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ABSTRACT

Many service systems provide queue length information to customers to aid their decisions of what queue
to join. One example is at Walt Disney World (WDW), where waiting times are posted to customers via
an app. However, it has been observed that the real waiting times are not posted in the app. In fact, WDW
rounds the waiting time up to nearest five minute interval. In this paper, we build a simulation model to
study the impact of rounding this information and when the information is lagged. We show that rounding
or delaying information can result in oscillations in the queue length process. Moreover, increasing the
rounding parameter or the delay in information causes oscillations to increase. We also demonstrate that
our queueing model can mimic the observed dynamics in the data seen in WDW. Thus, we show the
importance of understanding the impact of rounding or delaying information.

1 INTRODUCTION

Smartphone technology has changed the paradigm for communication between customers and service
systems. One example of this communication is delay announcements, which have become important
tools for service system managers to inform customers of their estimated waiting time. Thus, managers
have found tremendous value in understanding the impact of providing waiting time or queue length
information to customers as these estimates can affect customers’ decisions of whether to remain in the
system and receive service. Since these announcements can affect the decisions of customers, they clearly
affect the underlying queue length dynamics of the system. Thus, the development of methods to support
such announcements and interactions with customers has attracted the attention of the operations research
community and is growing steadily.

Although many service systems provide waiting time information, the information may not be reliable
or may not be provided in real time. One reason is that the information may be delayed from a technological
point of view as it might take time to process and distribute the information to customers. Another reason
is that there may be a lag from when one must commit to joining a queue and when they actually join. This
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type of delay occurs in transportation settings where drivers must commit to a road before they actually
get on the road itself. On the right of Figure 1 we see an example of this delay at Walt Disney World
(WDW) in Orlando, Florida where park goers must commit to going to rides before they get to the line,
but their commitment to a ride is based on the information they receive from the Disney app.

On the left of Figure 1, we show a snapshot of the My Disney Experience mobile app. The Disney
app lists waiting times and the rider’s current distance from each ride in the park and lists the rides in
increasing order of the waiting times. Customers have the opportunity to choose which ride they would
like to go on, yet this choice depends on the information that they are given through the app. However,
the wait times on the app might not be posted in real-time or customers might need travel time to get to
their next ride, hence the information upon which they base their decision on is prone to delay. Thus,
our queueing analysis is useful for Disney or even other types of service systems to understand how their
decision to offer an app that displays waiting time and their decision to round this information will affect
the lines for rides in the park.

To this end, this paper introduces a novel stochastic queueing model which describes the dynamics of
customer choice with delayed information and queue length rounding. In the queueing model, the customer
receives information about the queue length which is delayed by a constant parameter A and the queue
length is rounded to the nearest multiple of a chosen integer ¢. Using a modified version of a standard
continous time Markov chain (CTMC) simulation algorithm, we develop a stochastic simulation algorithm
to explore the impact of delayed information and rounding. Our results indicate that both rounding and
delayed information can cause oscillations in the queues. Finally, we show that we can replicate the
important features and dynamics that are observed in real data from WDW. Thus, our stochastic model is
relevant and further analysis of this model could yield important insights for these types of service systems.
As a result, our paper intends to answer the following questions:

e What is the impact of the rounding on the sample path dynamics of the system?
e How does the scaling of the rounding affect the dynamics of the system?
e How does delaying the information further affect the dynamics of the system?

The answers to the above questions will provide novel insights for managers of these systems, aid
understanding of the impact of using smartphone technology to inform customers of wait times, and
demonstrate how modifying the information can affect the underlying dynamics. The remainder of the
paper is structured as follows. Section 2 presents a review of the delay announcement literature for service
systems. Section 3 introduces the data that informs the construction of our queueing model. Section 4
constructs a new queueing model with delayed information and queue length rounding and presents an
algorithm for simulating our queueing model. In Section 5, we present the findings from simulating our
stochastic queueing model and report the observations we learn from our simulation studies. We also show
that we can replicate the dynamics seen in the real data from WDW. Finally, we conclude in Section 6 and
give ideas for future research.

2 LITERATURE REVIEW AND RESEARCH OBJECTIVES

Most of the current research that analyzes the impact of providing queue length or waiting time information
to customers tends to focus on the impact of delay announcements. Delay announcements are useful tools
that enable managers of service systems to provide customers with valuable waiting time information. For
the most part, the literature only explores how customers respond to the delay announcements or the actual
number that is displayed. Previous work by (Armony and Maglaras 2004), (Guo and Zipkin 2007), (Hassin
2007), (Armony, Shimkin, and Whitt 2009), (Guo and Zipkin 2009), (Jouini, Dallery, and Aksin 2009),
(Jouini, Aksin, and Dallery 2011), (Allon and Bassamboo 2011), (Allon, Bassamboo, and Gurvich 2011),
(Ibrahim, Armony, and Bassamboo 2015), (Whitt 1999) and references therein focus on this aspect of the
announcements. Some of the most relevant work was done by (Ibrahim and Whitt 2009), (Ibrahim and
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Figure 1: Disney Waiting Times on Smartphone App, Displayed in List (Ieft) and Map (right) Forms.

