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Abstract—In this paper we develop efficient methods for
devising lower complexity receivers that can achieve perfor-
mance close to the full complexity receivers for passive/active
multiple-input-multiple-output (MIMO) radar. The method
employed eliminates some parts of the test statistic to lower
either hardware or software complexity. For the case of spa-
tially uncorrelated reflection coefficients and spatially white
clutter-plus-noise, the test statistic requires the computation
of a set of matched filters, each matched to a signal from a
different transmitter. In this case our method is equivalent
to selecting a specific set of transmitters to provide optimum
performance. In the more general case of correlated clutter-
plus-noise and reflection coefficients, then the test statistic
requires the computation of a larger set of matched filters.
These matched filters correlate the clutter-plus-noise free
signal received at one receive antenna due to the signal
transmitted from some transmit antenna and the signal
received at another receive antenna. In the more general
case our algorithm picks the best of these matched filters to
implement when the total number of these matched filters
one can implement is limited.

Index Terms—MIMO radar, matched filter, transmitter se-
lection, target detection.

I. INTRODUCTION

The performance of multiple-input-multiple-output
(MIMO) radar systems has been widely investigated
since 2004 [1]–[11]. MIMO radar can benefit from ad-
ditional spatial separated antennas since it can observe
a target from different directions [12]. Passive radar has
also attracted attention over the past few years [13]–[15]
due to the advantages of low cost, low probability of
intercept, etc. In passive radar, existing illuminators of
opportunity be employed to save the cost and energy
on transmission.

Passive MIMO radar [16] employs multiple existing
illuminators and multiple receivers. In recent work,
the performance of passive MIMO radar systems has
been investigated intensively. Target detection using the
generalized likelihood ratio test has been studied with
[16] or without [17] the consideration of direct-path
signals. The modified Cramér-Rao lower bounds for
target parameter estimation are derived in [18], [19].
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In [18], universal mobile telecommunications system
(UMTS) signals are used to estimate target delay and
Doppler, and in [19], the authors studied target velocity
and location estimation from L-band digital aeronautical
communication system signals. The work in [20] inves-
tigated the ambiguity function for UMTS-based passive
radar under both coherent and non-coherent processing.
In [21], target tracking is studied for passive MIMO
radar.

Passive and active MIMO radar implementations re-
quire large hardware and software complexity when a
large number of transmitters are present, so that the low-
er complexity approaches studied here, like transmitter
selection approaches, are of considerable interest. Our
problem is somewhat similar to antenna selection. In
[22], [23], the antenna selection strategies for minimizing
the average error probability in a communication system
have been investigated when maximum likelihood or
zero forcing receiver is used. In [24], the authors consider
the optimal antenna subset selection in a communication
system with space-time coding in flat fading channels
based on exact or statistical channel knowledge. The
work in [25] investigated the optimal antenna selection
for maximizing the channel capacity in a communication
system under the assumption that only the long-term
channel statistics are known. In [26], a geometry-based
sensor selection method is investigated for Kalman fil-
tering. In [27], statistical information is used to select
transmitters in a MIMO radar for improving target de-
tection performance by increasing the total amount of
average incoming energy. In [28]–[30], antenna selection
in distributed MIMO radar for target localization by
minimizing the trace of Cramér-Rao bound is studied.
The optimal antenna selection and placement based on
Fisher information matrix for estimating target location
is investigated in [31]. In [32], the antenna selection for
minimizing the volume of an η-confidence ellipsoid of
estimation error is presented.

For MIMO radar systems, the hardware and soft-
ware complexity depends heavily on the number of
matched filters (MFs) employed. For many practical
scenarios, when the number of transmitters is large
and the clutter-plus-noise is non-ideal, the number of
candidate matched MFs and the associated hardware
(e.g., adder and multiplier) required is typically large.
It is necessary to control the complexity and cost and to
simultaneously achieve the best possible performance.
The proposed method can be used in active MIMO
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radar systems. If the location of the illuminators of
opportunity are known, the statistical properties of the
target reflection coefficients and clutter-plus-noise are
learned or estimated, and the direct-path signals trans-
mitted from different illuminators can be well estimated,
we can also use the approach in passive MIMO radar.
We derive the log-likelihood ratio (LLR) function for a
general case accounting for possibly correlated target
reflection coefficients and clutter-plus-noise, and show
that a limited-complexity receiver can be achieved by
matched filter (MF) selection.

For the spatially uncorrelated reflection coefficients
and spatially white clutter-plus-noise, we show that
the MF selection is equivalent to selecting a subset
of transmitters to provide optimum performance. We
first consider the case where the signals transmitted by
the transmitters are mutually orthogonal and maintain
orthogonality for different delays and prove that at each
receiver selecting the MFs corresponding to the largest
signal-to-clutter-plus-noise ratios (SCNRs) leads to the
best detection performance. Then, we consider the case
where the transmitted signals may not be mutually
orthogonal. For a special case where each receiver selects
one MF, a closed-form solution is presented. When each
receiver selects an arbitrary number of MFs, a closed-
form solution is not available to optimize detection
probability. In these cases, suboptimal criteria such as
Kullback-Leibler (KL) distance and divergence [12] can
be employed. In this paper, we use KL distance as
a low complexity approximate measure for detection
performance considering that it is typically used in
the Neyman-Pearson settings [33]. A greedy algorithm
adopted from [34]–[36] is considered in this paper. Nu-
merical experiments justify our approach.

The rest of the paper is organized as follows. The
signal model for target detection is presented in Section
II, where the likelihood ratio test is derived. The lower-
complexity receiver design method is introduced in Sec-
tion III. Transmitter selection is studied in Section IV.
Numerical examples are presented in Section V. Finally,
Section VI concludes the paper.

II. SIGNAL MODEL FOR TARGET DETECTION

Consider a MIMO radar system with M transmitters
and N receivers located at known positions (xt,m, yt,m),
m = 1, 2, ...,M and (xr,n, yr,n), n = 1, 2, ..., N , re-
spectively. The signal from the m-th transmitter is as-
sumed known or perfectly estimated1 and written as√
Emsm (t), m = 1, 2, ...,M , where

∫
T |sm(t)|2dt = 1,

Em is the transmitted energy, and T is the observation
interval. Consider a possible static target in the cell-

1The case with imperfectly estimated waveforms is considered in
numerical experiments.

under-test located at (x, y). The received signal at the
n-th single antenna receiver can be written as

rn(t) =
M∑
m=1

βmn
√
Em

Rt,mRr,n
sm(t− τmn) + wn(t), t ∈ T (1)

in which wn(t) represents the clutter-plus-noise, as-
sumed to be temporally white zero-mean complex Gaus-
sian such that E{wi(t)w∗j (u)} = Nijδ(t − u), where Nij
is the (i, j)-th element of a positive definite Hermitian
matrix N , and E{·} denotes expectation. The reflec-
tion coefficient βmn is complex Gaussian distributed
with zero-mean and variance σ2

mn while being inde-
pendent of the clutter-plus-noise components. The ter-
m Rt,m is the distance between the m-th transmitter
and the target, Rr,n is the distance between the n-
th receiver and the target, and τmn is the time delay
between the m-th transmitter and the n-th receiver.
They satisfy Rt,m =

√
(xt,m − x)2 + (yt,m − y)2, Rr,n =√

(xr,n − x)2 + (yr,n − y)2, and τmn = (Rt,m +Rr,n) /c,
where c is the speed of light. Define

ξ = [ξT1 , ..., ξ
T
N ]T , (2)

where ξn = [ξ1n, ..., ξMn]T , and ξmn = βmn
√
Em/(Rt,m

Rr,n). Define the covariance matrix of ξ as E{ξξH} = Λ,
which is a positive definite Hermitian matrix. Note that
for correlated target reflection coefficients, Λ is non-
diagonal, while for spatially uncorrelated target reflec-
tion cofficients, Λ is diagonal. From (1), the target detec-
tion problem can be formulated as

