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Abstract

Acoustic signaling is an important means by which animals communicate both
stable and labile characteristics. Although it is widely appreciated that vocalizations can
convey information on labile state, such as fear and aggression, fewer studies have
experimentally examined the acoustic expression of stress state. The transmission of such
public information about physiological state could have broad implications, potentially
influencing the behavior and life history traits of neighbors. North American red squirrels
(Tamiasciurus hudsonicus) produce vocalizations known as rattles that advertise
territorial ownership. We examined the influence of changes in physiological stress state
on rattle acoustic structure through the application of a stressor (trapping and handling
the squirrels) and by provisioning squirrels with exogenous glucocorticoids (GCs). We
characterized the acoustic structure of rattles emitted by these squirrels by measuring
rattle duration, mean frequency, and entropy. We found evidence that rattles do indeed
exhibit a “stress signature.” When squirrels were trapped and handled, they produced
rattles that were longer in duration with a higher frequency and increased entropy.
However, squirrels that were administered exogenous GCs had similar rattle duration,
frequency, and entropy as squirrels that were fed control treatments and unfed squirrels.
Our results indicate that short-term stress does affect the acoustic structure of
vocalizations, but elevated circulating GC levels do not mediate such changes.
Introduction

Acoustic communication is a critical means by which information is transferred

within and among animal species. Vocalizations can convey stable information on
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various characteristics of signalers, such as individual identity (Beer, 1970; Beecher,
1989; Blumstein and Munos, 2005), body weight and size (Clutton-Brock and Albon,
1979; Fitch, 1997; Bee et al., 1999; Reby and McComb, 2001; Blumstein and Munos,
2005; Koren and Geffen, 2009), sex (Ey et al., 2007; Blumstein and Munos, 2005), and
social rank (Clark, 1993; Koren et al., 2008; Muller et al., 2004; Terleph et al., 2016;
Yosida and Okanoya, 2009), and they are often encoded with several layers of
information, for example, rank, sex, and individual identity (Koren and Geffen 2009).
Communicating this information is consequential for both signalers and receivers,
serving a wide array of functions, from attracting mates (Andersson 1994) to reducing
conflict and maintaining affiliations in social groups (Masataka and Symes, 1986;
Digweed, et al., 2007; Soltis et al., 2005a).

Vocalizations can also contain information on labile traits, such as short-term
stress state or the changes in glucocorticoids (GCs) that are released in response to an
acute environmental challenge. Here we differentiate short-term stressors as discrete
events that stimulate an increase in GCs that lasts just minutes, from chronic stressors,
that stimulate a continued release in GCs over the course of days or longer.
Glucocorticoids, a class of steroid hormones secreted by the adrenal glands, are released
shortly after a stressful event, and perform an array of functions in mediating an
organism’s physiological stress response, including enhancing the effects of the first
wave of response from hormones such as epinephrine and norepinephrine (Sapolsky et
al., 2000). Stress is known to influence the acoustic structure of vocalizations in a number

of species (Manser, 2001; Wilson and Evans, 2012; Sacchi et al., 2002; Slocombe et al.,
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2009). Motivation-structural rules make predictions about the characteristics of
vocalizations produced in high-stress contexts: hostile vocalizations tend to be lower in
frequency and noisier (highly entropic), and fearful vocalizations tend to be higher in
frequency and more tonal (Morton 1977). Although some studies have found empirical
support for these rules, others have found inconsistencies. For example, vocalizations
associated with fear often fail to consistently conform to these motivation-structural rules,
and are often highly entropic (Morton 1977; August and Anderson 1987). The effects of
short-term stress on vocalization structure are thus difficult to generalize.

Although many studies have examined the structure of vocalizations produced in
high stress situations, they have concentrated primarily on vocalizations produced in just
a few contexts, and most of them have been observational (Morton, 1977; Biben et al.,
1986; Zuberbuhler, 2009). Most studies have focused on social contexts, including calls
produced by victims in agonistic encounters between social group members (Morton,
1977), alarm calls (Zuberbuhler, 2009), separation between mothers and their young, and
between social group members (Biben et al., 1986; Ehret, 2005; Bayart et al. 1990;
Rendall, 2003). Other research has centered on begging calls (Sacchi et al., 2002; Perez et
al., 2016) and distress screams produced by individuals in imminent danger of predation
or of being seized by a predator, which likely function to solicit intervention from another
animal capable of interfering in social species (Hogstedt, 1982; Lingle et al., 2007;
Blumstein et al., 2008).

Very few studies have experimentally examined the influence of stress or changes

in glucocorticoids on vocalization structure. One notable exception is Perez et al. (2012),
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who assessed the effects of GCs on the acoustic structure of zebra finch (Taeniopygia
guttata) vocalizations. Their experiment included two stress treatments: social isolation,
and treatment with exogenous GCs, and they found that both types of stress significantly
altered vocalization features. Compared to untreated individuals, zebra finches in both
treatment groups emitted vocalizations of higher frequency than those in the control
group (Perez et al., 2012).

The literature on the influence of stress on vocalizations skews heavily towards
group-living species and focuses primarily on just a few contexts in which stress occurs;
far less is known about the relationship between stress and vocalization structure in
solitary species, despite the fact that many regularly produce vocalizations in short term
stress inducing situations (Hogstedt, 1982). Furthermore, few studies have experimentally
examined this relationship, leaving a gap in our understanding of the mechanism by
which stress may influence acoustic structure. We examined how a short-term stress
(resulting from trapping and handling) and administration of exogenous GCs affected the
territorial vocalizations of solitary, territorial North American red squirrels (Tamiasciurus
hudsonicus).