Whitt 2011), (Ibrahim, Armony, and Bassamboo 2016) in which they study several delay announcement
predictors in a single station queue. When a new arrival occurs, these predictors return the delay experienced
by the last-to-enter-service (LES) customer, head-of-line (HOL) customer, last-to-complete-service (LCS)
customer, or most recent arrival to complete service (RCS). LES and HOL predictors have been shown
to perform better than their LCS and RCS counterparts since LCS and RCS use less relevant information
than LES and HOL.

Despite its relevance, the previous literature does not focus on two important aspects of the reality
of WDW queues. The first is the situation where the information given to customers in the form of an
announcement is delayed. The second is that the wait time or queue length is rounded in presentation to
the customer yet it is still used to provide information about their wait or the actual queue length.

The analysis of this paper is similar to the main thrust of the delay announcement literature in that it is
concerned with the impact of the information on the dynamics of the queueing process. However, it differs
from the mainstream literature since we focus on when the information itself is delayed and is not given to
customers in real-time and the actual information that is given to the customer. Moreover, we include the
impact of rounding this information, which separates it from recent work by (Pender, Rand, and Wesson
2018), (Pender, Rand, and Wesson 2017a) (Burnetas, Economou, and Vasiliadis 2017) (Ibrahim 2017),
(Lingenbrink and Iyer 2017). These features of our model are important distinctions from the current
literature, which only focuses on delay announcements given in real-time and there is no exploration of
rounding effects.

Recently, there also is work that considers how the loss of information can impact queueing systems.
Work by (Jennings and Pender 2015), (Pender 2015a), (Pender 2015b) compares ticket queues with standard
queues. In a ticket queue, the manager is unaware of when a customer abandons and is only notified of
the abandonment when the customer would have entered service. This artificially inflates the queue length
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process and the previous work compares the difference in queue length between the standard and ticket
queue. However, this work does not consider the aspect of customer choice and delays in providing the
information to customers, which is the case in many healthcare settings.

The main objective of this work is to not only understand the impact of delayed information, but also
understand how rounding the information will also affect the underlying system. However, before we
describe our queueing model, we describe some data from WDW theme parks and provide some important
observations from our data that inform the construction of our new stochastic queueing model.

3 OBSERVATIONS FROM DISNEY WORLD DATA

In this section, we describe the data that we collected for the wait times for the attractions at WDW. Disney
makes the live waiting times publicly available through the My Disney Experience mobile app. These wait
times can either be shown in a non-decreasing list or displayed in a map of the park. In addition to reporting
wait times, this app provides locations of attractions, dining, and shopping, manage their reservations, view
their park photos, order food, as well as many other options. To support our project’s investigation, we
recorded the public wait times approximately once each minute when the parks were open.

These wait times were collected for each of the attractions across each of the four parks at WDW: Magic

Kingdom, Epcot, Hollywood Studios, and Animal Kingdom. Our data collection began on November 2,
2017 and concluded February 3, 2018. Across the seasonal offerings of each park, we recorded times
for 50 different attractions. Almost exclusively, the wait times are reported in the app in multiples of 5
minutes. Based on this observation and on how much Disney values the guest experience, we assume that
Disney rounds up the wait times to the nearest multiple of 5 except in special cases, which we discuss in
the remark below. Compared to other rounding schemes, this policy will not ever present a time shorter
than the actual anticipated wait and thus guests will not be disappointed with any posted wait. A potential
follow up to this work could study the impact of other types of potential rounding schemes on customer
choice.
Remark. 1t is interesting to note that our data indicates that Tower of Terror reports a waiting time of 13
minutes but never reports 15 minutes. While this seems to contradict our assumed rounding policy, we
can note that this special case instead exhibits Disney’s operating guidelines. As detailed online, Disney
prioritizes “Show,” the environmental aspects conveying the park’s stories to the guests, over efficiency (Walt
Disney Company 2018). Because the Tower of Terror attraction is a Twilight Zone-inspired, supernatural
hotel with 13 floors, the 13 minute display extends the attraction’s theming to even its posted wait time.

In Figures 2, 3, and 4, we plot sample data for wait times across a week (Monday through Sunday) at
the attractions Star Tours, Toy Story Midway Mania!, and “it’s a small world,” respectively. Star Tours is
a motion simulator ride based on the Star Wars movies, Toy Story Midway Mania! is an interactive ride
mimicking carnival-style target games themed after the Toy Story franchise, and “it’s a small world” is
a water-based dark ride showcasing numerous international cultures. Star Tours and Toy Story Midway
Mania! are both in the Hollywood Studios park whereas “it’s a small world” is in Magic Kingdom. In
each of these plots, the horizontal axis tick marks correspond to noon on the specified date. It is interesting
to note that there appears to be a dampening effect of the daily 3:00 parade on the wait times for “it’s a
small world.”

