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Abstract

Queues that feature multiple entities arriving simultaneously are among the oldest

models in queueing theory, and are often referred to as “batch” (or, in some cases,

“bulk”) arrival queueing systems. In this work, we study the effect of batch arrivals

on infinite server queues. We assume that the arrival epochs occur according to a

Poisson process, with treatment of both stationary and non-stationary arrival rates.

We consider both exponentially and generally distributed service durations, and we

analyze both fixed and random arrival batch sizes. In addition to deriving the transient

mean, variance, and moment-generating function for time-varying arrival rates, we

also find that the steady-state distribution of the queue is equivalent to the sum of

scaled Poisson random variables with rates proportional to the order statistics of its

service distribution. We do so through viewing the batch arrival system as a collection

of correlated sub-queues. Furthermore, we investigate the limiting behavior of the

process through a batch scaling of the queue and through fluid and diffusion limits of

the arrival rate. In the course of our analysis, we make important connections between

our model and the harmonic numbers, generalized Hermite distributions, and truncated

polylogarithms.
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1 Introduction

Queueing systems with batch arrivals have enjoyed a long and rich history of study,

at least on the timescale of queueing theory. Researchers have been exploring models

of this sort for no less than six decades, based on the April 1958 submission date

of Miller Jr [26]. Given this stretch of time, a wide variety of systems and settings

have been considered under the banner of batch arrivals. Much of the earliest work

focuses on single-server models, including Miller Jr [26], Lucantoni [22], Masuyama

and Takine [25], Liu and Templeton [20], and Foster [12], although infinite server

models followed soon after, such as work by Shanbhag [36] and Brown and Ross

[2]. Later work has expanded the concept into a variety of related models, such as for

priority queues [37] and for handling server vacations [19]. Additionally, there is some

work that proves heavy traffic limit theorems for queues with batch arrivals. Examples

of this include Chiamsiri and Leonard [3], Pang and Whitt [28], and Pender [29].

These papers show that one can approximate the queue length process with Brownian

motion and Ornstein–Uhlenbeck processes and also show that one can exploit the

approximations even in multi-server and non-Markovian settings.

In this paper, we consider queues with arrivals occurring at times following a

Poisson process, with consideration given to both non-stationary and stationary rates.

We analyze both general and exponential service as conducted by infinitely many

servers. Additionally, this work addresses both fixed and random batch sizes. Our

analysis starts with the fixed batch size case. We begin by analyzing the transient

behavior of the queue with Markovian service and time-varying arrival rates, providing

explicit forms for the moment-generating function, mean, and variance. Then, we show

that if the arrival rate is stationary the resulting steady-state distribution can be written

as a sum of independent, nonidentical, scaled Poisson random variables. This leads us

to uncover connections to the harmonic numbers and generalizations of the Hermite

distribution. By viewing the batch arrival queue as a collection of infinite server sub-

queues that receive solitary arrivals simultaneously, we are able to extend this Poisson

sum construction to general service distributions. This perspective also provides an

avenue for us to extend to random batch sizes. We also give fluid and diffusion scalings

of the queue in the case of random batch sizes, as well as extending many of the results

we found for fixed batch sizes.

One can note that the batch arrival queue may not always be given the name “batch,”

as many authors choose to use the term “bulk” instead. Predominantly, this reflects two

leading strands of applications, where “bulk” often gives a connotation of transporta-

tion settings, whereas “batch” frequently implies applications in communications. Just

as practical by any other name, this family of models has also been studied in a wide

variety of applications beyond these two. Perhaps one most distinct from other types

of queueing models is particle splitting in DNA caused by radiation, as discussed in

Sachs et al. [35]. In this application, primary particles arrive at a cell nucleus and

cause DNA double-strand breaks. These double-strand breaks occur in near simul-

taneity and are thus modeled as arriving in batches of random size, as it is possible

that any number of double-strand breaks will be induced. After they are induced, the

double-strand breaks are then processed by cellular enzymes, corresponding to service

in the queueing model. Another interesting and modern application of these models
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is in cloud-based data processing. In this case, the batches arriving to the system are

collections of jobs submitted simultaneously. These jobs are then served by each being

processed individually and returned. For more discussion, detailed models, and spe-

cific analysis for this setting, see works such as Lu et al. [21], Pender and Phung-Duc

[31], Xie et al. [38], Yekkehkhany et al. [39] and references therein.

1.1 Main contributions of paper

Our contributions in this work can be summarized as follows:

(i) We show that an infinite server queue with batch arrivals at Poisson process

epochs is equivalent in steady-state distribution to a sum of scaled independent

Poisson random variables, including for generally distributed service and ran-

domly distributed batch sizes. For exponential service, this reveals a connection

to the harmonic numbers and generalized Hermite distributions.

(ii) We derive a limit of the process in which the batch size grows infinitely large and

the number of entities in the system is scaled inverse proportionally, yielding a

novel distribution characterized by the exponential integral functions. For distri-

butions that meet a divisibility condition, we find that this also holds for random

batch sizes.

(iii) In the case of time-varying arrival rates, we give a transient moment-generating

function for fixed batch sizes as well as means and variance for both fixed and

randomly sized batches.

(iv) We give fluid and diffusion limits of the queue for stationary arrival rates for

batches of random size.

1.2 Organization of paper

The body of the remainder of this paper is organized into two main sections: Sects. 2

and 3. In Sect. 2, we consider systems in which the size of the batches is fixed. Similarly,

we devote Sect. 3 to the case of randomly distributed batch sizes. At the beginning of

each section, we give a detailed overview of the contents within and provide context

for the analysis in terms of this project’s scope. After these sections, we conclude in

Sect. 4.

2 Batches of deterministic size

In this section, we will consider infinite server queues with arrivals occurring in batches

of a fixed size. We will assume that the arrival epochs occur according to a Poisson

process, including both stationary and non-stationary models. We also will investigate

both exponentially and generally distributed service times.

This section starts with studying the case of Markovian arrivals and service in

transient state in Sect. 2.1. For a time-varying arrival rate, we give the mean, vari-

ance, and moment-generating function. We then use this in Sect. 2.2 to find the

steady-state distribution of the queue. Upon observing that this can be represented
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as a sum of scaled Poisson random variables, we establish connections to general-

ized Hermite distributions and to the harmonic numbers. Taking motivation from this,

we derive the distribution of the limit of the scaled system as the batch size grows

infinitely large. Finally, in Sect. 2.3, we examine the batch queue as a collection of

infinite server sub-queues that simultaneously receive solitary arrivals. In doing so,

we extend our understanding of the steady-state distribution to the case of general

service.

2.1 Transient analysis of theMarkovian setting

We begin our analysis with the case of non-stationary Poisson arrival epochs and

Markovian service. In Kendall notation, this is the Mn
t /M/∞ queue. We let Qt rep-

resent the number of entities present in the queueing system at time t ≥ 0, which

we often refer to as the “number in system.” We will use this notation throughout

the remainder of this work, where the precise setting of the queue will be implied by

context. In this fully Markovian setting, we can use Dynkin’s infinitesimal generator

theorem to support our analysis. Specifically, we can note that for a sufficiently regular

function f : N → R, we have

d

dt
E [ f (Qt )] = E [λ(t) ( f (Qt + n) − f (Qt )) + µQt ( f (Qt − 1) − f (Qt ))],

(2.1)

for a batch arrival queue with arrival intensity λ(t) > 0. We will see in this subsection

that this infinitesimal generator approach gives us a potent toolkit for exploring this

model. Moreover, the insights we find in Markovian settings now and in Sect. 2.2 will

provide intuition that will guide our investigation of this system when the Markov

property does not hold. To begin, we now derive the moment-generating function

of the number in system. We do so for a system with a non-stationary arrival rate

given by a Fourier series, allowing these results to hold for all periodic arrival

patterns.

Proposition 2.1 For θ ∈ R, let M(θ, t) = E
[

eθ Qt
]

be the moment-generating func-

tion of the number in system of an infinite server queue with periodic arrival rate

λ +
∑∞

k=1 ak cos(kt) + bk sin(kt) > 0, arrival batch size n ∈ Z
+, and exponential

service rate µ > 0. Then, M(θ, t) is given by

M(θ, t) =
(

e−µt (eθ − 1) + 1
)Q0

e

∑n
j=1 (n

j)(e
θ−1) j

(

λ
jµ

(

1−e− jµt
)

+
∑∞

k=1
(ak jµ−bk k)

k2+ j2µ2

(

cos(kt)−e− jµt
)

)

· e

∑n
j=1 (n

j)(e
θ−1) j

∑∞
k=1

(ak k+bk jµ) sin(kt)

k2+ j2µ2 (2.2)

for all time t ≥ 0, where Q0 is the initial number in the system.
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Proof From Eq. (2.1), the MGF is given by the solution to the partial differential

equation

∂

∂t
M(θ, t) =

(

λ +
∞
∑

k=1

ak cos(kt) + bk sin(kt)

)

(

enθ − 1
)

M(θ, t)

+ µ
(

e−θ − 1
) ∂

∂θ
M(θ, t),

with the initial solution M(θ, 0) = eθ Q0 . Because
d log( f (x))

dx
= 1

f (x)
d f (x)

dx
, we can

observe that the partial differential equation for the cumulant generating function

G(θ, t) = log
(

E
[

eθ Qt
])

is

µ(1 − e−θ )
∂G(θ, t)

∂θ
+

∂G(θ, t)

∂t
=

(

λ +
∞
∑

k=1

ak cos(kt) + bk sin(kt)

)

(enθ − 1),

with the initial condition G(θ, 0) = log
(

E
[

eθ Q0
])

= θ Q0. We will now solve this

PDE by the method of characteristics. We begin by establishing the characteristic

ODEs and corresponding initial solutions as follows:

dθ

ds
(r , s) = µ(1 − e−θ ), θ(r , 0) = r ,

dt

ds
(r , s) = 1, t(r , 0) = 0,

dg

ds
(r , s) =

(

λ +
∞
∑

k=1

ak cos(kt) + bk sin(kt)

)

(enθ − 1), g(r , 0) = r Q0.

