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1 Introduction
A degree n number field K/Q has r1 real and r2 complex embeddings, n = r1 + 2r2.
Let the real embeddings be σ1, . . . , σr1 : K → R and the complex embeddings be
σr1+1, . . . , σr1+r2 : K → C. The canonical embedding

σ (x) = (σ1(x), . . . , σr1+r2 (x)) ∈ Rr1 × Cr2 (1)

is an injective ring homomorphism. ConsiderC to be a two-dimensional real vector space.
With this identification, the ring of integersO ⊂ K is an n-dimensional lattice inRn under
the mapping

x �→ (σ1(x), . . . , σr1 (x),Re σr1+1(x), Im σr1+1(x), . . . ,Re σr1+r2 (x), Im σr1+r2 (x)) (2)

with covolume

vol(σ (O)) = 2−r2 |D| 12 , (3)

where D = D(K ) is the field discriminant.
An old theorem of Samuel [14] states that there are only finitely many number fields

of a given discriminant. Thus it is natural to ask, when number fields of a fixed degree
are ordered by growing discriminant, how is the ring of integers distributed as a lattice?
Note that, as σ (1) is present in the embedding for all K , σ (O) always has a short vector
in this direction, relative to the volume. Thus, define the lattice shape �K to be the
(n − 1) dimensional orthogonal projection in the space orthogonal to σ (1), rescaled to
have covolume 1.
In the case of Sn fields of degree n = 3 and n = 3, 4, 5, Terr [17] and Bhargava and

Harron [2] prove that the shape of �K becomes equidistributed in the space

Sn−1 := GLn−1(Z)\GLn−1(R)/GOn−1(R) (4)
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with respect to the induced probability Haar measure. Their arguments use the geometry
of numbers and obtain only the asymptotic equidistribution. A natural basis of functions
in which to study equidistribution on the larger quotient

�n−1 := SLn−1(Z)\SLn−1(R) (5)

consist in joint eigenfunctions of the Casimir operator and its p-adic analogues, the Hecke
operators. Thus, in the casen = 3, the space SL2(Z)\SL2(R)maybedecomposed spectrally
into the constant function, cusp forms and Eisenstein series. Our main result obtains
quantitative cuspidal equidistribution of the shape of cubic fields when the fields are
ordered by increasing size of discriminant.
Identify �K with a point xK in the homogeneous space SL2(Z)\SL2(R) by choosing a

base point, which is specified explicitly below.

Theorem 1 Let φ be a cuspidal automorphic form on SL2(Z)\SL2(R), which transforms
on the right by a character of SO2(R) of degree 2k, and which is an eigenfunction of the
Casimir operator and the Hecke operators. Let F ∈ C∞

c (R+) be a smooth test function. For
any ε > 0, as X → ∞,

N3,±(φ, F, X) :=
∑

[K :Q]=3
φ(�K )F

(±Disc(K )
X

)
�φ,ε X

2
3+ε . (6)

This bound should be compared to thenumber of cubic fieldswith discriminant of size at
mostX , which is of orderX . Besides the significant cancellation exhibited in our theorem,
the advantage of the method is in obtaining the equidistribution of a further angle of
the lattice when oriented in R3 relative to σ (1), which is accomplished by permitting the
cusp form to transform on the right by a character of SO2(R). A further advantage of the
method is that it appears to extend to treat the joint cuspidal equidistribution of the shape
of quartic fields when paired with the cubic resolvent, extending work of Yukie [20]. We
intend to return to this topic in a forthcoming publication.
In [19], Theorem 1.3 a counting result for cubic fields is proved which permits imposing

finitely many local specifications, with applications in [4,6,13]. We expect the method of
Theorem 1 can be extended to accommodate finitely many local conditions, but have not
done so here.

1.1 Discussion of method

Shintani [15] and Shintani and Sato [16] introduce zeta functions enumerating integral
orbits in prehomogeneous vector spaces, proving meromorphic continuation and func-
tional equations. Taniguchi and Thorne [18,19] use Shintani’s zeta function in the case of
binary cubic forms together with a sieve to give the best known error terms in the counting
function of cubic fields ordered bydiscriminant. In [10], the authormodified this construc-
tion in the case of binary cubic forms, by introducing an automorphic form evaluated at a
representative of each orbit. In proving Theorem 1, we combine the construction of [10]
with the methods of [19], along with an argument related to the approximate functional
equation from the theory of L-functions.
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Notation and conventions We use the following conventions regarding groups. GR =
GL2(R), G1 = SL2(R), G+ = {g ∈ GL2(R) : det g > 0}, GZ = GL2(Z), � = SL2(Z).
Following Shintani,

A =
{(

t
1
t

)
: t ∈ R>0

}
, N =

{(
1 0
x 1

)
: x ∈ R

}
, N ′ =

{(
1 x
0 1

)
: x ∈ R

}
,

K =
{(

cos θ sin θ

− sin θ cos θ

)
: θ ∈ R

}
(7)

with group elements

at =
(
t

1
t

)
, nx =

(
1 0
x 1

)
, νx =

(
1 x
0 1

)
, kθ =

(
cos θ sin θ

− sin θ cos θ

)
. (8)

The Iwasawa decomposition G = KAN is used. Haar measure is normalized by setting,
for f ∈ L1(G1),

ˆ
G1

f (g)dg = 1
2π

ˆ 2π

0

ˆ ∞

−∞

ˆ ∞

0
f (kθatnu)

dt
t3

du dθ (9)

and for f ∈ L1(G+),
ˆ
G+

f (g)dg =
ˆ ∞

0

ˆ
G1

f
((

λ

λ

)
g
)
dg

dλ

λ
. (10)

We abbreviate contour integrals 1
2π i

´ c+i∞
c−i∞ F (z)dz = ¸

Re(z)=c F (z)dz. Denote e(x) the
additive character e2π ix. The argument uses the following pair of standard Mellin trans-
forms. Write Kν for the K -Bessel function. For Re(s) > |Re ν|, ( [11], p.205)ˆ ∞

0
Kν(x)xs−1dx = 2s−2�

(
s + ν

2

)
�

(
s − ν

2

)
. (11)

For 0 < Re(s) < 1, ( [7], p. 13)ˆ ∞

0
eixxs−1dx = �(s)ei

πs
2 . (12)

Given F which is smooth, of compact support on R×, the Mellin transform

F̃ (s) =
ˆ ∞

0
F (x)xs−1dx (13)

is entire. The operator x d
dx acts on the Mellin transform by multiplying by −s, as may be

checked by integrating by parts,
˜

x
d
dx

F (s) =
ˆ ∞

0
F ′(x)xsdx = −s

ˆ ∞

0
F (x)xs−1dx = −sF̃ (s). (14)

2 Cubic rings and binary cubic forms
A cubic ring R over Z is a free rank 3 Z module equipped with a ring multiplication. A set
of generators 〈1,ω, θ〉 for a cubic ring R is said to be normalized if their multiplication law
satisfies, for some integers �, m, n, a, b, c, d,
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ωθ = n,

ω2 = m + bω − aθ ,

θ2 = � + dω − cθ , (15)

see [1]. A basis for R may be reduced to a normalized basis by choosing representatives
for ω and θ modulo Z. GL2(Z) acts on cubic rings over Z by forming linear combinations
of the generators 〈ω, θ〉, then renormalizing. Starting with a distinguished basis 〈1,ω, θ〉
for R3 or R × C, GL2(R) acts in the same way. The ‘shape’ of the basis thus corresponds
with a point in the space of lattices SL2(Z)\SL2(R). This is the usual identification of
SL2(Z)\SL2(R) with the space of two-dimensional lattices, since normalizing the basis
acts in the direction of 1.
The fact that after tensoring with R, each cubic ring over Z of nonzero discriminant

may be realized as a point in one of these two spaces which has been proven via a cor-
respondence with the theory of real and integral binary cubic forms. An integral binary
cubic form is a form f (x, y) = ax3 + bx2y + cxy2 + dy3 with (a, b, c, d) ∈ Z4. GL2(Z) acts
on the space of integral binary cubic forms by forming linear combinations of x and y.
Gan, Gross and Savin [8], extending earlier work of Delone and Fadeev [5], proved the
following parameterization of cubic rings over Z.

