Water Research 156 (2019) 372—382

journal homepage: www.elsevier.com/locate/watres

Contents lists available at ScienceDirect

WATER
RESEARCH

Water Research

Evaluating improvements to exposure estimates from fate and 1)
transport models by incorporating environmental sampling effort and

contaminant use

Check for
updates

Samantha L. Rumschlag ™, Scott M. Bessler ¢, Jason R. Rohr *"

2 Department of Biological Sciences, Eck Institute for Global Health, and Environmental Change Initiative, 721 Flanner Hall, University of Notre Dame, Notre

Dame, IN, USA

b Department of Integrative Biology, 4202 East Fowler Avenue, University of South Florida, Tampa, FL, USA

ARTICLE INFO

Article history:

Received 10 December 2018
Received in revised form

18 March 2019

Accepted 19 March 2019
Available online 22 March 2019

Keywords:

Pesticide

Field concentration

Pesticide in water calculator

Pesticide regulation

Pond pollution

Exposure assessment

Exposure characterization

Estimated environmental concentrations

ABSTRACT

Widespread chemical contamination represents one of the largest threats of the Anthropocene. The
Pesticide in Water Calculator (PWC) is a fate and transport model used by the Environmental Protection
Agency and Health Canada to estimate pesticide exposures in lentic freshwater ecosystems and make
pesticide registration decisions. Here, we show that maximum measured concentrations of 31% of her-
bicides and 42% of insecticides exceeded maximum estimated environmental concentrations (EECs)
produced by the PWC, suggesting that EECs often do not represent worst-case exposure as they have
been purported to do. Based on this observation, we generated statistical models using EECs and over
600,000 field measurements of 31 common insecticides and herbicides to document if the congruence of
EECs and maximum field measurements could be improved by accounting for environmental sampling
effort (number of times a pesticide is sampled) and contaminant application, factors commonly ignored
in most fate and transport models. For lentic systems, variance in pesticide field measurements explained
by EECs increased by 50% when sampling effort was included. For lotic systems, variance explained
increased by only 4%, most likely because lotic systems are sampled over 4.9 times as much as lentic
systems. Including use more than doubled the ability of the EECs to predict maximum pesticides con-
centrations in lentic systems. Our results suggest that exposure characterization in risk assessment can
likely be improved by considering sampling effort and use, thus providing more defensible environ-
mental standards and regulations.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

United States (US), more than 500 million pounds of active in-
gredients of pesticides are applied annually (Atwood and Paisley-

Chemical pollution represents one of the most widespread and
destructive forms of human disturbance on earth (Bernhardt et al.,
2017; Nel et al., 2006; Rhind, 2009), threatening the health and
wellbeing of humans (Braun, 2017; Kampa and Castanas, 2008;
Larsen et al., 2017) and the environment (Fleeger et al., 2003;
Meybeck and Helmer, 1989; Rohr and McCoy, 2010). The distribu-
tion of pesticides, in particular, is globally widespread in surface
waters presenting a major threat to aquatic biodiversity (Beketov
et al,, 2013; Malaj et al,, 2014; Stehle and Schulz, 2015). In the
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Jones, 2017), leading to well-documented contamination of fresh-
water systems (Dudgeon et al., 2006; Gilliom and Hamilton, 2006;
Stone et al., 2014) that provide habitat for about 10% of all described
taxa on earth (Strayer and Dudgeon, 2010). Therefore, the ability to
predict levels of contamination in the field is critical to accurately
assessing human and wildlife exposures and designing effective
management strategies to minimize risks in sensitive systems.
Fate and transport models are important tools for predicting
contaminant exposures. For instance, the United States (US) Envi-
ronmental Protection Agency (EPA) and Health Canada use the
Pesticide in Water Calculator (PWC) model to generate a peak
estimated environmental concentration (EEC) (US EPA, 1992) of a
focal pesticide in a standardized lentic waterbody that is a set
distance from a site of application (Young, 2016). The model
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calculates an EEC based on inputs of pesticide traits (e.g. half-life
and Koc), application amount and frequency (based on crop of in-
terest), and soil and climatic characteristics (based on crop and
region of interest) (Young, 2016). EECs of a variety of chemicals,
including those that are not pesticides, are used in human health
and ecological risk assessments. Generally, the EPA uses the PWC to
predict pesticide EECs in ponds and reservoirs, which are used in
ecological risk assessments and drinking water assessments,
respectively (Luo, 2014). Ecological risk assessments play a role in
the registration of pesticide before they come to market and the
reregistration of pesticides, which occurs at least every 15 years
once a pesticide is approved. Historically, the maximum EEC for
pesticides has been regarded as a “worst-case” chemical exposure
scenario in freshwater systems by the EPA (US EPA, 1992). In risk
assessment, EECs are compared against toxicity values (e.g. LC50) to
characterize the likelihood of toxicity at a given level of exposure
(US EPA, 2004, 1992). Evaluation of EECs in this way informs the
development of environmental standards, policies, guidelines, and
regulations, as well as the registration and reregistration of
chemicals for legal use (US EPA, 2004).

The availability of large-scale data within the US on pesticide
use (Baker and Stone, 2015; Thelin and Stone, 2013) and moni-
toring (Read et al., 2017) provides an opportunity for the accuracy
of PWC exposure estimates to be evaluated and improved.
Recently, the ability of the European Union's “FOrum for the Co-
ordination of pesticide fate models and their USe” (FOCUS)
model was evaluated for its accuracy in predicting worst-case
scenario exposures using monitoring data. These evaluations
revealed that the model performed poorly in predicting environ-
mental concentration of insecticides and fungicides (Knabel et al.,
2014, 2012). The true or actual peak environmental concentration
of any given pesticide is an extremely rare event in time and space
(Leu et al., 2005; Stehle et al., 2013; Thurman et al., 1991), and thus
evaluating model predictions of peak environmental concentra-
tions necessitates copious field measurements, many more than
are required to reliably predict mean environmental concentra-
tions (Crawford, 2004). Fortunately, over the last three decades,
federal agencies including the EPA and US Geological Survey
(USGS) have compiled hundreds of thousands of field measure-
ments of pesticides from lotic (streams and rivers) and lentic
(ponds and reservoirs) freshwater ecosystems across the US.
These publicly available data allow us here to: 1) evaluate if EECs
are indeed indicative of worst-case exposure scenarios and 2)
determine if the congruence between predicted EECs from the
PWC and measured maximum concentrations of pesticides in the
field can be improved.