The first two of these initial value problems yield the following solutions.

θ(r , s) = log(ec1(r)+µs + 1) ⇒ θ(r , s) = log
(

(er − 1)eµs + 1
)

,

t(r , s) = s + c2(r) ⇒ t(r , s) = s.

Therefore, we can simplify the remaining characteristic ODE to

dg

ds
(r , s) =

(

λ +
∞
∑

k=1

ak cos(ks) + bk sin(ks)

)

((

(er − 1)eµs + 1
)n − 1

)

=

(

λ +
∞
∑

k=1

ak cos(ks) + bk sin(ks)

)

n
∑

j=1

(

n

j

)

(er − 1) j e jµs,

and this produces the general solution of
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g(r , s) = c3(r) +
n
∑

j=1

(

n

j

)

(er − 1) j

(

λ

jµ
+

∞
∑

k=1

(ak jµ − bkk) cos(ks)

k2 + j2µ2
+

(akk + bk jµ) sin(ks)

k2 + j2µ2

)

e jµs .

This now equates to

g(r , s) = r Q0 +
n
∑

j=1

(

n

j

)

(er − 1) j

(

λ

jµ

(

e jµs − 1
)

+
∞
∑

k=1

(ak jµ − bkk)

k2 + j2µ2

(

cos(ks)e jµs − 1
)

+
∞
∑

k=1

(akk + bk jµ) sin(ks)

k2 + j2µ2
e jµs

)

as the solution to the initial value problem. We now find the solution to the original

PDE by solving for each characteristic variable in terms of t and θ and then substitut-

ing these expression into g(r , s). That is, for s = t and r = log
(

e−µt (eθ − 1) + 1
)

,

we have that

G(θ, t) = g
(

log
(

e−µt (eθ − 1) + 1
)

, t
)

= log
(

e−µt (eθ − 1) + 1
)

Q0 +
n
∑

j=1

(

n

j

)

(eθ − 1) j

(

λ

jµ

(

1 − e− jµt
)

+
∞
∑

k=1

(ak jµ − bkk)

k2 + j2µ2
·
(

cos(kt) − e− jµt
)

+
∞
∑

k=1

(akk + bk jµ)

k2 + j2µ2
sin(kt)

)

.

To conclude the proof, we note that M(θ, t) = eG(θ,t). ��

We now extend this analysis through the two following corollaries: First, for systems

with a stationary arrival rate, say λ > 0, we further specify the moment-generating

function explicitly in Corollary 2.2. This will be of use when we explore the distribution

of the queue in steady state, which we begin in Sect. 2.2. As with Proposition 2.1,

the uniqueness of moment-generating functions will aid us in later exploration of the

distributions within this model and within generalizations of it.

Corollary 2.2 For θ ∈ R, let M(θ, t) = E
[

eθ Qt
]

be the moment-generating function

of the number in system of an infinite server queue with stationary arrival rate λ > 0,

arrival batch size n ∈ Z
+, and exponential service rate µ > 0. Then, M(θ, t) is given

by
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M(θ, t) =
(

e−µt (eθ − 1) + 1
)Q0

e
λ
∑n

j=1 (n
j)

(eθ −1) j

jµ

(

1−e− jµt
)

(2.3)

for all time t ≥ 0, where Q0 is the initial number in the system.

For the second direct result of Proposition 2.1, we can also give explicit expressions

for the transient mean and variance of the queue. We derive these equations from

the first and second derivatives, respectively, of the cumulant generating function

log(E
[

eQt
]

).

Corollary 2.3 Let Qt be an infinite server queue with periodic arrival rate λ +
∑∞

k=1 ak cos(kt)+bk sin(kt) > 0, arrival batch size n ∈ Z
+, and exponential service

rate µ > 0. Then, the mean and variance of the queue are given by

E [Qt ] = Q0e−µt +
nλ

µ

(

1 − e−µt
)

+
∞
∑

k=1

n(akµ − bkk)

k2 + µ2

(

cos(kt) − e−µt
)

+
∞
∑

k=1

n(akk + bkµ)

k2 + µ2
sin(kt), (2.4)

Var (Qt ) = Q0

(

e−µt − e−2µt
)

+
nλ

µ

(

1 − e−µt
)

+
∞
∑

k=1

n(akµ − bkk)

k2 + µ2

(

cos(kt) − e−µt
)

+
∞
∑

k=1

n(akk + bkµ)

k2 + µ2
sin(kt) +

n(n − 1)λ

2µ

(

1 − e−2µt
)

+
∞
∑

k=1

n(n − 1)(2akµ − bkk)

k2 + 4µ2
·
(

cos(kt) − e−2µt
)

+
∞
∑

k=1

n(n − 1)(akk + 2bkµ)

k2 + 4µ2
sin(kt), (2.5)

for all time t ≥ 0, where Q0 is the initial number in the system.

In the remainder of this work, we will explore various modifications of this model,

including general service and randomized batch sizes. The results of this subsection

will serve as a cornerstone throughout much of this upcoming analysis, both supporting

the underlying derivation techniques and providing the intuition for new perspectives.

2.2 TheMarkovian systemwith stationary arrival rates

Our first departure from our initial model will be modest: Instead of studying the fully

Markovian, non-stationary, fixed batch size system in transient time, we will now move

to addressing the stationary case, with much of our analysis focused on the system in

steady state. This simplified setting will allow us to extract greater intuition from our
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prior findings, which in turn will support generalization of the service distribution and

randomization of the batch sizes. To begin, we find a representation of the steady-state

distribution of the queue length in terms of a sum of independent, scaled Poisson

random variables.

Proposition 2.4 In the steady state, the distribution of the number in system of an

infinite server queue with stationary arrival rate λ > 0, arrival batch size n ∈ Z
+,

and exponential service rate µ > 0 is

Q∞(n)
D=

n
∑

j=1

jY j , (2.6)

where Y j ∼ Pois
(

λ
jµ

)

are independent.

Proof From Proposition 2.1, we have that the steady-state moment-generating function

of the queue is given by

lim
t→∞

M(θ, t) = e
λ
∑n

k=1 (n
k)

(eθ −1)
k

kµ .

To satisfy our stated Poisson form, we are now left to show that
∑n

k=1

(

n
k

)

(eθ−1)k

k
=

∑n
k=1

ekθ−1
k

for all n ∈ Z
+. We proceed by induction. In the base case of n = 1, we

have eθ − 1 = eθ − 1 and so we are left to show the inductive step. We now assume
∑n

k=1

(

n
k

)

(eθ−1)k

k
=

∑n
k=1

ekθ−1
k

holds at n. Then, by the Pascal triangle identity
(

n
k

)

=
(

n+1
k

)

−
(

n
k−1

)

and our inductive hypothesis, we can observe

n
∑

k=1

ekθ − 1

k
=

n
∑

k=1

(

n

k

)

(eθ − 1)k

k
=

n
∑

k=1

((

n + 1

k

)

−
(

n

k − 1

))

(eθ − 1)k

k
.

Now, by applying the identity
(

n
k−1

)

= k
n+1

(

n+1
k

)

and distributing the summation, we

can further note that

n
∑

k=1

((

n + 1

k

)

−
(

n

k − 1

))

(eθ − 1)k

k

=
n
∑

k=1

((

n + 1

k

)

−
k

n + 1

(

n + 1

k

))

(eθ − 1)k

k

=
n
∑

k=1

(

n + 1

k

)

(eθ − 1)k

k
−

∑n
k=1

(

n+1
k

)

(eθ − 1)k

n + 1
.

Now, we can use the binomial theorem to see that
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n
∑

k=1

(

n + 1

k

)

(eθ − 1)k = (eθ − 1 + 1)n+1 − 1 − (eθ − 1)n+1

= e(n+1)θ − 1 − (eθ − 1)n+1,

and so we can now simplify and find

n
∑

k=1

(

n + 1

k

)

(eθ − 1)k

k
−

∑n
k=1

(

n+1
k

)

(eθ − 1)k

n + 1

=
n
∑

k=1

(

n + 1

k

)

(eθ − 1)k

k
+

(eθ − 1)n+1

n + 1
−

e(n+1)θ − 1

n + 1
.

Hence, in conjunction with our initial equation, we have that

n
∑

k=1

ekθ − 1

k
=

n
∑

k=1

(

n + 1

k

)

(eθ − 1)k

k
+

(eθ − 1)n+1

n + 1
−

e(n+1)θ − 1

n + 1
,

and by rearranging terms we now complete the inductive approach:

n+1
∑

k=1

ekθ − 1

k
=

n+1
∑

k=1

(

n + 1

k

)

(eθ − 1)k

k
.

