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Abstract

Engineered nanoparticles (NPs) will obtain macromolecular coatings in environmental systems,
changing their subsequent interactions. The matrix complexity inherent in natural waters and
wastewaters greatly complicates prediction of the corona formation. Here, we investigate corona
formation on titanium dioxide (TiO2) NPs from mixtures of natural organic matter (NOM) and a
protein, bovine serum albumin (BSA), to thoroughly probe the role of mixture interactions in the
adsorption process. Fundamentally different coronas were observed under different NP exposure
conditions and time scales. In mixtures of NOM and protein, the corona composition was
kinetically determined, and the species initially co-adsorbed but were ultimately limited to
monolayers. On the contrary, sequential exposure of the NPs to pure solutions of NOM and protein
resulted in extensive multilayer formation. The intermolecular complexation between NOM and
BSA in solution and at the NP surface was the key mechanism controlling these distinctive
adsorption behaviors, as determined by size exclusion chromatography (SEC) and in situ
attenuated total reflectance — Fourier transform infrared (ATR-FTIR) spectroscopy. Overall, this
study demonstrates that dynamic intermolecular interactions and the history of the NP surface must

be considered together to predict corona formation on NPs in complex environmental media.
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Introduction

Engineered nanoparticles (NPs) have gained attention for applications in myriad fields such
as water treatment and drug delivery, while concerns for potential environmental risks have also
arisen.! The adsorption of macromolecules to form a coating or corona on the NP surface

417 and hence

significantly changes the environmental fate and biological interactions of the NPs,
surface chemistry is a critical property of the NP. In complex matrices, the corona composition is
difficult to characterize or predict. For example, natural organic matter (NOM) or humic
substances can show adsorptive fractionation, such that the composition of the adsorbed layer
differs from that of the bulk solution,'®?* and extensive studies on protein corona formation in
physiological media have highlighted the dynamic nature of the adsorption process.'*!” To our
knowledge, few studies are available for NPs in environmental media comprising multiple classes
of macromolecules, including not only NOM but also proteins, polysaccharides, and other

biomolecules.”> ¢ This research gap contributes uncertainty in interpreting NP behavior in

complex environmental matrices, when the ultimate NP surface composition is unknown.

Here, we investigate the competitive adsorption of NOM and a protein, bovine serum
albumin (BSA), onto titanitum dioxide (TiO2) NPs as a model system to identify the mechanisms
controlling corona formation on NPs in complex environmental mixtures. TiO2. NPs are
photoreactive and hence of interest for water treatment applications,?’! but surface fouling (or
corona formation) can modify the effectiveness of the NPs.*>* Our long-term goal is to predict
the photoreactivity of TiOz in complex media. To do so first requires a thorough understanding of
the corona formation. To our knowledge, only single-component adsorption of NOM?>>-8 or BSA3":
39-41

onto TiO> NPs has previously been evaluated. Adsorption of NOM and protein together has

primarily been studied in the soil sciences, where zonal organic matter structures proposed by
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Kleber et al.** were attributed in part to multilayers that form upon sequential adsorption of pure
proteins over NOM coatings on mineral surfaces.****> However, in these studies, the influence of
solution-phase interactions that can occur between NOM and protein (prior to adsorption) has not
yet been fully explored. A recent study by Schmidt et al. identified that solution-phase
complexation of BSA onto DNA reduces repulsive interactions to enhance DNA adsorption to
goethite surfaces.*® As proteins also complex with NOM,*”-* we hypothesize that complexation
can influence adsorption from mixtures of NOM and protein onto NPs. A comprehensive
understanding of the adsorption process must therefore consider all possible interactions between
NOM, protein, and TiO2 NPs, including those between the uncoated NPs and macromolecules,
between NOM and protein in solution (e.g., complexation**?), and between adsorbed and
dissolved macromolecules (e.g., displacement®*>® or multi-layer adsorption***%).