In addition to the sample week figures, we give week-day and weekend-day average wait times across
the three months of data in Figures 5, 6, and 7 for Space Mountain, Seven Dwarfs Mine Train, and Avatar
Flight of Passage, respectively. Further, each of these plots features curves for the mean plus and minus
one standard deviation. Space Mountain is an indoor, space-themed low-light roller coaster. The Seven
Dwarfs Mine Train is an indoor and outdoor roller coaster with swaying ride vehicles themed after Snow
White and the Seven Dwarfs. Both of these attractions are in Magic Kingdom. Avatar Flight of Passage
is a flying simulator attraction set in Pandora from the movie Avatar; it is one of the latest additions to
Animal Kingdom. While all three attractions are popular among park guests, it is interesting to note the
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Figure 2: Wait times for Star Tours during the week of January 8-14, 2018.
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Figure 3: Wait times for Toy Story Midway Mania! during the week of January 8-14, 2018.
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Figure 4: Wait times for “it’s a small world” during the week of January 8-14, 2018.

immediate high demand at Avatar Flight of Passage, likely an effect of how recently it was opened at the
park.

As a final interesting example from data, we plot two separate days of wait time data for the attractions
Rock ’n’ Roller Coaster and Tower of Terror, an Aerosmith themed roller coaster and Twilight Zone
inspired drop ride, respectively. Both of these rides are in Hollywood Studios; in fact, they are very near
to one another. Moreover, the two rides are both quite popular and are often considered the two most
thrilling rides in that park. This combination of proximity and similarity create an interesting dynamic
seen in Figure 8 when the wait time for one attraction increases park guests start to prefer its neighbor.
In the following sections, we will explore this phenomenon further through simulation models that feature
delayed announcements of rounded wait times.

4 THE STOCHASTIC QUEUEING MODEL

In this section, we present a stochastic queueing model with customer choice based on the queue length with
a constant delay that was studied by (Pender, Rand, and Wesson 2017b) and add a rounding component.
Thus, we begin with N infinite-server queues operating in parallel, where customers choose according to
a choice model which queue to join by using the size of the queue as information. However, we make the
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Figure 5: Wait times for Space Mountain on an average weekday (left) and weekend (right).
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Figure 6: Wait times for Seven Dwarfs Mine Train on an average weekday (left) and weekend (right).

slight and realistic modification that the queue length information that the customer receives is delayed by
a constant A for all of the queues. Therefore, the queue length that the customer receives is actually the
queue length A time units in the past. Moreover, we also round this queue length to nearest multiple of
the parameter o i.e. o[x/a].

The choice model that we use to model the customer choice dynamics is a Generalized Multinomial
Logit Model (GMNL). This is one of the most frequently used choice models, especially in transportation
situations. Although the GMNL model has a utility maximization interpretation, it also has a probabilistic
interpretation. In the context of probabilities, the probability of going to the i’ queue is given by the

following expression
2 (a {Q&ZA)D

(el

where Q(t) = (Q1(t),02(1),...,On(t)) and g(+) is a non-negative, decreasing, and continuously differentiable
function.

ey
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It is evident from the above expression that if the queue length in station i is larger than the other
queue lengths, then the i’ station has a smaller likelihood of receiving the next arrival. This decrease in
likelihood as the queue length increases represents the disdain customers have for waiting in longer lines.
Using these probabilities for joining each queue allows us to construct the following stochastic model for
the queue length process of our N dimensional queueing system for t > 0

, . Qi(s—A) .
Qi(t) = Qi(0)+II¢ /O;; 8({‘&@1 AH)) —1r¢ (/O uQi(s)ds) ()
j=18
(

where each II(-) is a unit rate Poisson process and Q;(s) = @;(s) for all s € [—-A,0]. In this model, for the
h queue, we have that

t : Qis=4)
H?/olgua%ds (3)

(o[22}
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counts the number of customers that decide to join the i queue in the time interval (0,¢]. Note that the
rate depends on the queue length at time # — A and not time ¢, hence representing the lag in information.

Similarly t
¢ ( [ wos)as) @

counts the number of customers that depart the i queue having received service from an agent or server
in the time interval (0,¢]. However, in contrast to the arrival process, the service process depends on the
current queue length and not the past queue length.

Initially, one might be interested in showing fluid and diffusion limits for this queueing model. However,
the nature of the rounding precludes using standard methodology like strong approximations or continuous
mapping arguments. Since the rounding function is discontinuous, new methodologies would need to be
created in order to derive new limit theorems for this type of queueing system. Thus, in this paper we use
simulation to gain insight on the model behavior and explore the impact of delayed information and queue
length rounding.