We can now observe that we have a moment-generating function that is a product of

moment-generating functions of scaled Poisson random variables, which yields the

stated result. ��

While we will continue to explore the stationary arrival rate setting throughout this

subsection, we note that this Poisson sum representation will be a leading inspiration

in the sequel. Specifically, in Sect. 2.3 we will find intuition for this result by viewing

the batch arrival queue as a collection of sub-systems.

Remark In addition to this Poisson sum representation, we can also express the steady-

state MGF in terms of the truncated polylogarithm function and harmonic numbers.

From the MGF of the queue length in steady state for θ < 0, we can observe that

lim
t→∞

M(θ, t) = e
λ
µ

∑n
k=1

ekθ −1
k = e

λ
µ

(Li(eθ ,n,1)−Hn)
,

where we have Hn as the nth harmonic number, given by
∑n

k=1
1
k

, and where the

truncated polylogarithm function Li(z, n, s) is defined as

Li(z, n, s) =
n
∑

k=1

zk

ks
.
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This decomposition into Poisson random variables can be quite useful from a com-

putational standpoint. It allows us to simulate the steady state quite easily since we only

need to simulate n Poisson random variables instead of simulating an actual queue,

which could be quite expensive. We can now observe that this construction also yields

an interesting connection to both the harmonic numbers and Hermite distributions,

as suggested in the remark above. To motivate the following analysis, suppose that

n = 2. Then, the steady-state queue length has steady-state moment-generating func-

tion given by

Mn(θ,∞) = e
λ
µ

(

eθ−1
)

+ λ
2µ

(

e2θ−1
)

.

We can now observe that this MGF corresponds to a Hermite distribution with param-

eters λ
µ

and λ
2µ

. This implies that the steady-state CDF of the queue at n = 2 is

P(Q∞(2) ≤ k) = e
− 3λ

2µ

�k�
∑

i=0

�i/2�
∑

j=0

(

λ
µ

)i−2 j (
λ

2µ

) j

(i − 2 j)! j !
= e

− 3λ
2µ

�k�
∑

i=0

�i/2�
∑

j=0

(

λ
µ

)i− j

2− j

(i − 2 j)! j !
.

Furthermore, the steady-state PMF of the queue length is given by

P(Q∞(2) = i) = e
− 3λ

2µ

�i/2�
∑

j=0

(

λ
µ

)i− j

2− j

(i − 2 j)! j !
.

This observation prompts us to ponder generalizations for n ≥ 3. The term “gen-

eralized Hermite distribution” has taken on slightly varying (yet always interesting)

definitions for different authors. For readers interested in the Hermite distribution and

popular generalizations of it, we suggest Kemp and Kemp [16], Gupta and Jain [14],

and Westcott [27]. In our setting, we note that the coefficients of λ
µ

in the MGF for

batch size n will be 1, 1
2

, 1
3

,…, 1
n

. For this reason, we think of this particular gen-

eralization of Hermite distributions to be the harmonic Hermite distribution. We can

now note that because of this harmonic structure we can instead fully characterize the

distribution simply by n and λ
µ

. In the following proposition, we find a useful recursion

for the probability mass function of this distribution at all n ∈ Z
+.

Proposition 2.5 Let Qt (n) be an infinite server batch arrivals queue with arrival rate

λ > 0, batch size n ∈ Z
+, and service rate µ > 0. Then, the steady-state distribution

of the queue is given by the recursion

P(Q∞(n) = j) = p j =
n
∑

i=1

i p j−i

λ

i jµ
=

n
∑

i=1

p j−i

λ

jµ
, (2.7)

where p0 = e
− λ

µ
Hn for Hn the nth harmonic number and pk = 0 for all

k < 0. Thus, we say that Q∞(n) follows the “harmonic Hermite distribution” with

parameter n.
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Proof We know from our Poisson representation of the steady-state queue length that

the steady-state moment-generating function is

M(θ) =
∞
∑

j=0

P(Q∞(n) = j)θ j =
∞
∑

j=0

p jθ
j = exp

(

n
∑

i=1

λ

iµ

(

θ i − 1
)

)

.

If we take the logarithm of both sides, we see that we have

log

⎛

⎝

∞
∑

j=0

p jθ
j

⎞

⎠ =
n
∑

i=1

λ

iµ

(

θ i − 1
)

.

Now we take the derivative of both sides with respect to the parameter θ , and this

yields the following expression:

∑∞
j=1 j p jθ

j−1

∑∞
j=0 p jθ j

=
n
∑

i=1

λ

µ
θ i−1.

By moving the denominator to the right-hand side, we have that

∞
∑

j=1

j p jθ
j−1 =

⎛

⎝

∞
∑

j=0

p jθ
j

⎞

⎠

(

n
∑

i=1

λ

µ
θ i−1

)

.

Finally, by matching similar powers of θ on the left and right sides, we complete the

proof. ��

From the above result, we see that for the steady-state queue length Q∞(n) we can

derive the specific probabilities

p0 = e
− λ

µ
Hn ,

p1 =
λ

µ
p0 =

λ

µ
e
− λ

µ
Hn ,

p2 =
λ

2µ
(p0 + p1) =

λ

2µ
e
− λ

µ
Hn +

λ2

2µ2
e
− λ

µ
Hn .

We can repeat this process as needed for any desired probability. From Proposition 2.4,

we can observe that the mean number in the system grows linearly with the batch size,

meaning that the mean of the nth harmonic Hermite distribution is

E [Q∞(n)] =
n
∑

j=1

jE
[

Y j

]

=
nλ

µ
. (2.8)
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We can observe further that the second moment and variance are quadratic functions

of n:

E
[

Q∞(n)2
]

= E

⎡

⎢

⎣

⎛

⎝

n
∑

j=1

jY j

⎞

⎠

2
⎤

⎥

⎦
=

n(n + 1)λ

2µ
+ n2 λ2

µ2
,

Var[Q∞(n)] = E
[

Q∞(n)2
]

− E [Q∞(n)]2 =
n(n + 1)λ

2µ
.

We note that from Proposition 2.4 and the following remark, the moment-generating

function of this distribution is given by

lim
t→∞

M(θ, t) = e
λ
µ

∑n
k=1

ekθ −1
k = e

λ
µ

(Li(eθ ,n,1)−Hn)
. (2.9)

If one is to consider this system as the batch size grows infinitely large, we can see

from Eqs. (2.8) and (2.9) that the number in system will grow proportionally, tending

to infinity as n does. This leads us to ponder the limiting object of the scaled number

in system Qt (n)
n

as the batch size grows.

We begin by using Eq. (2.9) with θ replaced by θ
n

to see that the steady-state

moment-generating function of this scaled queue length is

lim
t→∞

M(θ, t) = e
λ
µ

∑n
k=1

e
k
n θ −1

k . (2.10)

Furthermore, by replacing θ with θ
n

and Q0(n) with Q0(n)
n

in Proposition 2.1, we can

note that the transient moment-generating function for this scaled system with constant

arrival rate is given by

E
[

eθ · Qt (n)
n

]

≡ Mn(θ, t) =
(

e−µt (e
θ
n − 1) + 1

)

Q0
n

e
λ
∑n

k=1 (n
k)

(eθ/n−1)
k

kµ

(

1−e−kµt
)

.

Additionally, we can also observe that the steady-state distribution of the scaled queue

can also be interpreted as a sum of Poisson random variables through direction appli-

cation of Proposition 2.4 or by inspection of Eq. (2.10). This representation is

Q∞(n)

n

D=
n
∑

j=1

j

n
Y j , (2.11)

where again Y j ∼ Pois
(

λ
jµ

)

.

We now consider the limit as n → ∞, in which we are both sending the size of

batches of arrivals to infinity while also scaling the size of the queue inversely. We can

use this construction to move beyond just the mean and variance and instead explicitly

state every cumulant of the scaled queue. In Proposition 2.6, we give exact expressions
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of all steady-state cumulants of the scaled queue as functions of the Bernoulli numbers.

Further, we find a convenient form of every cumulant of the scaled queue as the batch

size grows to infinity.

Proposition 2.6 Let λ > 0 be the arrival rate of batches of size n ∈ Z
+ to an infinite

server queue with exponential service rate µ > 0. Then, the kth steady-state cumulant

of the scaled queue Ck
[

Q∞(n)
n

]

is given by

C
k

[

Q∞(n)

n

]

=
nk

k
+ 1

2
nk−1 +

∑k−1
j=2

B j

j ! (k − 1) j−1nk− j

nk
, (2.12)

where (n)i = n!
(n−i)! is the i th falling factorial of n and Bi is the i th Bernoulli number,

which is defined as

Bi =
i

∑

k=0

k
∑

j=0

(−1) j

(

k

j

)

( j + 1)i

k + 1
.

Moreover, we have that limn→∞ Ck
[

Q∞(n)
n

]

= λ
kµ

.

Proof From our prior observation that Q∞(n)
n

D=
∑n

j=1
j
n

Y j , where Y j ∼ Pois
(

λ
jµ

)

,

we have that

C
k

[

Q∞(n)

n

]

= C
k

⎡

⎣

n
∑

j=1

j

n
Y j

⎤

⎦ =
n
∑

j=1

C
k

[

j

n
Y j

]

=
n
∑

j=1

jk

nk
C

k
[

Y j

]

=
λ

µnk

n
∑

j=1

jk−1,

from the independence of these Poisson distributions. Now, by using Faulhaber’s

formula as given in Knuth [17], we achieve the stated result. ��

Just as we built from inherited expressions for the mean and variance to specify

every cumulant in Proposition 2.6, we can also find the limit of the transient-state

moment-generating function for the scaled queue given in Eq. (2.9).

