s1(t—T11) >, ey < T(t), 50 (t — Tarn) >]7. (98)

From (83), (95), (97) and (98), we obtain

> A

T =< Tp(t),s >= 8" <rp(t),d >= S v,. (99)

Since the elements of S are linear independent, they can
also be a basis of S. Thus, the matrix S* is invertible
such that

v = (8*) .. (100)
Let ¢ = [z7,...,2T]T. From (100), we obtain
v=In®(S") ez (101)

Plugging (101) into (91), we obtain
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T=C+(Iyv® (s*)*l)w)H((N ® Ix)™"
(NI eae™) ) (Ive () e
=C+z"(Iy® ST)’l((N ® Ir) ™t
- (N @ I + <I>A<I>H)71 )(IN ®8) 'a
—c+a((Ness?)
_ (N ©8*ST + (In © S )®AS (Iy ® ST))A ):13

1

—C+a” ((N@E)—1 - (N®E+\IIA\IJH))_ x,

(102)
where
==557 (103)
and
¥ = (Iy ® S*)® = Diag(S™, ..., S*)Diag(Uy, ..., Un)
= Diag(¥1,...,¥yn), (104)
in which
v, = S*U, (105)

is an M N x M matrix. The ((ny —1)M +mq, (ng —1)M +
ma)-th element (ny,no = 1,..., N and my,ms = 1, ..., M)
of B is

E(nl71)M+m1,(n271)1%+m2

* T
= 8((n1-1)M+m1)S((n2—1)M+m2)

K
_ *
- Skmini Skmang
k=1

_ / g (= Tongna )%y (£ — Ty ). (106)
T
The ((n1 — 1)M + mq, m)-th elements of ¥, is

K

‘Iln,((nl—l)lw+m1,m) = Z SZmlnl Skmn (107)
k=1

= / Sm(t - Tmn)S:nl (t - Tmlnl)dt'

T

(108)

From (103) and (104), the constant C in (92) can also be
written as

C= (lnDet(N ® Ix) + InDet(Iy ® 5))

—InDet(Iy ® E) — InDet(N @ I'x + ®A®™)

=InDet(N ® E) — InDet(N ® E+ TA®").  (109)

APPENDIX B
MONOTONICITY OF Py WITH RESPECT TO p,,, FOR
LEMMA 1

Define Q, = {pi1,p21,....,pun}. We consider two
cases. When the elements in ,\ p,.,, are all zero, we will
prove Pp is strictly monotone increasing on (0,4-00) with
respect to py,,. When the elements in Q,\ p,,,, are not all
zero, we will prove Pp is strictly monotone increasing
on [0,+00) with respect to pmp.



In the first case, the elements in ,\p,,, are all ze-
ro. From (34)r we obtain Ty = (np. Since (pn|Ho ~
and Gnn|H1 ~ £22x3, we obtain

Pmn

S X

1 mn
Pra =exp(~— L) (110)
1
Pp :exp(fp ). (111)
From (110), we obtain
___Pm
y [ In Pra (112)
Inserting (112) into (111), we obtain
In P,
Pp = exp( 1n+ pFA (113)

Note that 0 < Pra < 1, InPra < 0, so Pp is strictly
monotone increasing on (0,+00) with respect to pp,,.

In the second case, the elements in €2,\ p,,, are not all
zero, we denote the indices of these nonzero elements
by 14, ..., Py, where P the number of nonzero elements
in ©Q,\pms. Since selecting one more transmitter would
not lead to worse detection performance,

Pp(ccey pmany o) = Pp(evey pmn = 0,...), Vomn > 0. (114)
Thus, if
OPp
mn , 115
Dpmn > 0,Ypmn >0 (115)

then Pp, is strictly monotone increasing on [0, +o00) with
respect to ppn-

Proof of (115): Define

(116)

Pra=1—Fru,(v,p) £ ©o(v,p),

and

(117)

Pp =1 = Fr,jn, (7,p) £ ¢1(7, p)-

(116) determines a explicit function v = ~(Pra,p).
Since Pr4 and all the elements in Q\p,,, are fixed,
v is only determined by p,,,. For a simpler notation,
we use Y(pmn) instead of v(Pra, p). Similarly, we use
©0(7s Pmn)s P1(7s Pmn) and Pp(pmn) instead of wo(7, p),
v1(7, p) and Pp(p), respectively.