H0 :rn(t) = wn(t), t ∈ T , (3)

H1 :rn(t) =
M∑
m=1

ξmnsm(t− τmn) + wn(t), t ∈ T . (4)

Assuming the MN received waveforms sm(t − τmn)
(m = 1, ...,M and n = 1, ..., N ) are linearly independent
(extensions are possible), the signals can be represented
by their components in terms of a set of basis functions.
The log-likelihood ratio (LLR) that considers these com-
ponents as observations is given by (see Appendix A for
complete derivation)

L = C + xH
(
(N ⊗Ξ)−1 − (N ⊗Ξ + ΨΛΨH)−1

)
x, (5)

and the test statistic is given by

T = xH
(
(N ⊗Ξ)−1 − (N ⊗Ξ + ΨΛΨH)−1

)
x. (6)

where ⊗ denotes Kronecker product, the constant C =
ln(Det(N ⊗ Ξ)) − ln(Det(N ⊗ Ξ + ΨΛΨH)), in which
Det(·) denotes determinant, Ξ is an MN ×MN matrix
with the ((n1 − 1)M + m1, (n2 − 1)M + m2)-th element
(n1, n2 = 1, ..., N and m1,m2 = 1, ...,M ) given by

Ξ(n1−1)M+m1,(n2−1)M+m2

=

∫
T
s∗m1

(t− τm1n1)sm2(t− τm2n2)dt, (7)
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and Ψ = Diag{Ψ1, ...,ΨN}, where Ψn is an MN ×M
matrix whose m-th column is the ((n − 1)M + m)-th
column of Ξ. In (6), the MN2 × 1 complex Gaussian
vector

x = [xT1 , ...,x
T
N ]T (8)

collects all the MF outputs, where xn = [x11n, ..., xMNn]T

is an MN × 1 vector with the ((n′ − 1)M + m)-th
element (m = 1, ...,M and n′ = 1, ..., N ) given by
xmn′n =

∫
T s
∗
m(t− τmn′)rn(t)dt.

III. LIMITED-COMPLEXITY RECEIVER DESIGN

From (6), we see that the test statistic and hence
the detection performance is dependent on the received
signals only via the MF output vector x. The size of x
determines the complexity of the associated hardware or
software. We propose to select a subset of the vector x
for subsequent processing to reduce complexity. Before
proceeding, define a selection vector

a , [aT1 , ...,a
T
N ]T , (9)

where an = [a11n, ...,aMNn]T , in which amn′n ∈ {1, 0}
indicating whether or not the signal associated with the
(m,n′)-th transmitter to receiver path is processed at the
n-th receiver. Define a selection matrix

J(a) , Diag{J1(a1), ...,JN (aN )} (10)

where Diag{·} denotes a block diagonal matrix and

Jn(an) , diagr{an}, (11)

in which diagr{·} represents a diagonal matrix with the
argument on its diagonal, but with the all-zero rows
removed [37], [38]. The size of Jn(an) is un×MN , where

un = ‖an‖0 (12)

is the number of paths to be processed at receiver n
and ‖ · ‖0 denotes the `0-norm operator. Assume that
at least one path is processed at each receiver, such
that un > 1 for all n. For a given selection, the MFs
corresponding to the zero elements in a are no longer
needed and the associated hardware or software can
be saved. Accordingly, the MF output vector is reduced
from x to J(a)x. Then the test statistic is changed from
(6) to

Ts = (J(a)x)
H

((
J(a)Σ0J

T (a)
)−1

−
(
J(a)Σ1J

T (a)
)−1

)
J(a)x, (13)

where

Σ0 = E{xxH |H0} = N ⊗Ξ (14)

and

Σ1 = E{xxH |H1} = N ⊗Ξ + ΨΛΨH . (15)

For the special case, where signals associated with all
paths are processed, (13) is equivalent to the test statis-

tic in (6). From (13), we see that
∑N
n=1 un MFs, (1 +∑N

n=1 un)
∑N
n=1 un multipliers, and (1 +

∑N
n=1 un)(−1 +∑N

n=1 un) adders are required.
The test statistic Ts is compared to a threshold γ,

such that a decision for H1 is made if Ts > γ and H0

otherwise. Suppose, to limit the cost, receiver n can at
most process signals associated with An (An 6 MN)
paths, namely un 6 An. If the Neyman-Pearson criterion
is employed and γ(PFA,a) is chosen to provide a false
alarm probability PFA when a particular a is employed,
the optimal selection can be obtained by solving the
following optimization problem

P1

{
max

a∈{0,1}MN2
Pr(Ts > γ(PFA,a)|H1) (16a)

s.t. 1 ≤ un ≤ An, n = 1, ..., N (16b)

The solution of P1 provides guidance to system design-
ers on how to maximize detection performance with
limited budget for a general case where the target reflec-
tion coefficients and the clutter-plus-noise components
can be correlated. For simplification and to get insight,
next we concentrate on the case of spatially uncorrelated
coefficients and spatially white clutter-plus-noise.

IV. TRANSMITTER SELECTION FOR PASSIVE/ACTIVE
MIMO RADAR

In this section, we consider the case under the assump-
tion of spatially uncorrelated target reflection coefficients
and spatially white clutter-plus-noise components. In
this case, the previously discussed limited-complexity re-
ceiver is equivalent to the transmitter selection problem
for passive/active radar, as shown in the sequel.

For spatially uncorrelated target reflection coefficients,
the covariance matrix Λ of ξ in (2) can be written as

Λ = Diag{Λ1, ...,ΛN}, (17)

where

Λn = diag{ σ2
1nE1

(Rt,1Rr,n)2
, ...,

σ2
MnEM

(Rt,MRr,n)2
}. (18)

in which diag{·} denotes a diagonal matrix. For spatially
white clutter-plus-noise, the covariance matrix defined
after (1) can be reduced to

N = diag{N11, N22..., NNN} , N0IN , (19)

where Nii = N0, i = 1, ..., N is the power spectral density
(PSD) of wi(t) and IN is a N ×N identity matrix.

Substituting (17), (18) and (19) into (6), the test statistic
becomes2

T =
1

N0

N∑
n=1

xHn (Ξn +N0Λ
−1
n )−1xn, (20)

2Even if the MN received waveforms sm(t − τmn) are not linear
independent, the test statistic in (20) is also make sense because the
matrix Ξn +N0Λ

−1
n in (20) is always invertible.
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where Ξn is an M ×M matrix with the (i, j)-th element
given by Ξn,(i,j) =

∫
T s
∗
i (t− τin)sj(t− τjn)dt and

xn = [x1n, ..., xMn]T (21)

is now reduced to M × 1 dimensional, in which

xmn =

∫
T
s∗m(t− τmn)rn(t)dt. (22)

Therefore, in this case the MF output vector in (8) is
reduced to MN × 1 dimensional, given by

x = [xT1 , ...,x
T
N ]T = [x11, x21, ...xMN ]T . (23)

It is seen from (21) that at the n-th receiver, the MF
output vector xn has M elements, each corresponding
to the contribution due to a given transmitter. Thus,
the selection of a subset of x = [xT1 , ...,x

T
N ]T implies

the selection of transmitters at each of the receivers.
Accordingly, we redefine

an = [a1n, ..., aMn]T (24)

and the overall selection vector in (9) is now reduced to
an MN × 1 transmitter selection vector,

a = [aT1 , ...,a
T
N ]T = [a11, a21, ..., aMN ]T , (25)

where amn ∈ {0, 1} indicates whether or not transmitter
m is selected for processing at receiver n.