The objective of this study is to achieve a mechanistic understanding of the fundamental
processes controlling the adsorption of mixtures of NOM and BSA onto TiO2 NPs, by investigating
solution and surface interactions, as well as the kinetics and history of these interactions. Batch
adsorption experiments were evaluated against theoretical equilibrium and kinetic adsorption
models. We then focus on the influence of NOM-protein complexation on the adsorption process,
using size exclusion chromatography (SEC) to identify complexation and in situ attenuated total
reflectance — Fourier transform infrared (ATR-FTIR) spectroscopy to probe competitive
adsorption, co-adsorption, or multilayer adsorption phenomena under different NP exposure
conditions. We expect this fundamental knowledge will be useful to identify the range of processes

that can affect corona formation on NPs in complex environmental media.
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Materials and methods
Materials

TiO2 NPs (Standard Reference Material (SRM) 1898) were obtained from the National
Institute of Standards and Technology (NIST, Gaithersburg, MD), Suwannee River NOM (Cat.
No. 1R101N) from the International Humic Substances Society (IHSS, St. Paul, MN), and bovine
serum albumin (BSA, reagent grade pure powder) from Sera Care Life Sciences (Milford, MA).
Other reagents are specified in the Supporting Information (SI). BSA (1 g L'') and NOM (1 g L)
stock solutions were prepared in Milli-Q water, adjusted to pH 7 using (0.1 or 1) M HCI or NaOH,
and allowed to equilibrate overnight to dissolve. Stock solutions were filtered through 0.22 um
polyethersulfone membranes (EMD Millipore, Burlington, MA). Filter loss (to correct subsequent
concentrations) was determined against unfiltered stocks for BSA by absorbance at 280 nm on a
UV-2600 spectrophotometer (Shimadzu, Columbia, MD) (< 5% filter loss), and for NOM by total
organic carbon (TOC) analysis (Xenco Laboratories, Houston, TX) or SEC with refractive index
(RI) detection, described in the ST (8% to 10% filter loss). Subsequent samples containing NOM
or BSA were prepared in an aqueous buffer of 1.2 mM NaHCO3 and 0.85 mM CaCl, (pH 7 to 7.5),
representing a simplified Environmental Protection Agency (EPA) moderately hard water®’
(matching the total monovalent and divalent cation concentrations using only NaHCO3 and CaCl,),
and provides similar pH, bicarbonate, and calcium concentrations to those reported in freshwater

systems.>®
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Preparation and characterization of TiO: suspensions

Stock suspensions of TiO> NPs (2 g L' in Milli-Q water) were dispersed using an
ultrasonication probe (TM250B Tekmar Sonic Disruptor, Cincinnati, OH) at a measured power>’
of (20 £+ 3) W for three 5-min intervals, immediately prior to use. The NPs have reported crystallite
particle diameters of (19 £+ 2) nm for anatase (comprising 76% of the sample) and (37 £+ 6) nm for

rutile (comprising 24%).%

Dynamic light scattering (DLS) measurements (Zetasizer Nano,
Malvern Instruments, Westborough, MA) were taken to determine the hydrodynamic size as the
z-average diameter of (155 + 11) nm, intensity-average diameter of (182 £+ 14) nm, or volume-
average diameter of (118 = 8) nm for stock suspensions diluted to 0.2 g L' TiO, NPs in 1 mM
NaCl (pH 5.6 £ 0.5), confirming good dispersion of the NPs compared to the reported volume-
mean diameter in the NIST SRM 1898 Certificate of Analysis (CoA).° After each adsorption
experiment, DLS size was also measured directly on samples containing 0.5 g L™! NPs in the buffer

stated above. A specific surface area of 54 m? g! reported in the NIST CoA (from Brunauer—

Emmett—Teller (BET) analysis) was used to calculate adsorbed masses.

Characterization of BSA and NOM solutions by SEC

Solutions of BSA and NOM and their mixtures were prepared in the CaClo/NaHCO3
medium noted above, fixing one species’ concentration at 100 mg L' and varying the other from
(10 to 200) mg L"!. SEC analysis was performed using a Superdex 75 10/300 GL analytical SEC
column (GE Healthcare, Chicago, Illinois) on an Agilent 1290 Infinity system comprising a binary
pump, degasser, and autosampler (Agilent, Santa Clara, CA). 100 puL of sample was injected. The
eluent was 4 mM phosphate (pH 7) with 25 mM NaCl at a flow rate of 0.7 mL min™'.%! ©2 Similar

results were observed in eluent matching the sample buffer (Figure S2), but column fouling by
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NOM occurred in Ca**-containing media. A UV-vis diode array detector (Agilent 1260 UV-DAD),
fluorescence detector (Agilent 1260 FLD), and refractive index (RI) detector (Wyatt, Optilab T-
rEX) were situated in-line after the SEC column. The DAD monitored absorbance across (200 to
500) nm in 2 nm increments. The FLD monitored the fluorescence of BSA at excitation/emission
wavelengths of (295/345) nm.®* Complexation of NOM onto BSA was evaluated within 1 h of
mixing, based on the change in UV and FLD peak areas across the BSA elution time and depletion

in RI peak area across the NOM elution time, on duplicate samples. The complexation kinetics of

BSA (100 mg L") and NOM (100 mg L") were also evaluated.