Proposition 2.7 Let Qt be an infinite server queue with arrival rate λ > 0, arrival

batch size n ∈ Z
+, and exponential service rate µ > 0. For θ ∈ R, let

M∞(θ, t) = lim
n→∞

E
[

e
θ Qt (n)

n

]

.

Then, M∞(θ, t) is given by

M∞(θ, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
λ
µ (Ei(θ)−Ei(θe−µt )−µt) if θ > 0,

e
λ
µ (E1(−θe−µt )−E1(−θ)−µt) if θ < 0,

1 if θ = 0,

(2.13)
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for all time t ≥ 0, where the exponential integral functions Ei(x) and E1(x) are

defined by

Ei(x) = −
∫ ∞

−x

e−s

s
ds, E1(x) =

∫ ∞

x

e−s

s
ds,

and are real-valued for x > 0.

Proof While conventions may vary by application area, in this work we use the defi-

nition of the exponential integral function given by

Ei(x) = −
∫ ∞

−x

e−s

s
ds.

By taking the limit of the MGF of the scaled queue, we have that

∂

∂t
M∞(θ, t) = λ

(

eθ − 1
)

M∞(θ, t) − µθ
∂

∂θ
M∞(θ, t),

with the initial solution M∞(θ, 0) = limn→∞ e
θ Q0

n = 1. In the same manner as the

proof of Theorem 2.1, we solve the PDE of the cumulant generating function through

the use of the method of characteristics. We start by establishing the characteristic

ODEs:

dθ

ds
(r , s) = µθ, θ(r , 0) = r ,

dt

ds
(r , s) = 1, t(r , 0) = 0,

dg

ds
(r , s) = λ(eθ − 1), g(r , 0) = 0.

We now solve the first two initial value problems and find

θ(r , s) = c1(r)eµs ⇒ θ(r , s) = reµs,

t(r , s) = s + c2(r) ⇒ t(r , s) = s.

This allows us to simplify the third characteristic equation to

dg

ds
(r , s) = λ(ereµs

− 1).

Because θ = reµs , we can note that r and θ will match in sign: r > 0 if and only if

θ > 0. If θ > 0, the general solution to this ODE is

g(r , s) = c3(r) +
λ

µ

(

Ei(reµs) − µs
)

,
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whereas if θ < 0, the solution is instead

g(r , s) = c3(r) −
λ

µ

(

E1(−reµs) + µs
)

.

This follows from the fact that for x > 0 the exponential integral functions are such

that Ei(x) = −E1(−x)−iπ ; that is, the real parts of E1(−x) and −Ei(x) are the same.

Moreover, for x > 0 one can consider Ei(x) as the real part of −E1(−x). Additionally,

E1(x) is real for all x > 0. Hence, we use each definition of the exponential integral

function when appropriate. As an alternative, we could replace each of these functions

with real(−E1(−x)) to have a single expression for both positive and negative x .

For a collection of facts regarding the exponential integral functions, see pp. 228–237

of Abramowitz and Stegun [1].

Now, using this we have that the corresponding solutions to the initial value prob-

lems will be

g(r , s) =

{

λ
µ

(Ei(reµs) − Ei(r) − µs) if r > 0,
λ
µ

(E1(−r) − E1(−reµs) − µs) if r < 0.

Hence, for s = t and r = θe−µt , this yields

G(θ, t) = g
(

θe−µt , t
)

=

{

λ
µ

(

Ei(θ) − Ei(θe−µt ) − µt
)

if θ > 0,
λ
µ

(

E1(−θe−µt ) − E1(−θ) − µt
)

if θ < 0.

By M∞(θ, t) = eG∞(θ,t), we complete the proof. ��

As a consequence, we can also give the moment-generating function in steady state.

Corollary 2.8 The moment-generating function of the scaled number in system in

steady state as n → ∞ is given by

M∞(θ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

θ
− λ

µ e
λ
µ (Ei(θ)−γ )

if θ > 0,

(−θ)
− λ

µ e
− λ

µ
(E1(−θ)+γ )

if θ < 0,

1 if θ = 0,

(2.14)

where γ is the Euler–Mascheroni constant.

Proof From Abramowitz and Stegun [1], for x > 0 we can expand the exponential

integral functions as

Ei(x) = γ + log(x) +
∞
∑

k=1

xk

kk!
, E1(x) = −γ − log(x) −

∞
∑

k=1

(−x)k

kk!
, (2.15)

where γ is the Euler–Mascheroni constant. By expanding Ei(θe−µt ) and E1(−θe−µt )

in the respective cases of positive and negative θ and taking the limit as t → ∞, we

achieve the stated result. ��
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Fig. 1 Steady-state MGF of the scaled queue for increasing batch size where λ
µ = 1

As a demonstration of the convergence of the steady-state moment-generating func-

tions of the batch scaled queues to the expression given in Corollary 2.8, we plot the

first four cases in comparison with the limiting scenario in Fig. 1.

While it can be argued that even in steady state the form of this moment-generating

function is unfamiliar, we can still observe interesting characteristics of it. In particular,

for θ < 0 we can uncover a connection back to the harmonic numbers. We now discuss

this in the following remark.

Remark Using Eq. (2.15), we can note that for θ < 0 the steady-state moment-

generating function of limit of the scaled queue can be expressed

M(θ) = (−θ)
− λ

µ e
− λ

µ
(E1(−θ)+γ ) = e

− λ
µ

(E1(−θ)+γ+log(−θ)) = e
− λ

µ

(

−
∑∞

k=1
θk

kk!

)

.

From Dattoli and Srivastava [4], we have that −ex
∑∞

k=1
(−x)k

kk! is an exponential gen-

erating function for the harmonic numbers. That is,

−ex

∞
∑

k=1

(−x)k

kk!
=

∞
∑

n=1

xn

n!
Hn,

where Hn is the nth harmonic number. Thus, for θ < 0 the steady-state moment-

generating function of this limiting object can be further simplified to

M(θ) = e
− λ

µ

(

−
∑∞

k=1
θk

kk!

)

= e
− λ

µ

∑∞
n=1 Hneθ (−θ)n

n! = e
− λ

µ
E[HN ]

,

where N ∼ Pois(−θ).

In addition to this remark’s connection of the moment-generating function and

the harmonic numbers, we can also gain insight into this limiting object through

Monte Carlo methods. Using Eq. (2.11), we have a simple and efficient approximate

simulation method for this process through summing scaled Poisson random numbers.

Furthermore, this approximation of course becomes increasingly precise as n grows.

As an example of this, we give the simulated steady-state densities across different
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Fig. 2 Approximate steady-state density of the scaled queue limit for size where λ
µ = 1

2 (top), λ
µ = 1

(left), and λ
µ = 2 (right), using 1,000,000 simulation replications and n = 2, 000

relationships of λ and µ in Fig. 2. In addition to the interesting shapes of the densities

across the different settings, one can see the limiting form of the relationships given by

the recursion in Proposition 2.5 in these plots. We can note that one could also calculate

these through a numerical inverse Laplace transform of the steady-state moment-

generating function in Corollary 2.8, although this may likely incur significantly more

computational costs than the simulation procedure.

So far we have only considered exponentially distributed service. In the next subsec-

tion, we will address this and extend this Poisson sum representation of the steady-state

distribution to hold for general service. We do this through viewing the n-batch size

system as being composed of n sub-systems that experience single arrivals simulta-

neously.

2.3 Generalizing through sub-system perspectives

Because of the infinite server construction of this model, we can also interpret this

system as being a network of sub-systems that also feature infinitely many servers.

However, this network’s mutuality is not in its services but rather in its arrivals. Specif-

ically, in this subsection we will think of infinite server queues with batch arrivals of

size n as being n infinite server queues that all receive individual arrivals simultane-
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ously. From this perspective, one can quickly observe that marginally each sub-system

will be distributed as a standard infinite server queue.

For example, if the batch system is the Mn
t /M/∞ queue that we first considered

in Sect. 2.1, then each of these sub-queues is a Mt/M/∞ system. These sub-systems

are coupled through the coincidence of their arrival times but otherwise operate inde-

pendently from one another. To quantify the relationship between these systems, in

Proposition 2.9 we derive the transient covariance between two sub-systems for a

general time-varying arrival rate.

Proposition 2.9 Let the batch arrival queue Qt with batch size n ∈ Z
+ be rep-

resented as a superposition of n infinite server single arrival queues {Qt,i |
1 ≤ i ≤ n} that all receive arrivals simultaneously and each has independent

exponentially distributed service, as described above. Let λ(t) > 0 be the non-

stationary rate of simultaneous arrivals, and let µ > 0 be the rate of service.

Then, for distinct i, j ∈ {1, . . . , n}, the covariance between Qt,i and Qt, j is given

by

Cov[Qt,i , Qt, j ] = e−2µt

∫ t

0

λ(s)e2µsds, (2.16)

for all t ≥ 0.