Red squirrels defend discrete territories throughout the year, and produce
vocalizations called “rattles” that advertise territorial ownership (Smith, 1968), which
deters intruders (Siracusa et al., 2017). At the center of each territory is a “midden,” a
network of underground tunnels that serves as storage space for white spruce (Picea
glauca) cones that compose 50-80% of a squirrel’s annual diet (Donald et al. 2011;

Fletcher et al., 2013). Overwinter survivorship without a midden is near zero (Larsen and
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Boutin, 1994). Successful defense of a territory against pilferage from the midden,
therefore, represents an important component of overwinter survival for a red squirrel.

Red squirrel rattles contain stable information on individual identity (Digweed et
al. 2012; Wilson et al., 2015), and receivers discern encoded kinship information, though
this may be context-dependent (Wilson et al., 2015; Shonfield et al., 2017). In a playback
experiment, focal squirrels only differentiated between the rattles of kin and non-kin
when the playback rattles used were emitted by squirrels that had just been live-trapped
and handled (henceforth, “post-trap rattles”) (Shonfield et al., 2017). This stress-related
context dependency of kin discrimination indicated that possible differences in acoustic
structure of stressed and non-stressed squirrels warranted examination.

To test this directly, we conducted a two-part study to examine the relationship
between stress state and rattle acoustic structure. In the first experiment, we recorded
rattles of wild red squirrels after they were live-trapped and handled and compared these
to rattles recorded opportunistically, without provocation, from squirrels moving freely
around their territories. Previous studies verified this method of inducing stress: squirrels
exhibit a substantial increase in circulating GC levels minutes after entering a trap and
during handling (Bosson et al., 2012; van Kesteren et al., 2018 PREPRINT).

To identify if elevated circulating GCs are part of the mechanism by which a short
term stressor (such as capture and handling) alters rattle acoustic structure, we conducted
a second experiment where we treated squirrels with GCs (dissolved in a small amount of
food) and compared their rattles to those of squirrels in a positive control group (provided

with the same amount of food but without GCs) and an negative control group (provided
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with no food or GCs). A previous study showed that in GC-treated squirrels, plasma GCs
rose quickly after treatment and then slowly declined over the ensuing 12 hours (van
Kesteren et al., 2018 PREPRINT).

We first predicted that if rattles do encode information about stress state, and
recording settings are consistent across conditions, post-trap rattles would be structurally
distinct from opportunistic rattles. Based on the results of Perez et al.’s (2012) zebra finch
experiments, we predicted that post-trap rattles would be higher in frequency. We then
predicted that if GCs are the mechanism by which short term stress alters rattle acoustic
structure, rattles emitted shortly after treatment with exogenous GCs would exhibit the
same structural distinctions as post-trap rattles when compared with rattles produced
prior to treatment and rattles produced by positive control and negative control squirrels
over the same period of time. We expected these structural distinctions to be graded,
peaking shortly after treatment and then declining as a function of time since
consumption of treatment mirroring the peak and decline of circulating GC levels

following treatment.

Methods
Study Site and Species

This study was part of the Kluane Red Squirrel Project, a long-term study of a
wild population of red squirrels that has been tracked continuously since 1987 (McAdam
et al., 2007), within Champagne and Aishihik First Nations traditional territory in the

southwestern Yukon, Canada (61° N, 138° W). The habitat is an open boreal forest
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dominated by white spruce trees (Picea glacua; Krebs et al. 2001). All squirrels were
marked individually with ear tags with distinct alphanumeric combinations (Monel #1;
National Band and Tag, Newport, KY, USA), and wires in unique color combinations
were threaded through the ear tags to allow for individual identification from a distance.
We live trapped squirrels periodically to track female reproductive state and territorial
ownership using tomahawk traps (Tomahawk Live Trap Company, Tomahawk, WI,

USA) baited with peanut butter (McAdam et al. 2007).

Trap-Induced Stress Experiment Field Methods

We collected rattles from squirrels across four study areas between April and
August in six separate years from 2005 and 2017 (Table 1). In the capture-induced stress
experiment, we compared the structure of rattles collected opportunistically to rattles
collected shortly after a squirrel was trapped, handled, and released (“trap rattles). We
collected rattles for this experiment using a Marantz digital recorder (model PMD 660;
44.1 kHz sampling rate; 16-bit amplitude encoding; WAVE format) and a shotgun audio
recorder (Sennheiser, model ME66 with K6 power supply; 40-20,000 Hz frequency
response (+ 2.5 dB); super-cardioid polar pattern). To collect opportunistic rattles, we
stood on a squirrel’s midden at a distance of no greater than 5 m from the squirrel until it
produced a rattle. To collect trap rattles, we trapped and handled a squirrel on its midden,
then recorded its first rattle upon release from a handling bag (within a minute of release).
Trapping and handling is part of ongoing research activity; it was not done explicitly for

this study. Human presence was controlled for: the same person that trapped and handled
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the squirrel also recorded the rattle at a distance no greater than 5 m from the squirrel;
thus, only one person was present for the recording in both treatment conditions. Red
squirrels rattle spontaneously and in response to detection of conspecifics (Smith 1978),
but we cannot rule out the possibility that the rattles were elicited by the person
recording. However, even if squirrels were rattling in response to the presence of a
person, because the stimulus was the same in both conditions (only 1 person was
present), any differences in call structure could not reflect differences in the stimulus, and
thus the simplest explanation is that any differences in call structure reflect the difference
in physiological stress state prior to the arrival of the stimulus. We did not record the
exact amount of time a squirrel spent inside of a trap, but squirrels were in traps for no
more than 120 min before they were released and a rattle was collected. As would be
expected, squirrels exhibit a substantial increase in circulating GC levels minutes after
entering a trap and during handling (Bosson et al., 2012; van Kesteren et al., 2018
PREPRINT).

