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Abstract
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1 Introduction

A degree n number field K/Q has rj real and ry complex embeddings, n = r; + 2r.
Let the real embeddings be 01,...,0,, : K — R and the complex embeddings be
Or 415 - - -» O 4r, : K — C. The canonical embedding

o(®) = (01(%), ..., 0r 11, (%)) € R x C™ (1)

is an injective ring homomorphism. Consider C to be a two-dimensional real vector space.
With this identification, the ring of integers & C K is an n-dimensional lattice in R” under

the mapping

x> (01(%), ..., 00y (%), Re oy 11(%), Im oy 11(%), . . ., Re Oy 41y (%), IM 0y 4y (%)) (2)
with covolume

vol(o(0)) = 27™|D|3, 3)

where D = D(K) is the field discriminant.

An old theorem of Samuel [14] states that there are only finitely many number fields
of a given discriminant. Thus it is natural to ask, when number fields of a fixed degree
are ordered by growing discriminant, how is the ring of integers distributed as a lattice?
Note that, as (1) is present in the embedding for all K, o (&) always has a short vector
in this direction, relative to the volume. Thus, define the lattice shape Ax to be the
(n — 1) dimensional orthogonal projection in the space orthogonal to o (1), rescaled to
have covolume 1.

In the case of S, fields of degree » = 3 and n = 3,4, 5, Terr [17] and Bhargava and
Harron [2] prove that the shape of Ax becomes equidistributed in the space

S—1 = GLnfl(Z)\GLnfl(R)/Gonfl(R) (4)

© Springer Nature Switzerland AG 2019.
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with respect to the induced probability Haar measure. Their arguments use the geometry
of numbers and obtain only the asymptotic equidistribution. A natural basis of functions
in which to study equidistribution on the larger quotient

Ay := SLn—l(Z)\SLn—l(R) (5)

consist in joint eigenfunctions of the Casimir operator and its p-adic analogues, the Hecke
operators. Thus, in the case n = 3, the space SL2(Z)\SL2(IR) may be decomposed spectrally
into the constant function, cusp forms and Eisenstein series. Our main result obtains
quantitative cuspidal equidistribution of the shape of cubic fields when the fields are
ordered by increasing size of discriminant.

Identify Ag with a point xx in the homogeneous space SLy(Z)\SLy(R) by choosing a
base point, which is specified explicitly below.

Theorem 1 Let ¢ be a cuspidal automorphic form on SLy(Z)\SL2(R), which transforms
on the right by a character of SO2(R) of degree 2k, and which is an eigenfunction of the
Casimir operator and the Hecke operators. Let F € C2°(R™) be a smooth test function. For
anye > 0,as X — oo,

N3+ (9, FEX):= Z d(A)F <%C(K)) Lgpe X3, (6)
[K:Q]=3
This bound should be compared to the number of cubic fields with discriminant of size at
most X, which is of order X. Besides the significant cancellation exhibited in our theorem,
the advantage of the method is in obtaining the equidistribution of a further angle of
the lattice when oriented in R3 relative to o (1), which is accomplished by permitting the
cusp form to transform on the right by a character of SO2(R). A further advantage of the
method is that it appears to extend to treat the joint cuspidal equidistribution of the shape
of quartic fields when paired with the cubic resolvent, extending work of Yukie [20]. We
intend to return to this topic in a forthcoming publication.
In [19], Theorem 1.3 a counting result for cubic fields is proved which permits imposing
finitely many local specifications, with applications in [4,6,13]. We expect the method of
Theorem 1 can be extended to accommodate finitely many local conditions, but have not

done so here.

1.1 Discussion of method

Shintani [15] and Shintani and Sato [16] introduce zeta functions enumerating integral
orbits in prehomogeneous vector spaces, proving meromorphic continuation and func-
tional equations. Taniguchi and Thorne [18,19] use Shintani’s zeta function in the case of
binary cubic forms together with a sieve to give the best known error terms in the counting
function of cubic fields ordered by discriminant. In [10], the author modified this construc-
tion in the case of binary cubic forms, by introducing an automorphic form evaluated at a
representative of each orbit. In proving Theorem 1, we combine the construction of [10]
with the methods of [19], along with an argument related to the approximate functional
equation from the theory of L-functions.
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Notation and conventions We use the following conventions regarding groups. Gr =
GLy(R), G} = SLy(R), GT = {g € GLy(R) : detg > 0}, Gz = GLy(Z), I' = SLy(Z).
Following Shintani,

A:{(t 1>:teR>o},N:{<lo>:xeR},N’:{(1x>:xeR},

1 x1 01

K = i( cosf Sine) :eeR} )
—sin @ cos®

with group elements

t 10 1x X cosf sinf ®)
a; = , My = , Dy = s = .
! % * x1 * 01 0 —sinf cos6

The Iwasawa decomposition G = KAN is used. Haar measure is normalized by setting,
for f € L}Y(GY),

/Glf(g)dg — % /02” /j; /Ooof(kgatnu)%dudG (9)

and for f € L(G™),

| rea=[" [ 5 ((A A) g) e (10)

We abbreviate contour integrals 2%11 / CC:L;;O F(z)dz = 9§Re(z): . F(z)dz. Denote e(x) the
additive character e27*. The argument uses the following pair of standard Mellin trans-

forms. Write K, for the K-Bessel function. For Re(s) > | Re v|, ( [11], p.205)

/Ooo Ky ()~ Ldx = 22T (HTV> r <S ; ”). 1)

For 0 < Re(s) < 1, ([7], p. 13)

(TS

00 .
/ xS ldy = [(s)e 2. (12)
0
Given F which is smooth, of compact support on R*, the Mellin transform
~ o0
F(s) = / Fx)x*1dx (13)
0

is entire. The operator xd% acts on the Mellin transform by multiplying by —s, as may be
checked by integrating by parts,

a4 o 0 ~
x—F(s) = / F(x)x*dx = —s/ F(x)x*ldx = —sE(s). (14)
dx 0 0

2 Cubicrings and binary cubic forms

A cubic ring R over Z is a free rank 3 Z module equipped with a ring multiplication. A set

of generators (1, @, #) for a cubic ring R is said to be normalized if their multiplication law
satisfies, for some integers ¢, m, n, a, b, ¢, d,
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wb = n,
0> = m+ bw — ab,

02 =t +dw— ch, (15)

see [1]. A basis for R may be reduced to a normalized basis by choosing representatives
for w and 6 modulo Z. GLy(Z) acts on cubic rings over Z by forming linear combinations
of the generators (w, #), then renormalizing. Starting with a distinguished basis (1, w, 0)
for R3 or R x C, GL,(R) acts in the same way. The ‘shape’ of the basis thus corresponds
with a point in the space of lattices SLy(Z)\SL2(R). This is the usual identification of
SLa(Z)\SL2(R) with the space of two-dimensional lattices, since normalizing the basis
acts in the direction of 1.