The test statistic after transmitter selection can be
written as

Ts =
N∑
n=1

(
Jn(an)xn

)H((
Jn(an)Σ0,nJ

T
n (an)

)−1

−
(
Jn(an)Σ1,nJ

T
n (an)

)−1
)
Jn(an)xn, (26)

where the selection matrix

Jn(an) = diagr{a1n, ..., aMn} (27)

is un ×M dimensional,

Σ0,n = E{xnxHn |H0} = N0Ξn, (28)

and

Σ1,n = E{xnxHn |H1} = ΞnΛnΞH
n +N0Ξn. (29)

Next, we first assume the waveforms are orthogonal
and provide a closed-form solution to the optimization
problem P1. Then, for non-orthogonal waveforms, sub-
optimal solutions based on KL distance are presented.

A. Orthogonal Waveforms

Assume the transmitted signals are mutually orthog-
onal and maintain orthogonality for any delay τ of
interest, namely,∫

T
sm1

(t)s∗m2
(t− τ)dt = 0, for m1 6= m2, ∀τ. (30)

Thus, Ξn = IM and the test statistic in (26) can be written
as

Ts =
1

N0

N∑
n=1

(
Jn(an)xn

)H[
Jn(an)(N0Λ

−1
n

+ IM )−1JTn (an)

]
Jn(an)xn, (31)

=

N∑
n=1

M∑
m=1

Emσ
2
mnamn

N0(Emσ2
mn +N0(Rt,mRr,n)2)

|xmn|2. (32)

=

N∑
n=1

M∑
m=1

Emσ
2
mnamn

N0(Emσ2
mnamn +N0(Rt,mRr,n)2)

|xmn|2, (33)

where the last equality is obtained considering that
the amn in the numerator of (32) equals either 0 or
1, hence adding an amn in the denominator as per
(33) does not change the result. Define the signal-to-
clutter-plus-noise ratio (SCNR) of the (m,n)-th path as
ηmn = Emσ

2
mn/N0(Rt,mRr,n)2.

Then, (33) can be rewritten as a function of the SCNRs
as follows

Ts =

N∑
n=1

M∑
m=1

ζmn, (34)

where ζmn = ρmn

N0(ρmn+1) |xmn|
2, and ρmn = ηmnamn is

non-negative. For later use, define ρn = [ρ1n, ..., ρMn]T

the transmitter selection vector weighted by SCNRs, ρ =
[ρT1 , ...,ρ

T
n ]T , and η = [η11, η21..., ηMN ]T .

Denote the cumulative distribution function (cdf)
of ζmn under Hi(i = 0 or 1) by Fζmn|Hi

(z, ρmn) =
Pr(ζmn 6 z,Hi). It is easy to see that when ρmn = 0,

Fζmn|Hi
(z, ρmn = 0) =

{
1 z > 0
0 z < 0

(35)

Recall from (22) that xmn ∼ CN (0, N0) under H0 and
xmn ∼ CN (0, N0(1 + ηmn)) under H1. Thus, when
ρmn > 0, it can be shown that ζmn ∼ ρmn

2(ρmn+1)χ
2
2 under

H0 and ζmn ∼ ρmn

2 χ2
2 under H1, so the corresponding

Fζmn|Hi
(z, ρmn) can be obtained based on the cumulative

distribution function (cdf) of the Chi-squared χ2
2 distri-

bution.
Hence, the cdf of the test statistic in (34) under hy-

pothsis Hi can be calculated by [39]

FTs|Hi
(z,ρ) = Pr(Ts 6 z|Hi)

=Fζ11|Hi
(z, ρ11) ∗ Fζ21|Hi

(z, ρ21) ∗ ... ∗ FζMN|Hi
(z, ρMN ) (36)

=

∫
RMN−1

Fζ11|Hi
(z − z21 − ...− zMN , ρ11)

dFζ21|Hi
(z21, ρ21)...dFζMN |Hi

(zMN , ρMN ) (37)

where ∗ denotes the convolution operator3, and RMN−1

means the (MN − 1)-dimensional real space since there
are (MN − 1) convolution operators in (36).

Lemma 1. Denote by ρ(1), ρ(2)..., ρ(MN) the decreasing
sequence of nonnegative ρ11,ρ21, ..., ρMN and define ρ =
[ρ(1),ρ(2)...,ρ(MN)]

T . Let α and β be two feasible solutions
for P1, and correspondingly ρα = α � η and ρβ = β � η,
where � denotes Hadamard product. If ρα � ρβ, where ’�’

3The convolution between two cdfs F1(z) and F2(z) is defined as
F1(z) ∗ F2(z) =

∫∞
−∞ F1(z − y)dF2(y).
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means element-wise no less than4, then, for the hypothesis
testing problem characterized by the test statistic in (34), the
detection probability under Neyman-Pearson criterion satisfies

PD(ρα) > PD(ρβ) (38)

where PD(ρ) = Pr(Ts > γ|H1) and γ is determined by the
required level of false alarm probability PFA and the weighted
transmitter selection vector ρ.

Proof. It can be proved (see Appendix B) that PD(ρ) is
a strictly monotone increasing function with respect to
any element ρmn (m = 1, ...,M, n = 1, ..., N ) of ρ when
all the other elements are fixed.

From (36), according to the commutative law of con-
volution,

FTs|Hi
(z,ρα) = Fζ11|Hi

(z, ρα11) ∗ ... ∗ FζMN |Hi
(z, ραMN )

= Fζ11|Hi
(z, ρα(1)) ∗ ... ∗ FζMN |Hi

(z, ρα(MN))

= FTs|Hi
(z,ρα), (39)

where i = 0 or 1. Then

PFA = 1− FTs|H0
(γ,ρα) = 1− FTs|H0

(γ,ρα). (40)

From (40), γ(PFA,ρα) = γ(PFA,ρα), and

PD(ρα) = 1− FTs|H1
(γ(PFA,ρα),ρα)

= 1− FTs|H1
(γ(PFA,ρα),ρα) = PD(ρα). (41)

Similarly,

PD(ρβ) = PD(ρβ). (42)

Because ρα(k) > ρβ(k), for all k, k = 1, ...,MN , then,
based on the monotonicity of PD(ρ), it is clear that

PD(ρα) > PD(ρβ). (43)

Then from (41), (42) and (43),

PD(ρα) = PD(ρα) > PD(ρβ) = PD(ρβ) (44)

which completes the proof.

From Lemma 1, the following conclusion follows.

Theorem 1. Under the assumption of uncorrelated target
reflection coefficients, spatially white clutter-plus noise, and
orthogonal transmitted waveforms, the optimal solution of P1

can be obtained by selecting the transmitters corresponding to
the An largest5 SCNRs at receiver n, n = 1, ..., N , i.e.,

a∗mn =

{
1, m ∈ Sn
0, else, (45)

where Sn denotes the index set of m associated with the An
largest ηmn in In = {η1n, ..., ηMn}.

4When ρα � ρβ , the k-th element ρα(k) of ρα is no less than the
k-th element ρβ(k) of ρβ for all k, k = 1, ...,MN.

5If two transmitters, say the m1-th and m2-th transmitter (m1 <
m2), lead to the same SCNR ηm1n = ηm2n, then the one with lower
index is selected first such that we select the m1-th transmitter before
the m2-th transmitter.

B. General Waveforms

This section generalizes the discussion to possibly
non-orthogonal transmitted waveforms. First, we con-
sider a special case where each receiver selects one trans-
mitter, a closed-form solution is presented. Further, when
each receiver selects an arbitrary number of transmitters,
KL distance as a suboptimal criterion is employed.