According to the theory of calculus,

OPp % oy dp1
Opmn D20 (19
From (35), (37), (116) and (117), we can get
P01 = [ I Feirio )z, (120
v
where i = 0,1,
fl(z) = fC1+|Hi (27 Pl+) Lk fCP+|Hi (Z7 PP+)- (121)

In addition, fc,,,#,(2 pmn) and fe, 3, (2,0p,), P =

12

1,..., P, are the probability density functions (pdfs)® of

(m.n and (,, under H; (i = 0,1), respectively. Since
Cmnl|Ho ~ %XQ and G |H1 ~ 252 X3,
Fepnitta (21 prn) = P22— exp(= L2 2)u(2)
Pmn Pmn
1
menI'H1 (Z7Pmn) = exp(—p Z)’LL(Z) (122)
where u(z) is a step function. Similarly,
ppy +1 ppp +1
o, 190 (7, Ppy ) = =—— exp(————2)u(z)
28 Pry
1 1
2z, = —exp(——2)u(z). 123
pr+I’H1( pP+) Doy p( Py ) ( ) ( )
Thus,
84,01
= _fZ( ) men\H (s Prmn) (124)
8 mn
86;01 / fz menla"; (Z P )dz (125)

From (124), a‘fj < 0,4 =0,1. Thus, from (118) and (119),
(115) is equivalent to

dp1 dpo  dpo D1

8')/ apmn 6"}/ 8pmn >0, men > 0. (126)
Plugging (124) and (125) into (126), we obtain
/ f‘ amenrHl (Z pmn)dz
Opmn
(fo( ) * fernlto (2 pmn))
/ fO Z 8fcmn |Ho (Z pmn)dz
Opmn
X (1(2) * fepnira (2, pmn)) > 0. (127)
In (127),
/ e o Wemnira (2, pmn)
Opmn
8 mn
= hily) » fg;—m“f’) (=)
- — 1
=70+ (e (- -19))
= fl (’7) * fC‘m,anl (’77 pmn) * men\'Hl (/77 pmn)~ (128)
Similarly,
- a mmn
[ ot fwgt;—m(jp)dz
1
= mﬁ)(,” * men,\Ho (77 pmn) * menI’Hg (’y7 pmn)

(129)
Thus, (127) is equivalent to

J1(0) * fepnimn (0, Pmn) * fepnima (7, Pmn)
X (fO(’Y) * men\’Ho (77 Pmn))

1
- mfoh’) * fen|Ho (s Pmn) * Semn#o (s pmn)
X (f1(7) * fepuniper (Vs Pmn)) > 0. (130)

Different from (36), the convolution between two pdfs g1(z) and
g2(z) is defined as g1 (z) * g2(2)= f_ g1(z — y)g2(y)dy.



From (121), (122) and (123), the inequality (130) is equiv-
alent to

1 1
/ ——exp(——— (7~ 2P 1 — 1))
D mn
Pon T1 Poy
p=1
1 1
X exp(———2z1)...exp(———2z,) exp(— ZP+1
(= o) (= ) exp(= i)

X ((fo('Y) * fgmnlﬂo (7, Pmn))

»
- (fl(v) * S 12 (F pram ) exp(— H (1+pp,y >dz > 0.
B (131)

where dz = dz...dzpy1 and D = {z1, 29, ...
0,..,2p41 20,21+ 20+ ... + 2py1 <

(fo('Y) * fmn o (75 pmn))

s zpyilz =
~}. If we can prove

;
— (A0 * Fepnas ( punn) ) exp(~ H L+ pp) >0, (132)

then (131) can hold. (132) is equivalent to

P

[T +ppy)

p=1
’

iz 1))
I1 (ko)

(y—2p — ...

exp(—7) exp(—p

p=1
1 1
X exp(———21)...exp(— ——2p)dz’ >0 (133)
1y Py
where dz’ = dz}...dzp, ®' = {1,....2pl21 2 0,...,2p >

0,21 + ... + 2 < v}. Since (133) is obviously ture, so are
(132), this completes the proof of (115).
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