Proof From Eq. (2.1), we can solve for the product moment of the two sub-systems

through the ODE

d

dt
E
[

Qt,i Qt, j

]

= λ(t)
(

E
[

Qt,i

]

+ E
[

Qt, j

]

+ 1
)

− 2µE
[

Qt,i Qt, j

]

.

The solution to this differential equation is given by

E
[

Qt,i Qt, j

]

= Q0,i Q0, j e
−2µt

+ e−2µt

∫ t

0

λ(s)
(

E
[

Qs,i

]

e2µs + E
[

Qs, j

]

e2µs + e2µs
)

ds.

By substituting the corresponding forms of E
[

Qs,k

]

=Q0,ke−µs+e−µs
∫ s

0 λ(u)eµudu

in for each of the two means, we have

E
[

Qt,i Qt, j

]

= Q0,i Q0, j e
−2µt

+ e−2µt

∫ t

0

λ(s)

(

e2µs +
(

Q0,i +
∫ s

0

λ(u)eµudu

)

eµs

+
(

Q0, j +
∫ s

0

λ(u)eµudu

)

eµs

)

ds,

and this simplifies to the following:
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E
[

Qt,i Qt, j

]

= Q0,i Q0, j e
−2µt + e−2µt

∫ t

0

λ(s)e2µsds

+
(

Q0,i + Q0, j

)

e−2µt

∫ t

0

λ(s)eµsds

+ 2e−2µt

∫ t

0

λ(s)eµs

∫ s

0

λ(u)eµududs.

We can now use the fact that for a function F : R
+ → R defined such that F(t) =

∫ t

0 f (s)ds for a given f (·), integration by parts implies

∫ t

0

f (s)F(s)ds = F(t)2 −
∫ t

0

F(s) f (s)ds,

and so
∫ t

0 f (s)F(s)ds = F(t)2

2
. This allows us to simplify to

E
[

Qt,i Qt, j

]

= Q0,i Q0, j e
−2µt + e−2µt

∫ t

0

λ(s)e2µsds

+
(

Q0,i + Q0, j

)

e−2µt

∫ t

0

λ(s)eµsds

+ e−2µt

(∫ t

0

λ(s)eµsds

)2

,

and now we turn our focus to the product of the means. Here we distribute the multi-

plication to find that

E
[

Qt,i

]

E
[

Qt, j

]

=
(

Q0,i e
−µt + e−µt

∫ t

0

λ(s)eµsds

)

(

Q0, j e
−µt + e−µt

∫ t

0

λ(s)eµsds

)

= Q0,i Q0, j e
−2µt + (Q0,i + Q0, j )e

−2µt

∫ t

0

λ(s)eµsds

+ e−2µt

(∫ t

0

λ(s)eµsds

)2

,

and by subtracting this expression from that of the product moment, we complete the

proof. ��

As a consequence of this, we can specify the covariance between sub-systems in the

non-stationary and stationary arrival settings we have considered thus far in this report.

Further, for stationary arrival rates we capitalize on simplified expressions to also give

an explicit expression for the correlation coefficient between two sub-systems.

Corollary 2.10 Let Qt be an infinite server queue with arrival batch size n ∈ Z
+

and exponential service rate µ > 0. Further, let Qt,k for k ∈ {1, . . . , n} be infinite
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server queues with solitary arrivals and exponential service rate µ > 0, so that
∑n

k=1 Qt,k = Qt for all t ≥ 0. Let i, j ∈ {1, . . . , n} be distinct. Then, if the arrival

rate is given by λ +
∑∞

k=1 ak cos(kt) + bk sin(kt) > 0, the covariance between Qt,i

and Qt, j is

Cov[Qt,i , Qt, j ] =
λ

2µ

(

1 − e−2µt
)

+
∞
∑

k=1

ak

k2 + 4µ2

(

2µ cos(kt) + k sin(kt) − 2µe−2µt
)

+
∞
∑

k=1

bk

k2 + 4µ2

(

2µ sin(kt) − k cos(kt) + ke−2µt
)

, (2.17)

and if the arrival rate is given by λ > 0, the covariance between Qt,i and Qt, j is

Cov[Qt,i , Qt, j ] =
λ

2µ

(

1 − e−2µt
)

, (2.18)

where all t ≥ 0. Finally, the correlation between two sub-systems in the stationary

setting can be calculated as

Corr[Qt,i , Qt, j ]

=
λ

2µ

(

1 − e−2µt
)

√

(

Q0,i

(

e−µt − e−2µt
)

+ λ
µ

(

1 − e−µt
)

) (

Q0, j

(

e−µt − e−2µt
)

+ λ
µ

(

1 − e−µt
)

)

,

hence for stationary arrival rates, Corr[Qt,i , Qt, j ] → 1
2

as t → ∞.

Thus, we find that for a fully Markovian batch arrival queue with stationary arrival

rate the correlation among any two sub-systems in steady state is 1
2

, regardless of the

arrival or service parameters. In some sense, this seems to capture a balance between

the effect of arrivals and of services on an infinite server system, with the latter being

independent between these systems and the former being perfectly correlated.

Now, we can pause to note that we have actually made an implicit modeling choice

by separating the batch into n identical sub-systems. In this setup, we have decided

to route all customers within one batch equivalently, but we are free to make other

routing decisions and still maintain the n sub-systems construction. With that in mind,

it seems natural to wonder whether we can uncover distributional structure of the full

system if we choose our routing procedure carefully. We will now find that not only

is this true, but we in fact have already seen a suggestion on what type of routing to

consider.

From Proposition 2.4, we have seen that the steady-state distribution of the

Mn/M/∞ system is equivalent to that of
∑n

j=1 jY j where Y j ∼ Pois( λ
jµ

) are

independent. We can also note that just as the minimum of the independent sam-

ple S1, . . . , Sn ∼ Exp(µ) will be exponentially distributed with rate nµ, for S(i) as the
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S1

S2

Sn

Sn−1

...

S(1)

S(2)

...

S(n−1)

S(n)

Q1

Q2

Qn−1

Qn

λ
...

Services

for Batch

Order

Statistics

Ordered

Queues

Fig. 3 Queueing diagram for the batch arrival queue with infinite servers, in which the arriving entities are

routed according to the ordering of their service durations

i th ordered statistic of the n-sample we have that S(i)−S(i−1) ∼ Exp((n−i +1)µ). Of

course, the sum of these differences will telescope so that
∑i

j=1 S( j) − S( j−1) = S(i).

Taking this as inspiration, we will now assume that upon the arrival of a batch we

can now know the duration of each customer’s service. We then take the sub-queues to

be such that the first sub-system always receives the service with the shortest duration,

the second sub-system receives the second shortest service, and so on. Thus, we will

route each batch of customers according to the order statistics within each batch. For

reference, we visualize this sub-system construction in Fig. 3.

We can note that while the covariance structure we explored in Proposition 2.9

and Corollary 2.10 does not apply for this new routing, the sub-systems are certainly

still correlated. Due to the order-statistic structuring of the service in each queue,

we can note that now both the arrival processes and the service distributions will be

dependent. However, we can in fact use our understanding of this dependence to not

only understand how these systems relate to one another, but also to interpret how they

form the structure of the full batch system as a whole. In this way, we will now consider

a Mn/G/∞ system. As follows in Theorem 2.11, we will find that the order-statistic-

routing inspiration we have used from Proposition 2.4 leads us to a generalized Poisson

sum result for general service distributions.

Theorem 2.11 Let Qt (n) be an Mn/G/∞ queue. That is, let Qt (n) be an infinite

server queue with stationary arrival rate λ > 0, arrival batch size n ∈ Z
+, and

general service distribution G. Then, the steady-state distribution of the number in

system Q∞(n) is

Q∞(n)
D=

n
∑

j=1

(n − j + 1)Y j , (2.19)

where Y j ∼ Pois
(

λE
[

S( j) − S( j−1)

])

are independent, with S(1) ≤ · · · ≤ S(n) as

order statistics of the distribution G and with S(0) = 0.
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Proof As we have discussed in the paragraphs preceding this statement, we will con-

sider the full queueing system as being composed of n infinite server sub-systems to

which we route the arriving customers in each batch. That is, let Q1,…, Qn be infinite

server queues for which we will consider the steady-state behavior. Upon the arrival

of a batch, we order the customers according to the duration of their service. Then,

we send the customer with the earliest service completion to Q1, the customer with

the second earliest to Q2, and so on.

When viewing each sub-system on its own, we see that Q j is an infinite server

queue with single arrivals according to a Poisson process with rate λ and service

distribution matching that of S( j), the j th order statistic of G. Thus, we can see that in

steady state Q j ∼ Pois
(

λE
[

S( j)

])

through the literature for M/G/∞ queues, such

as in [9]. While we can further observe that Q∞(n) =
∑n

j=1 Q j , we must take care

in re-assembling the sub-queues. In particular, we can note that S( j) shares a similar

structure with S( j−1). Each order statistic can be viewed as a construction of the gaps

between the lower-ordered quantities:

S( j) =
j

∑

k=1

S(k) − S(k−1).

Thus, from the thinning property of the Poisson distribution and the linearity of expec-

tation, we can write the distribution of Q j as a sum of independent Poisson RVs, as

given by

Q j ∼
j

∑

k=1

Pois
(

λE
[

S(k) − S(k−1)

])

.