The fact that after tensoring with R, each cubic ring over Z of nonzero discriminant
may be realized as a point in one of these two spaces which has been proven via a cor-
respondence with the theory of real and integral binary cubic forms. An integral binary
cubic form is a form f(x, y) = ax® + bx’y + cxy* + dy® with (a, b, ¢, d) € Z*. GLy(Z) acts
on the space of integral binary cubic forms by forming linear combinations of x and y.
Gan, Gross and Savin [8], extending earlier work of Delone and Fadeev [5], proved the
following parameterization of cubic rings over Z.

Theorem 2 ([1], Theorem 1) There is a canonical bijection between the set of GLa(Z)-
equivalence classes of integral binary cubic forms and the set of isomorphism classes of
cubic rings, in which the form f(x,y) = ax® + bx*y + cxy* + dy> corresponds to the ring
R(f) with basis (1, w, 0) and multiplication law

w0 = —ad,
w? = —ac + bw — ab,
0% = —bd + dw — cb. (16)

Moreover, the discriminant of f and R(f) is equal.

In the correspondence, irreducible binary cubic forms correspond to orders in cubic fields.
The reader is referred to Chapter 2 of [15] for the following discussion of the space of
binary cubic forms. We have adopted the same conventions for ease of comparison. Gg
acts naturally on the space
VR = {ax3 + bxzy + cacy2 + dy3 :(a, b ¢ d) e R4} (17)
of real binary cubic forms via, for f € Vg and g € Gg,

g fxy)=f(xy)- g (18)
Note that this differs by a factor of det g from the GR action on the basis (1, w, 8) of a cubic
ring, the former action is called a twisted action. The action (x, y) - g is a right action on
R2, so that the action on Vi is a left action. The discriminant

D = b*c? + 18abcd — 4ac® — 4b>d — 274%d?, (19)

which is a homogeneous polynomial of degree four on Vg, is a relative invariant: D(g -
f) = x(g)D(f) where x(g) = det(g)®. The dual space of Vi is identified with Vi via the
alternating pairing

1 1
(%) = xa4y1 — 3%302 + 3%208 X1 (20)
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Let t be the map Vg — VR carrying each basis vector to its dual basis vector; the
discriminant D on the dual space is normalized such that 7 is discriminant preserving.
There is an involution ¢ on Gg given by

0-1 _ 01 g
L 1\¢
= = . 2].
& (1 o>(g )<—1o> detg 1)
This satisfies, for allg € Gg,x € Vg, y € Vg,
%)) =g %g . (22)

Given f € L'(VR), one has the Fourier transforms

@ = [ o=t (23)

Vr
Iff also is in L' (VRg), then
1 A
=35 [ Foretn 1)
Vr

Translation, dilation and the group action act on the Fourier transform as follows,

Rldcdid
2

S (e @y a)) ety = () a5

< < < >>dy

= (25)

The set of forms of zero discriminant are called the singular set, S. The non-singular
forms split into spaces V. and V_ of positive and negative discriminants. The space V.
is a single G™T orbit with representative x, = ( 70 j[l, O) which has discriminant
1 and stability group L., of order 3. V_ is also a single G* orbit with representative
x_ ( f’ f’ ) with discriminant —1 and trivial stabilizer, see [15], Proposition 2.2.
This orbit description is the reason that the shape of a cubic field may be identified with
a group element in the real group action.

Set

w1 =(0,0,1,0), wy =(0,0,0,1). (26)
The singular set is the disjoint union
={0}uG - wi UG wy. (27)
The stability group for the action of G on wy is trivial I,, = {1}, while on wy it is
Iy, =N, (28)

see [15], Proposition 2.3.
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Over Z, the space of integral forms is a lattice L. For each m # 0, the set L,, of integral
forms of discriminant m split into a finite number /(m) of SLy(Z) orbits. h(m) is called
the class number of binary cubic forms of discriminant . With respect to the alternating
pairing, the dual lattice L of L is given by forms

L= {ax3 +bx®y+exy? +dy? ad € Z,b,c e 3Z} (29)

with middle coefficients divisible by 3. The class number of dual forms of discriminant s,
also finite, is indicated l:z(m).
Shintani obtained the following description of the singular integral forms.

Lemma 3 The singular forms Lq are the disjoint union

00 oo 3m—1
L=wu | | tr-ooomyul | || []v-©o03mn) (30)
m=1yel'/[TNN m=1 n=0 yel
Let
oo
LO(I) = |_| |_| {)’ : (01 0) 0; m)})
m=1T/TNN
oo 3m—1
Loy = || || | ]tr-©03mn). (31)
m=1 n=0 yel'
Proof See [15], Corollary to Proposition 2.10. ]

The forms of positive discriminant break into two classes, the first of which have stability
group in I' which is trivial, and the second having stability group of order 3.

For m € Zo, choose {gm}h<i<nm) C G, such that

{Xim = Gim - Xsgn m}lgigh(m) (32)

are representatives for the /(m) classes of binary cubic forms of discriminant m, similarly,
Kim = Gim - Xsgn m}y <i<i(m) @ System of representatives for the classes of dual forms. The
group elements g;,, are used in identifying the shape of the ring corresponding to x;,
with a point in Ay = SLa(Z)\SLa(R). Set I'(;, m) < T the stability group of x;,, similarly
1" (i, m).

For f, a Schwarz class function on Vg, the Fourier transform f is also Schwarz class, and
the Poisson summation formula states that

> ) =) f&). (33)

xel tel

2.1 Estimates regarding the g-non-maximal set

We say that a cubic ring is maximal if it is not a proper subring of another cubic ring. This
is a property which may be checked locally. We say that a cubic ring R is maximal at p if
R®Z, is maximal as a cubic ring over Z,, a condition which is determined by congruences
modulo p?. Let @), be the indicator function of a € V)2 = (Z/ p*7)* such that the binary
cubic form a corresponds to a non-maximal cubic ring. Note that this function is constant
on SL3(Z) orbits. Define the Fourier transform of ®, by, for b € (Z/ P> 7)%,

A b)
by =~ Y cpp(a)e<(p2“>), (34)

ac(Z/p*L)*
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The Fourier transform of ®, has been explicitly determined depending on the factor-
ization type of the discriminant P at b in Z/p®Z in [18]. To state this, the orbits of V2
are classified, with representatives b, chosen up to multiplication by a multiplicative unit.
Note that entries can describe multiple orbits.