An important consideration for evaluating the congruence be-
tween predicted EECs and measured maximum concentrations
might be environmental sampling effort, defined as the total
number of times a pesticide is surveyed across locations and time. If
we are to determine how well maximum EECs predict maximum
field concentrations of contaminants that are currently used, we
must account for the variance in maximum field concentrations
that is a function of sampling effort. For instance, we propose that
sampling effort should be related asymptotically to the maximum
environmental concentration of a contaminant, such that increases
in sampling effort increase the likelihood of detecting the true peak
environmental concentration at low (gray section in Fig. 1A) but not
high sampling efforts (white section in Fig. 1A). Given this proposed
relationship, we hypothesize that incorporating information on
environmental sampling effort will improve the ability of EECs to
predict maximum environmental concentrations, but only for
systems that are not well sampled and thus fall on the section of the
sampling effort-maximum field concentration curve that is
increasing rather than at or near the asymptote. No study to our

knowledge, has incorporated sampling effort of monitoring data
into their evaluations of the predictions of pesticide exposure
models, which could be an important consideration in assessing
model accuracy.

The ability of EECs to predict maximum field concentrations
might also be improved by accounting for multiple sources of
contaminant use or release. Most fate and transport models,
including the PWC, assume a single point source of contamination,
but measured concentrations in freshwater ecosystems are often
the result of runoff and aerial deposition from multiple sources of
contamination across the landscape. The input of pesticides from
multiple sources of contamination across the landscape is likely
many orders of magnitude greater than application amounts on a
single agricultural field (Larsen and Noack, 2017), the sole point
source assumed by the PWC model. The inaccurate assumption of a
single point source could misrepresent the true or actual peak
concentration in the environment that the PWC seeks to model.
Thus, we hypothesize that incorporating information on use of
chemicals might improve the congruence between EECs and
maximum field concentrations because use is a proxy for multiple
sources of contamination within a watershed. The USGS recently
provided pesticide use estimates across the US, allowing us to
evaluate how a proxy for multiple sources of contamination within
a watershed affects the ability of the PWC to predict maximum
measured concentrations in the environment.

To test the hypotheses that the abilities of fate and transport
models to predict maximum field concentrations can be improved
by accounting for environmental sampling effort and contaminant
release information, we selected 31 of the most commonly used
pesticides and compiled data describing their use, application rate,
environmental mobility, EECs from the PWC, and maximum
measured environmental concentrations in lentic and lotic sys-
tems. Only a single study has used measured environmental con-
centrations to validate EECs from the PWC. However, implications
from this study are limited because few focal pesticides were
evaluated, environmental concentrations were taken from a limited
geographic region (a single state), and EECs were not compared to
maximum measured field concentrations (Xie et al., 2018).

We predicted that EECs would not represent worst-case sce-
narios of exposure because EECs fail to incorporate multiple sources
of contamination and instead model a commonly unrealistic single
point-source. Given the postulated importance of sampling effort,
we predicted that the PWC would more accurately predict
maximum concentrations in lotic than lentic systems because lotic
systems are sampled for pesticides nearly 4.9 times as much as
lentic systems (mean number + standard deviation of lotic versus
lentic samples per pesticide from federal databases: 16,111 + 10,301
vs. 3304 + 3005). Finally, we predicted that the PWC's predictions
of maximum EECs could be improved by incorporating use or
release information to account for likely multiple sources of pes-
ticides to freshwater ecosystems.

2. Methods
2.1. Pesticide selection

Our analyses focus on the 31 most commonly used herbicides
and insecticides applied on corn in the US (Table 1). We focus on
corn because corn was the most commonly harvested crop by area
in the US from 1992 to 2012, the time span of current study (US
Department of Agriculture, National Agricultural Statistics Service)
— making corn the most widespread source of pesticide contami-
nation to aquatic systems of all crops. To select this group of 31
pesticides, we first ranked all insecticides and herbicides based on
their estimated use in the US by summing 2006 county-level
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Fig. 1. A) Predicted asymptotic relationship between sampling effort and maximum (max.) field concentration. As sampling effort increases, the likelihood of detecting a peak
concentration increases when sampling effort is at low to mid-levels as shown in gray. At mid to high levels of sampling effort, the influence of increased sampling effort on the
likelihood of detecting a peak concentration reaches a limit, and no discernible relationship exists between sampling effort and max. field concentration as shown in white. We
predict that sampling effort would account for more variance between maximum field concentration and maximum estimated environmental concentration (EEC) when sampling
effort occurs in the lower range (in gray) compared to the higher range (in white). B) Observed relationship between sampling effort and maximum field concentration in lotic
(circles, solid line) and lentic (triangles, dashed line) systems. Increased sampling effort is positively associated with maximum lentic concentration (Table 2, F=4.552, p = 0.043)
but not maximum lotic concentration (Table 2, F=0.436, p = 0.515). The positive relationship for lentic systems matches the positive relationship at low to mid-sampling effort
shown in gray in Fig. 1B. The absence of a relationship for lotic systems matches the asymptote at mid to high sampling effort in Fig. 1B. C) Observed relationship between sampling
effort and the residuals of maximum field concentrations in lotic (circles) and lentic (triangles) in systems and EEC (Table 2, %% = 12.339, p < 0.001). As sampling effort increases, the
likelihood of a field concentration exceeding an EEC increases, which is represented by a positive residual. Gray band represent a 95% confidence interval, and a light gray reference
line at O represents where maximum field concentration would equal maximum EEC.