In total, 351 rattles from 235 unique individuals (308 opportunistic rattles from
205 squirrels, 39 post-trap rattles from 30 squirrels) were recorded and analyzed in the
years 2005, 2006, 2009, 2015, and 2016. Of the 235 squirrels, 127 were male and 108
were female (Table 1). These rattles were part of a long-term dataset of rattles compiled

by prior researchers with the Kluane Red Squirrel Project.

Exogenous GC Treatment Experiment Field Methods
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In the second experiment, we assessed the influence of experimental increases in
circulating GCs on rattle acoustic structure. We sought to track graded changes in rattle
acoustic structure over an extended period of time induced by the GC treatment instead of
a simpler pre/post treatment analysis. We compared the rattles of squirrels in three
treatment groups, using an established protocol for oral administration of GCs. In the
experimental group (n = 16), individuals were fed 8 g of peanut butter (all natural, no
sugar, salt, or other additives) mixed with 2 g of wheat germ and 8 mg of cortisol
(hydrocortisone, Sigma H004). This treatment causes a significant increase in circulating
GCs, peaking 90-120 minutes post-treatment (Dantzer et al 2013; van Kesteren et al.,
2018 PREPRINT). Individuals in the positive control group (n = 16) were fed the same
amount of peanut butter and wheat germ, with no cortisol added. Each squirrel in these
two treatment groups was treated for one day (see details below). Lastly, we had an
negative control group of squirrels that were not fed or manipulated in any way (n = 23).
Our experimental, positive control group and our negative control group (the latter of
which live on a nearby study area) were comprised exclusively of male squirrels.
However, no sex differences are known to exist in rattle acoustic structure (Wilson et al.,
2015).

The morning of treatment, between 0730 and 1000 h, for each squirrel in the GC
treated and positive control groups, we placed one treatment in a bucket hanging in a tree
near the center of its midden. Pilferage from buckets was extremely low (van Kesteren et
al., 2018 PREPRINT), ensuring that treatments were eaten by the target squirrel, and not

neighboring conspecifics or heterospecifics. We recorded the time each treatment was

10
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placed in each bucket and checked the buckets throughout the morning at a minimum of
once every hour and maximum of every 45 min in order to determine the one-hour time
frame in which the squirrel consumed its treatment. Peanut butter treatments were
delivered to the focal individuals’ buckets in paper cups; consumption of treatment was
confirmed by finding an empty paper cup in their bucket. As a part of another study
(Dantzer et al. 2013), we have been providing squirrels with supplemental peanut butter
for >10 years and have never observed squirrels caching peanut butter. All treatments
were consumed between 0830 and 1130. Eight squirrels (Positive Control, n =4; GC, n =
4) did not consume their treatments by 11:30; these treatments were removed from the
bucket and the squirrels were excluded from analyses. Two individuals (GCs n = 2)
consumed their treatment over a period of several hours instead of consuming it within a
one-hour time block. Because we sought to simulate short-term stress induced by a rapid
elevation of circulating GC levels, these squirrels were excluded from analysis as well.
Our final sample size was GC (n = 10), positive control (n = 12), and negative control (n
=23).

We recorded rattles using stationary Zoom H2N Audio Recorders (Zoom
Corporation, Tokyo, Japan) that were covered with windscreens and attached to 1.5 m
stakes in the center of each squirrel’s midden. Because they are not weather-proof, we
placed an umbrella 30 cm above each audio recorder to protect it from harsh weather
conditions. We set the audio recorders in 44.1kHz/16bit WAVE format and recorded in
2-channel surround mode. We deployed the audio recorders between 1700 and 2200 h on

the day before treatment so that they would collect “pre-treatment” rattles the following

11
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morning, prior to treatment. They recorded continuously until nightfall on the day of
treatment, recording rattles of the target squirrel, neighboring individuals, and other
ambient noise. Rattles recorded in the evening prior to treatment were excluded from
analysis; thus, all rattles analyzed in this experiment were recorded on the day of
treatment, between approximately 0600 and 2330 h. We chose this recording period
because this recording window should have captured rattles at natural GC levels (pre-
treatment rattles), during the post-treatment spike in circulating GC levels, and the
ensuing decline. This is based upon our previous study showing that when squirrels are
fed exogenous GCs, plasma cortisol concentrations spike within 90-120 minutes of
treatment and decline over the ensuing 12 h (van Kesteren et al., 2018 PREPRINT).

In order to analyze rattles recorded on stationary zoom recorders, we used
Kaleidoscope software (version 4.3.2; Wildlife Acoustics, Inc., Maynard, MA, USA) to
detect rattles in the recordings. Detection settings were: frequency range: 2000—-13000
Hz; signal duration: 0.4—15 s; maximum intersyllable silence: 0.5 s; fast Fourier
transform size: 512 points (corresponding to a temporal resolution of 6.33 ms and a
frequency resolution of 86 Hz); distance setting: 2 (this value ensures that all detections
are retained). Previous research using our same population, recording apparatus, and
rattle extraction technique, and ground-truthed by comparing the results to those obtained
by a human observing the squirrels being recorded, showed that our method detects 100%
of a focal squirrel's rattles (see Siracusa et al., in press), but also detects non-rattles and

the rattles of neighbors.