1) General Waveforms with An=1: First, we consider the
case where An = 1 for n = 1, ..., N . For each n, there
is only one non-zero element in the set {a1n, ..., aMn} ,
leading to un = 1 and the Jn(an) in (27) becomes an
1 ×M dimensional row vector. Thus, the terms in (26)
can be simplified to

Jn(an)xn =
M∑
m=1

amnxmn (46)

and from (24) and (27), recalling that amn equals either
0 or 1, we have[
Jn(an)Σ0,nJ

T
n (an)

]−1

−
[
Jn(an)Σ1,nJ

T
n (an)

]−1

=

(
M∑
m=1

Σ0,n,(m,m)amn

)−1

−

(
M∑
m=1

Σ1,n,(m,m)amn

)−1

=
M∑
m=1

(
1

Σ0,n,(m,m)
− 1

Σ1,n,(m,m)

)
amn (47)

where Σi,n,(m,m) (i = 0 or 1) denotes the (m,m)-th
element of the matrix Σi,n. From (18), (28) and (29),

Σ0,n,(m,m) = N0Ξn,(mm)

= N0

∫
T
s∗m(t− τmn)sm(t− τmn)dt

= N0 (48)

and

Σ1,n,(m,m) = N0Ξn,(m,m) +

M∑
i=1

M∑
j=1

Ξn,(m,i)Λn,(i,j)Ξn,(j,m)

= N0 +
M∑
i=1

Eiσ
2
in|Ξn,(i,m)|2

(Rt,iRr,n)2
. (49)

where Ξn,(i,j) and Λn,(i,j) denote the (i, j)-th element of
Ξn and Λn, respectively. Substituting (46)-(49) into (26),
we obtain

Ts =

N∑
n=1

(
M∑
m=1

x∗mnamn

M∑
m=1

%mnamn
N0(1 + %mn)

M∑
m=1

xmnamn,

)

=

N∑
n=1

M∑
m=1

%mnamn
N0(1 + %mn)

|xmn|2

=

N∑
n=1

M∑
m=1

%mnamn
N0(1 + %mnamn)

|xmn|2, (50)

where %mn =
∑M
i=1

Eiσ
2
in|Ξn,(i,m)|2

N0(Rt,iRr,n)2 . From (22), we see that
for the case of general waveform, xmn ∼ CN (0, N0)
under H0 and xmn ∼ CN (0, (1 + %mn)N0) under H1.
The terms xmn are mutually independent for different n.
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Recall that An = 1, so the correlation between different
MF outputs at receiver n can be ignored. Note that the
only difference between (34) and (50) is that all the terms
ηmn associated with (34) are changed to %mn. Hence, by
changing the term ηmn in Theorem 1 to %mn, the optimal
solution for the case A1 = A2 =, ..., AN = 1 is given by

a∗mn =

{
1, m ∈ Sn
0, else, (51)

where Sn = arg max
m

{%mn}, n = 1, ..., N .

2) General Waveform with general An: Now we study
a more general case where An > 1 for certain n. Since
for this case, analytically evaluating detection probability
is intractable, it is difficult to solve P1. An alternative
way is to change the objective fuction from the detection
probability to some other heuristic criteria [12], [37].
Based on Stein’s lemma, for a fixed value PFA [37], [38],

ln(PM (a))
a.s.→ −DKL(a), for PM (a)→ 0 (52)

where a.s.→ means converges almost surely. PM (a) = 1−
Pr(Ts > γ(PFA,a)|H1) denotes the probability of miss
and

DKL(a) =

∫
ln

(
py|H1

(y)

py|H0
(y)

)
py|H1

(y)dy (53)

denotes the KL distance between py|H1
(y) and py|H0

(y),
in which

y =
[
yT1 , ...y

T
N

]T
(54)

and yn = Jn(an)xn. So the KL-distance is a reasonable
metric to characterise the detection performance in the
Neyman-Pearson settings. Next, we use the KL-distance
as the alternate to facilitate the evaluation and optimiza-
tion.

It is obvious that yn, n = 1, ..., N are mutually inde-
pendent for different n under both H0 and H1. Therefore

py|Hi
(y) =

N∏
n=1

pyn|Hi
(yn) (55)

where py|Hi
(y) and pyn|Hi

(yn) are the probability den-
sity functions (pdfs) of y and yn (n = 1, ..., N ) under Hi
(i = 0, 1), respectively. Thus, the KL distance between
py|H1

(y) and py|H0
(y) in (53) can be written as

DKL(a) =

∫ ( N∑
n=1

ln

(
pyn|H1

(yn)

pyn|H0
(yn)

)) N∏
n=1

pyn|H1
(yn)dy

=

N∑
n=1

(∫
ln

(
pyn|H1

(yn)

pyn|H0
(yn)

)
pyn|H1

(yn)dyn

×
∏
k 6=n

∫
pyk|H1

(yk)dyk

)

=

N∑
n=1

∫
ln

(
pyn|H1

(yn)

pyn|H0
(yn)

)
pyn|H1

(yn)dyn

=

N∑
n=1

DKL
n (an), (56)

where

DKL
n (an) =

∫
ln
pyn|H1

(yn)

pyn|H0
(yn)

pyn|H1
(yn)dyn (57)

is the KL distance between the two distributions
pyn|H1

(yn) and pyn|H0
(yn). The distributions of yn, n =

1, 2, ..., N , under the two hypotheses are

yn|H0 ∼ CN
(
0,J(an)Σ0,nJ

T (an)
)

(58)

and

yn|H1 ∼ CN
(
0,J(an)Σ1,nJ

T (an)
)
, (59)

n = 1, 2, ..., N , where Σ0,n and Σ1,n are given in (28) and
(29). Inserting (58) and (59) into (57), we obtain [40]

DKL
n (an) =Tr

(
Jn(an)Σ1,nJ

T
n (an)(Jn(an)Σ0,nJ

T
n (an))−1

)
− ln

Det
(
Jn(an)Σ1,nJ

T
n (an)

)
Det
(
Jn(an)Σ0,nJTn (an)

) − un (60)

where Tr(·) denotes trace.
The KL-optimal transmitter selection can be obtained

by solving the optimization problem

P2

{
max

a∈{0,1}MN
DKL(a)

s.t. 1 ≤ un ≤ An, n = 1, 2, ..., N
(61)

From (56) and (61), we see that solving P2 is equivalent
to solving the following N optimization problems. For
n = 1, ..., N ,

max
an∈{0,1}M

DKL
n (an) s.t. 1 ≤ un ≤ An. (62)

Considering that, from (11),

JTn (an)Jn(an) = diag{a1n, ..., aMn}, (63)

we change the optimization variable in (62) from an to
Jn, where Jn has one unit element per row and all the
other elements are zeros such that JnJTn = Iun

. Then,
an alternative optimization problem is obtained

max
Jn

DKL
n (Jn) (64a)

s.t. JnJ
T
n = Iun (64b)

Jn ∈ {0, 1}un×M (64c)
1 6 un 6 An, (64d)

where n = 1, ..., N .
Since solving (64) is NP hard [40], we employ a

greedy-based method [29], [34]–[36] to find a suboptimal
solution. In the greedy-based method, the rows of the
selection matrix Jn are determined one by one. Initially,
we consider selecting just a single row of Jn and use
(64a) to compute

j̃1 = arg max
j1∈Ω

DKL
n (ej1), (65)

where Ω = {1, 2, ...,M} and ej1 is the j1-th row of the
identity matrix IM . Once j̃1 is obtained, we set Jn = ej̃1
and Ω = Ω \ j̃1. Then, we move on to select the second
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row of Jn and use (64a) again to compute

j̃2 = arg max
j2∈Ω

DKL
n ([JTn , e

T
j2 ]T ). (66)

Once j̃2 is obtained, we set Jn = [JTn , ẽ
T
j2

]T and Ω =

Ω \ j̃2. Next, we select the third row of Jn to get j̃3, so
on and so forth, up to the An-th step. The greedy-based
algorithm is summarized in Algorithm 1.