pesticide use estimates from the Estimated Annual Agricultural
Pesticide Use dataset provided by Pesticide National Synthesis
Project of the National Water Quality Assessment (NAWQA) Pro-
gram (US Geological Survey [USGS]) (https://water.usgs.gov/
nawqa/pnsp/usage/maps/county-level/). We classified each pesti-
cide as an herbicide or insecticide using the primary use type
classifications indicated by the Pesticide Action Network (PAN)
Pesticide Database (http://www.pesticideinfo.org/). We excluded
mineral or biologic (e.g. bacteria) pesticides, because we were

interested in examining the transport and fate of synthetic com-
pounds. From these most commonly used synthetic herbicides and
insecticides, we selected compounds that were detected in streams
from 1992 to 2012 by the USGS NAWQA program (www.
waterqualitydata.us/portal, obtained on 30 March 2017). Finally,
we examined commercial product use labels and only included
compounds that were used on corn because standard EPA scenarios
used in the calculation of EECs (see below) are more frequently
available across geographic regions in the US for corn than other
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Table 1
List of pesticide active ingredients and type included in the present analyses.
Pesticide abbreviations are used as point labels in the subsequent figures.

Pesticide Active Ingredient Pesticide Abbreviation Pesticide Type
2,4-D 24D herbicide
Acetochlor ACE herbicide
Alachlor ALA herbicide
Atrazine ATR herbicide
Bromoxynil BRO herbicide
Dicamba DIC herbicide
Dimethenamid DID herbicide
Diuron DIU herbicide
Glyphosate GLY herbicide
MCPA MCP herbicide
Metolachlor MET herbicide
Metribuzin MTR herbicide
Oxyfluorfen OXY herbicide
Pendimethalin PEN herbicide
Simazine SIM herbicide
Trifluralin TRI herbicide
Aldicarb ALD insecticide
Carbaryl CAR insecticide
Carbofuran CBO insecticide
Chlorpyrifos CHL insecticide
Clothianidin CLO insecticide
Diazinon DIA insecticide
Dimethoate DIM insecticide
Imidacloprid IMD insecticide
Malathion MAL insecticide
Methomyl MTH insecticide
Methyl Parathion MLP insecticide
Phorate PHO insecticide
Propargite PRO insecticide
Tefluthrin TEF insecticide
Terbufos TER insecticide

crops. This selection process resulted in 16 herbicides and 15 in-
secticides (Table 1).

2.2. Building a dataset characterizing herbicides and insecticides

We built a dataset describing each selected pesticides’ use,
application rate, environmental mobility and persistence, and
maximum measured environmental concentration (Tables S1 and
S2). For each compound, we determined an estimate of national
use by summing all county-level pesticide estimates from the
Estimated Annual Agricultural Pesticide Use dataset from 1992 to
2012. These use estimates represent use for all crops. Maximum
concentrations of pesticides in lotic systems were taken from
stream survey data from 1992 to 2012 from the USGS NAWQA
program (from https://www.waterqualitydata.us/, obtained on 30
March 2017, filtered by NAWQA program and stream site type). The
total number of stream surveys from which maximum concentra-
tions were taken totaled 499,435. Maximum concentrations of
pesticides in lentic systems were taken from surveys of lakes, res-
ervoirs, impoundments, and wetlands from 1992 to 2012 available
from National Water Quality Monitoring Council (https://www.
waterqualitydata.us/, obtained on 9 November 2017, filtered by
site type to include lakes, reservoirs, impoundments, and wet-
lands). The total number of surveys from these lentic systems from
which maximum concentrations were taken totaled 129,471. For
each pesticide, a single maximum concentration was taken from
across lentic and lotic survey locations and times. To help ensure
data quality for measured maximum concentrations, we excluded
data that were not measured in mass/volume units (e.g. ug/L),
excluded measurements that were a result of QA-QC for pesticide
testing (e.g. spiked water samples acting as controls), and ensured
all concentrations were converted to the same units (e.g. ug/L).
Finally, to help limit the influence of timing of sampling on

detection of maximum concentrations, we excluded samples that
were triggered by a hydrologic event (i.e., event-based sampling),
such as a flood or a storm. Instead, we focused on field samples that
were gathered as part of routine-based sampling efforts. In pre-
liminary analyses, event-based samples were included but did not
change the results described in this current manuscript. Since we
wanted to record maximum observed pesticide concentrations,
both filtered and whole water sample were considered. More in-
formation regarding the methods of data collection for the result-
ing pesticide concentrations (e.g. water sampling, lab testing) is
provided in Tables S3 and S4. We also recorded sampling effort for
each pesticide in lentic and lotic systems, which was the number of
times a pesticide was surveyed for across locations and time.

In addition, we gathered maximum field concentrations from
lakes, ponds, agricultural ditches, and tailwaters by reviewing the
published scientific literature to evaluate whether maximum EECs
are indeed worst-case scenarios of exposure using the most infor-
mation possible on maximum lentic concentrations. We conducted
a literature search using Web of Science and Google Scholar using
combinations of the following terms: “concentration”, “tailwater”,
“pond”, “ditch”, “runoff”, “field concentration”, and the name of the
focal pesticide (e.g. atrazine). In the final dataset, we include only
values from the literature that exceeded pesticide field database
values in lentic systems. Individual maximum concentrations of
pesticides gathered from databases or the literature represent
observed maximum measured concentrations and not the true or
actual peak concentrations, which can only be greater than or equal
to the maximum observed concentration (Crawford, 2004).