We can note further that j − 1 of the Poisson components of Q j are the exact com-

ponents of Q j−1, with j − 2 of these components also shared with Q j−2, j − 3 with

Q j−3, and so on. Then, we see that the Poisson component Pois
(

λE
[

S( j) − S( j−1)

])

is repeated n− j +1 times across this sub-system construction of Q∞(n), as it appears

in each of the Poisson sum expressions of Q j , Q j+1,…, Qn−1, and Qn . Assembling

Q∞(n) in this way, we complete the proof. ��

One can also note that this order-statistic sub-system structure also provides some

motivation for the occurrence of the harmonic numbers that we observed in Sect. 2.2

when viewing the largest order statistic, which we discuss now in the following remark.

Remark For Si ∼ Exp(µ), one can see through the telescoping construction of the

order statistics that

E
[

S(n)

]

=
n
∑

i=1

E
[

S(i) − S(i−1)

]

=
n
∑

i=1

1

(n − i + 1)µ
=

1

µ
Hn .

Now, throughout this section we have operated on the assumption that the batch size

is a known, fixed constant. While this may be applicable in some settings, there are

certainly many settings where the batch size is unknown and varies between arrivals.
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Thus, we address this in Sect. 3 and find that many of the results we have shown thus

far can be replicated for models with random batch size.

3 Random batch sizes

We will now consider systems in which the size of an arriving batch is drawn from an

independent and identically distributed sequence of random variables. We will treat the

distribution of the batch size as general throughout this work. As in Sect. 2, we assume

that the times of arrivals are given by a Poisson process, with consideration given to

both stationary and non-stationary rates, and we will again analyze both exponential

and general service distributions.

We start by giving the mean and variance of the system for time-varying arrival

rates with exponential service in Sect. 3.1. Then, in Sect. 3.2 we give three limiting

results for the stationary arrivals model: a batch scaling, a fluid limit, and a diffusion

limit. Finally, in Sect. 3.3 we extend the Poisson sum construction of the steady-state

distribution to hold for random batch sizes.

One can note that many of these results are generalizations or extensions of find-

ings from Sect. 2, thus implying them as a special case and perhaps even building a

case for them to be omitted. Rather, these findings are critical to the narrative of this

report. As we will see, the results for fixed batch size provide the analytic founda-

tions and conceptual inspirations from which we derive much of the analysis in this

section.

3.1 Mean and variance for time-varying, Markovian case

To begin our exploration into random batch size systems, we will start simply:

we will look at a fully Markovian (albeit time-varying) system and find the mean

and variance, using conditional probability and our results from Sect. 2. Specifi-

cally, in this subsection we will consider the M N
t /M/∞ queue. That is, take an

infinite server queue with a general non-stationary arrival rate. We suppose that

arrivals occur in batches of random size from a sequence of independent and

identically distributed random variables. Furthermore, we suppose that service is

exponentially distributed. We now give the mean and variance of this system in Propo-

sition 3.1.

Proposition 3.1 Let Qt be an infinite server queue with finite, time-varying arrival

rate λ(t) > 0, exponential service rate µ > 0, and random batch size with finite mean

E [N ]. Then, the mean number in system is given by

E [Qt ] = Q0e−µt + e−µt E [N ]

∫ t

0

λ(s)eµsds, (3.1)

for all t ≥ 0. If the batch size distribution has finite second moment E
[

N 2
]

, the

variance of the number in system is given by
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Var (Qt ) = Q0

(

e−µt − e−2µt
)

+ e−2µt
(

E
[

N 2
]

− E [N ]
)

∫ t

0

λ(s)e2µsds

+ e−µt E [N ]

∫ t

0

λ(s)eµsds, (3.2)

again for all t ≥ 0.

Proof Using the infinitesimal generator method, we have that the first and second

moments of this system are given by the solutions to

d

dt
E [Qt ] = λ(t)E [N1] − µE [Qt ],

d

dt
E
[

Q2
t

]

= λ(t)
(

2E [Qt ]E [N1] + E
[

N 2
1

])

− 2µE
[

Q2
t

]

+ µE [Qt ],

where {Ni | i ∈ Z
+} are the i.i.d. batch sizes that are also independent of the queue.

Through noting that

d

dt
Var (Qt ) =

d

dt
E
[

Q2
t

]

− 2E [Qt ]
d

dt
E [Qt ]

= λ(t)E
[

N 2
1

]

+ µE [Qt ] − 2µVar (Qt ),

we can solve for the stated results. ��

In addition to providing a direct comparison to the fixed batch size case in con-

junction with Corollary 2.3, Proposition 3.1 also provides a building block for the

remainder of this section. In particular, in the following subsection we will develop a

series of limiting results for this queueing system, including fluid and diffusion limits.

In those cases, we will use this result for added interpretation. To expedite compari-

son in cases of stationary arrival rates, we now give the mean and variance for such

systems in Corollary 3.2. Additionally, to also facilitate comparison to Corollary 2.3,

we provide expressions for periodic arrival rates in Corollary 3.3.

Corollary 3.2 Let Qt be an infinite server queue with stationary arrival rate λ > 0,

exponential service rate µ > 0, and random batch size with mean E [N ]. Then, the

mean number in system is given by

E [Qt ] = Q0e−µt +
λE [N ]

µ

(

1 − e−µt
)

, (3.3)

for all t ≥ 0. If the batch size distribution has finite second moment E
[

N 2
]

, the

variance of the number in system is given by

Var (Qt ) = Q0

(

e−µt − e−2µt
)

+
λE [N ]

µ

(

1 − e−µt
)

+
λ

2µ

(

E
[

N 2
]

− E [N ]
) (

1 − e−2µt
)

, (3.4)

again for all t ≥ 0.
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Corollary 3.3 Let Qt be an infinite server queue with periodic arrival rate λ +
∑∞

k=1 ak cos(kt) + bk sin(kt) > 0, exponential service rate µ > 0, and random

batch size with finite mean E [N ]. Then, the mean number in system is given by

E [Qt ] = Q0e−µt +
λE [N ]

µ

(

1 − e−µt
)

+
∞
∑

k=1

E [N ](akµ − bkk)

k2 + µ2

(

cos(kt) − e−µt
)

+
∞
∑

k=1

E [N ](akk + bkµ)

k2 + µ2
sin(kt), (3.5)

for all t ≥ 0. If the batch size distribution has finite second moment E
[

N 2
]

, the

variance of the number in system is given by

Var (Qt ) = Q0

(

e−µt − e−2µt
)

+
λE [N ]

µ

(

1 − e−µt
)

+
∞
∑

k=1

E [N ](akµ − bkk)

k2 + µ2

(

cos(kt) − e−µt
)

+
∞
∑

k=1

E [N ](akk + bkµ)

k2 + µ2
sin(kt)

+
λ

2µ

(

E
[

N 2
]

− E [N ]
) (

1 − e−2µt
)

+
(

E
[

N 2
]

− E [N ]
)

( ∞
∑

k=1

2akµ − bkk

k2 + 4µ2

(

cos(kt) − e−2µt
)

+
∞
∑

k=1

akk + 2bkµ

k2 + 4µ2
sin(kt)

)

, (3.6)

again for all t ≥ 0.

3.2 Limiting results for stationary arrival rates

We will now focus on systems with stationary arrival rates throughout the analysis

in this subsection. In doing so, we derive limit theorems for various scalings of this

process. To begin, we show a brief technical lemma for the limit of nonnegative random

variables that can be represented as sums of independent and identically distributed

random variables.

Lemma 3.4 Let X(n) be any random variable such that X(n) =
∑n

k=1 Yk , where

Yk are i.i.d. nonnegative, discrete random variables. Then, the moment-generating

function of X(n) is such that

E
[

e
θ X(n)

n

]

→ eE[Y1]θ

as n → ∞.
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Proof By the strong law of large numbers, we have that

lim
n→∞

X(n)

n
= lim

n→∞

1

n

n
∑

k=1

Yk
a.s.= E [Y1],

and this implies convergence in distribution, which is equivalent to convergence of

moment-generating functions. ��

We can note that this condition is a weaker form of infinite divisibility. Thus, in

addition to holding for any infinitely divisible and nonnegative random variables such

as the Poisson and negative binomial distributions, Lemma 3.4 also holds for some

distributions that are not infinitely divisible, such as the binomial. Using this lemma,

we can now find our first limit theorem for random batch sizes, a batch scaling result

akin to Proposition 2.7.

Theorem 3.5 For n ∈ Z
+, let Qt (n) be an infinite server queue with batch arrivals

where the batch size is drawn from the i.i.d. sequence {Ni (n) | i ∈ Z
+}. Let λ > 0 be

the arrival rate, and let µ > 0 be the rate of exponentially distributed service. Suppose

that for any i and n there is a sequence of i.i.d. nonnegative, discrete random variables

{Bk | k ∈ Z
+} such that Ni (n) =

∑n
k=1 Bk . Then, the limiting moment-generating

function of the batch-scaled object

lim
n→∞

E
[

e
θ
n

Qt (n)
]

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
λ
µ (Ei(θE[B1])−Ei(θE[B1]e−µt)−µt) if θ > 0,

e
λ
µ (E1(−θE[B1]e−µt)−E1(−θE[B1])−µt) if θ < 0,

1 if θ = 0,

(3.7)

for all t ≥ 0.