Type of b b Condition on the coefficients
13, (1,0,0,0) -

13 (1,0,¢0) ¢ € pR*

(lgnax) (1; 0,k _e) k e pR, le pr

Lemma4 Let p > 3. Let b € pVp. Write b = pb', and regard b' as an element of
Vy, = (Z/pZ)*. Then,

p2Hp —p7% b oftype (0),
o,pb)={p3-p5 b of type (1%), (121), (35)
i b of type (111), (21), (3),
where the type refers to the factorization type of b'.
Forb e sz\pvpz,

p 2 —p5 bofype(13,),
d,0) =1 —p~> boftype (13), (13 ,.), (36)
0, otherwise.

The above evaluations are used in the following way.

Lemma 5 Letp > 3. For m, n € Z, we have the evaluations

2, .3 5 2
,(0,0,0,m) = {7 TP TP P

p3-p> P tm,
pi+p3 —p pHmn),

®,(0,0,mn) = p3—-p> p*{ (m, n), pim, (37)
0, ptm

Proof If p? divides the form b, then Cf)p(b) =p~2+p~3 —p~°. Inthe case of (0, 0, 0, m), if
plmbut p? t m, then b is of type pb’ with b’ of type (12) modulo p. If p { m, then b is of form
(1;2*). In either case, <i>p(0, 0,0,m) = p~3 — p~°. In the case of (0,0, m, n), if p 1 m, then
b ¢ pV,2 and b is not of type (13) modulo p, so b is not in the orbit of (13,), (13), (13 ),
SO ép(b) = 0. In the second case, if p|m but p { n, then b is GLy(Z/p>7Z) equivalent to a
form in (12,). If p divides b but p? does not, then b = pb’ with b’ equivalent to a form of
type either (13), (121). O

Extend @, to &, multiplicatively when g = p1p> ... p, is square-free,
n
Oy(x) = [ [ @p, ). (38)
i=1

It follows from Proposition 4.11 of [18] that for square-free ¢, the Fourier transform also
factors as a product,

by (0) = | 2p(0). (39)

plqg
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We quote the following consequence from [19].

Theorem 6 Uniformly inq and Y, for all € > 0,

hi(m)
Z Z }(Dq(xlm)| < g THeY. (40)

0<|m|<Y i=1

Proof This is stated as a consequence of Theorem 3.1 of [19] in eqn. (3.4), without includ-
ing the factor of the inverse of the stabilizer, which can only decrease the sum. ]

3 Background regarding automorphic forms on GL;

This section reviews the theory of automorphic forms based on the discussion in [12].
We include a discussion of the right K = SOy (R)-type which gains a further parameter
of equidistribution in Theorem 1 compared to the earlier works [2,17]. Here and in what
follows, a form ¢ of right K -type 2k satisfies ¢ (gkg) = ?**?(g), and the map 6 > &/*? is
called a character of degree 2k for K. What we need from this theory is that the fact that
a cusp form ¢ may be represented as a function on the modular surface I"'\H satisfying an
exponential decay condition in the cusp, that it has a Fourier expansion in the parabolic
direction, together with some estimates for the functions and coefficients appearing in
the Fourier expansion.

The space of mean-zero functions

LH(M\G") = {f € L*(M\G"): / flg)dg = 0} (41)
r\G!
splits as
LH(T\G") = L2,,,("\G") & L}, (T\G") (42)
where
L2, (T\G') = {f € LA(\GY): fx)dv = 0,a.e. x € F\Gl} (43)
(N'ND)\N’

and where leziS(F\Gl) is spanned by the incomplete Eisenstein series.

3.1 The cuspidal spectrum

We follow the discussion of [12] Section 3.1. Let 7 be an infinite dimensional unitary
irreducible representation of SL,(R) in a Hilbert space .7, which factors through PSLy(R),
and let .2#%) be the K-finite vectors in .. Then, 7 X) is spanned by orthogonal one-
dimensional subspaces 7%, n even, transforming under K on the right by the character of
degree n, the K-type. These .7, consist of smooth vectors and may be chosen to be joint
eigenfunctions of the Casimir operator and of the Hecke algebra.

Let %, = C¢y,. For some parameter s, one has the action of the Lie algebra given by

dn (W), = ingy,
dﬂ(57)¢n =(s+1- ”1)45;’172:
dn(ET)py = (s + 1 + n)du+a, (44)

where

H:<1 o)} V=<01>’ WZ(O 1) )
0-1 10 10
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and E* = H £ iV. The operators ET and E~ are called raising and lowering operators.
The classification now breaks into two cases.

(1) (Maass case) There is a K-invariant vector ¢y, which is called the minimal vector.
In this case, s € iR and there is no highest or lowest K-type, so

AN = P Hin. (46)
nez

(2) (Holomorphic case) When ¢ has a lowest K-type mp, one has my > 0 even. In
this case, s = my — 1 and

d7 (E7)pmy = 0. (47)
One has
A = A (48)

m=m,even

@, is called the lowest weight vector, or minimal vector.
When 7 has a highest K-type my, one has m( < 0 even. In this case, s = —mg — 1

and

d (E)ppm, = 0. (49)
Now

2% = én()} o (50)

m=—0Q,even

@my, is called the highest weight or maximal vector.

We extend the automorphic form ¢ to a function on G by requiring that ¢ be invariant
under scaling. Since all of the forms which we work with have even K-type 2k, it follows

that
¢(g)=¢( £ )=¢ O 1) g1y (071 = (=D (1) (51)
detg -10 10

and thus, ¢ (g’l) = (=1)k¢ (gt), see the discussion in [12] following Proposition 3.1.