2.3. Overview of the PWC model

The PWC is a graphic user interface developed by the EPA Office
of Pesticide Programs that links the output of the Pesticide Root
Zone Model (PRZM) and the Variable Volume Water Model
(VVWM). The PWC generates EECs for a fixed volume, no flow, 1-ha
by 2-m farm pond or a 5.26-ha by 2.74-m reservoir based on runoff
(water, suspended solids, and pesticides) and overspray from an
adjacent 10-ha pesticide-treated field (Burns, 2000; Young, 2015,
2016). The PWC uses mass balance equations and assumes that all
materials in the two modeled compartments, the water and sedi-
ment, are at thermodynamic equilibrium. The inflow of dissolved
pesticides or drift is delivered to the water compartment, and
sorbed pesticides are delivered to both water and sediment. Pes-
ticides are removed from the water body via sediment burial,
volatilization, and degradation. Additional background on the PWC
can be obtained from Young (2016).

2.4. Generating estimated environmental concentrations

Data describing the environmental mobility and persistence of
herbicides used in the calculation of EECs, including Koc, water
column metabolism half-life, benthic metabolism half-life, foliar
half-life, aqueous photolysis half-life, molecular weight, vapor
pressure, and solubility, were taken primarily from the Pesticide
Properties DataBase from the University of Hertfordshire (PPDB,
https://sitem.herts.ac.uk/aeru/ppdb/en/). Values for hydrolysis
half-life and aerobic soil half-life were taken from PAN Pesticide
Database. When values were not available for certain pesticides
from PAN or PPDB, we used data from the Toxicology Data Network
(TOXNET) from the National Institutes of Health (https://toxnet.
nlm.nih.gov/newtoxnet/hsdb.htm) as indicated in Tables S1 and S2.

Additional pesticide traits included Henry's constant, heat of
Henry, air diffusion coefficient, and application information
(Tables S1 and S2). Henry's constant and the heat of Henry were
taken from the EPA's Estimation Program Interface (EPI) Suite,
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specifically HENRYWIN. Henry's constant was calculated using the
bond contribution method. We calculated the air diffusion coeffi-
cient using the EPA's On-line Tools for Site Assessment Calculation
(https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/
estdiffusion-ext.html). Data concerning number of applications per
year, timing of applications, and maximum recommended appli-
cation rate and method were taken from US commercial pesticide
product labels. For herbicides, product instructions for pre-
emergent applications for corn were followed when available. We
assumed that the last application of pre-emergent herbicides
would occur just after planting, 12 days prior to corn emergence.
For herbicides that are exclusively applied post-emergence, we
assumed applications would occur 10 days after corn emergence.
We assumed all herbicides would be applied by direct ground
spray, unless product labels indicated the need for soil incorpora-
tion. In those cases, applications were set to occur at the suggested
depth of soil incorporation based on the product label. For in-
secticides, product application instructions for post-emergent ap-
plications for corn were used when available. We assumed that the
first applications would occur 30 days after emergence by spray
above the plant. For insecticides that are applied pre-emergence,
we assumed applications would occur 12 days before emergence
by ground spray at the depth of soil incorporation according to the
product labels.

Using the EPA's Pesticide in Water Calculator v. 1.52 (PWC,
https://www.epa.gov/pesticide-science-and-assessing-pesticide-
risks/models-pesticide-risk-assessment#PWC), we generated EECs
of the selected pesticides. Model inputs consisted of mobility,
persistence, and application data for individual pesticide com-
pounds (Tables S1 and S2). For all pesticide compounds, water,
benthic, and soil reference temperatures were assumed to be 23° C,
and photolysis reference latitude was 40°. When foliar half-life was
not available for a given pesticide, foliar half-life was assumed not
to be a large contributor to breakdown in the environment in the
PWC model and was set to zero. Under the recommendation of the
PWC user manual, efficiency was set to 0.99 and drift was set to
0.01 for all pesticide compounds. Applications were assumed to
occur every year. For each pesticide compound, EECs were gener-
ated for both ponds and reservoirs in each of five different states
(Illinois, Mississippi, North Carolina, Ohio, and Pennsylvania),
which varied in their meteorological and geological model inputs
provided by the PWC software. This resulted in 10 EECs values for
each pesticide. We used the maximum EEC of these 10 estimates for
each pesticide in all statistical analyses.

While we generated all EECs based on use on corn because it is
the most common crop in the US, to assess how much the results
might be sensitive to the use of a single crop, we gathered EEC
estimates for each pesticide based on use on corn, soybean, and
cotton (where possible). We then quantified how much variation in
EECs there was within pesticides among crops versus among pes-
ticides. More variation among pesticides compared to within pes-
ticides among crops would signify our findings are relatively robust
based on corn alone. We discovered that there was >4 times the
variance among pesticides (47.4%) than there was within pesticide
among crops (11.7%), suggesting that our analyses would likely not
change substantially if we could better account for the local crop on
which each pesticide was used mostly commonly (Supporting
Information, Fig. S1).

2.5. Statistical analyses

To determine how often maximum EECs represent worst-case
scenarios of pesticides in lentic systems, we calculated the pro-
portion of pesticides for which the maximum environmental con-
centrations in lentic systems exceeded maximum EECs from PWC

models. In this evaluation, the point of comparison for the EEC was
the highest concentration of pesticide found in the Water Quality
Monitoring Council database or in the literature. We incorporated
literature and database field measurements because we wanted to
use all possible available data to describe maximum lentic field
values. In all other analyses, we use maximum lentic field values
from the National Water Quality Monitoring Council exclusively to
ensure that the methods of estimating maximum lentic and lotic
field concentrations were similar, which is an important consider-
ation for improving the congruences between EECs and field con-
centrations because inconsistencies in methodologies might bias
analyses. The literature concentrations had to be removed from
these analyses because they did not use consistent sampling
methodology across studies.