12
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We used a previously developed a technique for distinguishing focal squirrel
rattles from non-rattles and neighbor rattles (Siracusa et al., in press). We first
automatically analyzed the acoustic structure of every detection using the R package
'Seewave' (version 2.0.5; Sueur et al. 2008). Structural features included duration, root-
mean-square amplitude, pulse rate, duty cycle, peak frequency, first energy quartile,
skewness, centroid, and spectral flatness (see detailed definitions in Sueur et al. 2008 and
Siracusa et al., in press). We analyzed a more complex suite of rattle characteristics here
because these features encode the most information about individual identity (Digweed et
al., 2012). Second, we used SPSS (software, version 24, IBM Corporation, Armonk, New
York, USA) to apply a previously established linear discriminant function analysis model
to the structural measurements of each detection. The model, which was developed
during the same ground-truthing experiment described above, labeled each detection as
'focal rattle,' 'neighbor rattle,' or 'non-rattle,' and assigned a probability that the detection
was a focal rattle. Third, we used Kaleidoscope to review spectrograms of all detections
labeled 'focal rattle' that have an estimated probability of being a focal rattle of at least
0.999. During this step, we removed any non-rattles that were included erroneously as
focal rattles.

Our final dataset included 714 rattles from 45 focal squirrels (GC-treated = 232
rattles from 10 squirrels, positive control = 367 rattles from 12 squirrels, and negative
control = 115 rattles from 23 squirrels). Based on a cross-validated assessment of the
accuracy of our approach (see details in Siracusa et al, in press), 52% of all focal rattles

should have been identified correctly as focal rattles (i.e., 48% incorrectly classified as

13
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coming from a neighbour, and, therefore, excluded; false negative error rate = 48%), and
6% of the rattles labeled as focal rattles (after manually removing the non-rattles) should
actually have been neighbor rattles (i.e., false error rate of 6%). Therefore, although our
final dataset included only half of all rattles produced by our focal squirrels during their
24-h trials, the vast majority of rattles that were included in the dataset were from the

focal individual.

Acoustic Analysis

We used Avisoft SASLab Pro software version 5.0 (Avisoft, 2015) to analyze the
acoustic structure of rattles recorded in both experiments. The rattles were loaded into
Avisoft, and for each rattle we generated a spectrogram (FFT size: 512, Window:
Hamming, Temporal Resolution: 1.45 ms, Frequency Resolution: 86 Hz, Overlap:
87.5%) and the program extracted the acoustic parameters of interest (described below)
using an existing protocol for rattle acoustic analysis. We oversaw this process manually,
checking that each call was recognized and analyzed in its entirety by AviSoft, and that
none were cut off - if the program did not recognize the call in its entirety, we would
adjust the recognition parameters slightly. To characterize rattles, we measured three
acoustic parameters: rattle duration, mean frequency (the frequency below which lies
50% of the energy of the signal, as measured from an averaged power spectrum of the
entire signal), and entropy, a measure of noisiness of a signal. Because rattles are
broadband and noisy signals, meaning that the majority of the energy in a call is

dispersed across the frequency domain, mean frequency is a more appropriate measure of

14
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the frequency of the call than peak frequency. AviSoft measures Weiner Entropy
(spectral flatness), calculated by dividing the geometric mean of the power spectrum by
the arithmetic mean of the power spectrum, which ranges from 0 (pure tone) to 1 (white
noise). We limited analysis to these three acoustic variables because in our review of the
literature, these variables appeared to be most commonly influenced by arousal (Manser,
2001; Rendall, 2003; Facchini et al., 2005; Soltis et al., 2005b; Slocombe et al., 2009;
Esch, 2009; Zimmerman, 2009). These measurements were made using the ‘automatic
parameter measurements’ feature of SASLab Pro to eliminate human bias in the
measurements (settings: threshold -13 dB, hold time of 150 ms).

Because high frequencies attenuate more readily than low frequencies, entropy
and mean frequency could, in theory, covary with recording distance. In the capture-
induced stress experiment, a constant recording distance of approximately 5 meters was
maintained for all recordings. In the GC induced stress experiment, in which rattles were
recorded on stationary zoom microphones, to ensure that recording distance did not vary
with time or treatment, we measured the signal-to-noise ratio of a subset of 140 rattles
and found no significant relationships between rattle amplitude (a proxy for recording
distance) and time of day (linear regression: t = -1.33, df = 6.6, p = 0.19) or treatment
(linear regression: t = -1.66, df = 24.9, p = 0.11). This indicates that any variation in rattle
entropy throughout the day or among the treatments was not due to focal squirrels being
closer to or further from the microphone.

Statistical Analyses

15
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For statistical analyses, we used R (version 3.5.1; R Developmental Core Team,
2018) with the package Ime4 (version 1.17; Bates et al., 2015) to fit linear mixed-effects
models and ImerTest version 3.0 (Kuznetsova et al.; 2017) to assess the significance of
these models. For the capture-induced stress experiment, we included rattle collection
method (post-trap or opportunistic) as a fixed effect. We included squirrel ID as a random
effect because we analyzed multiple rattles from the same squirrels across multiple years.