Theorem 2 ([1], Theorem 1) There is a canonical bijection between the set of GL2(Z)-
equivalence classes of integral binary cubic forms and the set of isomorphism classes of
cubic rings, in which the form f (x, y) = ax3 + bx2y + cxy2 + dy3 corresponds to the ring
R(f ) with basis 〈1,ω, θ〉 and multiplication law

ωθ = −ad,

ω2 = −ac + bω − aθ ,

θ2 = −bd + dω − cθ . (16)

Moreover, the discriminant of f and R(f ) is equal.

In the correspondence, irreducible binary cubic forms correspond to orders in cubic fields.
The reader is referred to Chapter 2 of [15] for the following discussion of the space of

binary cubic forms. We have adopted the same conventions for ease of comparison. GR

acts naturally on the space

VR = {
ax3 + bx2y + cxy2 + dy3 : (a, b, c, d) ∈ R4} (17)

of real binary cubic forms via, for f ∈ VR and g ∈ GR,

g · f (x, y) = f ((x, y) · g). (18)

Note that this differs by a factor of det g from theGR action on the basis 〈1,ω, θ〉 of a cubic
ring, the former action is called a twisted action. The action (x, y) · g is a right action on
R2, so that the action on VR is a left action. The discriminant

D = b2c2 + 18abcd − 4ac3 − 4b3d − 27a2d2, (19)

which is a homogeneous polynomial of degree four on VR, is a relative invariant: D(g ·
f ) = χ (g)D(f ) where χ (g) = det(g)6. The dual space of VR is identified with VR via the
alternating pairing

〈x, y〉 = x4y1 − 1
3
x3y2 + 1

3
x2y3 − x1y4 . (20)
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Let τ be the map VR → VR carrying each basis vector to its dual basis vector; the
discriminant D̂ on the dual space is normalized such that τ is discriminant preserving.
There is an involution ι on GR given by

g ι =
(
0 −1
1 0

)
(g−1)t

(
0 1

−1 0

)
= g

det g
. (21)

This satisfies, for all g ∈ GR, x ∈ VR, y ∈ V̂R,

〈x, y〉 = 〈g · x, g ι · y〉. (22)

Given f ∈ L1(VR), one has the Fourier transforms

f̂ (x) =
ˆ
VR

f (y)e(−〈x, y〉)dy. (23)

If f̂ also is in L1(VR), then

f (x) = 1
9

ˆ
VR

f̂ (y)e(〈x, y〉)dy. (24)

Translation, dilation and the group action act on the Fourier transform as follows,

ˆ
VR

f
(
g · (q2y + a

))
e(−〈x, y〉)dy =

e
( 〈x,a〉

q2

)

q8

ˆ
VR

f (g · y)e
(

−
〈
x
q2

, y
〉)

dy

=
e
( 〈x,a〉

q2

)

q8χ (g)

ˆ
VR

f (y)e
(

−
〈
x
q2

, g−1 · y
〉)

dy

=
e
( 〈x,a〉

q2

)

q8χ (g)

ˆ
VR

f (y)e
(

−
〈
g ι ·

(
x
q2

)
, y
〉)

dy

=
e
( 〈x,a〉

q2

)
f̂
(
g ι ·

(
x
q2

))

q8χ (g)
. (25)

The set of forms of zero discriminant are called the singular set, S. The non-singular
forms split into spaces V+ and V− of positive and negative discriminants. The space V+
is a single G+ orbit with representative x+ =

(
1√
2
, 0, −1√

2
, 0
)
, which has discriminant

1 and stability group Ix+ of order 3. V− is also a single G+ orbit with representative
x− =

(
1√
2
, 0, 1√

2
, 0
)
with discriminant −1 and trivial stabilizer, see [15], Proposition 2.2.

This orbit description is the reason that the shape of a cubic field may be identified with
a group element in the real group action.
Set

w1 = (0, 0, 1, 0), w2 = (0, 0, 0, 1). (26)

The singular set is the disjoint union

S = {0} � G1 · w1 � G1 · w2. (27)

The stability group for the action of G1 on w1 is trivial Iw1 = {1}, while on w2 it is

Iw2 = N, (28)

see [15], Proposition 2.3.
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Over Z, the space of integral forms is a lattice L. For eachm 
= 0, the set Lm of integral
forms of discriminant m split into a finite number h(m) of SL2(Z) orbits. h(m) is called
the class number of binary cubic forms of discriminantm. With respect to the alternating
pairing, the dual lattice L̂ of L is given by forms

L̂ = {
ax3 + bx2y + cxy2 + dy3 : a, d ∈ Z, b, c ∈ 3Z

}
(29)

with middle coefficients divisible by 3. The class number of dual forms of discriminantm,
also finite, is indicated ĥ(m).
Shintani obtained the following description of the singular integral forms.

Lemma 3 The singular forms L̂0 are the disjoint union

L̂0 = {0} �
∞⊔

m=1

⊔

γ∈�/�∩N
{γ · (0, 0, 0, m)} �

∞⊔

m=1

3m−1⊔

n=0

⊔

γ∈�

{γ · (0, 0, 3m, n)}. (30)

Let

L0(I) =
∞⊔

m=1

⊔

�/�∩N
{γ · (0, 0, 0, m)},

L̂0(II) =
∞⊔

m=1

3m−1⊔

n=0

⊔

γ∈�

{γ · (0, 0, 3m, n)}. (31)

Proof See [15], Corollary to Proposition 2.10. ��
The forms of positive discriminant break into two classes, the first of which have stability

group in � which is trivial, and the second having stability group of order 3.
Form ∈ Z
=0, choose {gi,m}1≤i≤h(m) ⊂ G+, such that

{xi,m = gi,m · xsgn m}1≤i≤h(m) (32)

are representatives for the h(m) classes of binary cubic forms of discriminantm, similarly,
{x̂i,m = ĝi,m · xsgn m}1≤i≤ĥ(m) a system of representatives for the classes of dual forms. The
group elements gi,m are used in identifying the shape of the ring corresponding to xi,m
with a point in �2 = SL2(Z)\SL2(R). Set �(i, m) < � the stability group of xi,m, similarly
�̂(i, m).
For f , a Schwarz class function onVR, the Fourier transform f̂ is also Schwarz class, and

the Poisson summation formula states that
∑

x∈L
f (x) =

∑

ξ∈L̂
f̂ (ξ ). (33)

2.1 Estimates regarding the q-non-maximal set

We say that a cubic ring is maximal if it is not a proper subring of another cubic ring. This
is a property which may be checked locally. We say that a cubic ring R is maximal at p if
R⊗Zp is maximal as a cubic ring overZp, a conditionwhich is determined by congruences
modulo p2. Let �p be the indicator function of a ∈ Vp2 = (Z/p2Z)4 such that the binary
cubic form a corresponds to a non-maximal cubic ring. Note that this function is constant
on SL2(Z) orbits. Define the Fourier transform of �p by, for b ∈ (Z/p2Z)4,

�̂p(b) = 1
p8

∑

a∈(Z/p2Z)4
�p(a)e

( 〈b, a〉
p2

)
. (34)



Hough Res Math Sci            (2019) 6:23 Page 7 of 25    23 

The Fourier transform of �p has been explicitly determined depending on the factor-
ization type of the discriminant P at b in Z/p2Z in [18]. To state this, the orbits of Vp2

are classified, with representatives b, chosen up to multiplication by a multiplicative unit.
Note that entries can describe multiple orbits.

Type of b b Condition on the coefficients
(13∗∗) (1, 0, 0, 0) -
(13∗) (1, 0, �, 0) � ∈ pR×
(13max) (1, 0, k,−�) k ∈ pR, � ∈ pR×

Lemma 4 Let p > 3. Let b ∈ pVp2 . Write b = pb′, and regard b′ as an element of
Vp = (Z/pZ)4 . Then,

�̂p(pb′) =

⎧
⎪⎨

⎪⎩

p−2 + p−3 − p−5, b′ of type (0),
p−3 − p−5, b′ of type (13), (121),
−p−5, b′ of type (111), (21), (3),

(35)

where the type refers to the factorization type of b′.
For b ∈ Vp2\pVp2 ,

�̂p(b) =

⎧
⎪⎨

⎪⎩

p−3 − p−5, b of type (13∗∗),
−p−5, b of type (13∗), (13max),
0, otherwise.