Next, we evaluated the effects of sampling effort on detection
of maximum field concentrations in both lentic and lotic systems.
While EECs are not generally intended to represent lotic systems,
we sought to use lotic systems because of our hypothesis that
increased sampling effort might increase the congruence between
EECs and maximum field measurements. Lotic systems are much
more sampled compared to lentic systems. If we only considered
sampling effort variation within lentic systems, it is possible that
we would not span a large enough range of sampling efforts to
capture the hypothesized asymptotic section of the sampling
effort-maximum concentration curve. In fact, our concern was
validated because lotic systems seem to be at or near the
asymptote, whereas many lentic systems appear to be on the
section of the curve where increasing sampling effort increases
the maximum EEC. To evaluate the effects of sampling effort on
detection of maximum field concentrations in lentic and lotic
systems, we built two separate linear models (Im function, stats
package (R Core Team, 2018)) in which the response was either
maximum lentic or lotic concentration and the predictor was
sampling effort, defined as the total number of times a pesticide
was surveyed for between 1992 and 2012 respective to each sys-
tem, including surveys which resulted in no detection of the
pesticide. To evaluate if inclusion of sampling effort improved the
congruence of maximum EECs with maximum field concentra-
tions, first we examined the effect of sampling effort on the
relationship between maximum field concentration and
maximum EEC. We extracted the residuals from a mixed model
(Imer function, Ime4 package (Bates et al., 2015)) with maximum
field concentration as the response and maximum EEC as the
predictor with pesticide compound as the random effect. These
residuals became the response in a subsequent mixed model,
where the predictor was sampling effort, and the random effect
was pesticide compound. Next, we compared models predicting
maximum field concentrations from maximum EECs with and
without observations weighted by sampling effort. We con-
structed linear models (Im function, stats package (R Core Team,
2018)) in which the response was either maximum field concen-
tration detected in lentic (from NAQWA) or lotic systems (from
National Water Quality Monitoring Council) and the predictors
were maximum EEC, pesticide type (insecticide or herbicide), and
the interaction between these two predictors. We ran each model
with and without weighting observations by sampling effort. In
the evaluation of the effect of maximum field concentration on
maximum EEC in this set of analyses, we used a one-tailed hy-
pothesis test because of the prediction that maximum field con-
centration would be positively associated with maximum EEC. To
compare the amount of variance explained by each model, we
calculated adjusted-R? values.

Lastly, we sought to evaluate if the congruence of EECs and
maximum field concentrations in lentic systems could be
improved by including pesticide use and release as a predictor. We
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focus on improving EECs in reference to lentic field concentrations
because the EPA uses the PWC to predict pesticide EECs in ponds
and reservoirs for ecological and drinking water risk assessments,
respectively (Luo, 2014). We used multimodel inference (MuMIn
package (Barton, 2016)), which fits models using combinations of
all predictors given in a global model and ranks candidate models
by second-order Akaike Information Criteria corrected for small
sample sizes (AICc) (dredge function). In our global model, the
response was maximum lentic concentration (from the National
Water Quality Monitoring Council) and the predictors included:
maximum EEC, pesticide type, pesticide use, all two-way and
three-way interactions between these factors. Since our purpose
was to improve the ability of EECs to predict field concentrations,
we only considered candidate models that included maximum
EEC as a predictor. To compare the influence of model factors
across all candidate models, Akaike weights for each factor were
summed across models to determine relative importance scores
(Burnham and Anderson, 2002). To evaluate the amount of vari-
ance explained by the top model, we calculated adjusted-R?
values.

In all statistical models in the present analyses, all continuous
variables were logip-transformed to meet assumptions of the
analyses. The data analyzed contained the 27 pesticides found in
lentic systems when analyses pertained exclusively to lentic data
or when lentic and lotic data were combined. Analyses of all 31
pesticides occurred when lotic data were examined exclusively
(e.g. for evaluation of inclusion of sampling weights in prediction
of lentic field concentrations with EECs). For all models to deter-
mine if the predictors significantly influenced the responses, we
used the Anova function in the car package (Fox and Weisberg,
2011) (oo =0.05, Type II SS). Figures were generated using visreg
(Breheny and Burchett, 2016) and ggplot2 (Wickham, 2009)
packages. R 3.2.1 statistical software (R Core Team, 2018) was used
for all analyses.

3. Results

3.1. Do EECs represent worst-case scenarios of pesticides in lentic
systems?

Historically, EECs have been described as worst-case environ-
mental concentrations (US EPA, 1992). However, maximum con-
centrations in lentic systems exceeded EECs for 31.3% of herbicides
(5 0f 16) and 41.7% of insecticides (5 of 12), suggesting that for many
pesticides, EECs did not represent worst-case scenarios of exposure
in lentic systems. Pesticides for which field measurements excee-
ded EECs include carbaryl, phorate, terbufos, diazinon, carbofuran,
glyphosate, atrazine, 2,4-D, trifluralin, and MCPA.

While this evaluation of pesticides as “worst-case” scenarios
might appear to contradict Fig. 2, the proportion of pesticides for
which field values exceed EECs is based both on routine surveys of
lentic systems by federal agencies and literature values. All other
analyses are based solely on survey data from federal agencies. We
evaluated EEC exceedance values using all available data because
EECs are seen as “worst-case” scenarios by the EPA suggesting that
EECs should rarely, if ever, be exceeded by field measurements.
However, for all other analyses, which sought to determine if EEC
and environmental measurement congruence could be improved,
we excluded these literature values. Environmental concentrations
reported in the literature are a product of considerable variation in
field survey techniques and laboratory sample analyses. To increase
consistency of the methods and reduce variance in environmental
measurements, we used only values from federal databases for the
remaining analyses.