Wilson et al. (2015) found no effects of age, sex, or Julian date on the acoustic
structure of rattles recorded from this same population. To confirm this finding, we ran
separate linear mixed effects models with each variable included as a fixed effect, and
found no significant relationship between any of these variables and any of the three
acoustic structural features. Age had no relationship with acoustic structure in either
stressed (duration: t =-0.08, df = 36.9, p =0.94; mean frequency: t =-0.54, df =34.5, p =
0.59; entropy: t =-1.26, df = 36.9, p = 0.21) or unstressed (duration: t =-0.04, df = 51.5,
p = 0.97; mean frequency: t =-0.66, df = 152.14, p = 0.51; entropy: t =-1.01, df = 138.4,
p = 0.31) squirrels. The same was true for sex — neither stressed (duration: t=<0.001, df
=36.81, p =0.99; mean frequency: t = 0.48, df = 33.7, p = 0.96; entropy: t = 0.34, df =
36.6, p = 0.74) nor unstressed (duration: t =0.93, df = 162.2, p = 0.36; mean frequency: t
=0.08, df = 154.7, p = 0.94; entropy: t = -0.91, df = 176.5, p = 0.36) squirrels showed
any such relationship. And the same was true for Julian date, in both stressed (duration: t
=-0.05, df = 34.55, p = 0.81; mean frequency: t=0.78, df = 35.11, p = 0.55; entropy: t =

1.05, df = 34.23, p = 0.59) and unstressed squirrels (duration: t = 0.10, df = 161.22, p =

16
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0.81; mean frequency: t =-0.03, df = 162.33, p = 0.37; entropy: t = 0.85, df = 161.58, p =
0.45).

We also found no year effects for any of the acoustic parameters measured — we
conducted LMMs for each acoustic variable, and found no effect of year on any variable
in both stressed (duration: F2,360=0.71, p = 0.50; mean frequency: F2 362 =2.20, p =
0.08; entropy: F2,37.1 = 3.20, p = 0.10) and unstressed (duration: F3 2605 = 1.76, p = 0.16;
mean frequency: F3 2618 = 2.58, p = 0.09; entropy: Fz 2603 =2.21, p=0.09) squirrels.

To examine the effects of administration of exogenous GCs on the acoustic
structure of rattles, we fit three separate linear mixed-effects models — one for each of the
three acoustic response variables (duration, mean frequency, entropy). Each model
included an interaction between treatment group and time since treatment consumption
(both linear and quadratic terms) as fixed effects, and squirrel ID (n = 44) as a random
effect. In order to include the rattles of negative control group squirrels in this model, we
found the average time at which the GC-treated and positive control (fed) squirrels
consumed their treatment (1015 h) and set that as time of treatment consumption for all
negative control group (unfed) squirrels. For example, a rattle emitted at 1030 h would
have a “time since treatment” value of 900 s, and a rattle emitted at 1000 h would have a
time since treatment value of -900 s. Time since treatment consumption was standardized
(mean (time of day) = 0, SD = 1). In both experiments, Q-Q plots were generated to test
for normality, and residuals were found to be normally distributed.

We did not compare the rattles of GC-treated squirrels directly with the rattles of

trap-stressed squirrels for two primary reasons. The first is that for the GC-treated
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squirrels, because we checked for consumption of treatment only every hour, we have far
less precision in determining which rattles occurred at peak circulating GC levels (90-120
min post treatment). Thus, it was impossible to compare the post-trap rattles produced at
peak stress levels with rattles produced at peak GC levels. The second reason is that the
rattles in the post-trap stress experiment were recorded with a different, slightly higher
quality recording unit than those recorded in the GC treatment experiment, making direct
comparisons across recordings inappropriate.

If elevated plasma GCs alter rattle acoustic structure, we expected that the effects
of the GC treatment on rattle acoustic structure would be strongest within 90-120 minutes
of treatment consumption, the time frame in which circulating GCs should be highest
using this treatment paradigm (Breuner et al., 1998; van Kesteren et al., 2018
PREPRINT). Thus, we included a non-linear (quadratic) term for time since treatment
consumption and its interaction with treatment because we expected that the effects of the
treatment would exhibit a non-linear relationship, peaking within 90-120 minutes of

treatment and then declining throughout the remainder of the day.

Results:
Effects of capture-induced stress on rattle acoustic structure

Capture-induced stress caused pronounced differences in rattle acoustic structure:
post-trap rattles were longer, higher in frequency, and noisier than rattles collected
opportunistically. Thus, there was indeed a clear stress signature. The average duration of

post-trap rattles (4.77 £ 2.25 (SD) s) was significantly longer than that of opportunistic
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rattles (2.93 + 1.28 s), a 63% increase (t = 3.78, df =209.41, p <0.001, Fig. 1A). The
average mean frequency of post-trap rattles (7269.53 = 1180.76 hz) was slightly but
significantly higher than that of opportunistic rattles (6971.753 +£1007.37 hz), a 4.3%
increase (t =2.82, df = 218.01, p = 0.005, Fig. 1B). And finally, the average entropy of
post-trap rattles (0.754 = 0.035) was slightly but significantly higher than that of
opportunistic rattles (0.712 = 0.047), a 5.9% increase (t = 4.14, df =78.52, p <0.001, Fig.
10).
Effects of administration of glucocorticoids on rattle acoustic structure

Administration of exogenous GCs did not produce the same effects on rattle
acoustic structure as capture-induced stress — the rattle acoustic features of GC treated
squirrels did not follow the predicted pattern of peaking after treatment and then
declining as a function of time since treatment (Tables 2-4, Fig. 2). There was, however,
a significant linear interaction between treatment and the amount of time elapsed since
treatment consumption on rattle duration (F2,677.4=3.78, p = 0.02). This effect was
largely driven by the increases in rattle duration observed in negative control group
squirrels (Fig. 2A): rattles from negative control group squirrels increased in length
throughout the day compared to those treated with GCs (b = 0.33, t=2.67, p =0.01,
Table 2, Fig. 2A). Rattle durations of squirrels treated with GCs did not change
differentially over the course of the day when compared with rattle durations of squirrels
fed peanut butter only (b =0.07, t =0.73, p = 0.47, Table 2, Fig. 2A).