(36)

The above evaluations are used in the following way.

Lemma 5 Let p > 3. For m, n ∈ Z, we have the evaluations

�̂p(0, 0, 0, m) =
{
p−2 + p−3 − p−5, p2|m,
p−3 − p−5, p2 � m,

�̂p(0, 0, m, n) =

⎧
⎪⎨

⎪⎩

p−2 + p−3 − p−5, p2|(m, n),
p−3 − p−5, p2 � (m, n), p|m,
0, p � m.

(37)

Proof If p2 divides the form b, then �̂p(b) = p−2 + p−3 − p−5. In the case of (0, 0, 0, m), if
p|m but p2 � m, then b is of type pb′ with b′ of type (13) modulo p. If p � m, then b is of form
(13∗∗). In either case, �̂p(0, 0, 0, m) = p−3 − p−5. In the case of (0, 0, m, n), if p � m, then
b /∈ pVp2 and b is not of type (13) modulo p, so b is not in the orbit of (13∗∗), (13∗), (13max),
so �̂p(b) = 0. In the second case, if p|m but p � n, then b is GL2(Z/p2Z) equivalent to a
form in (13∗∗). If p divides b but p2 does not, then b = pb′ with b′ equivalent to a form of
type either (13), (121). ��
Extend �p to �q multiplicatively when q = p1p2 . . . pn is square-free,

�q(x) =
n∏

i=1
�pi (x). (38)

It follows from Proposition 4.11 of [18] that for square-free q, the Fourier transform also
factors as a product,

�̂q(b) =
∏

p|q
�̂p(b). (39)
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We quote the following consequence from [19].

Theorem 6 Uniformly in q and Y , for all ε > 0,

∑

0<|m|≤Y

ĥ(m)∑

i=1

∣∣�̂q(x̂i,m)
∣∣

∣∣�̂(i, m)
∣∣ �ε q−7+εY. (40)

Proof This is stated as a consequence of Theorem 3.1 of [19] in eqn. (3.4), without includ-
ing the factor of the inverse of the stabilizer, which can only decrease the sum. ��

3 Background regarding automorphic forms on GL2
This section reviews the theory of automorphic forms based on the discussion in [12].
We include a discussion of the right K = SO2(R)-type which gains a further parameter
of equidistribution in Theorem 1 compared to the earlier works [2,17]. Here and in what
follows, a form φ of right K -type 2k satisfies φ(gkθ ) = ei2kθφ(g), and the map θ �→ ei2kθ is
called a character of degree 2k for K . What we need from this theory is that the fact that
a cusp form φ may be represented as a function on the modular surface �\H satisfying an
exponential decay condition in the cusp, that it has a Fourier expansion in the parabolic
direction, together with some estimates for the functions and coefficients appearing in
the Fourier expansion.
The space of mean-zero functions

L20(�\G1) =
{
f ∈ L2(�\G1) :

ˆ
�\G1

f (g)dg = 0
}

(41)

splits as

L20(�\G1) = L2cusp(�\G1) ⊕ L2Eis(�\G1) (42)

where

L2cusp(�\G1) =
{
f ∈ L20(�\G1) :

ˆ
(N ′∩�)\N ′

f (νx)dν = 0, a.e. x ∈ �\G1
}

(43)

and where L2Eis(�\G1) is spanned by the incomplete Eisenstein series.

3.1 The cuspidal spectrum

We follow the discussion of [12] Section 3.1. Let π be an infinite dimensional unitary
irreducible representation of SL2(R) in aHilbert spaceH , which factors throughPSL2(R),
and let H (K ) be the K -finite vectors in H . Then, H (K ) is spanned by orthogonal one-
dimensional subspacesHn, n even, transforming under K on the right by the character of
degree n, the K -type. TheseHn consist of smooth vectors and may be chosen to be joint
eigenfunctions of the Casimir operator and of the Hecke algebra.
LetHn = Cφn. For some parameter s, one has the action of the Lie algebra given by

dπ (W )φn = inφn,

dπ (E−)φn = (s + 1 − n)φn−2,

dπ (E+)φn = (s + 1 + n)φn+2, (44)

where

H =
(
1 0
0 −1

)
, V =

(
0 1
1 0

)
, W =

(
0 1

−1 0

)
(45)
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and E± = H ± iV . The operators E+ and E− are called raising and lowering operators.
The classification now breaks into two cases.

(1) (Maass case) There is a K -invariant vector φ0, which is called the minimal vector.
In this case, s ∈ iR and there is no highest or lowest K -type, so

H (K ) =
⊕

n∈Z

H2n. (46)

(2) (Holomorphic case) When H has a lowest K -type m0, one has m0 > 0 even. In
this case, s = m0 − 1 and

dπ (E−)φm0 = 0. (47)

One has

H (K ) =
∞⊕

m=m0 ,even
Hm. (48)

φm0 is called the lowest weight vector, or minimal vector.
WhenH has a highest K -typem0, one hasm0 < 0 even. In this case, s = −m0 − 1
and

dπ (E+)φm0 = 0. (49)

Now

H (K ) =
m0⊕

m=−∞,even
Hm, (50)

φm0 is called the highest weight or maximal vector.

We extend the automorphic form φ to a function on G+ by requiring that φ be invariant
under scaling. Since all of the forms which we work with have even K -type 2k , it follows
that

φ(g) = φ

(
g

det g

)
= φ

((
0 1

−1 0

)
(g−1)t

(
0 −1
1 0

))
= (−1)kφ

(
(g−1)t

)
(51)

and thus, φ
(
g−1) = (−1)kφ

(
gt
)
, see the discussion in [12] following Proposition 3.1.

3.1.1 Upper half-planemodel

For this section, see [12] Section 4.
The representation spaces of K -type k can be realized as automorphic functions of

weight k on the upper half-plane H, f : H → C, which satisfy the automorphy relation
under fractional linear transformations given by

f (γ z) =
(

cz + d
|cz + d|

)k
f (z), γ =

(
a b
c d

)
∈ � (52)

with an exponential decay condition in the cusp. To realize the weight k holomorphic
cusp forms in this model, multiply by y

k
2 .

The Casimir operator is realized in this model as the weight k Laplacian

�k = y2
(

∂2

∂x2
+ ∂2

∂y2

)
− iky

∂

∂x
. (53)
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DenoteWκ ,μ the Whittaker function, which satisfies

Wκ ,μ(y) ∼ yκe−
y
2 , y → ∞ (54)

and as y ↓ 0,

Wκ ,μ(y) ∼ �(−2μ)
�( 12 − μ − κ)

y
1
2+μ + �(2μ)

�( 12 + μ − κ)
y
1
2−μ, μ 
= 0. (55)

When μ = 0, Wκ ,0(y) � y
1
2 log y as y ↓ 0. For later reference, abbreviate f ±

k (z, s) =
W± k

2 ,s− 1
2
(4πy)e(±x), which is an eigenfunction of �k with eigenvalue λ = s(1 − s). Note

that the Whittaker function may be recovered from f ±
k at imaginary argument,

f ±
k (iy, s) = W± k

2 ,s− 1
2
(4πy). (56)

This is used to obtain linear relations among the derivatives of the Whittaker functions
via raising and lowering operators below.
A weight k Hecke-eigen-cusp form φ of eigenvalue λ = s(1− s) has a Fourier expansion

φ(z) = 1
2
∑

n 
=0

ρφ(n)√|n| W sgn(n)k
2 ,s− 1

2
(4π |n|y)e(nx)

= 1
2
∑

n 
=0

ρφ(n)√|n| f
sgn n
k (z, s). (57)

Note that the Fourier coefficients ρφ(n) differ from those in [12] by a factor of |n| 12 . In the
case k = 0,W is expressed in terms of the K -Bessel function by

1
2
W0,it (4πx) = √

xKit (2πx). (58)

For consistency with the weight zero case, we define
1
2
Wκ ,it (4πx) = √

xǨκ ,it (2πx) (59)

so that the Fourier development may be written in general

φ(z) = y
1
2
∑

n 
=0
ρφ(n)Ǩ sgn(n)k

2 ,s− 1
2
(2π |n|y)e(nx). (60)

In the upper half-plane model, the raising and lowering operators are given by

Kk = k
2

+ y
(
i

∂

∂x
+ ∂

∂y

)
, �k = k

2
+ y

(
i

∂

∂x
− ∂

∂y

)
. (61)

Kk takes forms of weight k to weight k + 2, �k takes forms of weight k to weight k − 2.
These satisfy

Kk�k = �k+2Kk, �k�k = �k−2�k (62)

and operate on the Fourier expansion via

Kkf +
k (z, s) = −f +

k+2(z, s), Kk f −
k (z, s) =

(
s + k

2

)(
1 − s + k

2

)
f −
k+2(z, s),

�k f +
k (z, s) = −

(
s − k

2

)(
1 − s − k

2

)
f +
k−2(z, s), �k f −

k (z, s) = f −
k−2(z, s). (63)

The feature of Ǩ which we will need is as follows.
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Lemma 7 Let κ ∈ 2Z. In Re(s) > 0, the Mellin transform

K̃κ ,it (s) =
ˆ ∞

0
Ǩκ ,it (x)xs−1dx (64)

is holomorphic. For each fixed σ > 0 and A > 0,

|τ |A ∣∣K̃κ ,it (σ + iτ )
∣∣ → 0 (65)

as |τ | → ∞.