3.1.1 Upper half-plane model
For this section, see [12] Section 4.

The representation spaces of K-type k can be realized as automorphic functions of
weight k on the upper half-plane H|, f : H — C, which satisfy the automorphy relation
under fractional linear transformations given by

cz+d k ab
f(y2)=(m) fl@), y= (C d) el (52)

with an exponential decay condition in the cusp. To realize the weight k holomorphic
cusp forms in this model, multiply by yg‘
The Casimir operator is realized in this model as the weight k Laplacian

92 92 9
A = y? (— + —2) — iky—. (53)
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Denote W, the Whittaker function, which satisfies

Weuly) ~ e, y— o0 (54)
andasy | 0,
r(-2 rEe
Wi () ~ (Z2u) yrti _Tew ) (55)

I3 —u—«) TG +up—«k)

When u = 0, Wi,0(y) < y% logy as y | 0. For later reference, abbreviate fki(z, s) =
W

& 1(4my)e(£x), which is an eigenfunction of Ay with eigenvalue A = s(1 — s). Note
27 2
that the Whittaker function may be recovered from fki at imaginary argument,
Sy s) = Wy 1 (4my). (56)

This is used to obtain linear relations among the derivatives of the Whittaker functions
via raising and lowering operators below.
A weight k Hecke-eigen-cusp form ¢ of eigenvalue A = s(1 — s) has a Fourier expansion

_ 1 pp(n)
P(z) = 5 2#(:) —\/m WM,S_%(ZLMMy)e(nx)

_ l ,O(p(l’l) sgn n
- ; AR (57)

Note that the Fourier coefficients pg (1) differ from those in [12] by a factor of |#| 7. In the
case k = 0, W is expressed in terms of the K-Bessel function by

1

3 Wo,it(4mx) = /%Kit (27 x). (58)
For consistency with the weight zero case, we define

1 y

E Wi,it(dmx) = \/J_CI(K,it(an) (59)
so that the Fourier development may be written in general

1 \
$(2) =7 ) pp(WKsgmure 1 (27 |nly)e(nz). (60)
720 2 2
In the upper half-plane model, the raising and lowering operators are given by
K; k +yli i + 0 A K +yli 0 0 (61)
== i—+ =, == i———.
k2y8x8y k2y8x8y

K takes forms of weight k to weight k + 2, Ay takes forms of weight k to weight k — 2.
These satisfy

KiAx = Dj2Kio MDA = Ag_a Mg (62)

and operate on the Fourier expansion via

k k
K @) = —fyas),  Kify (5s) = <s + 5) (1 ot 5) Sy,
k
Aff(zs) =— (s - g) (l —s— %)ﬁ:z(z, ) Ay (z5) = fi_,(z3). (63)

The feature of K which we will need is as follows.
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Lemma 7 Letk € 27Z. In Re(s) > 0, the Mellin transform
~ 00 v
Real®) = | Koo (64)
0
is holomorphic. For each fixed 0 > 0 and A > 0,
T1* [Keit(o +it)| — 0 (65)
as|t| — oo.

Proof The holomorphicity follows from the fact that the Whittaker functions are smooth
and from the asymptotic behaviour at 0 and co. When k = « = 0, the K-Bessel function
has Mellin transform

© o y
/ Kiy(x)a® HT—1dy = 207 HiT—2p <” T ’t> r <° i lt>, (66)
A 3 2

which satisfies the decay condition due to the decay of the Gamma function in vertical
strips. For other even k, applying the raising or lowering operators % times to the functions
fE(iy, s) expresses Iv(,(,it(x) as a linear combination of terms of the type x”Kl.(tb) x),a=>=>b
involving powers of x and derivatives of the K-Bessel function. This expresses I~<,<, it(s) as
a bounded linear combination of Mellin transforms of the K-Bessel function, from which
the claimed decay follows. o

Assume that ¢ is Hecke normalized, so that py(1) = 1. Then, the Fourier coefficients
satisfy the Hecke multiplicativity relation

polmpsn) = 3 04 (F7)- (67)
d|(m,n)
pp(n) is the eigenvalue of the nth Hecke operator T),. Note that the Casimir eigenvalue,
Hecke eigenvalues and weight k are sufficient to recover the form ¢ via the Fourier
expansion (multiplicity 1). Attached to the form ¢ is the L-function L(s, ¢),
oo
Ls¢)=Y Pen) - pe(s) > 1. (68)

ns
n=1

This extends to an entire function and is given by an absolutely convergent Euler product
in Re(s) > 1.

3.2 Spherical kernels

Say that a function f on SLy(R) transforms on the left, resp. right by a character of SO3(RR)
of degree 2k if, for all g € SLy(R), f(kog) = e’*?f(g), resp. f (gkg) = e'**?f(g). A function
which transforms on the left by a character of degree 2k; and on the right by a character
of degree 2k, is said to be spherical of K-type (2k, 2ka).

Lemma 8 Let ¢ be a Hecke-eigen cusp form transforming on the right by a character of
SO, (R) of degree 2k. Let f be defined on SLy(R), smooth, and of compact support, and
spherical of K-type (2k, 2k). There is a constant Agy depending on f and ¢ such that, for
allgo (S SLQ(R)

)f(ggfo)cb (¢7') dg = Aspo(g0)- (69)

SLy (R

Moreover, for an appropriate choice of f, Agg # 0.
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Proof Define Fp(go) = ‘[SLZ(R)f(ggO)(p(g*l)dg Note that the right K-type of F¢ is 2k by
passing the transformation under the integral and applying the right K-type of f. After a
change of variable,

Fo(go) = / FWp(gohV)dh (70)
SLy(R)

This representation shows that F¢ is left invariant under SLy(Z). By applying the Hecke
operators and Casimir operator to ¢ under the integral, it follows that F¢ has the same
Hecke and Casimir eigenvalues as ¢, and hence, by strong multiplicity 1 that F¢ = Azy¢
for some constant Az, see [9]. To demonstrate that the constant can be taken nonzero,
write in the Cartan decomposition 1 = kg, a:ks, = ko, ks, (at)kf’Z ,where (ut)kf’z = k_p,a:ks,.
When ¢t = 1, integrating in 61, 6, evaluates to 1, since (a1)* = a; and ¢ transforms on
the right by the same character of SO3(R) as f does on the left. Hence if the support of
f is sufficiently close to SO2(R), and f is non-negative on A4, then it can be arranged that

F¢ #0. O

4 The orbital integral representation
We now introduce the main analytic objects of study, which are generating functions
for cubic rings which are non-maximal at all primes p|g, and which are twisted by an
automorphic cusp form ¢. The orbital integral representation given here was given in [10]
and is a modification of the construction of [15].

Let f be a function supported on either V or V_. We assume that f takes the form

f@ =fo(|Disc®)) Y fe) (71)
geGtigar=x
where fg is spherical of K-type (2k, 2k) on SL2(R), extended to GL,(R) as invariant under
multiplication by a scalar, and fp is a function on R*.
Assume that f is smooth and compactly supported. As a result, the Fourier transform f
is Schwarz class. Let ¢ be an automorphic form on SLy(Z)\SLy(R), and for square-free ¢,
define the g-non-maximal orbital L-function by

ZE( 9, Lis) = / x@9 (g Y 0, )f g Mdg (72)
G+
xeL
where x(g) = (det g)®.
Introduce the twisted Shintani .Z-functions, defined for Re(s) > 1 by

%) h(m)

¢(gzmg0)
Z Z ZCD (xzm )|

m= 1 Qo€l;, i=1
h(—m)

o (¢s) = Z Z Dy (6, —m) P (@i —m). (73)

These functions are well defined, since @, is I'-invariant; the series are absolutely con-
vergent in Re(s) > 1 since ¢ and ®, are bounded and the original Shintani zeta functions,
which are obtained by omitting these factors, converge absolutely in Re(s) > 1, [15].