Algorithm 1 Greedy-Based Algorithm

Input: Σ0,n, Σ1,n and An, n = 1, ..., N .
For n = 1 : N do

Set Ω = {1, 2, ...,M} and use (64a) to compute
j̃1 = arg max

j1∈Ω
DKL
n (ej1).

Set Jn=ej̃1 and Ω = Ω \ j̃1.
For i = 2 : An do

Use (64a) to compute
j̃i = arg max

ji∈Ω
DKL
n ([JTn , eji ]

T ).

Set Jn = [JTn , e
T
j̃i

]T and Ω = Ω \ j̃i.
End for
Set ãmn=

[
JTn Jn

]
m,m

and ãn = [ã1n, ..., ãMn]T .
End for
Output: ã = [ãT1 , ..., ã

T
N ]T , which is the resulting

selection vector.

Complexity: Assume An (n = 1, ..., N) are fixed con-
stants. For Algorithm 1, at the i-th iteration, we need
to compute DKL

n as per (64a) (M − i) times, where the
complexity for computing (64a) is on the order of O(i3),
so the complexity at the i-th step is on the order of
O(i3(M−i)) = O(M). Thus, the total complexity of using
Algorithm 1 is on the order of O(MN). For comparison,
suppose we let ‖an‖ = An and use exhaustive search,

then we need to compute (64a)
(

M
An

)
= O(MAn)

times and the complexity for computing (64a) is on the
order of O(A3

n). So the total complexity of using the brute
force method is O(

∑N
i=1M

AnA3
n) = O(

∑N
i=1M

An).

V. NUMERICAL EXPERIMENTS
In this section, numerical examples are presented to

illustrate our findings. We set the transmitted energy
Em = 106 for all m, m = 1, ...,M . The transmitted
waveforms are sm(t) = 1√

T
exp(j2πfmt), 0 < t < T ,

where T = 1ms and fm is the frequency of the m-th
transmitter. Define f = [f1, f2, ..., fM ] as the frequency
vector. The target is located at (x, y)=(0, 0) km. The
variance of the reflection coefficient associated with the
(m,n)-th path is set as σ2

mn = 10 for all m and n, and
the PSD of the clutter-plus-noise is set as Nii=10−6 for all
i, i = 1, ..., N . All curves are obtained using 104 Monte
Carlo simulations.

A. Optimal Selection for Orthogonal Waveforms
Assume M = 3 transmitters located at (xt,1, yt,1)=(0,

1) km, (xt,2, yt,2)= (0, 2) km, and (xt,3, yt,3) =(0, 3) km,

TABLE I: Detection probability for different selections

Selection Combination SCNR (dB) PD
{< 1, 1 >,< 1, 2 >} {10,10} 0.8798
{< 1, 1 >,< 2, 2 >} {10,3.98} 0.7286
{< 1, 1 >,< 3, 2 >} {10,0.46} 0.6868
{< 2, 1 >,< 1, 2 >} {3.98,10} 0.7422
{< 2, 1 >,< 2, 2 >} {3.98,3.98} 0.4354
{< 2, 1 >,< 3, 2 >} {3.98,0.46} 0.3196
{< 3, 1 >,< 1, 2 >} {0.46,10} 0.6785
{< 3, 1 >,< 2, 2 >} {0.46,3.98} 0.3117
{< 3, 1 >,< 3, 2 >} {0.46,0.46} 0.1880

respectively. The N = 2 receivers are located at (xr,1,
yr,1)=(-1, 0) km and (xr,1, yr,2)=(1, 0) km. Suppose the
number of transmitters that can be selected at the re-
ceivers are A1 = A2 = 1. The target reflection coefficients
and the clutter-plus-noise are spatially white. Let the
frequency vector be f = [ 10

T ,
20
T ,

30
T ], which ensures

that the waveforms are approximately orthogonal. The
false alarm probability is 10−2. Table I shows the de-
tection performance of all selection schemes. Denote by
< m,n > the m-th transmitter being selected at the n-th
receiver. We can see that higher detection probability can
be achieved when the subset of the selected transmitters
have larger SCNRs. For example, the corresponding
SCNRs of the selection {< 2, 1 >,< 1, 2 >} are {3.98, 10}
dB, which is larger than the the corresponding SCNRs of
the selection {< 3, 1 >,< 3, 2 >}, which are {0.46, 0.46}
dB. The resulting detection probabilities are 0.7422 and
0.1880 respectively. Clearly, the former selection with
higher SCNRs has larger detection probability. We can
see that optimal selection is {< 1, 1 >,< 1, 2 >}, and the
corresponding SCNRs are the largest, which agrees with
Theorem 1.

B. Optimal Selection for Non-orthogonal Waveforms

The previous results assumed orthogonal signals. Nex-
t, we remove this assumption to investigate the general
case. Assume there are M = 4 transmitters located at
(xt,1, yt,1)=(0, 1.5) km, (xt,2, yt,2)= (0, -1.5) km, (xt,3, yt,3)
=(0, 3) km and (xt,4, yt,4) =(0, -3) km, respectively. The
N = 2 receivers located at (xr,1, yr,1)=(-1, 0) km and
(xr,1, yr,2)=(1, 0) km. We consider three scenarios. The
frequency vector f for each scenario is [ 10

T ,
10
T ,

30
T ,

30
T ] (Sc.

1), [ 10
T ,

10
T ,

10
T ,

10
T ] (Sc. 2) and [ 10

T ,
20
T ,

30
T ,

40
T ] (Sc. 3). In Fig.

1, the selection combinations are {< 1, 1 >,< 1, 2 >}
(Sel. 1), {< 1, 1 >,< 2, 1 >,< 1, 2 >,< 2, 2 >} (Sel. 2), {<
1, 1 >,< 3, 1 >,< 1, 2 >,< 3, 2 >} (Sel. 3) and all trans-
mitters being selected (Sel. 4). The other parameters are
the same as those in the previous example. In scenario 1,
we can see that the corresponding SCNRs of selection 2 ,
{6.48, 6.48, 6.48, 6.48} dB are larger than the correspond-
ing SCNRs of selection 3 , {6.48, 0.46, 6.48, 0.46} dB, but
the later selection has better detection performance, so
the selection which has the best performance in terms
of the ROCs may not correspond to choosing the largest
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Fig. 1: ROC curves under different scenarios and selec-
tions.
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Fig. 2: The ROC curves (averaged over a hundred d-
ifferent realizations of transmitter replacement) of the
optimal selection, KL-based selection, Algorithm 1-based
selection, random selection and worst selection.

SCNRs when the transmitted waveforms are not orthog-
onal. In scenario 2, where all the transmitted waveforms
are the same, we can see the detection performance of
selection 1 is almost the same with selection 4 (which
selects all the transmitters), which indicates that selecting
only some of the transmitters as opposed to all of them
may lose very little performance. In scenario 3, the
waveforms are approximately orthogonal. We can see
that detection performance in scenario 3 is best among
the three scenarios if we select all transmitters while
the detection performance of the optimal selection in
scenario 3 performs poorly if the number of transmitter
that can be selected is A1 = A2 = 1.

C. KL-Based Selection for Non-orthogonal Waveforms
Now we consider the case where M = 8 transmitters

are randomly and uniformly located in a ring with inner
radius 2 km and outer radius 4 km. There are two re-
ceivers located at (xr,1, yr,1)=(-1, 0) km and (xr,2, yr,2)=(1,
0) km. The frequency vector is f = [ 1

2T ,
2

2T , ...,
4
T ]. The

number of transmitters that can be selected at each
receiver is A1 = A2 = 2. The other parameters are the
same as those in Fig. 1. In Fig. 2, the ROC curve averaged

5 10 15 20 25 30 35 40 45 50
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of selected transmitters A1

P
D

 

 
Scenario 1
Scenario 2
Scenario 3

Fig. 3: Detection probabilities of the Algorithm 1-based
selection versus the number of selected transmitters.

over a hundred different realizations of transmitter re-
placement are plotted for the optimal selection (obtained
via exhaustive search), KL-based selection, Algorithm 1-
based selection, random selection and the worst selection
(obtained via exhaustive search). We can see that, for any
fixed PFA, the optimal and worst selection lead to the
largest and smallest PD, as expected. The PD obtained
using random selection is larger than the worst case. The
PD for the KL-based selection is better than the random
selection. The PD for the Algorithm 1-based selection
is almost on top of that for the KL-based selection. We
find that the ROC curves obtained using both the KL-
based and Algorithm 1-based methods are close enough
to the optimal selection, which implies the effectiveness
of these proposed methods.