Proof The holomorphicity follows from the fact that theWhittaker functions are smooth
and from the asymptotic behaviour at 0 and ∞. When k = κ = 0, the K -Bessel function
has Mellin transformˆ ∞

0
Kit (x)xσ+iτ−1dx = 2σ+iτ−2�

(
σ + iτ + it

2

)
�

(
σ + iτ − it

2

)
, (66)

which satisfies the decay condition due to the decay of the Gamma function in vertical
strips. For other even k , applying the raising or lowering operators k

2 times to the functions
f ±∗ (iy, s) expresses Ǩκ ,it (x) as a linear combination of terms of the type xaK (b)

it (x), a ≥ b
involving powers of x and derivatives of the K -Bessel function. This expresses K̃κ ,it (s) as
a bounded linear combination of Mellin transforms of the K -Bessel function, from which
the claimed decay follows. ��
Assume that φ is Hecke normalized, so that ρφ(1) = 1. Then, the Fourier coefficients

satisfy the Hecke multiplicativity relation

ρφ(m)ρφ(n) =
∑

d|(m,n)
ρφ

(mn
d2

)
. (67)

ρφ(n) is the eigenvalue of the nth Hecke operator Tn. Note that the Casimir eigenvalue,
Hecke eigenvalues and weight k are sufficient to recover the form φ via the Fourier
expansion (multiplicity 1). Attached to the form φ is the L-function L(s,φ),

L(s,φ) =
∞∑

n=1

ρφ(n)
ns

, Re(s) > 1. (68)

This extends to an entire function and is given by an absolutely convergent Euler product
in Re(s) > 1.

3.2 Spherical kernels

Say that a function f on SL2(R) transforms on the left, resp. right by a character of SO2(R)
of degree 2k if, for all g ∈ SL2(R), f (kθ g) = ei2kθ f (g), resp. f (gkθ ) = ei2kθ f (g). A function
which transforms on the left by a character of degree 2k1 and on the right by a character
of degree 2k2 is said to be spherical of K -type (2k1, 2k2).

Lemma 8 Let φ be a Hecke-eigen cusp form transforming on the right by a character of
SO2(R) of degree 2k. Let f be defined on SL2(R), smooth, and of compact support, and
spherical of K-type (2k, 2k). There is a constant �f,φ depending on f and φ such that, for
all g0 ∈ SL2(R)ˆ

SL2(R)
f (gg0)φ

(
g−1) dg = �f,φφ(g0). (69)

Moreover, for an appropriate choice of f , �f,φ 
= 0.
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Proof Define Fφ(g0) = ´
SL2(R) f (gg0)φ(g

−1)dg. Note that the right K -type of Fφ is 2k by
passing the transformation under the integral and applying the right K -type of f . After a
change of variable,

Fφ(g0) =
ˆ
SL2(R)

f (h)φ(g0h−1)dh. (70)

This representation shows that Fφ is left invariant under SL2(Z). By applying the Hecke
operators and Casimir operator to φ under the integral, it follows that Fφ has the same
Hecke and Casimir eigenvalues as φ, and hence, by strong multiplicity 1 that Fφ = �f,φφ

for some constant �f,φ , see [9]. To demonstrate that the constant can be taken nonzero,
write in theCartandecompositionh = kθ1atkθ2 = kθ1kθ2 (at )kθ2 ,where (at )kθ2 = k−θ2atkθ2 .
When t = 1, integrating in θ1, θ2 evaluates to 1, since (a1)kθ2 = a1 and φ transforms on
the right by the same character of SO2(R) as f does on the left. Hence if the support of
f is sufficiently close to SO2(R), and f is non-negative on A, then it can be arranged that
Fφ 
= 0. ��

4 The orbital integral representation
We now introduce the main analytic objects of study, which are generating functions
for cubic rings which are non-maximal at all primes p|q, and which are twisted by an
automorphic cusp form φ. The orbital integral representation given here was given in [10]
and is a modification of the construction of [15].
Let f be a function supported on either V+ or V−. We assume that f takes the form

f (x) = fD(|Disc(x)|)
∑

g∈G+:g ·x±=x
fG (g) , (71)

where fG is spherical of K -type (2k, 2k) on SL2(R), extended to GL2(R) as invariant under
multiplication by a scalar, and fD is a function on R×.
Assume that f is smooth and compactly supported. As a result, the Fourier transform f̂

is Schwarz class. Let φ be an automorphic form on SL2(Z)\SL2(R), and for square-free q,
define the q-non-maximal orbital L-function by

Z±
q (f,φ, L; s) =

ˆ
G+/�

χ (g)sφ
(
g−1)∑

x∈L
�q(x)f (g · x)dg, (72)

where χ (g) = (det g)6.
Introduce the twisted ShintaniL -functions, defined for Re(s) > 1 by

L +
q (φ, s) =

∞∑

m=1

1
ms

∑

g0∈Ix+

h(m)∑

i=1
�q(xi,m)

φ(gi,mg0)
|�(i, m)| ,

L −
q (φ, s) =

∞∑

m=1

1
ms

h(−m)∑

i=1
�q(xi,−m)φ(gi,−m). (73)

These functions are well defined, since �q is �-invariant; the series are absolutely con-
vergent in Re(s) > 1 since φ and�q are bounded and the original Shintani zeta functions,
which are obtained by omitting these factors, converge absolutely in Re(s) > 1, [15].
The twistedL -functions may be recovered from the orbital representation as follows.
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Lemma 9 In Re(s) > 1,

Z±
q (f,φ, L; s) = �fG,φ

12
L ±

q (φ, s)f̃D(s). (74)

Proof Write

Z+
q (f,φ, L; s) =

ˆ
g∈G+/�

χ (g)sφ
(
g−1)∑

x∈L
�q(x)f (g · x)dg

=
ˆ
G+/�

χ (g)sφ
(
g−1)

∞∑

m=1

h(m)∑

i=1

�q(xi,m)
|�(i, m)|

∑

γ∈�

f (gγ gi,m · x+)dg. (75)

Unfold the sum over � and the integral to obtain

Z+
q (f,φ, L; s) =

ˆ
G+

∞∑

m=1

h(m)∑

i=1

�q(xi,m)
|�(i, m)|χ (g)

sφ
(
g−1) ∑

g0∈Ix+
fG(ggi,mg0)fD(χ (g)m)dg

=
∞∑

m=1

h(m)∑

i=1

�q(xi,m)
|�(i, m)|

ˆ
G1

φ(g−1)
∑

g0∈Ix+
fG(ggi,mg0)dg

ˆ
R×

λ12sfD(λ12m)
dλ

λ
. (76)

The exchange of order of summation and integration is justified by the compact support
of the test function, which makes the integral over G1 bounded in L1, so that the method
of Shintani [15] applies. Since fG is spherical, integration in g may be interpreted as left
convolution

ˆ
G1

fG(ggi,mg0)φ
(
g−1) dg =

ˆ
G1

fG(gi,mg0g)φ
(
g−1) dg

=
ˆ
G1

fG
(
gi,mg0g−1)φ(g)dg

= �fG,φφ(gi,mg0). (77)