The twisted .Z-functions may be recovered from the orbital representation as follows.
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Lemma9 In Re(s) > 1,
A .
236 Lis) = =22 250, 5)fp(s) (74)

Proof Write

2} (9, Lis) = / 1@ () Y @, - 0)de
geGT/T x€eLl

oo h(m)

_ _1 (I) xtm)
= /G*/l" Z Z TG Zf(g)’gtm x4)dg (75)

Unfold the sum over I' and the integral to obtain

00 h(m
xzm b (¢
Z 9 Lis) = / Z Z N2 m)| x@’¢ 1 gg J6(8gimgo)fp(x (g)m)dg
oo h(m)
= Pqlxim) 1 125 (412, 494
Z Z |F(L,m)|/ ) OEXI: fG(ggz,mgo)dg/ A “fp(r ) (76)

The exchange of order of summation and integration is justified by the compact support
of the test function, which makes the integral over G! bounded in L!, so that the method
of Shintani [15] applies. Since f is spherical, integration in g may be interpreted as left

convolution
/ fe(agimgo)¢ (¢7') dg = / folgimgog)d (¢71) dg
Gt Gt
- /G o (gimgog ™) $(@)dg

= Af, 0P (imgo)- (77)

Evaluating both integrals obtains

A .
216 Lis) = <2225 0,5/ (s) (78)
which gives the claimed formula. The proof in the case of Z~ is similar. ]

Introduce the truncated orbital functions

Zyt (¢ Lis) = /G+/r x@°0(g7") D @yx)f(g - x)dg

x(g)=1 xel
. s s _ _ R 5 x
Zqi’+(f, ¢, L;1—5) = /G*/F X(g)1 o) (g 1) Z D4(x) (g . ?> dg (79)
x(@=1 xel\Lo
and the singular part
25, & Lis) = /G+ i x@ e (g7h) Y Bew)f ( ) (80)
x@=1 xelo

Note that Z, ;E’J“ and Z ;E’Jr are entire due to the compact support of f and the rapid decay

off.
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Lemma 10 (Split functional equation) I Re(s) > 1,
+ Lo ot . R Y +005 4 7.
Zy (b Lis) =Z " (s Lis) + 27 (f, 0 L1 — 8) + Z77(f, ¢, L 9). (81)

Proof In the orbital integral representation

ZiGota = [ 0@ )L @0 82

x€L
split the integral at x (g) = 1. The part of the integral with x(g) > 1is Zl}t’+(ﬁ ¢, L;s). Since
the part of the integral with x (g) = 1 has measure 0, write the second part of the integral
as

o (g! - x)dg
Lo K@) T @ e (83)

xeL

The Poisson summation formula permits the representation [see (25)]

Y o)fgx)= Y. D)y fg (gPx+a)

xel acV(Z/q*Z) xel

e ezl )

acV(Z/q*Z)

~sig 200 (¢ )

yelL

The part of the sum from Lo contributes Zqi’o(f, &, L; s). In the remainder of the sum, make
the change of variable g* := g, to obtain Z;‘E’Jr(f, ¢, 11— s). ]

5 Treatment of the singular integral
We now check that the split functional equation gives the holomorphic continuation
of the singular part of the orbital integral to all of C and study the g-dependence. This
section closely follows [10], but note that by enforcing that f|s = 0, we only consider the
contribution from f . Continue to assume that f is Schwarz class. We assume that ¢ is a
Hecke-eigen cusp form of right-K -type 2k.

For g € G!/T, define (note g = g* since g € G')

() @ = 3 b (£57). (55)
x€Lg

Following [15], write ¢ € G! in the Iwasawa decomposition as g = kpa,n, and define

t(g) = t. Let &¢ denote the Siegel set

1
Gcz{kgatnu:QER,tzClmsi}, (86)
and define the class of functions
C(GYT,r)={f e C(G/T): sup t(g)|f(g)] <ooy. (87)
g6,

Lemma 11 Let f = fg ® fp have compact support, and suppose that f ) < W for
2

some A > 4. Then,

g (f) € c@'/r, a6, (88)
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Proof AsinLemma2.10 of [15], writeg € &1 as kgpayn, = c(g)a; where c(g) = kgarnyai
2 t
and note that as g varies in &1, c(g) varies in a compact set. Hence, by compactness,
2

{Ilc(g) ~xII2} -0 (89)
g6y, llxll2

0£xe VR
By Poisson summation

()@= 2 eren- ¥ e (L), (90)

x€l\Lo xel\Lo

Since we restrict to x outside the singular set, for each such x = (x1, x3, x3, x4), at least one
of x1, x5 is nonzero. Since a; - x = (£3x1, txy, £ Lx3, £ 73x4), the sum over L\ Ly vanishes if
t is sufficiently large, by the compact support. Meanwhile, in the dual sum,

min(£3, 3t)

> — (91)
2 qz

and hence the dual sum may be bounded by splitting on x; # 0 and x; = 0,

< Y :

v L (3%, tx, £ s, £ 3x4) 114

(x1,%2)7#(0,0)
1 1
<<q CYE
£34 x%&:o 1+ [[(x1, £ 29, t%x3, £ 5 [I5

1 1
+t_AZ

1+ 11(0, 29, £~ 23, t=4xa) ||

%270
1
<y tA_—6 (92)
[}
The object of interest is
A . s
#(9)= [, o6 () @i 93)

Note that there is not a question of convergence when ¢ is a cusp form due to the
exponential decay in the cusp. Recall the decomposition of Lemma 3,

00 oo 3m—1
Lo=toyu| | L[] tw-ooomyul || ]| ]tr ©03mn)
m=1yel'/(TNN) m=1 n=0 yel
= {0} U Lo(l) U Lo(ID). (94)

The contribution from {0} to (93) is 0, since ¢ is orthogonal to the constant function. Let
o= [ o) X b (¢ 5)d
: Gl/r(g)z (@ (& 5 ) de

XEL()(I)
52 () =
P —/

Glr

¢ D éq(xv?(gé)dg (95)

xelo(I)
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Lemma 12 Let ¢ be a cusp form, of right K -type 2k, which is an eigenfunction of the Hecke
algebra. We have

o) =o. (96)

Proof Unfold the integral and sum to write, using ¢(g~!) = (=1)k o(gh),
O = (1" [ p(g) D &,0,00mf (g ~ (o, 0,0, %)) dg ()
m=1

G!/('NN)
Since the point (0,0,0,1) = y3 is invariant under action by N, which leaves y fixed, and
since there is no constant term in the Fourier expansion of ¢(g?) (see 43), the integral
vanishes upon integrating in the 7, variable of the Iwasawa decomposition. ]

For ¢ = =+ let, for all Re(x) sufficiently large,

> Pp(e38m)
Giw) =) TG (98)
{,m=1

Given square-free g, satisfying (g, 6) = 1, define for all Re(x) > 0 sufficiently large,

o pyle3tmq)
Gog@ = D (1 3mg) 13+ (99)
4,m=1

This is a sub-series of the Dirichlet series defining Gq‘i (x).