3.2. What is the effect of sampling effort on detection of maximum
field concentrations?

We hypothesized that maximum field concentration would in-
crease asymptotically with sampling effort (Fig. 1A). As sampling
effort increases, detected maximum field concentration should
increase up to a point (gray section of Fig. 1A), after which increased
sampling effort should have little to no association with maximum
field concentration (white section of Fig. 1A). We observed this
relationship in sampling effort according to environmental sys-
tems. Sampling effort was positively associated with maximum
field concentration in lotic but not lentic systems (Fig. 1B, Table 2),
most likely because lotic systems were sampled 4.9 times as much
as lentic systems (mean number + standard deviation of lotic
versus lentic samples per pesticide: 16,111 +10,301 wvs.
3304 + 3005). Thus, observations from lentic systems seem to fall
on the section of the hypothesized curve with a positive slope
where increased sampling is associated with higher detected
maximum field concentrations (i.e. gray section of Fig. 1A). In
contrast, observations from lotic systems seem to fall on the section
of the curve closer to the asymptote, so increases in sampling effort
only have marginal effects on the maximum field concentration (i.e.
white section of Fig. 1A). Given this pattern, we predicted that
including sampling effort would improve the congruence of
maximum EECs and maximum field concentrations in lentic but
not lotic systems.

3.3. Can inclusion of sampling effort improve the congruence of
maximum EECs and maximum field concentrations?

Next, we set out to evaluate if incorporating sampling effort into
models could increase the variance in maximum field concentra-
tions explained by maximum EECs. Even though the PWC intends
to only predict EEC values in lentic systems, for this comparison we
used both lentic and lotic systems because lotic systems are
sampled more extensively than lentic systems allowing us to span a
greater range of sampling efforts, which increases the likelihood
that we detect the hypothesized asymptote in the sampling effort-
maximum field concentration curve. This is important because it
reduces the likelihood of generating the misconception that all
increases in sampling effort will increase detected maximum field
concentrations. First, we examined the influence of sampling effort
on the relationship between maximum field concentration and
EECs. We observed a positive effect of sampling effort on the re-
siduals of a model predicting maximum field concentrations from
maximum EECs (Fig. 1C, Table 2). At low to medium relative levels
of sampling effort (logyp (sampling effort)=2.24 to 3.78),
maximum EECs tended to overestimate observed maximum field
concentrations, which is represented by negative residuals, and at
medium to high relative levels of sampling effort (logio (sampling
effort) = 3.78 to 4.57), maximum EECs more often underestimated
maximum field concentrations, which is represented by positive
residuals (Fig. 1C).

We hypothesized that sampling effort should improve the fit of
maximum EECs to maximum field concentrations for lentic systems
more so than for lotic systems (Fig. 2, Table 2) because they are
more well sampled. The maximum EECs from the PWC, which are
purported to represent maximum concentrations of pesticides in
ponds and reservoirs, were not a significant predictor of maximum
measured pesticide concentrations in lentic systems without
weights but became nearly significant when weighting by sampling
effort (Table 2). In fact, weighting observations by lentic sampling
effort increased the relative amount of variance explained by 50%
(Fig. 2A [Adjusted R? = 0.27], Fig. 2B [Adjusted R® = 0.18]). Regard-
less of whether we weighted by sampling effort or not, there was a
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Fig. 2. Associations between herbicide and insecticide maximum (max.) estimated environmental concentrations (EEC) and measured maximum field concentrations in lentic (A
and B) and lotic (C and D) systems. Models were built with (A and C) and without (B and D) observations weighted by sampling effort. The association between maximum EEC and
maximum field concentration is significant for the lotic system with and without observations weighted by sampling effort (Table 2, p <0.001, C and D) and nearly significant for
lentic system when observations are weighted by sampling effort (Table 2, p = 0.052, A and B). In all panels herbicides are shown with solid circles and solid lines, and insecticides
are shown with triangles and dashed lines. Individual pesticides are labeled above and to the left of the point (see Table 1 for abbreviations). Gray bands represent 95% confidence

intervals, and light gray lines are 1:1 references lines.

positive trend between herbicide EECs and measured concentra-
tions of herbicides in lentic systems, but there was no discernible
relationship between insecticide EECs and lentic insecticide con-
centrations (Fig. 2A and B). In other words, maximum EECs were a
poor predictor of field concentrations for insecticides in lentic
systems. For lotic systems, weighting observations by sampling
effort increased the relative amount of variance explained by only
4% (Fig. 2C [Adjusted R? = 0.54], Fig. 2D [Adjusted R’ =0.52]). On
the one hand, one might not expect EECs intended for ponds and
reservoirs to predict measured concentrations in flowing systems
well because they are not meant to represent a flowing system —
but they do. Maximum EECs were a significant positive predictor of

maximum measured concentration of herbicides and insecticides
in lotic systems regardless of whether we weighted by sampling
effort or not (Table 2, Fig. 2C and D).

3.4. Can the inclusion of pesticide use and release improve the
congruence between maximum EECs and maximum field
concentrations?

Given that use of pesticides is at least six orders of magnitude
greater than pesticide applications to an individual 10-ha field
(Supporting Information), we hypothesized that inclusion of
contaminant use and release could improve the ability of maximum
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Table 2

Analyses summaries examining 1) the influence of sampling effort on maximum (max.) lentic concentration, lotic concentration, and the residuals of maximum field con-
centration predicted by maximum estimated environmental concentration (EEC), and 2) the influence of maximum EECs on maximum lentic and lotic concentrations with and
without sampling effort weighted. In this set of analyses, we used one-tailed tests for the effect of max. EEC on field concentrations. Finally, 3) we include a summary of the best
fitting model predicting maximum lentic concentrations from model selection. P-values less than 0.05 are bolded. 2 Statistics correspond with a mixed model. F statistics
correspond with non-mixed models. The data analyzed contained the 27 pesticides detected in lentic systems for all analyses, excluding evaluations between maximum lotic

concentration and maximum EEC that included all 31 pesticides.