Evaluating both integrals obtains

Z+
q (f,φ, L; s) = �fG,φ

12
L +

q (φ, s)f̃D(s), (78)

which gives the claimed formula. The proof in the case of Z− is similar. ��
Introduce the truncated orbital functions

Z±,+
q (f,φ, L; s) =

ˆ
G+/�
χ (g)≥1

χ (g)sφ
(
g−1)∑

x∈L
�q(x)f (g · x)dg

Ẑ±,+
q (f̂ ,φ, L̂; 1 − s) =

ˆ
G+/�
χ (g)≥1

χ (g)1−sφ
(
g−1) ∑

x∈L̂\L̂0
�̂q(x)f̂

(
g · x

q2

)
dg (79)

and the singular part

Z±,0
q (f̂ ,φ, L̂; s) =

ˆ
G+/�
χ (g)≤1

χ (g)s−1φ
(
g−1) ∑

x∈L̂0
�̂q(x)f̂

(
g ι · x

q2

)
dg. (80)

Note that Z±,+
q and Ẑ±,+

q are entire due to the compact support of f and the rapid decay
of f̂ .
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Lemma 10 (Split functional equation) In Re(s) > 1,

Z±
q (f,φ, L; s) = Z±,+

q (f,φ, L; s) + Ẑ±,+
q (f̂ ,φ, L̂; 1 − s) + Z±,0

q (f̂ ,φ, L̂; s). (81)

Proof In the orbital integral representation

Z±
q (f,φ, L; s) =

ˆ
G+/�

χ (g)sφ
(
g−1)∑

x∈L
�q(x)f (g · x)dg, (82)

split the integral at χ (g) = 1. The part of the integral with χ (g) ≥ 1 isZ±,+
q (f,φ, L; s). Since

the part of the integral with χ (g) = 1 has measure 0, write the second part of the integral
as ˆ

G+/�,χ (g)≤1
χ (g)sφ

(
g−1)∑

x∈L
�q(x)f (g · x)dg. (83)

The Poisson summation formula permits the representation [see (25)]
∑

x∈L
�q(x)f (g · x) =

∑

a∈V (Z/q2Z)

�q(a)
∑

x∈L
f (g · (q2x + a))

= 1
χ (g)q8

∑

a∈V (Z/q2Z)

�q(a)
∑

y∈L̂
e
(〈

y
q2

, a
〉)

f̂
(
g ι · y

q2

)

= 1
χ (g)

∑

y∈L̂
�̂q(y)f̂

(
g ι · y

q2

)
. (84)

The part of the sum from L̂0 contributesZ±,0
q (f̂ ,φ, L̂; s). In the remainder of the sum,make

the change of variable g ι := g , to obtain Ẑ±,+
q (f̂ ,φ, L̂; 1 − s). ��

5 Treatment of the singular integral
We now check that the split functional equation gives the holomorphic continuation
of the singular part of the orbital integral to all of C and study the q-dependence. This
section closely follows [10], but note that by enforcing that f |S = 0, we only consider the
contribution from f̂ . Continue to assume that f̂ is Schwarz class. We assume that φ is a
Hecke-eigen cusp form of right-K -type 2k .
For g ∈ G1/�, define (note g = g ι since g ∈ G1)

Jq
(
f̂
)
(g) =

∑

x∈L̂0
�̂q(x)f̂

(
g · x
q2

)
. (85)

Following [15], write g ∈ G1 in the Iwasawa decomposition as g = kθatnu and define
t(g) = t. LetSC denote the Siegel set

SC =
{
kθatnu : θ ∈ R, t ≥ C, |u| ≤ 1

2

}
, (86)

and define the class of functions

C(G1/�, r) =
⎧
⎨

⎩f ∈ C(G1/�) : sup
g∈S 1

2

t(g)r |f (g)| < ∞
⎫
⎬

⎭ . (87)

Lemma 11 Let f = fG ⊗ fD have compact support, and suppose that f̂ (x) � 1
1+‖x‖A2

for
some A > 4. Then,

Jq
(
f̂
)

∈ C(G1/�, A − 6). (88)
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Proof As in Lemma 2.10 of [15], write g ∈ S 1
2
as kθatnu = c(g)at where c(g) = kθatnua 1

t
and note that as g varies inS 1

2
, c(g) varies in a compact set. Hence, by compactness,

inf
g∈S 1

2
,

0 
=x∈VR

{‖c(g) · x‖2
‖x‖2

}
> 0. (89)

By Poisson summation

Jq
(
f̂
)
(g) =

∑

x∈L\L0
�q(x)f (g · x) −

∑

x∈L̂\L̂0
�̂q(x)f̂

(
g · x
q2

)
. (90)

Since we restrict to x outside the singular set, for each such x = (x1, x2, x3, x4), at least one
of x1, x2 is nonzero. Since at · x = (t3x1, tx2, t−1x3, t−3x4), the sum over L\L0 vanishes if
t is sufficiently large, by the compact support. Meanwhile, in the dual sum,

∥∥∥∥at · x
q2

∥∥∥∥
2

≥ min(t3, 3t)
q2

, (91)

and hence the dual sum may be bounded by splitting on x1 
= 0 and x1 = 0,

�q
∑

x1 ,x2 ,x3 ,x4
(x1 ,x2) 
=(0,0)

1
1 + ‖(t3x1, tx2, t−1x3, t−3x4)‖A2

�q
1
t3A

∑

x1 
=0

1
1 + ‖(x1, t−2x2, t−4x3, t−6x4)‖A2

+ 1
tA

∑

x2 
=0

1
1 + ‖(0, x2, t−2x3, t−4x4)‖A2

�q
1

tA−6 . (92)

��

The object of interest is

I
(
f̂ ,φ

)
=

ˆ
G1/�

φ(g−1)Jq
(
f̂
)
(g)dg. (93)

Note that there is not a question of convergence when φ is a cusp form due to the
exponential decay in the cusp. Recall the decomposition of Lemma 3,

L̂0 = {0} �
∞⊔

m=1

⊔

γ∈�/(�∩N )
{γ · (0, 0, 0, m)} �

∞⊔

m=1

3m−1⊔

n=0

⊔

γ∈�

{γ · (0, 0, 3m, n)}

= {0} � L0(I) � L̂0(II). (94)

The contribution from {0} to (93) is 0, since φ is orthogonal to the constant function. Let

�(1)
q (φ) =

ˆ
G1/�

φ
(
g−1) ∑

x∈L0(I)
�̂q(x)f̂

(
g · x

q2

)
dg

�̂(2)
q (φ) =

ˆ
G1/�

φ
(
g−1) ∑

x∈L̂0(II)
�̂q(x)f̂

(
g · x

q2

)
dg. (95)
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Lemma 12 Let φ be a cusp form, of right K-type 2k, which is an eigenfunction of the Hecke
algebra. We have

�(1)
q (φ) = 0. (96)

Proof Unfold the integral and sum to write, using φ(g−1) = (−1)kφ(gt ),

�(1)
q (φ) = (−1)k

ˆ
G1/(�∩N )

φ
(
gt
) ∞∑

m=1
�̂q(0, 0, 0, m)f̂

(
g ·

(
0, 0, 0,

m
q2

))
dg. (97)

Since the point (0, 0, 0, 1) = y3 is invariant under action by N , which leaves y fixed, and
since there is no constant term in the Fourier expansion of φ(gt ) (see 43), the integral
vanishes upon integrating in the nx variable of the Iwasawa decomposition. ��
For ε = ± let, for all Re(x) sufficiently large,

Ĝε
φ(x) =

∞∑

�,m=1

ρφ(ε3�m)
�1+x(3m)1+3x . (98)

Given square-free q, satisfying (q, 6) = 1, define for all Re(x) > 0 sufficiently large,

Ĝε
φ,q(x) =

∞∑

�,m=1

ρφ(ε3�mq)
�1+x(3mq)1+3x . (99)

This is a sub-series of the Dirichlet series defining Ĝε
φ(x).

Lemma 13 Let q be square-free satisfying (q, 6) = 1. For ε > 0, the functions Ĝε
φ(x) and

Ĝε
φ,q(x) are bounded on {x : Re(x) ≥ ε} by a constant depending only on φ, and ε.