There were no treatment effects on rattle mean frequency (F22= 0.60, p = 0.63,

Table 3) or entropy (F2,56= 0.47, p = 0.63, Table 4) and the effects of the treatments on
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rattle mean frequency or entropy did not depend upon the amount of time that had
elapsed since treatment consumption, as indicated by the lack of interactions between
treatment and time elapsed since treatment consumption (both linear and quadratic
terms). However, the mean frequency of rattles from squirrels recorded in all three
treatment groups increased throughout the day (F1,6833 =4.77, p = 0.03). Overall, there
were no significant non-linear effects of time since treatment consumption or its

interaction with treatment on rattle duration, frequency, or entropy (Tables 2-4).

Discussion:

Our study shows that short-term stress, in this case induced by live-capture and
handling, significantly influences the acoustic structure of territorial vocalizations in red
squirrels. Squirrels experiencing capture-induced stress produced rattles that were longer
in duration, higher in frequency, and noisier (higher entropy) than rattles produced by
positive control squirrels. However, we were unable to reproduce these same effects on
acoustic structure by experimentally increasing circulating GCs, despite the fact that GCs
increase in response to trapping and handling (Bosson et al., 2012; van Kesteren et al.,
2018 PREPRINT). Indeed, the rattles of squirrels treated with GCs did not exhibit the
expected structural distinctions from the rattles of positive control or negative control
squirrels over the treatment period.

The only significant differences in rattle acoustic structure between treatment
groups in the GC treatment experiment was that in negative control squirrels, rattles

increased in duration throughout the day, whereas the rattles of GC-treated and control
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(fed) squirrels did not significantly vary throughout the day. This may indicate that
supplemental feeding suppresses a normally-occurring pattern in rattle structure — rattles
may normally increase in duration throughout the day. Differences in study grids may
also explain this difference: squirrels in the GC-treated and positive control groups were
on a different study grid than those in the negative control group. The study grid on
which the GC-treated and positive control squirrels lived has historically higher squirrel
population densities than the study grids on which the negative control squirrels lived; it
is thus possible that at lower population densities, squirrels produce longer rattles. Both
of these possible explanations, however, would need to be examined directly.

The effects of short-term stress (trapping and handling) on rattle acoustic structure
that we observed (longer duration, higher mean frequency, and higher entropy) are
largely congruent with such trends in acoustic structure in relation to stress in many
species. Chimpanzee screams, for example, increase in duration with the severity of an
agonistic encounter (Slocombe et al., 2009). In dog barks (Canis lupus familiaris,
Tokuda, 2002), human infant cries (Facchini et al., 2005), baboon grunts (Papio
hamadrayas, Rendall, 2003), and meerkat alarm calls (Suricata suricatta, Manser, 2001),
noisiness (entropy) increases with short-term stress. In many species, an increase in short-
term stress is associated with an increase in pitch related characteristics. For example,
during capture-release events, female bottlenose dolphins with dependent calves produce
whistles of elevated frequency (Tursiops truncatus, Esch, 2009). The same pattern is
observed in adult female African elephants (Loxondota africana, Soltis et al., 2005b), tree

shrews (Tupaia belangeri, Schehka and Zimmerman, 2009), and zebra finches (Perez et
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al., 2012): short-term stress is associated with an increase in vocalization pitch. In giant
panda cubs (4iluropoda melanoleuca), increased stress is associated with all of the trends
in acoustic structure that we observed in post-trap rattles: longer duration, higher
frequency, and increased noise (Zimmerman, 2009).

Our results somewhat resemble those of Perez et al. (2012), who investigated how
an environmental stressor (social isolation) and treatment with exogenous GCs affected
vocalization structure in zebra finches. In their study, social isolation induced
vocalizations of increased duration and pitch, and reduced overall vocal activity.
However, oral administration of GCs only resulted in vocalizations with increased pitch,
but no other effects were observed (Perez et al. 2012). The results from Perez et al.
(2012) and our study suggest that short-term stressors alter vocalization structure but any
increases in GCs caused by the short-term stressor are not solely responsible for these
changes.