D. Large Saving of Complexity
Consider the case where the reflection coefficients are

uncorrelated and the transmitted waveforms are non-
orthogonal. Assume there are M = 50 transmitters
randomly located in a ring with inner radius 4 km
and outer radius 6 km. A single receiver is located at
(xr,1, yr,1)=(0.5, 0) km. We consider three scenarios, the
frequency vector f for which are [ 3

50T ,
6

50T , ...,
3
T ] (Sce-

nario 1), [ 6
50T ,

12
50T , ...,

6
T ] (Scenario 2) and [ 9

50T ,
18

50T , ...,
9
T ]

(Scenario 3), respectively. Due to large number of trans-
mitters, the optimal selection based on exhaustive search
becomes infeasible. Thus, we employ Algorithm 1 in
this example to select transmitters. Letting PFA = 10−2,
for each scenario, the resulting PD for five different
(random) transmitter placements are plotted versus the
allowed number A1 of selected transmitters, as shown
in Fig. 3. It is seen that for all the tested scenarios and
transmitter placements, selecting A1 = 6 transmitters
leads to almost the same PD as selecting all transmitters.
Clearly, using the proposed method, a large saving of
complexity can be gained accordingly.

E. Extension
1) Correlated Reflections and Clutter-Plus-Noise: In Fig.

4, the parameters are the same with the case in Fig.
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Fig. 4: The ROC curves (averaged over a hundred d-
ifferent realizations of transmitter replacement) of the
optimal selection, KL-based selection, Algorithm 1-based
selection, random selection and worst selection under
correlated reflections and clutter-plus-noise.

2 except for the clutter-plus-noise and the reflection
coefficients are all not spatially white. The correlation of
clutter-plus-noise are set as Nij=10−6 for i = j and 10−7

for i 6= j, i, j = 1, 2, and the correlation of reflection
coefficients are set as E{βmnβ∗m′n′} = 10 for m = m′,
n = n′ and 1 otherwise. In Fig. 4, the ROC curve aver-
aged over a hundred different realizations of transmitter
replacement are plotted for the optimal selection, KL-
based selection, Algorithm 1-based selection, random
selection and the worst selection. We can see that, for any
fixed PFA, the optimal and worst selection lead to the
largest and smallest PD, as expected. The PD obtained
using random selection is larger than the worst case. The
PD for the KL-based selection is better than the random
selection. The PD for the Algorithm 1-based selection
is almost on top of that for the KL-based selection. We
find that the ROC curves obtained using both the KL-
based and Algorithm 1-based methods are close enough
to the optimal selection, which implies these proposed
methods are again effective in finding good approaches
without exhaustive search.

2) Imperfectly Estimated Waveforms: For passive radar,
the waveforms of the transmitted signals must be es-
timated. Now consider the case where the transmitted
signals are not estimated perfectly. Denote by ŝm(t)
the estimated waveform for the m-th (m = 1, ...,M )
transmitted signal. Assume

ŝm(t) = sm(t) + em(t), 0 < t < Tm (67)

where em(t) is the measurement error. Assume em(t)
is a zero-mean complex Gaussian random process with
autocorrelation function

E{em(t1)e∗m(t2)} =

{
Nem t1 = t2

0 t1 6= t2
. (68)

Define the signal-to-error ratio (SER) for the m-th

−15 −10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SER(dB)
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D
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Fig. 5: Average detection probability for the optimal se-
lection, KL-based selection, Algorithm 1-based selection,
random selection and worst selection versus SER.

waveform as

SERm =

∫ T
0
|sm(t)|2dt
NemT

. (69)

We assume SER1 = SER2 =, ...,= SERM . In Fig. 5, the
PFA is fixed to 10−2, and the other parameters (including
the SCNR) are the same as those in Fig. 2, except for the
inaccurate waveform estimation. Thus, if the waveforms
were perfectly estimated, the PD should take values on
the left hand side of Fig. 2. We plot the average detection
probability for the optimal selection, KL-based selection,
Algorithm 1-based selection, random selection and worst
selection versus SERs. From this figure, we see that
the detection probability obtained by both the KL-based
and Algorithm 1-based methods are close enough to the
optimal selection even in very low SER, which implies
these proposed methods are also effectiveness even if the
transmitted waveforms are estimated. For large enough
SER, it is seen that the PD approaches the corresponding
values in Fig. 2 for the perfect estimated waveforms case,
as expected.

VI. CONCLUSION

We studied the limited-complexity receiver design for
passive/active MIMO radar, considering that usually
only a limited number of MFs can be implemented at
each receiver due to cost considerations. For a general
case with possibly nonorthogonal signals and possibly
correlated clutter-plus-noise and reflection coefficients,
we investigated the target detection performance un-
der the Neyman-Pearson criterion and formulated an
optimization problem to maximize the detection perfor-
mance for selecting a set of matched filters. For the case
of spatially white clutter-plus-noise and uncorrelated
reflection coefficients, we showed that the problem is
equivalent to selecting a subset of transmitters. When
the signals transmitted by different transmitters are mu-
tually orthogonal, we proved that the selection leading
to larger SCNRs can achieve larger detection probability.
Thus, at each receiver maximum detection probability
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can be achieved if we select the transmitters corre-
sponding to the largest SCNRs. When the transmitted
waveforms are nonorthogonal, we replaced the original
objective function with the KL distance and showed
that the KL-based transmitter selection method can lead
to a detection performance that is close to the optimal
selection. Further, optimally selecting a few transmitters
can lead to almost the same performance as selecting all
transmitters. Simulations show that this method can also
be used in the more general case of correlated clutter-
plus-noise and reflection coefficients and in the case
where the waveform is estimated.

APPENDIX A
DERIVATION OF LOG-LIKELIHOOD RATIO IN (5)

Define S , {sm(t − τmn), t ∈ T |m = 1, ...,M, n =
1, ..., N}. Since the elements in S are linear independent,
the dimension of span (S) is K = MN , where span (S) is
the set of all linear combinations of the elements of S. Let
{φ1(t), ..., φK(t)} be an orthonormal basis of span (S). We
extend the set {φ1(t), ..., φK(t)} to a complete orthonor-
mal basis, which is {φ1(t), ..., φK(t), φK+1(t), ...}. Thus,

rn(t) =

∞∑
k=1

< rn(t), φk(t) > φk(t) =

∞∑
k=1

rknφk(t) (70)

where

rkn =< rn(t), φk(t) >,
∫
T
rn(t)φ∗k(t)dt (71)

is the inner product between rn(t) and φk(t).
Under H0, rkn can be written as rkn|H0 = < wn(t),

φk(t) >, wkn, where wkn is complex Gaussian distribut-
ed [41] with zero-mean and variance 1, and

E{rknr∗k′n′ |H0} = E{wknw∗k′n′ |H0}

= E{
∫
T
wn(t)φ∗k(t)dt

∫
T
w∗n′(t)φk′(t)dt}

=

∫
T

∫
T
E{wn(t)w∗n′(t

′)}φ∗k(t)φk′(t
′)dtdt′

=

∫
T

∫
T
Nnn′δ(t− t′)φ∗k(t)φk′(t

′)dtdt′

= Nnn′δkk′ , (72)

where k and k′ are positive integers, n, n′ = 1, ..., N and

δkk′ =

{
1 k = k′

0 k 6= k′.
(73)