Proof It follows from Rankin–Selberg theory that as X → ∞,
∑

n≤X
|ρφ(n)| � X. (100)

Since the number of ways of writing n = 3�m is bounded by �ε n
ε
2 , it follows that

∣∣∣Ĝε
φ(x)

∣∣∣ ≤
∞∑

�,m=1

|ρφ(ε3�m)|
|�1+x(3m)1+3x|

�ε

∞∑

n=1

|ρφ(n)|
n1+ ε

2

and this sum is bounded by a constant depending only on φ and ε, by partial summation.
The same bound applies to Ĝε

φ,q(x) since it is a sub-series of Ĝ
ε
φ(x). ��

The Archimedean counterpart to Ĝ is for ε1, ε2 = ±,

W ε1 ,ε2
φ (w1, w2) = 1

2
�(1 − w2)

(2π )
1+w1+w2

2

(
cos

(π

2
(1 − w2)

)
+ iε1ε2 sin

(π

2
(1 − w2)

))

× K̃
ε1

k
2 ,it

(
w1 + 3w2 − 1

2

)
. (101)

Lemma 14 The functionW ε1 ,ε2
φ (w1, w2) is holomorphic in Re(w1 +3w2) > 1, Re(w2) < 1.

Let 0 < ε < 1
2 . For ε ≤ Re(w2) ≤ 1 − ε,

∣∣∣�(1 − w2)
(
cos

(π

2
(1 − w2)

)
+ iε1ε2 sin

(π

2
(1 − w2)

))∣∣∣ � |w2| 12−Re(w2). (102)
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Proof Recall from Lemma 7 that to the right of 0, K̃
ε1

k
2 ,it

is holomorphic and decays faster
than any polynomial in vertical strips. This suffices to prove the holomorphicity ofW ε1 ,ε2

φ .
The claimed bound follows from Stirling’s approximation which gives, in Re(z) > ε,

�(z) =
√
2π
z

(z
e

)z (
1 + O

(
1
z

))
. (103)

Set z = (1 − w2) = σ + iT , and assume without loss of generality that T > 1. Thus,
log z = log iT + O

( 1
T
) = log T + iπ

2 + O
( 1
T
)
. It follows that

Re(z log z) = −π

2
T + σ log T + O(1). (104)

Since |ez| is bounded below, it follows that

|�(z)| � exp
(

−π

2
T +

(
σ − 1

2

)
log T

)
. (105)

The claim follows on considering the exponential growth of sin and cos in T . ��

Set

f2�(x) =
ˆ 1

0
f (k2πθ · x)e(−2�θ )dθ . (106)

Since kθ varies in a compact set, if f is Schwarz class, so is f2�. Introduce, for z1, z2 ∈ C

�±(f, z1, z2) =
ˆ ∞

0

ˆ ∞

0
f (0, 0, t,±u)tz1−1uz2−1dt du. (107)

Lemma 15 If f is Schwarz class, then �±(z1, z2) is holomorphic in Re(z1),Re(z2) > 0.
In this domain, it satisfies the decay estimate in vertical strips, for σ1, σ2 > 0, for any
A1, A2 > 0,

∣∣�±(f, σ1 + it1, σ2 + it2)
∣∣ �A1 ,A2

1
(1 + |t1|)A1 (1 + |t2|)A2

. (108)

For t > 0, if f t (x) = f (tx), then �±(f t , z1, z2) = t−z1−z2�±(f, z1, z2).

Proof The convergence of the integral in Re z1,Re z2 > 0 is guaranteed since f is Schwarz
class, and the holomorphicity follows by differentiating under the integral. The decay
in vertical strips follows on integrating several times by parts. The dilation follows from
changing variables,

�±(f t , z1, z2) =
ˆ ∞

0

ˆ ∞

0
f (0, 0, tx1,±tx2)xz1−1

1 xz2−1
2 dx1 dx2

= t−z1−z2
ˆ ∞

0

ˆ ∞

0
f (0, 0, x1,±x2)xz1−1

1 xz2−1
2 dx1 dx2

= t−z1−z2�±(f, z1, z2). (109)

��

The following lemma obtains an expression for �̂
(2)
q as a double Mellin transform.
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Lemma 16 For q be square-free with (q, 6) = 1,

�̂(2)
q (φ) = (−1)k

∑

ε1 ,ε2=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

×
‹

Re(w1 ,w2)=(1, 12 )
q2(w1+w2)
2 �ε2

(
f̂2k , w1, w2

)
W ε1 ,ε2

φ (w1, w2)Ĝε1
φ,q2

×
(
w1 + w2 − 1

2

)
dw1 dw2. (110)

Proof We have, using φ(g−1) = (−1)kφ(gt ), and folding together the sum over � and
integral over G,

�̂(2)
q (φ) = (−1)k

ˆ
G1/�

φ
(
gt
) ∑

x∈L̂0(II)
�̂q(x)f̂

(
g · x

q2

)
dg

= (−1)k
ˆ
G1/�

φ
(
gt
) ∞∑

m=1

∑

0≤n<3m
�̂q(0, 0, 3m, n)

∑

γ∈�

f̂
(
gγ ·

(
0, 0,

3m
q2

,
n
q2

))
dg

= (−1)k
ˆ
G1

φ
(
gt
) ∞∑

m=1

∑

0≤n<3m
�̂q(0, 0, 3m, n)f̂

(
g ·

(
0, 0,

3m
q2

,
n
q2

))
dg. (111)

The evaluation of �̂q(x) from Lemma 5 imposes the constraint q|m. The lemma gives

�̂q(0, 0, 3mq, n) =
∏

p|q,p2|(mq,n)

(p−2 + p−3 − p−5)
∏

p|q,p2�(mq,n)

(p−3 − p−5)

=
∏

p|q
(p−3 − p−5)

∏

p|q,p2|(mq,n)

(
1 + p−2

p−3 − p−5

)

=
∑

q1q2=q,
q21 |(mq,n)

q−2
1

∏

p|q2
(p−3 − p−5). (112)

Replacingm =: mqq1 and n =: nq21 in (111) obtains

�̂(2)
q (φ) = (−1)k

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

×
ˆ
G1

φ
(
gt
) ∞∑

m=1

∑

0≤n<3mq2

f̂
(
g ·

(
0, 0,

3m
q2

,
n
q22

))
dg. (113)

Write g = kθatnu and integrate in θ . Since φ(gt ) transforms under ktθ by a character of
degree −2k , the integral replaces f̂ with f̂2k . Since nu maps xy2 �→ xy2 + uy3,

�̂(2)
q (φ) = (−1)k

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

ˆ ∞

0
t−3dt

ˆ ∞

−∞
du

×
∞∑

m=1

∞∑

0≤n<3mq2

f̂2k

(
at ·

(
0, 0,

3m
q2

,
n + 3mq2u

q22

))
φ((atnu)t ).
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Making a linear change of variable in u obtains

�̂(2)
q (φ) = (−1)k

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

×
ˆ ∞

0
t−3dt

ˆ ∞

−∞
du

∞∑

m=1
f̂2k

(
at ·

(
0, 0,

3m
q2

,
u
q22

))
1

3mq2

×
∑

0≤n<3mq2

φ
(
(atn u−n

3mq2
)t
)
. (114)

Expand φ in Fourier series, abbreviating here and in what follows Ǩ εk
2 ,it = Ǩε ,1

φ

((
atn u−n

3mq2

)t) = t
∑

ε=±

∞∑

�=1
ρφ(ε�)Ǩε(2π�t2)e

(
ε�

u − n
3mq2

)
. (115)

The sumover n selects Fourier coefficients with frequencies � divisible by 3mq2. Replacing
� with 3mq2� := �,

�̂(2)
q (φ) = (−1)k

∑

ε=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

ˆ ∞

0

ˆ ∞

−∞

×
∞∑

�,m=1
ρφ(ε3�mq2)Ǩε(6π�mq2t2)f̂2k (0, 0, 3t−1q−1

2 m, uq−2
2 )e(ε�t3u)du t dt.

(116)

Here, one factor of t has been gained from the Fourier expansion of φ and a factor of t3

was gained by replacing ut−3 with u.
Take Mellin transforms in both variables in f̂2k , writing u = ε2|u|, to obtain

�̂(2)
q (φ) = (−1)k

∑

ε1 ,ε2=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

×
ˆ ∞

0

ˆ ∞

0

∞∑

�,m=1
ρφ(ε13�mq2)Ǩε1 (6π�mq2t2)

×
‹

Re(w1 ,w2)=(1, 12 )
�ε2

(
f̂2k , w1, w2

)( tq2
3m

)w1
(
q22
u

)w2

e(ε1ε2�t3u) dw1 dw2 du t dt.