Our findings and those of Perez et al. (2012) suggest that the acoustic structure of
vocalizations can be altered by short-term stress, but the relationship between circulating
GC levels and acoustic structure of vocalizations is not straightforward. Glucocorticoid
treatment and capture-induced stress result in comparable concentrations of plasma GCs
(van Kesteren et al., 2018 PREPRINT), indicating that our GC treatment regime fairly
accurately simulates the increase in plasma GCs experienced as a result of capture. Thus,
other hormones or neurochemicals may be implicated in modulation of the acoustic
structure of vocalizations. For example, in rat pups, several classes of dopamine receptor

agonists reduced the production of stress-induced ultrasonic vocalizations caused by
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isolation; this is a sign of reduced separation anxiety (Dastur et al., 1999). It is also
possible that the acoustic structure of vocalizations has a non-monotonic dose response
relationship with GCs. There is precedent for such a relationship: in white crowned
sparrows, moderate doses of corticosterone induced elevated physical activity, whereas
high levels did not (Breuner et al., 1998). We only provisioned squirrels with one dosage
of GCs and so were unable to address whether lower or higher dosages of GCs would
alter rattle acoustic structure. Together, this suggests the importance of considering
additional mechanisms that may underlie the observed changes in vocalization acoustic
structure.

Because treatment with exogenous GCs induced none of the expected changes to
rattle acoustic structure, it is possible that the acoustic changes observed in the rattles of
trapped squirrels were produced by an effect of trapping besides increases in GCs.
Because rattles function to advertise territorial ownership, it is possible that a squirrel that
has been in a trap and unable to defend its territory for up to two hours, upon release,
compensates by producing rattles that are longer and noisier. This hypothesis, however,
would require explicit tests.

It is also worth considering here the possible influence of energetic state on rattle
acoustic structure. The two manipulated groups (GC and positive control) were
provisioned with 10 g of a peanut butter/wheat germ mixture, and it is conceivable that
this energetic boost impacted rattle structure. A red squirrel’s daily energetic expenditure
ranges from approximately 177 kJ/day to 660 kJ/day, depending on season and

reproductive state; during mid-summer, when our experiment was conducted, a male
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squirrel’s daily energetic expenditure likely falls near the middle of that range (Fletcher
et al 2012). 10 g of natural peanut butter and wheat germ contains approximately 240 kJ;
thus, peanut butter treatments constituted a significant portion of a squirrel’s daily energy
requirements. A significant body of literature has examined the effects of energetic state
on vocalizations. Most notably, studies on songbirds have found that birds provisioned
with supplemental food in the evening produce longer and more complex dawn choruses
the following morning (Cuthill and McDonald 1990; Berg et al., 2005; Barnett and
Briskie, 2007).

It is thus conceivable that the energetic boost provided by peanut butter treatments
interfered with any effects of GCs on acoustic structure. However, given the lack of
significant differences in the rattles of squirrels in any of the three treatment groups, we
consider this possibility unlikely.

Our findings constitute further evidence that territorial vocalizations such as
rattles contain more information than territorial ownership. In red squirrels, not only do
rattles have the capacity to communicate stable information about the signaler’s
individual identity and potential kin relationships (Digweed et al. 2012; Wilson et al.
2015; Shonfield et al. 2017), but also labile information, such as short-term stress. In
some cases, it is possible that this stable and labile information may interact — the stress
state of the signaler might modify the ability of conspecifics to discriminate whether they
are kin or non-kin, as proposed by Shonfield et al., (2017). This layering of stable and

labile encoded information in vocalizations may not be uncommon, appearing across a
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number of animal taxa (Seyfarth and Cheney, 2003; Rendall, 2003; Blumstein and
Munos, 2005; Soltis, 2005a; Koren and Geffen, 2009; Terleph et al., 2016).

There are several hypotheses on the functional significance of these tendencies in
vocalizations associated with high-stress contexts. In social species, the unpredictability
hypothesis states that calls that contain more non-linearities are more difficult to
habituate to, and thus noisy alarm calls are more likely to capture the attention of a
conspecific in the event of a predatory or otherwise dangerous event (Blumstein and
Recapet, 2009). Another hypothesis holds that screams produced when an animal is in
imminent danger of predation serve to either startle and distract the predator, or solicit
intervention from another animal, either a social group member, or a “pirate” predator
that may attempt to steal the prey and unintentionally free it (Hogstedt, 1982). In the case
of red squirrels, one hypothesis that can be envisaged is that honestly communicating
stress to neighbors may advertise a willingness to aggressively defend one’s territory.
Another possibility is that instead of honestly depicting a willingness to defend a
territory, vocal cues of stress might inadvertently reveal that the caller faces some other
challenge and might, therefore, be less capable of defending their territory. These two
hypotheses, however, would need to be tested directly — for example, a playback study
could test whether the rattles of stressed squirrels are more or less likely to deter
territorial intrusions from neighboring squirrels than rattles of unstressed squirrels. If
stress-influenced rattles are more likely to deter intruders, and if their production predicts

an attack or further escalation by the signaler, then stressed rattles would be considered

25



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

26
Final version submitted and published in Behavioral Ecology

aggressive signals (Searcy and Beecher, 2009); if the opposite was the case, they would
be considered index signals (Smith and Harper, 1995).

Though research on stress-induced changes to vocalizations has focused primarily
on group-living species, the encoding of labile information such as short-term stress in
vocalizations may have consequences in a population of solitary, territorial animals as
well, perhaps enabling neighbors to eavesdrop on the physiological state of the signaler
and adjust their own behavior or reproduction accordingly. Eavesdropping by
conspecifics, or the acquisition of public information, may have important ecological
consequences (Valone, 2007; Dall et al., 2010). For example, in many species, including
red squirrels (Fisher et al., 2017; Lane et al., 2018), breeding earlier than other
individuals in your population may be advantageous. Cues about the physiological state
of a signaler contained in territorial vocalizations may provide an important source of
information about when other individuals in the population are breeding — in red
squirrels, the strongest level of selection for postnatal growth rate and birth date is the
social neighborhood (Fisher et al., 2017). As such, labile information contained in
vocalizations, such as stress state, may have broader ecological consequences by serving
as public information and modifying the timing of reproduction in seasonally breeding
species.