Under H1, rkn can be written as

rkn|H1 =<

M∑
m=1

ξmnsm(t− τmn) + wn(t), φk(t) >

=<

M∑
m=1

ξmnsm(t− τmn), φk(t) > +wkn. (74)

Since {φ1(t), ..., φK(t)} is a orthonormal basis of
span (S), in (74), sm(t− τmn) can be written as

sm(t− τmn) =

K∑
k=1

< sm(t− τmn), φk(t) > φk(t)

=

K∑
k=1

skmnφk(t) (75)

where skmn =< sm(t − τmn), φk(t) >. Hence, the term
<
∑M
m=1 ξmnsm(t − τmn), φk(t) > in (74) can be written

as

<

M∑
m=1

ξmnsm(t− τmn), φk(t) >

=<

M∑
m=1

ξmn

(
K∑
k′=1

sk′mnφk′(t)

)
, φk(t) > (76)

=

{ ∑M
m=1 ξmnskmn k 6 K

0 k > K.
(77)

From (77), the equation (74) can be written as

rkn|H1 =

{
uTknξn + wkn k 6 K

wkn k > K
(78)

where ukn = [sk1n, ..., skMn]T . It is clear uTknξn ∼
CN (0,uTkn Λnnu

∗
kn), where Λnn = E{ξnξHn }. From (72)

and (78), we see that

E{rknr∗k′n′ |H1}

=

{
Nnn′δkk′ k > K or k′ > K.

uTknΛnn′u
∗
k′n′ +Nnn′δkk′ k, k′ 6 K

(79)

where Λnn′ = E{ξnξHn′}. Define

rk , [rk1, rk2, ..., rkN ]T (80)

and

Rk , [rT1 , ..., r
T
k ]. (81)

From (72) and (79), we see that rkn and rk′n′ (k 6= k′)
are mutually independent for k > K or k′ > K. Thus,
rk and rk′ (k 6= k′) are mutually independent for k > K
or k′ > K. Thus, the likelihood ratio is [41]

L = lim
i→∞

p(Ri|H1)

p(Ri|H0)

=
p(RK |H1)

p(RK |H0)
lim
i→∞

∞∏
i=K+1

p(ri|H1)

p(ri|H0)
=
p(RK |H1)

p(RK |H0)
. (82)

Let

vn = [r1n, ..., rKn]T . (83)

It is clear vTn is the n-th row of RK . Define

Υn1,n2,i , E{vn1v
H
n2
|Hi}, (84)

where i = 0, 1. From (72), the (k1, k2)-th (k1, k2 =
1, ...,K) element of Υn1,n2,0 is

Υn1,n2,0,(k1,k2) = Nn1n2δk1k2 (85)

Thus,

Υn1,n2,0 = Nn1n2IK . (86)

From (79), the (k1, k2)-th element of Υn1,n2,1 is

Υn1,n2,1,(k1,k2) = uTk1Λn1n2u
∗
k2 +Nn1n2δk1k2 . (87)
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Thus,

Υn1,n2,1 = Nn1n2IK +Un1Λn1n2U
H
n2
, (88)

where Un = [u1n, ...,uKn]T . Let v = [vT1 , ...,v
T
N ]T . From

(86) and (88), we obtain

E{vvH |H0} = N ⊗ IK (89)

and

E{vvH |H1} = N ⊗ IK + ΦΛΦH , (90)

where Φ = Diag(U1, ...,UN ) and Λ = E{ξξH}. So the
log-likelihood ratio is

L = ln
p(RK |H1)

p(RK |H0)
= ln

p(v|H1)

p(v|H0)

= C + vH
(

(N ⊗ IK)−1 −
(
N ⊗ IK + ΦΛΦH

)−1
)
v,

(91)

where

C = ln Det(N ⊗ IK)− ln Det(N ⊗ IK + ΦΛΦH) (92)

is a constant. Define

s , [s1(t− τ11), ..., sM (t− τMN )]T (93)

and

φ , [φ1(t), ..., φK(t)]T . (94)

From (75), we obtain

s = Sφ. (95)

where the S a K ×K matrix whose k-row is

Sk = [sk11, ..., skMN ]. (96)

Let xn be a K × 1 vector with the (n′(M − 1) + m)-th
(m = 1, ...,M , n′ = 1, ..., N ) element

xmn′n =< rn(t), sm(t− τmn′) > . (97)

Define

< rn(t), s >

, [< rn(t), s1(t− τ11) >, ..., < rn(t), sM (t− τMN ) >]T . (98)

From (83), (95), (97) and (98), we obtain

xn =< rn(t), s >= S∗ < rn(t),φ >= S∗vn. (99)

Since the elements of S are linear independent, they can
also be a basis of S. Thus, the matrix S∗ is invertible
such that

vn = (S∗)−1xn. (100)

Let x = [xT1 , ...,x
T
n ]T . From (100), we obtain

v = (IN ⊗ (S∗)−1)x (101)

Plugging (101) into (91), we obtain

T = C + ((IN ⊗ (S∗)−1)x)H
(

(N ⊗ IK)−1

−
(
N ⊗ IK + ΦΛΦH

)−1 )
(IN ⊗ (S∗)−1)x

= C + xH(IN ⊗ ST )−1
(

(N ⊗ IK)−1

−
(
N ⊗ IK + ΦΛΦH

)−1 )
(IN ⊗ S∗)−1x

= C + xH
((
N ⊗ S∗ST

)−1

−
(
N ⊗ S∗ST + (IN ⊗ S∗)ΦΛΦH(IN ⊗ ST )

)−1 )
x

= C + xH
(

(N ⊗Ξ)−1 −
(
N ⊗Ξ + ΨΛΨH)

)−1
)
x,

(102)

where

Ξ = S∗ST (103)

and

Ψ = (IN ⊗ S∗)Φ = Diag(S∗, ...,S∗)Diag(U1, ...,UN )

= Diag(Ψ1, ...,ΨN ), (104)

in which

Ψn = S∗Un (105)

is an MN ×M matrix. The ((n1−1)M +m1, (n2−1)M +
m2)-th element (n1, n2 = 1, ..., N and m1,m2 = 1, ...,M )
of Ξ is

Ξ(n1−1)M+m1,(n2−1)M+m2

= S∗((n1−1)M+m1)S
T
((n2−1)M+m2)

=

K∑
k=1

s∗km1n1
skm2n2

=

∫
T

sm2(t− τm2n2)s∗m1
(t− τm1n1)dt. (106)

The ((n1 − 1)M +m1,m)-th elements of Ψn is

Ψn,((n1−1)M+m1,m) =

K∑
k=1

s∗km1n1
skmn (107)

=

∫
T
sm(t− τmn)s∗m1

(t− τm1n1)dt.

(108)

From (103) and (104), the constant C in (92) can also be
written as

C =
(

ln Det(N ⊗ IK) + ln Det(IN ⊗Ξ)
)

− ln Det(IN ⊗Ξ)− ln Det(N ⊗ IK + ΦΛΦH)

= ln Det(N ⊗Ξ)− ln Det(N ⊗Ξ + ΨΛΨH). (109)

APPENDIX B
MONOTONICITY OF Pd WITH RESPECT TO ρmn FOR

LEMMA 1

Define Ωρ = {ρ11, ρ21, ..., ρMN}. We consider two
cases. When the elements in Ωρ\ρmn are all zero, we will
prove PD is strictly monotone increasing on (0,+∞) with
respect to ρmn. When the elements in Ωρ\ρmn are not all
zero, we will prove PD is strictly monotone increasing
on [0,+∞) with respect to ρmn.
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In the first case, the elements in Ωρ\ρmn are all ze-
ro. From (34), we obtain Ts = ζmn. Since ζmn|H0 ∼

ρmn

2(ρmn+1)χ
2
2 and ζmn|H1 ∼ ρmn

2 χ2
2, we obtain

PFA = exp(−1 + ρmn
ρmn

γ) (110)

PD = exp(− 1

ρmn
γ). (111)

From (110), we obtain

γ = − ρmn
1 + ρmn

lnPFA. (112)

Inserting (112) into (111), we obtain

PD = exp(
lnPFA

1 + ρmn
) (113)

Note that 0 < PFA < 1, lnPFA < 0, so PD is strictly
monotone increasing on (0,+∞) with respect to ρmn.