(117)

Note that since f̂2k is Schwarz class, the Mellin transform �ε2
(
f̂2k , w1, w2

)
decays faster

than any polynomial in vertical strips. This justifies exchange in the order of integration.
Make the change of variables v = 2π�t3u, which replaces

u−w2du := (2π�t3)w2−1v−w2dv, (118)

then r = 6π�mq2r2, which replaces

tw1+3w2−2 dt := 1
2
(6π�mq2)

1−w1−3w2
2 r

w1+3w2−3
2 dr. (119)

1Note that ntuat corresponds to u + it2 in the upper half-plane model.
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Thus,

�̂(2)
q (φ) = (−1)k

∑

ε1 ,ε2=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

×
‹

Re(w1 ,w2)=(1, 12 )
q2(w1+w2)
2 �ε2

(
f̂2k , w1, w2

) ∞∑

�,m=1

ρφ(ε13�mq2)

�
1+w1+w2

2 (3mq2)
−1+3(w1+w2)

2

× 1
2

1

(2π )
1+w1+w2

2

ˆ ∞

0
eiε1ε2vv−w2dv

ˆ ∞

0
Ǩε1 (r)r

w1+3w2−3
2 dr dw1 dw2. (120)

The Dirichlet series evaluates to Ĝε1
φ,q2

(
w1+w2−1

2

)
, while the Mellin transforms in the last

line combine with the other factors to giveW ε1 ,ε2
φ (w1, w2), so that

�̂(2)
q (φ) = (−1)k

∑

ε1 ,ε2=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

×
‹

Re(w1 ,w2)=(1, 12 )
q2(w1+w2)
2 �ε2

(
f̂2k , w1, w2

)
W ε1 ,ε2

φ (w1, w2)Ĝε1
φ,q2

×
(
w1 + w2 − 1

2

)
dw1 dw2. (121)

��

We can now evaluate Z±,0
q (f̂ , L̂,φ; s).

Lemma 17 The singular integral has the evaluation

Z±,0
q (f̂ , L̂,φ; s)

= (−1)k
∑

ε1 ,ε2=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

‹
Re(w1 ,w2)=(1, 12 )

q2(w1+w2)
2

12s − 12 + 3w1 + 3w2

× �ε2 (f̂2k , w1, w2)W ε1 ,ε2
φ (w1, w2)Ĝε1

φ,q2

(
w1 + w2 − 1

2

)
dw1 dw2 (122)

and has holomorphic continuation to C.

Proof Note that if f t denotes the dilation by t on VR, f t (x) = f (tx), then �ε(f t , w1, w2) =
t−w1−w2�ε(f, w1, w2). Also, acting by the scalar matrix

(
λ 0
0 λ

)
scales the form x by λ3.

Thus,

Z±,0
q (f̂ , L̂,φ; s) =

ˆ
G+/�
χ (g)≤1

χ (g)s−1φ(g−1)
∑

x∈L̂0
�̂q(x)f̂

(
g ι · x

q2

)
dg

=
ˆ 1

0
λ12(s−1)I

(
f̂

1
λ3 ,φ

) dλ

λ
. (123)

SinceI
(
f̂ ,φ

)
= �̂

(2)
q (φ),
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Z±,0
q (f̂ , L̂,φ; s) = (−1)k

∑

ε1 ,ε2=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

‹
Re(w1 ,w2)=(1, 12 )

q2(w1+w2)
2

× �ε2 (f̂2k , w1, w2)W ε1 ,ε2
φ (w1, w2)Ĝε1

φ,q2

(
w1 + w2 − 1

2

)

ˆ 1

0
λ12s−12+3w1+3w2 dλ

λ
dw1 dw2. (124)

The evaluation follows on integrating in λ. Shifting the w1 contour rightward obtains the
holomorphic continuation of Z±,0

q in s. ��

6 Proof of Theorem 1
We now give the proof of Theorem 1.
Let F be the smooth function of the theorem and define

N ′
3,±(φ, F, X) =

∑

m∈Z\{0}
F
(±m

X

) h(m)∑

i=1,∗

φ(gi,m)
|�(i, m)| (125)

with the ∗ restricting summation to classes which are maximal at all primes p.

Lemma 18 Let φ be a cusp form. The count of fields from Theorem 1 satisfies

N3,±(φ, F, X) = 1
2
N ′
3,±(φ, F, X) + O

(
‖φ‖∞X

1
2
)
. (126)

Proof By the Delone–Faddeev correspondence, the sum in (125) counts fields of degree
at most 3. S3 cubic fields are counted with weight 2, while cyclic cubic fields are counted
with weight 2

3 , quadratic fields are counted with weight 1 and Q is counted with weight 1
3 ,

see Proposition 5.1 of [19], or [3] for a detailed discussion.
There are O

(
X

1
2
)
cyclic cubic extensions of discriminant at most X , which accounts

for the error term. According as the discriminant is 0 or 1 modulo 4, the quadratic
fields are represented by forms (−D/4, 0, 1, 0) or (−(D − 1)/4, 1, 1, 0) which have an irre-
ducible quadratic factor of the corresponding discriminant. Since at acts on x± with
at · x± =

(
t3√
2
, 0,∓ 1

t
√
2
, 0
)
, solving g · x± = (−D/4, 0, 1, 0) has t(g) of order D

1
4 , and the

case of (−(D − 1)/4, 1, 1, 0) is similar. Thus, the sum over these fields is O(‖φ‖∞) by the
exponential decay of the cusp form φ. The contribution from Q is O (‖φ‖∞). ��
Going forward, we handle just the sum over positive m, the negative part being treated
similarly. By inclusion–exclusion,

N ′
3(φ, F, X) =

∑

q
μ(q)

∞∑

m=1
F
(m
X

) h(m)∑

i=1
�q(xi,m)

φ(gi,m)
|�(i, m)| . (127)

Lemma 19 The tail of the sieve satisfies the bound

∑

q>Q
μ(q)

∑

m∈Z\{0}
F
(m
X

) h(m)∑

i=1
�q(xi,m)

φ(gi,m)
|�(i, m)| �ε ‖φ‖∞

X
Q1−ε

. (128)

Proof Lemma 3.4 of [19] proves that for square-free r, and Y > 1,
∑

|Disc(x)|<Y
r2|Disc(x)

1 <
M6ω(r)Y

r2
(129)
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where the sum is over non-singular binary cubic forms up to GL2(Z) equivalence, where
M is an absolute constant, and where ω(r) is the number of prime factors of r. Since for
square-free r, an index r subring of a maximal ring has discriminant divisible by r2, those
forms selected by�q have discriminant divisible by q2. Hence, for anyQ > 1, for all ε > 0,

∑

q>Q
μ(q)

∑

m∈Z\{0}
F
(m
X

) h(m)∑

i=1
�q(xi,m)

φ(gi,m)
|�(i, m)|

� ‖φ‖∞
∑

q>Q
μ2(q)

X6ω(q)

q2
�ε ‖φ‖∞

X
Q1−ε

. (130)

��

It remains to control the main part of the sieve. Write, in Re(s) > 0,

F̃ (s) =
ˆ ∞

0
F (x)xs−1dx (131)

for the Mellin transform. Since F is smooth and of compact support, F̃ (s) is entire. Set fD
by twice applying the operator x d

dx to F , so that f̃D(s) = s2F̃ (s), see (14). Also, choose fG
such that �fG,φ 
= 0.
The part of the sum in q ≤ Q may be expressed, by Mellin inversion, as

N ′′
3 (φ, F, X) :=

∑

q≤Q
μ(q)

ˆ
Re(s)=2

F̃ (s)XsL +
q (φ, s)ds. (132)

Note that on this line,L +
q (φ, s) is defined by an absolutely convergent Dirichlet series, so

that the convergence follows from the rapid decay of F̃ (s). Write, where f̃D(s) 
= 0,

L +
q (s,φ) = 12Z+

q (f,φ, L; s)
�fG,φ f̃D(s)

= 12
�fG,φ f̃D(s)

(
Z+,+
q (f,φ, L; s) + Ẑ+,+

q (f̂ ,φ, L̂; 1 − s) + Z+,0
q (f̂ ,φ, L̂; s)

)
.