Lemma 13 Let g be square-free satisfying (g, 6) = 1. For € > 0, the functions G; (x) and
G;)q(x) are bounded on {x : Re(x) > €} by a constant depending only on ¢, and €.

Proof 1t follows from Rankin—Selberg theory that as X — oo,

D lpsm] < X. (100)

n<X

Since the number of ways of writing # = 3¢m is bounded by <. n2, it follows that

o |og(e3tm)|
ald
‘Gtﬁ(‘x)‘ = Z |€1+% (377) 143%]
£,m=1

o0

[0p ()]
<Le Z 145

n=1 n

and this sum is bounded by a constant depending only on ¢ and ¢, by partial summation.
The same bound applies to G; q(x) since it is a sub-series of Gj)(x), m|

The Archimedean counterpart to G is for &1, &3 = +,

W(Zl’gz(wb Wo) = lu (cos (g(l — Wz)) + ig1&9 sin <%(1 — Wz)))

1+wy+wy
2 T

~ w1+ 3wy —1
X Km%,it <f> . (101)

Lemma 14 The function W;l’” (w1, wy) is holomorphic in Re(wy +3w;) > 1, Re(wp) < 1.
Let0 <€ < % Fore < Re(wp) <1—¢,

‘F(l — W) (cos (%(1 — W2)> + i€1€9 sin (%(1 — wz)))‘ < |wz|%_Re(W2). (102)
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Proof Recall from Lemma 7 that to the right of 0, I~<€1 & ;, is holomorphic and decays faster
>
than any polynomial in vertical strips. This suffices to prove the holomorphicity of W; Lez,
The claimed bound follows from Stirling’s approximation which gives, in Re(z) > ¢,

() = E (Z)Z (1 +o (%)) . (103)

Set z = (1 — wy) = o + iT, and assume without loss of generality that T > 1. Thus,
logz = logiT + O (#) =log T + Z + O (%). It follows that

Re(zlogz) = —%T +olog T + O(L). (104)

Since |€?| is bounded below, it follows that

b4 1
IT'(z)| <« exp (_ET + (O‘ — E) log T), (105)
The claim follows on considering the exponential growth of sin and cos in 7' o
Set
1
fulw) = [ lkans - 20e-206)d0. (106)
0

Since kp varies in a compact set, if f is Schwarz class, so is fo,. Introduce, for z;,zo € C

o0 o0
S5 (21, 20) = / / £(0,0, ¢ +u)t2 L2 1dt du (107)
0 0

Lemma 15 Iff is Schwarz class, then ¥ (z1, z2) is holomorphic in Re(z1), Re(zy) > 0.
In this domain, it satisfies the decay estimate in vertical strips, for 01,09 > 0, for any
A1, A > 0,

1
L+ 1aDA (L + ()%

Fort > 0, if f'(x) = f(tx), then % (!, z1, z0) = t A 2 2% (f 21, 20).

|Z5(f 01 + it1, 02 + it2)| Kaya, (108)

Proof The convergence of the integral in Re z1, Re zo > 01is guaranteed since f is Schwarz
class, and the holomorphicity follows by differentiating under the integral. The decay
in vertical strips follows on integrating several times by parts. The dilation follows from
changing variables,

o0 o0
S5 (L 21, 20) = / / £(0,0, tx1, itxz)x?_lx?_l dx; dxo
o Jo

o0 o
=t AR / / f(0,0,x1, :txz)x?_lx;z_l day dxp
o Jo

= 7172 5%5(f 21, z). (109)

The following lemma obtains an expression for @)512) as a double Mellin transform.
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Lemma 16 For q be square-free with (q, 6) = 1,

P =cf ¥ ¥ a[lo-

sn.e2=% q192=4q plq2

X # qg(lerWZ)Esz <f2k: w1, W2) W &1, Z(Wl’ Wz)G¢ 0
Re(wi,wz)=(1,3)

-1
x (%) dwy dws. (110)

Proof We have, using ¢(g~') = (—1)*¢(g"), and folding together the sum over I" and
integral over G,

AQ) (Y — (_ 1k t b (o (0. X
O, (@) =(-1) /Gl/rqb(g) > <I>q(x)f(g qz)dg

xeLo(I)
N 3m n
= (-1 /1 Z > 040,03mn Zf(gy-(OO——))dg
Gyr m=10<n<3m yell q q

— (1) / Z Yob 003m,n)f< (0,0 qu f))dg (111)

m=10<n<3m

The evaluation of ﬁbq(x) from Lemma 5 imposes the constraint g|m. The lemma gives

6,0,03mgn) =[] @2+p?-p" ] @°-p°

plgp?|(mag,n) plgp*(mgn)
3 5 p>
=1_[(1f -r) 1_[ <1+p3—p5)
prlq plgp*|(mg,n)
= > q’[]e?-p7. (112)
q192=4; p|q2
q}1(mq,n)

Replacing m =: mqq; and n =: nq? in (111) obtains

0@ =" > i [[e 2 -p°

q192=4q plaz

foE e o

m=10<n<3mqs

Write g = kgayn, and integrate in 6. Since ¢(g*) transforms under kg by a character of
degree —2k, the integral replaces f with fzk- Since 1, maps xy* — xy* + uy>,

() =1 > q*[]w - *5)/ t3dt/ du

q192=9q plga

DD D (at-(o, i—’f ”*Zﬂ»wamm

m=10=<n<3mq 2
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Making a linear change of variable in & obtains

OP@) =" > [ -p

q192=9q rlq2

00 00 S
. 3m u 1
x/ t_Sdt/ du Y fuclac- (0,0, =— —
0 o AT 92 q; ) ) 3mq2

x Y ¢<(ﬂz”%)t)- (114)