Response Source of Variation F/y? p
Max. lentic concentration Lentic sampling effort 4,552 0.043
Max. lotic concentration Lotic sampling effort 0.436 0.515
Residuals (max. field concentration ~ max. EEC) Sampling effort 12.339 <0.001
Max. lentic concentration—Weighted by sampling effort Max. EEC 2.860 0.052
Pesticide type 2.341 0.140
Max. EEC x Pesticide type 1.611 0.217
Max. lentic concentration—Not weighted Max. EEC 1.569 0.112
Pesticide type 2.028 0.168
Max. EEC x Pesticide type 0.944 0.341
Max. lotic concentration—Weighted by sampling effort Max. EEC 21315 <0.001
Pesticide type 2.016 0.167
Max. EEC x Pesticide type 0.362 0.552
Max. lotic concentration—Not weighted Max. EEC 17.395 <0.001
Pesticide type 1.290 0.266
Max. EEC x Pesticide type 0.775 0.386
Max. lentic concentration Max. lotic concentration 1.702 0.204

Pesticide use

30.594 <0.001

EECs to predict maximum field concentrations because it might
better capture multiple sources of pesticide contamination entering
waterbodies. Based on model comparison, the best-fitting model of
maximum measured concentrations of pesticides in lentic systems
included maximum EEC and estimated use (model weight = 0.42).
In this best-fitting model, estimated pesticide use but not
maximum EEC significantly predicted maximum measured con-
centrations of pesticides in lentic systems (Table 2). In addition,
maximum EEC and estimated pesticide use had the greatest rela-
tive importance scores (Fig. 3A). The most salient point of this
analysis is that the best-fitting model more than doubled the ability
of the PWC to predict maximum concentrations of pesticides in
lentic systems (Adjusted R? =0.64 vs. Adjusted R =0.27), which
suggests that consideration of pesticide use in exposure models
could improve our ability to accurately predict environmental
concentrations. Estimated pesticide use was positively associated
with maximum lentic concentration suggesting that pesticide use
improves EEC predictions of herbicides and insecticides (Fig. 3B).

4. Discussion

From an ecological risk assessment perspective, the ability to
accurately predict concentrations of chemical contaminants is
essential for the creation of defensible environmental standards,
policies, guidelines, and regulations (US EPA, 2004). Consistent
with our hypotheses, we demonstrate that incorporating environ-
mental sampling effort and contaminant use or release improves
our ability to predict maximum field concentrations from EECs, an
approach that can be applied to other fate and transport models.
Hence, by leveraging over 600,000 field measurements of the most
commonly used insecticides and herbicides to evaluate the PWC
model, we offer potential improvements to contaminant fate and
transport models more generally. Sampling effort greatly improves
the ability of EECs to predict the variance of field concentrations in
poorly sampled lentic systems but only marginally improves pre-
diction in well-sampled lotic systems. In addition, inclusion of
pesticide use as a measurement of multiple contaminant point-
sources more than doubled the ability of EECs to predict
maximum concentrations of pesticides in lentic systems. While
these findings might not apply to pesticides that are only just
coming to market, these findings have important implications for

currently-used pesticides that must be reregistered and reeval-
uated for environmental safety via risk assessment at least every 15
years in accordance with US law. Moreover, the findings suggest
that, even for registration decisions, EECs can underestimate
maximum field concentrations because they do not account for
multiple contaminant sources.

4.1. The importance of sampling effort on the congruence between
EECs and field concentrations

When compared against maximum lentic field measurements,
maximum pesticide EECs produced by PWC models for ponds and
reservoirs performed poorly. For instance, historically, maximum
EECs have been considered worst-case scenarios of exposure (US
EPA, 1992), but our results show that this is a mischaracterization.
If a maximum EEC is truly a worst-case scenario of exposure, we
would expect that field concentrations of pesticides would rarely if
ever fall above an EEC, but for about ~30—40% of the most
commonly used pesticides measured, field values exceed EECs. This
finding is important because if risk assessors and policy makers
consider maximum EECs as worst-case concentrations to gauge the
greatest potential for toxicity, they would be underestimating
levels of field exposures in many cases. This difference between
maximum EECs and maximum field measurements indicates the
need to consider factors that might improve PWC models.

Patterns of the observed relationship between sampling effort
and maximum detected field concentrations lead us to the hy-
pothesis that the importance of sampling effort on the ability of
EECs to predict field concentration likely varies with lotic versus
lentic systems because of differences in the amount of pesticide
sampling effort in each system. For instance, lentic systems are
sampled about 4.9 times as much as lotic systems. Because the
relationship between sampling effort and maximum field concen-
tration in lotic systems is positive, we hypothesized that sampling
effort would be important for EECs to predict field concentrations
in this system. In contrast, because sampling effort only has a
marginal effect on maximum field concentrations in lotic systems,
we predicted that sampling effort would have little to no effect on
the ability of EECs to predict field concentrations.

Consistent with our hypothesis, we show that the ability of
maximum EECs to predict maximum field concentrations can be
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Fig. 3. A) Relative importance scores of factors from model comparisons, evaluating
the best predictors of maximum concentration of pesticides in lentic systems.
Maximum estimated environmental concentration is abbreviated as Max. EEC. B)
Conditional plot displaying the significant effect of estimated pesticide use on
maximum (max.) lentic concentration, controlling for maximum EEC, soil half-life, and
pesticide type (based on best fitting model, Table 2, F=30.594, p <0.001). Gray bands
represent 95% confidence intervals. Conditional plot was generated using the visreg
package in R.

improved by weighting observations by sampling effort in both
lentic and lotic systems, but the magnitude of this improvement is
greater for lentic than lotic systems. Weighting observation by
sampling effort increased the relative amount of variance explained
by 4% for lotic systems and 50% for lentic systems. Consequently,
these results demonstrate that accounting for contaminant sam-
pling effort is important, especially when sampling efforts fall
within the range in which sampling effort is positively corelated
with maximum field concentrations. If scientists validate EECs by
comparing maximum EECs to maximum environmental

concentrations to determine if EECs are accurate or not, they must
account for the variance in maximum environmental concentra-
tions that are a function of sampling effort. By accounting for
sampling effort, scientists can more accurately determine if EECs
are valid approximations of contaminant exposures.