(133)

Thus,

N ′′
3 (φ, F, X) :=

12
�fG,φ

∑

q≤Q
μ(q)

ˆ
Re(s)=2

XsZ+
q (f,φ, L; s)

ds
s2
. (134)

The contour integral (130) is the sum of three terms, corresponding to Z+,+
q , Ẑ+,+

q and
Z+,0
q . Write these terms as N+,+

3 , N̂+,+
3 and N+,0

3 , which are bounded separately.

Lemma 20 We have the bound, for any ε > 0,

N+,+
3 (φ, F, X) = 12

�fG,φ

∑

q≤Q
μ(q)

ˆ
Re(s)=2

XsZ+,+
q (f,φ, L; s)

ds
s2

�φ,ε Xε . (135)

Proof Note that �q(x) 
= 0 implies that q|Disc(x). Shift the integral to Re(s) = ε and
open the definition of the orbital integral to obtain
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N+,+
3 (φ, F, X)

= 12
�fG,φ

∑

q≤Q
μ(q)

ˆ
Re(s)=ε

Xs
ˆ
G+/�,χ (g)≥1

χ (g)sφ
(
g−1)∑

x∈L
�q(x)f (g · x)dg ds

s2

= 12
�fG,φ

∑

q≤Q
μ(q)

ˆ
Re(s)=ε

Xs
∞∑

m=1

h(m)∑

i=1

�q(xi,m)
|�(i, m)|

×
ˆ
g∈G+ ,χ (g)≥1

χ (g)sφ(g−1)f (g · xi,m)dg dss2 . (136)

The sumoverm is finite due to the compact support of f , hence the sumover q is bounded,
also. Note that this also justifies the convergence of the contour integrals. ��
Lemma 21 We have the bound, for any ε > 0,

N̂+,+
3 (φ, F, X) = 12

�fG,φ

∑

q≤Q
μ(q)

ˆ
Re(s)=2

XsẐ+,+
q (f̂ ,φ, L̂; 1 − s)

ds
s2

�φ,ε Q2Xε . (137)

Proof Shift the contour to Re(s) = ε and open the orbital integral to obtain

N̂+,+
3 (φ, F, X)

= 12
�fG,φ

∑

q≤Q
μ(q)

˛
Re(s)=ε

Xs
ˆ
G+/�,χ (g)≥1

χ (g)1−sφ
(
g−1)

∑

x∈L̂\L̂0
�̂q(x)f̂

(
g · x

q2

)
dg

ds
s2

= 12
�fG,φ

∑

q≤Q
μ(q)

˛
Re(s)=ε

Xs
ˆ
g∈G+ ,χ (g)≥1

χ (g)1−sφ
(
g−1)

×
∑

m
=0

ĥ(m)∑

i=1

�̂q (x̂i,m)∣∣�̂(i, m)
∣∣ f̂

(
g · x̂i,m

q2

)
dg

ds
s2
. (138)

Make the change of variables g :=
(
q− 2

3

q− 2
3

)
gĝi,m to write this as

N̂+,+
3 (φ, F, X) = 12

�fG,φ

∑

q≤Q
μ(q)

˛
Re(s)=ε

Xsq8(1−s)
∑

m
=0

ĥ(m)∑

i=1

�̂q (x̂i,m)∣∣�̂(i, m)
∣∣

1
|m|1−s

×
ˆ
g∈G+ ,χ (g)≥ |m|

q8

χ (g)1−sφ
(
ĝi,mg−1) f̂ (g · xsgnm)dg dss2 . (139)

The integral over G+ and the rapid decay of f̂ effectively limit summation over m to
|m| � q8Xε . This also justifies the convergence in the contour integrals. Bound the
integral over g by a constant depending on f and φ, and bound the sum over m by
applying the bound of Theorem 6,

∑

|m|≤Y

ĥ(m)∑

i=1

∣∣�̂q (x̂i,m)
∣∣

∣∣�̂(i, m)
∣∣ �ε Yq−7+ε (140)

with Y � q8Xε . Apply partial summation and sum in q ≤ Q to obtain the lemma. ��
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Lemma 22 We have the bound, for all ε > 0,

N+,0
3 (φ, F, X) = 12

�fG,φ

∑

q≤Q
μ(q)

ˆ
Re(s)=2

XsZ+,0
q (f̂ ,φ, L̂; s)

ds
s2

�φ,ε X
1
4 (QX)ε . (141)

Proof For q co-prime to 2 and 3, in the integral representation

Z+,0
q (f̂ ,φ, L̂; s) = (−1)k

∑

ε1 ,ε2=±

∑

q1q2=q
q−2
1

∏

p|q2
(p−3 − p−5)

×
‹

Re(w1 ,w2)=(1, 12 )

q2(w1+w2)
2

12s − 12 + 3w1 + 3w2

× �ε2
(
f̂2k , w1, w2

)
W ε1 ,ε2

φ (w1, w2)Ĝε1
φ,q2

(
w1 + w2 − 1

2

)
dw1 dw2

(142)

shift the w1 contour to Re(w1) = 5
2 − ε so that Re(w1 + w2) = 3 − ε. By Lemmas 13 and

14, on these lines

W ε1 ,ε2
φ (w1, w2)Ĝε1

φ,q2

(
w1 + w2 − 1

2

)
(143)

is uniformly bounded, so that the rapid decay of �ε2 guarantees convergence. The s
contour may now be shifted to Re(s) = 1

4 + ε, where the factor 1
12s−12+3w1+3w2

is bounded
by a quantity depending only on ε.
Introduce the sum over q,

∑

q≤Q,(q,6)=1
μ(q)

∑

q1q2=q
q−2
1 q2(w1+w2)

2
∏

p|q2
(p−3 − p−5)Ĝε1

φ,q2

(
w1 + w2 − 1

2

)

=
∑

�,m≥1

∑

q≤Q,(q,6)=1
μ(q)

∑

q1q2=q
q−2
1 q2(w1+w2)

2

×
∏

p|q2
(p−3 − p−5)

ρφ(3�mq2)

�
1+w1+w2

2 (3mq2)
3(w1+w2)−1

2

=
∑

n
ρφ(3n)cn(w1, w2).

The number cn(w1, w2) is a sum over q2�m = nmultiplied by
∑

q1≤ Q
q2

,(q1 ,6)=1

μ(q1)q−2
1 , (144)

which is a quantity which is bounded. In the sum over q2, �, m, the dependence on q2
is bounded by q−1− ε

2
2 , and the remaining terms are bounded by a larger negative power.

Hence, |cn(w1, w2)| �ε
d3(n)
n1+

ε
2
where d3(n) is the 3-divisor function. Since d3(n) �ε n

ε
4 ,

it follows that |cn(w1, w2)| �ε
1

n1+
ε
4
, uniformly in w1 and w2 on the lines of integration.

It now follows from the Rankin–Selberg estimate
∑

n≤X |ρφ(n)|2 �φ X as X → ∞ that∑
n |ρφ(3n)cn(w1, w2)| is uniformly bounded by a quantity depending only on φ and ε. The

argument to this point has treated q co-prime to 2 and 3. Handling q with one or both of
these factors can be done by including the appropriate �̂p(x) is Lemma 16, and tracking
the change to Lemma 17. As maximality modulo 2 and 3 is defined modulo 36, this makes
only a bounded change, the details are left to the reader.
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On the lines of integration,Xs is bounded byX
1
4+ε . The claim follows since the integrals

are convergent. ��

Proof of Theorem 1 By Lemma 18,

N3,±(φ, F, X) = 1
2
N ′
3,±(φ, F, X) + O

(
‖φ‖∞X

1
2
)
. (145)

Truncating the tail using Lemma 19 obtains

N ′
3,±(φ, F, X) = N ′′

3,±(φ, F, X) + Oε

(
‖φ‖∞

X
Q1−ε

)
. (146)

Combining Lemmas 20, 21 and 22 obtains

N ′′
3,±(φ, F, X) �φ,ε X

1
4 (QX)ε + Q2Xε . (147)

Choosing Q = X
1
3 optimizes the error terms. ��
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