In the second case, the elements in Ωρ\ρmn are not all
zero, we denote the indices of these nonzero elements
by 1+, ..., P+, where P the number of nonzero elements
in Ωρ\ρmn. Since selecting one more transmitter would
not lead to worse detection performance,

PD(..., ρmn, ...) > PD(..., ρmn = 0, ...),∀ρmn > 0. (114)

Thus, if

∂PD
∂ρmn

> 0,∀ρmn > 0, (115)

then PD is strictly monotone increasing on [0, +∞) with
respect to ρmn.

Proof of (115): Define

PFA = 1− FTs|H0
(γ,ρ) , ϕ0(γ,ρ), (116)

and

PD = 1− FTs|H1
(γ,ρ) , ϕ1(γ,ρ). (117)

(116) determines a explicit function γ = γ(PFA,ρ).
Since PFA and all the elements in Ω\ρmn are fixed,
γ is only determined by ρmn. For a simpler notation,
we use γ(ρmn) instead of γ(PFA,ρ). Similarly, we use
ϕ0(γ, ρmn), ϕ1(γ, ρmn) and PD(ρmn) instead of ϕ0(γ,ρ),
ϕ1(γ,ρ) and PD(ρ), respectively.

According to the theory of calculus,

∂PD
∂ρmn

=
∂ϕ1

∂γ

∂γ

∂ρmn
+

∂ϕ1

∂ρmn
(118)

∂γ

∂ρmn
= −

∂ϕ0
∂ρmn

∂ϕ0
∂γ

. (119)

From (35), (37), (116) and (117), we can get

ϕi(γ, ρmn) =

∫ ∞
γ

fi(z) ∗ fζmn|H0
(z, ρmn)dz, (120)

where i = 0, 1,

fi(z) = fζ1+ |Hi
(z, ρ1+) ∗ ... ∗ fζP+

|Hi
(z, ρP+). (121)

In addition, fζmn|Hi
(z, ρmn) and fζp+ |Hi

(z, ρp+), p =

1, ..., P , are the probability density functions (pdfs)6 of
ζmn and ζp+ under Hi (i = 0, 1), respectively. Since
ζmn|H0 ∼ ρmn

2(ρmn+1)χ
2
2 and ζmn|H1 ∼ ρmn

2 χ2
2,

fζmn|H0
(z, ρmn) =

ρmn + 1

ρmn
exp(−ρmn + 1

ρmn
z)u(z)

fζmn|H1
(z, ρmn) =

1

ρmn
exp(− 1

ρmn
z)u(z). (122)

where u(z) is a step function. Similarly,

fζp+ |H0
(z, ρp+) =

ρp+ + 1

ρp+
exp(−

ρp+ + 1

ρp+
z)u(z)

fζp+ |H1
(z, ρp+) =

1

ρp+
exp(− 1

ρp+
z)u(z). (123)

Thus,
∂ϕi
∂γ

= −fi(γ) ∗ fζmn|Hi
(γ, ρmn) (124)

∂ϕi
∂ρmn

=

∫ ∞
γ

fi(z) ∗
∂fζmn|Hi

(z, ρmn)

∂ρmn
dz (125)

From (124), ∂ϕi

∂γ < 0, i = 0, 1. Thus, from (118) and (119),
(115) is equivalent to

∂ϕ1

∂γ

∂ϕ0

∂ρmn
− ∂ϕ0

∂γ

∂ϕ1

∂ρmn
> 0, ∀ρmn > 0. (126)

Plugging (124) and (125) into (126), we obtain∫ ∞
γ

f1(z) ∗
∂fζmn|H1

(z, ρmn)

∂ρmn
dz

×
(
f0(z) ∗ fζmn|H0

(z, ρmn)
)

−
∫ ∞
γ

f0(z) ∗
∂fζmn|H0

(z, ρmn)

∂ρmn
dz

× (f1(z) ∗ fζmn|H1
(z, ρmn)) > 0. (127)

In (127),∫ ∞
γ

f1(z) ∗
∂fζmn|H1

(z, ρmn)

∂ρmn
dz

= f1(γ) ∗
∂fζmn|H1

(γ, ρmn)

∂ρmn
∗ u(−γ)

= f1(γ) ∗
(
−γ
ρ2mn

exp
(
− 1

ρmn
γ
))

= f1(γ) ∗ fζmn|H1
(γ, ρmn) ∗ fζmn|H1

(γ, ρmn). (128)

Similarly,∫ ∞
γ

f0(z) ∗
∂fζmn|H0

(z, ρmn)

∂ρmn
dz

=
1

(ρmn + 1)2
f0(γ) ∗ fζmn|H0

(γ, ρmn) ∗ fζmn|H0
(γ, ρmn)

(129)

Thus, (127) is equivalent to

f1(γ) ∗ fζmn|H1
(γ, ρmn) ∗ fζmn|H1

(γ, ρmn)

×
(
f0(γ) ∗ fζmn|H0

(γ, ρmn)
)

− 1

(ρmn + 1)2
f0(γ) ∗ fζmn|H0

(γ, ρmn) ∗ fζmn|H0
(γ, ρmn)

×
(
f1(γ) ∗ fζmn|H1

(γ, ρmn)
)
> 0. (130)

6Different from (36), the convolution between two pdfs g1(z) and
g2(z) is defined as g1(z) ∗ g2(z)=

∫∞
−∞ g1(z − y)g2(y)dy.
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From (121), (122) and (123), the inequality (130) is equiv-
alent to∫

D

1

ρ2mn
P∏
p=1

ρp+

exp(− 1

ρmn
(γ − zP+1 − ...z1))

× exp(− 1

ρ1+
z1)... exp(− 1

ρP+

zp) exp(− 1

ρmn
zP+1)

×

((
f0(γ) ∗ fζmn|H0

(γ, ρmn)
)

−
(
f1(γ) ∗ fζmn|H1

(γ, ρmn)
)

exp(−γ)

P∏
p=1

(1 + ρp+)

)
dz > 0.

(131)

where dz = dz1...dzP+1 and D = {z1, z2, ..., zP+1|z1 >
0, ..., zP+1 > 0, z1 + z2 + ...+ zP+1 6 γ}. If we can prove(
f0(γ) ∗ fζmn|H0

(γ, ρmn)
)

−
(
f1(γ) ∗ fζmn|H1

(γ, ρmn)
)

exp(−γ)

P∏
p=1

(1 + ρp+) > 0, (132)

then (131) can hold. (132) is equivalent to

∫
D′

P∏
p=1

(1 + ρp+)

P∏
p=1

(ρp+)

exp(−γ) exp(− 1

ρmn
(γ − z′P − ...z′1))

× exp(− 1

ρ1+
z′1)... exp(− 1

ρP+

z′P )dz′ > 0 (133)

where dz′ = dz′1...dz
′
P , D′ = {z′1, ..., z′P |z′1 > 0, ..., z′P >

0, z′1 + ...+ z′P 6 γ}. Since (133) is obviously ture, so are
(132), this completes the proof of (115).
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