0<n<3mgqs

Expand ¢ in Fourier series, abbreviating here and in what follows K 0= K.t
S

P ((atn - ) ) Y Z,%(SE VK. (2 082)e <e£ q2> (115)

e=* (=1

The sum over # selects Fourier coefficients with frequencies ¢ divisible by 3mg5. Replacing
£ with 3mqytl .= ¢,

D)= 'Y Y 42 [ - *5>/ /

e=t q1q2=q plga

X Z ,0¢(sSquz)Iv(s(6n£mq2t2)fA2k(O, 0,3t~ 1q;1m, uq, De(ettu)dut dt.
{,m=1
(116)

Here, one factor of ¢ has been gained from the Fourier expansion of ¢ and a factor of 3
was gained by replacing ut 3 with u.
Take Mellin transforms in both variables in fa, writing # = &3|u|, to obtain

@(2)(¢) Z Z -2 l_[(p—s —p_5)

eL,82=% q192=¢9 Plq2

<[ / Z poe130mgo) (67 U

w2
N t 2
X # e (f2k; Wi, Wz) <2> £ e(e1620t3u) dwy dwo dut de.
Re(wi,w2)=(13) 3m u
(117)

Note that since f’2k is Schwarz class, the Mellin transform ¢ (fgk, w1, wz> decays faster
than any polynomial in vertical strips. This justifies exchange in the order of integration.
Make the change of variables v = 27 £¢3u, which replaces

w2 du = (2w et®)2 "y dy, (118)

then r = 61 £mqyr?, which replaces

1-w;—3wy  wy+3wy—3

1
w2 g, §(6ngmq2)frfdr. (119)

Note that #%,a; corresponds to u + it in the upper half-plane model.

23
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Thus,

0P@) =" > Y @ [Je -

eL,82=% q192=¢9 Plq2

oo
2 . 0y (£13¢mq2)
x # . qz(W1+WZ)282 (f2k’ WL Wz) Z 1+W1+W2¢ —1+3(w1 +wp)
Re(w1,wa)=(1,7) =1 Ef(?)mqZ)f

1 1 o
—m/ e‘glgz'”v—wzdv/ Kgl(r)r drdw1 dws. (120)
2 (21) 0 0

The Dirichlet series evaluates to Ggl Py (%), while the Mellin transforms in the last

line combine with the other factors to give W;wz (w1, wa), so that

O =1 Y > q*[[e -

e1,e2=% q142=9 rla2

x # g s (ka Wi, W2) W2 (w1, wa) Gyl
Re(wy,w2)=(1,3)

-1
x (%) dwy dws, (121)

We can now evaluate Z,}t’o (f, I, ¢;s).

Lemma 17 The singular integral has the evaluation

007+ 4.
Zq (f, L, ¢5)

S Y Y e - %ﬁé

e1,62=% q192=9 plg2

qg(wl +wy)

e(wi,w2)=(1, 1) 12s — 12 + 3wy + 3wy

w1+ wy —

» 1
X 2 (for, wi, wz)W LE2 (g W2)G¢ » ( 5 ) dw; dwy (122)

and has holomorphic continuation to C.

Proof Note that if f denotes the dilation by £ on Vg, f*(x) = f(tx), then Z¢(f%, wy, wo) =

A0
MM €(f wy, wa). Also, acting by the scalar matrix N scales the form x by A3.

Thus,
£0/7 7 4. 1 x
z (f,L,¢,s)_/G+/r @ lpg™) Y dyl) <L P> dg
X(g)fl xELO
1 s 1 dx
_ 12(s—1) 3 e
_/0 A J(fx ,¢) - (123)

Since . <f, ¢) = (’:);2)(05):
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f, 1 - -3 _ - 2
ZEG L gis) = (-10F S Y a? [ - s)# g2
Re(w1,w2)=(1,3)

e1,62==+ q142=q plg2

. w1 +wy —1
X T2 (fog, wi, wo) W2 (w1, wa) Gl (f>

1
/ 12— 12+3W1+3W2 dw1 dws. (124)
0 e
The evaluation follows on integrating in A. Shifting the w; contour rightward obtains the

holomorphic continuation of Z;t’o ins. o

6 Proof of Theorem 1
We now give the proof of Theorem 1.
Let F be the smooth function of the theorem and define

W $lg;
Ni(pEX)= ) P(T) ZIF(zl::z)l (125)
meZ\{0} i=1,%

with the * restricting summation to classes which are maximal at all primes p.

Lemma 18 Let ¢ be a cusp form. The count of fields from Theorem 1 satisfies

1 1
N+(,FX) = SNj (6 EX) + 0 (g l1o0X? ). (126)

Proof By the Delone—Faddeev correspondence, the sum in (125) counts fields of degree
at most 3. S3 cubic fields are counted with weight 2, while cyclic cubic fields are counted
with weight %, quadratic fields are counted with weight 1 and Q is counted with weight %,
see Proposition 5.1 of [19], or [3] for a detailed discussion.

There are O (X %) cyclic cubic extensions of discriminant at most X, which accounts
for the error term. According as the discriminant is 0 or 1 modulo 4, the quadratic
fields are represented by forms (—D/4, 0, 1, 0) or (—(D — 1)/4, 1, 1, 0) which have an irre-
ducible quadratic factor of the corresponding discriminant. Since a; acts on x4 with
ap - X4 = (%, 0, :F#i, 0), solving g - x+ = (—D/4, 0, 1, 0) has £(g) of order Di, and the
case of (—(D — 1)/4, 1, 1, 0) is similar. Thus, the sum over these fields is O(||¢||0) by the
exponential decay of the cusp form ¢. The contribution from Q is O (||¢ | c0)- O

Going forward, we handle just the sum over positive m, the negative part being treated

similarly. By inclusion—exclusion,

Pgim)
Nj(¢, E X) = Zu(q)z (% )Z i) T (127)
Lemma 19 The tail of the sieve satisfies the bound
Lm X
Yua) Y F(% )Zcbq( ) "’(g L e I lloo . (128)
q>Q meZ\{0} )| Q

Proof Lemma 3.4 of [19] proves that for square-free r,and ¥ > 1,

Me6“y

| Disc(x)|<Y
2| Disc(x)
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where the sum is over non-singular binary cubic forms up to GL2(Z) equivalence, where
M is an absolute constant, and where w(r) is the number of prime factors of r. Since for
square-free r, an index r subring of a maximal ring has discriminant divisible by 2, those
forms selected by ®, have discriminant divisible by q2. Hence, forany Q > 1, foralle > 0,

h(m)

m ¢(gi,m)
Z u(q) Z F (Y) Zcbq(xl,m)m
q>Q meZ\{0} i=1
X6°@ X
< lglloo Y 1 T A Y —. (130)
q* Q!
q>Q
O
It remains to control the main part of the sieve. Write, in Re(s) > 0,
o
E@s) = / Fx)x* Idw (131)
0

for the Mellin transform. Since F is smooth and of compact support, F(s) is entire. Set fp
by twice applying the operator x% to F, so that fp(s) = s2E(s), see (14). Also, choose fg
such that Az, 4 # 0.