Overall, our results indicate that red squirrel territorial vocalizations may contain
labile information on physiological state, in addition to the previously documented stable
information about territorial ownership and individual identity. This study represents one

of only very few experimental tests of effects of stress on acoustic structure in any
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species. Future studies could explore the possible interactions between stable and labile
information encoded in these calls, and the ways in which these layers of encoded

information might influence behavioral or reproductive dynamics.
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Table 1: Number of rattles collected by year, study grid, collection method, and date range. In parentheses,

rattles are split up by sex - (male, female). For some squirrels, more than one rattle was collected.

0 2 3 0 Opportunistic:1 Jun 7 - Jul 31 2005
(2,0) (1,2) Post-trap: 4
0 113 93 0 Opportunistic: 204 Jun 13 - Jul 14 2006
(66,47) (43,50) Post-trap: 2
30 53 8 0 Opportunistic: 54 Mar 26 - Jul 26 2009
(15,15) (26,27) (6,2) Post-trap: 37
24 25 0 0 Opportunistic: 49 Jun 6 - Aug 22016
(12,12) (14,11) Post-trap: 0
0 93 22 599 Zoom mic: 714 Jun 2 - Aug 14 2017
(93,0) (22,0) (599,0) - Neg Control: 115

Pos Control: 367
GC: 232
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Table 2: Compared to the rattles of GC-treated squirrels, the duration of rattles of negative control squirrels

increases linearly as a function of time since consumption of treatment. No other effects of treatment were
found. Output shown is from a linear mixed-effects model that assessed the influence of administration of

GCs on rattle duration compared to those fed supplemental food (positive control) or unfed squirrels

(negative control), including time since treatment as both a linear and quadratic term. Individual identity
was included as a random effect. GC treatment is in the intercept. Sample size: 714 rattles (GC treated: n =

232, positive control: n = 367, negative control: n = 115). Bolded terms are significant.

Fixed Effect b SE df t P-value
Intercept 2.63 0.34 0.74 7.64 0.14
Time since treatment 0.07 0.07 683.0 0.90 0.37
Positive Control treatment 0.07 0.21 31.35 0.32 0.75
Negative Control treatment 0.32 0.44 0.9 0.72 0.61
Time since treatment? -0.02 0.08 683.7 -0.30 0.76
Time since treatment X positive control 0.07 0.09 681.04 0.73 0.47
Time since treatment x negative control 0.33 0.12 692.2 2.67 0.01
Time since treatment? X positive control -0.06 0.09 686.4 -0.68 0.50
Time since treatment® x negative control 0.17 0.13 701.4 1.29 0.20
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Table 3: No effects of treatment on rattle mean frequency were found, however, mean frequency did

increase as a function of time since treatment consumption. Output shown is from a linear mixed-effects
model that assessed the influence of administration of GCs on rattle mean frequency (Hz) compared to
those fed supplemental food (positive control) or unfed squirrels (negative control), including time since
treatment as both a linear and quadratic term. Individual identity was included as a random effect. Sample
size: 714 rattles (GC treated: n = 232, positive control: n = 367, negative control: n = 115). Bolded terms

are significant.

39

Fixed Effect b SE df t P-value
Intercept 9184.42  211.67 0.52 43.4 0.09
Time since treatment 175.50 77.15 681.7 2.28 0.02
Positive Control treatment 5.73 281.57 43.15 0.02 0.98
Negative Control treatment -268.48 291.95 0.7 -0.92 0.57
Time since treatment? -75.89 78.46 682.3 -0.97 0.33
Time since treatment X positive control -147.53 95.56 680.7 -1.54 0.12
Time since treatment x negative control -64.04 129.60 693.1 -0.49 0.62
Time since treatment® x positive control -114.80 95.99 683.4 -1.20 0.23
Time since treatment® x negative control 21.40 136.18 677.0 0.16 0.88
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Table 4: No effects of treatment were found on rattle entropy. Output shown is from a linear mixed-effects

model that assessed the influence of administration of GCs on rattle entropy compared to those fed

supplemental food (positive control) or unfed squirrels (negative control), including time since treatment as
both a linear and quadratic term. Individual identity was included as a random effect. GC treatment is in the
intercept. Bolded terms are significant. Sample size: 714 rattles (GC treated: n = 232, positive control: n =

367, negative control: n = 115). Bolded terms are significant.

Fixed Effect b SE df t P-value
Intercept 7.86e-1 9.27e-3 4.70e+1 84.82 <2e-16
Time since treatment -8.09e-4 3.14e-3 6.80e+2 -0.26 0.80
Positive Control treatment -4.03e-3 1.26e-2 4.36e+1 -0.32 0.75
Negative Control treatment 7.49¢-3 1.26e-2 6.63e+1 0.59 0.56
Time since treatment? 1.06e-3 3.20e-3 6.81e+2 0.33 0.74
Time since treatment x positive control 6.11e-4 3.90e-3 6.79%+2 0.16 0.88
Time since treatment x negative control 3.86e-3 5.31e-3 7.04e+2 0.73 0.47
Time since treatment? X positive control -3.09¢-3 3.91e-3 6.81e+2 -0.79 0.43
Time since treatment® x negative control -1.10e-4 5.56e-3 7.02e+2 -0.02 0.98
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