In addition, the influence of sampling effort on maximum
measured concentrations likely varies across lentic and lotic sys-
tems. In fast-moving lotic systems at low sampling effort, peak
pesticide concentrations persist for only short periods of time
(Cope, 1966; Thurman et al., 1991), possibly making detectable
maximum pesticide concentrations lower in comparison with
slow-moving lentic systems. However, as sampling effort increases
in both lentic and lotic systems, an asymptotic point might be
reached in which increasing sampling effort does not increase
maximum detected pesticide concentration. Covariance between
sampling effort and water body type precluded evaluation of this
interaction in the current study, which could be an important topic
for future research.

For insecticides in lentic systems, even though the variance
explained in maximum field concentrations by maximum EEC
increased when we accounted for sampling effort (as represented
by a shift in the dotted line closer to the 1:1 reference line in Fig. A
compared to Fig. B), the ability of EECs to predict field concentra-
tions was still poor (shallow slope of the dotted lines in Fig. A. and
B). The inability of the maximum EECs to predict maximum field
concentrations of insecticides compared to herbicides might be a
function of pesticide use. Use of herbicides is about five times
greater than insecticides in the US (Grube et al., 2011), and so the
power to detect an association between maximum herbicide EECs
and maximum herbicide field concentrations should be greater
than that for insecticides. As a result, maximum field concentration
of herbicides might be closer to the true peak concentrations
compared to insecticides.

4.2. Increasing the congruence of EECs and field concentrations
with use and release

Even when field concentrations are the result of intensive
sampling, maximum EECs can still underestimate maximum field
concentrations (which is represented by positive residuals in
Fig. 1C). The assumption of a single point source likely results in this
underestimation of the peak environmental concentrations by
EECs. For instance, most fate and transport models, including the
PWC, assume a single point source of contamination, but measured
concentrations of contaminants in freshwater ecosystems are often
the result of runoff and aerial deposition from multiple sources of
contamination across the landscape.

Based on this motivation, we attempted to improve the ability of
EECs to predict field concentrations in lentic systems by accounting
for pesticide use. For both herbicides and insecticides, pesticide use
improved the ability of EECs to predict maximum concentrations in
lentic systems, more than doubling the variance explained
compared to a model without use. Most notably, when the model
accounted for sampling effort and pesticide use, the ability of EECs
to predict maximum field concentrations in lentic systems went
from no relationship (Fig. 2A) to a significant positive relationship
(Fig. 3B). These results suggest that pesticide use at the level is
likely an improved indicator of pesticide loading into a freshwater
ecosystem than the single point-source of contamination that is
assumed in the current PWC model. USGS pesticide use estimates
are likely a conservative representation of pesticide inputs because
they represent only agricultural applications and ignore pesticide
applications in homes and industry.
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5. Conclusions

Estimated environmental concentrations from contaminant fate
and transport models are favored ways to characterize exposure
risk by regulatory agencies because they are low cost, low effort,
and provide consistent methodology for estimates across com-
pounds (US EPA, 1992). Currently, these models represent the best
methods that have been developed to estimate concentrations of
contaminants in the environment. However, these models stand to
be improved to increase the accuracy of predictions; especially
during reregistration processes when additional data on use and
environmental measurements are available. Using current-use
pesticides, we demonstrate that not only are pesticide maximum
EECs produced by the PWC model poor characterizations of worst-
case exposures, but they also perform poorly at predicting con-
centrations of pesticides in their intended lentic systems across
pesticide types. The underlying PWC model can be assessed by
comparing its EECs to large datasets of measured environmental
concentrations. An essential consideration in this comparison is the
inclusion of sampling effort. In addition, including contaminant use
as a proxy for multiple-sources of contamination for currently used
compounds can increase the variance in field concentration
explained by EECs. Scientists active in the development of envi-
ronmental fate and transport models recognize the importance of
including multiple sources of contamination. For instance, models
widely used in the United States and Europe incorporate multiple
point sources of contamination including the Soil and Water
Assessment Tool (SWAT) (Arnold et al., 1998), ChimERA Fate
(Morselli et al., 2015), and Stream-EU (Lindim et al., 2016). The
inclusion of field survey information and use for pesticides is easily
accomplished because these data are already included separately in
the most current ecological risk assessments used for pesticide
regulation (Farruggia and Rossmeisl, 2017). In general, because of
environmental laws and regulation requiring reporting of pollution,
including the Emergency Planning and Community Right-to-Know
Act, the Resource Conservation and Recovery Act, the Toxic Sub-
stances Control Act, the Clean Water Act, and the Clean Air Act,
there is a clear understanding of the identity and amounts of
multiple point sources of many contaminants from industry and
agriculture. So, the amounts of contaminants released into the
environment could be feasibly incorporated into EEC models for
currently used non-pesticide contaminants as well.

Given our results, the next step for improvement of the PWC
model would be for EPA staff members to directly include pesticide
use in the mechanistic model. Access to the proprietary computer
code that underlies the PWC model prevented us from doing so in
the current study. Improving the understanding of the de-
terminants of maximum concentrations of pesticides in lentic
systems is not only important for improving exposure character-
ization as a part of federal ecological risk assessment, but is also
critical for the understanding and protecting small freshwater
bodies which provide critical habitat to communities of plants and
animals (Balian et al., 2008; Strayer and Dudgeon, 2010) that
contribute to the functioning of ecosystems (Costanza et al., 2014).
Improvement of contaminant fate and distribution models used in
federal risk assessments and in the development of regulations is
critical to ensure that the best science available is used to make
data-driven policy decisions.
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