The part of the sum in g < Q may be expressed, by Mellin inversion, as

N @#EX) =) ula) | oy FOX LG, 5)ds (132)
q=Q aw=

Note that on this line, ,Zq*'(qb, s) is defined by an absolutely convergent Dirichlet series, so
that the convergence follows from the rapid decay of F(s). Write, where fD (s) #0,

+ .
122} (f ¢, L; )

L (s ) = .
! Afs,afD(s)
12 e .
= ———— (2P (. L9 + 27 (L o Li1 = ) + 27, 6, L39))
Ase,afD(s)
(133)
Thus,
d
Nj(# EX) = REATAE (134)
S
q<Q Re(s)=

The contour integral (130) is the sum of three terms, corresponding to Z;*, Z; + and
Z;’O. Write these terms as N3+’+, N;’Jr and N;L’O, which are bounded separately.

Lemma 20 We have the bound, for any € > 0,

N5 (¢, F X) = > u(q)/R XZIH(f b Lis)— ds 5 Lpe X (135)

fG)¢ q<Q e(s)=2

Proof Note that ®,(x) # 0 implies that g| Disc(x). Shift the integral to Re(s) = € and
open the definition of the orbital integral to obtain
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N;"*(¢, E X)

12 B

_ x [ X @' () Y @) (e g s

q<Q Re(s)=¢ Gt/ x(g)>1 el
h(m

12 s 7 im)

a AfG)(P q<Q Re(s)=¢ Z Z |F(l, m)|

_ ds
x / x@°dE V(g Xim)dg—- (136)

geGT, x(g)=1 s

The sum over m is finite due to the compact support of f, hence the sum over g is bounded,
also. Note that this also justifies the convergence of the contour integrals. ]

Lemma 21 We have the bound,for any € > 0,

N N N R ds
N * (¢ EX) = W@ﬁm¢ul—qg<wQﬁf(Bﬂ

q<Q Re(s)=2

Proof Shift the contour to Re(s) = € and open the orbital integral to obtain

N7 (¢, E X)
12

pe / ) @' ¢ ()
q<Q Re(s)=¢ Gt/T,x(g)=>1

Z by (x)f ( ) dgd2

xel\Lo
12
— =Yg x @' (g)
Afep 7<Q Re(s)=¢ geGt,x(@)>1
h(m) & N
o, ; d
XY (o B ) e 139
m£0 i=1 |F(l’m)| 9 §

3

2
-3
Make the change of variables g := (q 2 ) g8im to write this as
q

fi(m)

. <I> (&;
N+:+ VE X XS 8(1—s) tm
3 (d) ) Z Z |F(l,m)| |Wl|1 s
q<Q m#0 i=1
— N _ P S
x / | ‘x(g)l b (6mg ™) /€ - Hgnm)dgs. (139)
geGﬂx(g)zq% S

The integral over G and the rapid decay of f effectively limit summation over m to
|m| < g®X¢€. This also justifies the convergence in the contour integrals. Bound the
integral over g by a constant depending on f and ¢, and bound the sum over m by
applying the bound of Theorem 6,

h(m)

ooy L/ ’q) ( ”")’ < Yq Tt (140)

[m|<Y i=1

with Y < g8X¢€. Apply partial summation and sum in ¢ < Q to obtain the lemma. O

23
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Lemma 22 We have the bound, for all € > 0,

XSZ“)(f &, L; s) <<¢, XT(QX)..  (141)

N;7°(¢, E X) = -
e S

¢ 4=Q
Proof For g co-prime to 2 and 3, in the integral representation

ZOF o sy =08 Y Y g [ -

e1,62==% q142=q plg2

2(W1+W2)
X # 9>
Re(wy,wo)=(1,1) 128 — 12+ 3wy + 3wy
R w1
x =" (fzk’ " Wz) W™ wi, w2) G o < = 22 ) dwy dwy
(142)

shift the w; contour to Re(w;) = g — € so that Re(w; + wy) = 3 — €. By Lemmas 13 and

14, on these lines
-1
Wi )il (M) (143

.92 2

is uniformly bounded, so that the rapid decay of X2 guarantees convergence. The s
contour may now be shifted to Re(s) = i + ¢, where the factor m is bounded
by a quantity depending only on €.

Introduce the sum over ¢,

_ _ _ w1 +wy—1
o ue Y altg M e -6, (T)

7<Q(g.6)=1 9192=9 pla2

_ Z Z (g Z q—z 2(w1+w3)

Lm>1g<Q,(g,6)=1 q192=4q
-3 -5 pg(3mqz)
X l_[(p 4 ) 1+w1+w2 W1+W2) 1
plgz 77 (3mqa)

= Z P (Sn)cn(Wp W2)'

The number c, (w1, wy) is a sum over ga€m = n multiplied by
> wq)ar (144)
0= 2.(q16)=1

which is a quantlty which is bounded. In the sum over ¢, £, m, the dependence on ¢,

is bounded by q2 2, and the remaining terms are bounded by a larger negative power
where d3(n) is the 3-divisor function. Since d3(n) < ni,

Hence, [cx(w1, wa)| <Ke +e

it follows that |c, (w1, wz)| K¢ e uniformly in w; and wy on the lines of integration.
It now follows from the Rankm Selberg estimate ), _y [pp(n n)|? <¢ X as X — oo that
> 10e(Bn)cy (w1, wo)| is uniformly bounded by a quant_ity depending only on ¢ and €. The
argument to this point has treated g co-prime to 2 and 3. Handling g with one or both of
these factors can be done by including the appropriate dADI,(x) is Lemma 16, and tracking
the change to Lemma 17. As maximality modulo 2 and 3 is defined modulo 36, this makes

only a bounded change, the details are left to the reader.
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1
On the lines of integration, X* is bounded by X 2 1€, The claim follows since the integrals
are convergent. O

Proof of Theorem 1 By Lemma 18,

No+(@ EX) = SN3 (6,50 + 0 (191X ). (145)
Truncating the tail using Lemma 19 obtains

N5 (¢, EX) = Ny, EX) + O <||¢||oo%) . (146)
Combining Lemmas 20, 21 and 22 obtains

NY (&, E X) <ge XT(QX)° + Q2XE. (147)
Choosing Q = X 3 optimizes the error terms. O
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