Proof Because this system is Markovian, we can calculate the time derivative of the

moment-generating function for a given n as

d

dt
E
[

e
θ
n

Qt (n)
]

= E
[

λ

(

e
θ
n

N1(n) − 1
)

e
θ
n

Qt (n) + µQt (n)

(

e− θ
n − 1

)

e
θ
n

Qt (n)
]

= λ

(

E
[

e
θ
n

N1(n)
]

− 1
)

E
[

e
θ
n

Qt (n)
]

+ nµ

(

e− θ
n − 1

)

E

[

Qt (n)

n
e

θ
n

Qt (n)

]

.

This can then be re-expressed in partial differential equation form as

∂Mn(θ, t)

∂t
= λ

(

E
[

e
θ
n

N1(n)
]

− 1
)

M
n(θ, t) + nµ

(

e− θ
n − 1

) ∂Mn(θ, t)

∂θ
,
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where Mn(θ, t) = E
[

e
θ
n

Qt (n)
]

. Now, through Lemma 3.4, we see that the limit of

this partial differential equation is given by

∂M∞(θ, t)

∂t
= λ

(

eθE[B1] − 1
)

M
∞(θ, t) − µθ

∂M∞(θ, t)

∂θ
.

We achieve the stated result through a straightforward update of the method of char-

acteristics approach in Proposition 2.7. ��

We can note that a similar batch scaling of infinite server queues is discussed

in de Graaf et al. [7], in which the authors show that the limiting process can be

interpreted as a shot noise process. However, that work considers a different class

of batch size distributions, as the authors define their batch size distribution in terms

of the distribution of the marks through use of a ceiling rounding function. In this

way, that paper is more oriented around the distribution of the marks in the shot noise

process rather than the size of the batches.

From this result, we can identify a relationship between the moment-generating

functions of the deterministic and random batch size queues under batch scalings. Let

M∞
n (θ, t) be the limiting moment-generating function of the fixed batch size queue

as given in Proposition 2.7, and let M∞
N (θ, t) be the same for the random batch size

queue as we have now seen in Theorem 3.5. Then, we can observe that

M
∞
N (θ, t) = M

∞
n (θE [B1], t),

whenever the distribution of the random batch sizes meets the “finite divisibility”

condition as described in Lemma 3.4. The relationship between these limiting objects

provides a direct comparison between the two different batch types.

As two additional limiting results, we now provide fluid and diffusion limits for

scaling the arrival rate in Theorems 3.6 and 3.7, respectively. We did not give fluid

or diffusion limits for the deterministic batch cases in Sect. 2, so these two limits

are built from scratch within this section. Although we did not develop such limits

explicitly for the Mn/M/∞ system, we will find that these limits can still be used to

draw comparisons between this system and the M N /M/∞ queue simply by treating

the random batch size as deterministically distributed. We now begin with the fluid

limit.

Theorem 3.6 For n ∈ Z
+, let Qt (n) be an infinite server queue with batch arrivals

where the batch size is drawn from the i.i.d. sequence {Ni | i ∈ Z
+}. Let nλ > 0 be

the arrival rate and let µ > 0 be the rate of exponentially distributed service. Then,

the limiting moment-generating function of the fluid scaling is given by

lim
n→∞

E
[

e
θ
n

Qt (n)
]

= e
λE[N1]θ

µ (1−e−µt)+Q0θe−µt

, (3.8)

for all t ≥ 0.
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Proof We begin with the infinitesimal generator equation for the time derivative of the

moment-generating function at a given n. This is

d

dt
E
[

e
θ
n

Qt (n)
]

= E
[

nλ

(

e
θ N1

n − 1
)

e
θ
n

Qt (n) + µQt (n)

(

e− θ
n − 1

)

e
θ
n

Qt (n)
]

= nλ

(

E
[

e
θ N1

n

]

− 1
)

E
[

e
θ
n

Qt (n)
]

+ µn
(

e− θ
n − 1

)

E

[

Qt (n)

n
e

θ
n

Qt (n)

]

,

which can also be expressed in partial differential equation form as

∂Mn(θ, t)

∂t
= nλ

(

E
[

e
θ N1

n

]

− 1
)

M
n(θ, t) + µn

(

e− θ
n − 1

) ∂Mn(θ, t)

∂θ
,

where Mn(θ, t) = E
[

e
θ
n

Qt (n)
]

. By a Taylor expansion of the function e
θ N1

n and by

taking the limit as n → ∞, we can see that this yields

∂M∞(θ, t)

∂t
= λθE [N1]M∞(θ, t) − µθ

∂M∞(θ, t)

∂θ
.

Using the initial condition M∞(θ, 0) = eQ0θ , we can see that the solution to this

partial differential equation will be

M
∞(θ, t) = e

λE[N1]θ
µ (1−e−µt)+Q0θe−µt

,

and this completes the proof. ��

From Corollary 3.2, we see that the mean number in system for the M N /M/∞
queue is λE[N1]

µ

(

1 − e−µt
)

+ Q0e−µt . Thus, this fluid limit moment-generating func-

tion is equivalent to eθE[Qt ] for all t ≥ 0 and all θ , showing that the fluid limit converges

to the mean. We now find a connection to both the mean and the variance through a

diffusion limit in Theorem 3.7.

Theorem 3.7 For n ∈ Z
+, let Qt (n) be an infinite server queue with batch arrivals

where the batch size is drawn from the i.i.d. sequence {Ni | i ∈ Z
+}. Let nλ > 0 be

the arrival rate and let µ > 0 be the rate of exponentially distributed service. Then,

the limiting moment-generating function of the diffusion scaling is given by

lim
n→∞

E

[

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)]

= e
λθ2

4µ

(

E[N1]+E
[

N 2
1

])

(1−e−µt)+θ Q0e−µt

, (3.9)

which gives a steady-state approximation of X ∼ Norm
(

λE[N1]
µ

, λ
2µ

(

E [N1] +

E
[

N 2
1

]

))

.
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Proof Through use of the infinitesimal generator, we have that the time derivative of

the moment-generating function for a given n can be expressed as

d

dt
E

[

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)]

= E

[

nλ

(

e
θ N1√

n − 1

)

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)

+µQt (n)

(

e
− θ√

n − 1

)

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)]

= E

[

√
nλ

(

θ N1 +
θ2 N 2

1

2
√

n
+ O

(

θ3 N 3
1

6n

))

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)

]

+ E

[

µ
√

n

(

Qt (n)
√

n
−

nλE [N1]
√

nµ
+

nλE [N1]
√

nµ

)(

e
− θ√

n −1

)

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)]

,

where here we have used a Taylor expansion of the function e
θ N1√

n . Now, for Mn(θ, t) =

E

[

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)]

, this equation can be written as a partial differential equation

as follows:

∂Mn(θ, t)

∂t
= λθ

√
nE [N1]Mn(θ, t)

+
λθ2

2
E
[

N 2
1

]

M
n(θ, t) +

√
nλE

[

O

(

θ3 N 3
1

6n

)

e
θ√
n

(

Qt (n)− nλE[N1]
µ

)

]

+
√

nµ

(

e
− θ√

n − 1

)

∂Mn(θ, t)

∂θ
+ nλE [N1]

(

e
− θ√

n − 1

)

M
n(θ, t).

As we take n → ∞, this PDE becomes

∂M∞(θ, t)

∂t
=

λθ2

2
E [N1]M∞(θ, t) +

λθ2

2
E
[

N 2
1

]

M
∞(θ, t) − µθ

∂M∞(θ, t)

∂θ
,

and this yields a solution of

M
∞(θ, t) = e

λθ2

4µ

(

E[N1]+E
[

N 2
1

])

(1−e−µt)+θ Q0e−µt

.

To observe the steady-state distribution, we take the limit as t → ∞ and observe that

this produces the moment-generating function for a Gaussian. ��

By comparison with the limits of the expressions in Corollary 3.2 as t → ∞, we

can now observe that this steady-state approximation is equal in mean and variance to

the steady-state queue.
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3.3 Extending the order-statistic sub-systems

In Sect. 2.3, we found that the steady-state distributions of infinite server queues with

fixed batch size and general service can be written as a sum of scaled Poisson random

variables, providing a succinct interpretation of the process and an efficient simulation

procedure for approximate calculations. The underlying observation that supported

this approach was that we can think of an infinite server queue with batch arrivals as

a collection of infinite server queues with solitary arrivals that occur simultaneously.

Using the thinning property of Poisson processes, we now extend this result to queues

with random batch sizes and general service.

Theorem 3.8 Let Qt be a M N /G/∞ queue. That is, let Qt an infinite server queue

with stationary arrival rate λ > 0, arrival batches of random size according to the

i.i.d. sequence of nonnegative integer-valued random variables {Ni | i ∈ Z
+}, and

general service distribution G. Then, the steady-state distribution of the number in

system Q∞ is

Q∞
D=

∞
∑

n=1

n
∑

j=1

(n − j + 1)Y j,n, (3.10)

where Y j,n ∼ Pois
(

λpnE
[

S( j,n) − S( j−1,n)

])

are independent, with S(1,n) ≤ · · · ≤
S(n,n) the order statistics of the distribution G when Ni = n, where S(0,n) = 0 for all

n and pn = P (N1 = n).

Proof To begin, we suppose that there is some m ∈ Z
+ such that P (Ni ∈ {0, . . . , m})

= 1. Then, using the thinning property of Poisson processes, we separate the arrival

process into m arrival streams where the nth arrival rate is λpn . Then, by Theorem 2.11

the steady-state distribution of the number in system from the nth stream is

n
∑

j=1

(n − j + 1)Pois
(

λpnE
[

S( j,n) − S( j−1,n)

])

.