4.1 Simulation Algorithm

In this section, we provide an algorithm for the stochastic simulation of the stochastic queueing model.
We need an algorithm for two reasons. One reason is that the stochastic queueing model has delays in
information, therefore a standard CTMC algorithm does not work. Thus, our simulation algorithm is based
on a modification of an implementation of continuous time Markov chains (CTMC) for a number of N
parallel infinite server queues. This simulation approach is much more convenient and neat compared to
other event-based approaches.

1. Initialize each of the N queues with the initial number of customers on the interval [—A,0].
2. Generate three independent Uniform(0,1) random variables u;, uy, and u3.
3. Calculate the sum of all rates of all the possible events that can occur next i.e.

r— Cl),

(s—A

Z?’:] 8 (0‘ Fb(fx )

Note that u* depends on Q;(¢) and Q;(r —A) for each i € {1,2,...,N}.
Lets T* = —logﬂﬁ be the time of the next event.

A
5. Ifup < A, 10i0)
arrival, then we find the integer k such that

*

=
.Mz

Il
—

N N
1y Lrei -2+ Luo ®)
i=1 i=1

, then the next event is an arrival otherwise it is a departure. If, there is an

g o) g s(e]])
(s—A T i(s—A
5 s ) R B2
However, if there was a departure instead, then we find the integer k such that
k—1 ) k '
> NQl <w<) NL )

i=1 ijl Qj i=1 Zj:l Q.i'

6. Sett=1t+T" and update the number of each queue.
7. Return to step 2 or finish.



Nirenberg, Daw and Pender

S RESULTS

Now that we have described our simulation algorithm, we can use the algorithm to simulate the queueing
processes of our system. For each simulation, we computed 10,000 sample paths and we plot the average
of the sample paths over a time interval [0,10] as many of the rides are open for about 10 hours.

In Figures 9-13, we plot a sample two dimensional queueing process where we vary the delay in
information and the amount of rounding we do. In Figure 9, we simulate a queueing process with rounding
where @ = 1 and minimal amount of delayed information A = .05. We see that the queue length oscillates
for a while with the rounding even though it is quite small and integer valued. In Figure 10, we simulate the
queue length process with a larger delay A = .5 we see that the queues start to oscillate and the oscillations
are larger. In Figure 11, we increase the value of the rounding to the exact value that Disney uses i.e.
a =5. We observe that the queue length oscillates even more and the reported values are also larger
as well when the delay is close to negligible. We also find in Figure 12 that the oscillations are larger
when the information delay is increased. Thus, we observe that the rounding can induce oscillations in
the system and the increase in delay only increases those oscillations. Finally in Figure 13, we simulate a
non-stationary arrival rate and we observe that our queueing model can mimic some of the dynamics seen
in Figure 8. Thus, if we were to obtain the actual arrival data for the two rides, we could replicate the
waiting time dynamics on the app.

Simulated Mean Queue Lengths vs. Time Simulated Reported Queue Lengths vs. Time
T T T T T

Le

Reported Queue

Figure 9: Simulations A = 100, u = 1, A= .05, a = 1. The mean queue length (Left). The reported queue
length via the app (Right).

6 CONCLUSION AND FUTURE WORK

In this paper, we have investigated the impact of queue length rounding and delayed information in the
context of amusement park queues at Disney theme parks. We develop a simulation algorithm that is used
to simulate the dynamics of Disney queues and how the information is disseminated to park goers. We
find that both delayed information and queue length rounding can have adverse effects on the dynamics of
the rides since they both induce oscillations in the queue lengths or wait times for rides. These oscillations
were observed in several rides in the DisneyWorld theme park and, we believe that they are caused by the
rounding and delayed information provided in the smartphone app. Thus, we believe that the oscillations
can be reduced by giving more real-time and accurate information and by not rounding the wait times for
customers. We find that there are several directions for future research. For one, we hope to prove limit
theorems about the convergence of our queueing model to fluid and diffusion limits, however, the rounding
introduces discontinuities that make the current theory inapplicable. Second, we would like to understand
further the impact of non-stationary arrival rates, which is very relevant for WDW queues. It is well known
that non-stationary arrival rates are quite difficult to analyze, see for example (Engblom and Pender 2014).
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Figure 10: Simulations A = 100, u =1, A= .45, a = 1. The mean queue length (Left). The reported queue
length via the app (Right).
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Figure 11: Simulations A = 100, u =1, A= .05, a = 5. The mean queue length (Left). The reported queue
length via the app (Right).

Finally, we would like to explore the possibility of using other types of ways to disseminate the wait time
information to customers. We have seen that rounding the information can be problematic, but perhaps
other modifications might work well for achieving balance among the queues.
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