Then, since the m thinned Poisson streams are independent, we have that the full

combined system will be distributed as

m
∑

n=1

n
∑

j=1

(n − j + 1)Pois
(

λpnE
[

S( j,n) − S( j−1,n)

])

.

Through taking the limit as m → ∞, we achieve the stated result. ��

We can note that Theorem 3.8 also provides a method for approximate empirical

calculation through simulation. This representation can also be simplified if more

information is known about the distribution of the batch size or of the service, or

both. As an example, we give the distribution for the fully Markovian system in the

following corollary.
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Corollary 3.9 Let Qt be a M N /M/∞ queue. That is, let Qt an infinite server queue

with stationary arrival rate λ > 0, arrival batches of random size according to the

i.i.d. sequence of nonnegative integer-valued random variables {Ni | i ∈ Z
+}, and

exponentially distributed service at rate µ > 0. Then, the steady-state distribution of

the number in system Q∞ is

Q∞
D=

∞
∑

j=1

jY j , (3.11)

where Y j ∼ Pois
(

λ
jµ

F̄N ( j)
)

are independent, where F̄N ( j) = P (N1 ≥ j).

One can note that the moment-generating function for this system in steady state

is

E
[

eθ Q∞
]

= e
∑∞

j=1
λ
jµ

F̄N ( j)
(

e jθ−1
)

,

and that this also admits a connection to the generalized Hermite distributions we

discussed in Sect. 2.2. In particular, this generalized Hermite distribution can be char-

acterized by λ
µ

, which is again the mean of the distribution, and the complementary

cumulative distribution function of the batch size distribution, which dictates the coef-

ficients at each j . For this reason, it may be possible that the steady-state distribution

of the queue may be simplified even further for particular batch size distributions.

Because Theorem 3.8 is again built upon an order-statistic sub-queue perspective,

it is natural to wonder how the distribution of the batch size would affect those sub-

systems. In particular, we now consider the following scenario: suppose that the batch

size is bounded by some constant, say k, and that we have k sub-systems. For each

arriving batch, the customer with the shortest service duration will go to the first sub-

system, the second shortest to the second sub-system, and so on, but only up to the

number that have just arrived: if this batch is of size k − 1, the kth sub-queue will not

receive an arrival. In this way, the i th sub-queue represents the number in system that

were the i th smallest in their batch. In the following proposition, we find the conditions

on the batch size distribution under which the distributions of the sub-queues will be

equivalent.

Proposition 3.10 Consider a M B/G/∞ queueing system in which the distribution of

B has support on {1, . . . , k}. Let φ ∈ [0, 1]k−1 be such that φi = P (B = i), yielding

P (B = k) = 1 −
∑k−1

i=1 φi . Let S(i, j) be the i th order statistics in a sample of size

j from the service distribution. Furthermore, let Qi be the steady-state number in

system of an infinite server sub-queue to which the customer with the i th smallest

service duration in an arriving batch will be routed whenever there are at least i

customers in the batch. Let M ∈ R
k−1×k−1 be an upper triangular matrix such that

Mi, j =
E
[

S(i, j)

]

E
[

S(k,k)

]

− E
[

S(i,k)

] ,
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for i ≤ j , and Mi, j = 0 otherwise. For v ∈ R
k−1 as the all-ones column vector, if φ

is such that

v =
(

M + vv
T
)

φ,

then Qi
D= Q j for all sub-queues i and j . Moreover, if 1 + v

T M−1
v �= 0, then the

distributions of the sub-queues are equivalent if and only if φ = (M + vv
T)−1

v.

Proof We start by considering the mean of each queue and solving for φ such that all

the means are equal. Let λ be the batch arrival rate. Then, the mean of Qi is

E [Qi ] =
k−1
∑

j=i

λφ j E
[

S(i, j)

]

+ λ

⎛

⎝1 −
k−1
∑

j=1

φ j

⎞

⎠E
[

S(i,k)

]

,

as entities only arrive to Qi when B ≥ i . We can note that for Qk this is

E [Qk] = λ

⎛

⎝1 −
k−1
∑

j=1

φ j

⎞

⎠E
[

S(k,k)

]

.

Then, we can see that all the queue means will be equal if E [Qi ] = E [Qk] for all i .

Thus, we want to solve for φ such that

0 =
k−1
∑

j=i

λφ j E
[

S(i, j)

]

+ λ

⎛

⎝1 −
k−1
∑

j=1

φ j

⎞

⎠E
[

S(i,k)

]

− λ

⎛

⎝1 −
k−1
∑

j=1

φ j

⎞

⎠E
[

S(k,k)

]

,

for all i . Rearranging this equation and dividing by λ

(

E
[

S(k,k)

]

− E
[

S(i,k)

]

)

, we

receive

k−1
∑

j=i

E
[

S(i, j)

]

E
[

S(k,k)

]

− E
[

S(i,k)

]φ j +
k−1
∑

j=1

φ j = 1.

We can now observe that this forms the linear system (M + vv
T)φ = v, and so we

have shown that if φ satisfies this system then the means of the sub-queues will be

equal. We can note moreover that M + vv
T is a rank one update of the matrix M .

Thus, it is known that M + vv
T will be invertible if 1 + v

T M−1
v �= 0; see Lemma 1.1

of Ding and Zhou [8]. In that case, we know that the unique solution to this system is

φ = (M + vv
T)−1

v.

As we noted in the proof of Theorem 3.8, the steady-state distribution of an M/G/∞
queue is Pois(λE [S]) when the arrival rate is λ and service distribution is equivalent to

the random variables S. We can now note further that λE [S] is the steady-state mean

of such a queueing system. The distribution of Qi is then given by Pois(E [Qi ]) for

each i ∈ {1, . . . , k} and thus is equivalent across all sub-queues. ��
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For added motivation, we now consider the two-dimensional case in the following

remark.

Remark If k = 2, M and φ are scalars, given by

M =
E [S]

E
[

S2,2

]

− E
[

S1,2

] , φ =
E
[

S2,2

]

− E
[

S1,2

]

E [S] + E
[

S2,2

]

− E
[

S1,2

] .

In this case, we can note that if P (B = 1) = φ, then in steady state the distribution of

the workload in the system from the easier jobs from all batches will be equivalent to

that of the harder jobs. If P (B = 1) > φ, the number of harder jobs will stochastically

dominate the number of easier jobs, and vice versa if P (B = 1) < φ.

This result implies if we have the ability to choose the probability of batch sizes,

we can construct each of the sub-systems which are organized by the order statistics

to have the same queue length distribution, thus providing equal work to all of the

queues.

4 Conclusion and final remarks

In this paper, we have found parallels between infinite server queues with batch arrivals,

sums of scaled Poisson random variables, and Hermite distributions. Moreover, we

also connect the stochastic objects to analytic quantities and functions of external

interest, such as the harmonic numbers, the exponential integral function, the Euler–

Mascheroni constant, and the polylogarithm function. In addition to being interesting

in their own right, these connections have helped us to specify exact forms of valuable

quantities related to this queueing system, including generating functions for the queue

and for the limit of the queue scaled by the batch size. Thus, we have gained both insight

into the queue itself and perspective on the model’s place in operations research and

applied mathematics more broadly.

For this reason, we believe continued work on these fronts is merited. For exam-

ple, while we have some intuition for the harmonic Hermite distribution discussed in

Sect. 2.2, we have less of an understanding of the limiting distribution of the scaled

queue in that subsection and extended for random batch sizes in Sect. 3.2. Having

more knowledge of what distribution might produce a moment-generating function

comprised of exponential integral function could not only teach us about this queueing

system, it would also likely be worth studying entirely on its own. Additionally, pro-

viding further connections of this distribution back to the harmonic numbers and the

associated Hermite distribution would also be of interest, such as in the connection of

the limiting moment-generating function to the expected value of a harmonic number

evaluated at a Poisson random variable that we remarked in Sect. 2.2. One could also

consider control problems for the routing of arrivals to sub-systems, like we discuss

for the case of random batch sizes in Sect. 3.3.

For future expansion of this work into other areas of queueing, we can group the

main themes of potential further investigations in three categories. First, the extension
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of our batch model beyond infinite server queues to multi-server queues, queues with

abandonment, and networks of infinite server queues, a la Mandelbaum and Zeltyn

[23], Massey and Pender [24], Engblom and Pender [10], Gurvich et al. [15], Pender

[30], and Daw and Pender [6]. It would be interesting to explore our limit theorems in

these cases to understand the impact of having a finite number of servers. Second, it

would also be interesting to explore the impact of the batch arrivals in the context of

queues with delayed information as in Pender et al. [32–34]. It would be of interest

to know whether or not the batch arrivals would influence the Hopf bifurcations or

oscillations that occur in the delayed information queues. Additionally, one could

explore findings of this work, like the steady-state distribution representation or the

batch scaling, in contexts where there is dependence among the service durations

within each batch of arrivals, such as those studied in Pang and Whitt [28], and Falin

[11]. Finally, we are particularly interested in studying the impact of batch arrivals

in the context of self-exciting arrival processes such as Hawkes processes like in the

work of Gao and Zhu [13], Koops et al. [18], and Daw and Pender [5]. We intend to

pursue the ideas described here as well as other related concepts in our future work.
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