Batch adsorption isotherms

Adsorption isotherms onto TiO» NPs (0.5 g L") were obtained in triplicate. Single-
component isotherms were collected for initial concentrations of BSA from (60 to 250) mg L' or
NOM from (10 to 200) mg L™! in the CaClo,/NaHCO3 buffer. The buffer and adsorbates were mixed,
followed by NP addition within 1 h. Samples were covered with aluminum foil and rotated end-
over-end at 25 rpm at room temperature for approximately 24 h. Then, 1.5 mL of sample was
centrifuged in an Eppendorf Protein LoBind centrifuge tube at 13000 rpm (12641xg) for 23 min
(MiniSpin Plus, Eppendorf, Hamburg, Germany). Supernatant was collected to quantify
unadsorbed species. Batch adsorption samples for mixtures of BSA and NOM onto TiO» (0.5 g L
1Y were prepared following the same procedures, fixing the concentration of one species at 100 mg
L' while the other was varied from (10 to 200) mg L.

The adsorbed mass of BSA or NOM was determined by solution depletion, 1.e., subtracting
the remaining from the initial concentration, and dividing the depleted mass by the estimated TiO»

surface area from the NIST CoA. BSA was quantified by the Bradford assay (SI);** for binary-
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component solutions, corrections for interferences in the presence of NOM® were applied (Figure
S1). NOM was analyzed by SEC with refractive index (RI) detection (method description in SI)
to quantify solution depletion and identify adsorptive fractionation of NOM onto TiO>. Spectral
analysis of the NOM by batch- and SEC-UV-vis analysis®*® was also performed to evaluate

adsorptive fractionation (SI).

Kinetic adsorption experiments

In situ ATR-FTIR spectroscopy was used to semi-quantitatively evaluate the kinetics of
adsorption, displacement of adsorbed species, and multilayer adsorption processes. A Nicolet iS50
FTIR spectrometer (ThermoFisher Scientific, Waltham, MA) was equipped with a diamond/ZnSe
single reflection ATR crystal (PIKE Technologies, Fitchburg, WI). Spectra were collected from
(800 to 4000) cm™! with a resolution of 2 cm™ and averaged over 200 scans. 5 uL of TiO, (10 g L™!
in Milli-Q water) was dried onto the ATR crystal, and a flow cell (PIKE Technologies) was
attached. Because the background solution chemistry and pH are important,*"> 7% 7! buffer solution
with the same composition used in the adsorption experiments was flowed over the NPs to
equilibrate the surface chemistry and also remove loosely attached NPs.

Adsorption experiments were conducted separately with pure NOM, pure BSA, or
mixtures. For pure NOM or BSA, 100 mg L' solutions in the buffer were flowed over the NPs,
and spectra were collected every 10 min and reprocessed using a background spectrum of
macromolecule-free buffer over the TiO> film. We performed the same experiment for NOM-BSA
mixtures (100 mg L' of each species), injected after =~ 1 h mixing. To compare relative adsorbed
amounts of NOM and BSA from the mixtures, spectra across (1300 to 1800) cm™ were modeled

as a linear combination of the single-component adsorbed NOM and BSA spectra to obtain fitted
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coefficients, Aygy and Agss (details in SI). For this analysis, 1800 cm™ was largely free of NOM
or BSA absorbance and selected as a base point to vertically align the spectra before fitting. The
ATR-FTIR analysis is only semi-quantitative because of the variable TiO; film deposited between
experiments; hence, fitted coefficients are not compared directly. Only ratios of coefficients, e.g.

Apsa ()
Anom ()’

were compared between samples, normalizing the TiO; surface area and sample volume
probed, roughly analogous to the use of internal standards for quantitative FTIR analysis.”?
Sequential adsorption experiments were performed to evaluate interactions between
adsorbed and dissolved macromolecules. Fresh TiO2 NP films were prepared and equilibrated in
buffer, followed by equilibration in NOM (100 mg L), which was identified in batch experiments
to preferentially adsorb. In one experiment, pure BSA (100 mg L) was then injected over the
NOM-coated TiO; to identify displacement or overcoating. In other experiments, a mixture of
BSA and NOM was injected over the NOM-coated TiO», followed by a solution of pure BSA, to
distinguish the role of solution-phase mixture interactions on BSA adsorption to NOM-coated

TiO,. Three mixtures were evaluated: BSA (50 mg L") with NOM (100 mg L), BSA (100 mg

L") with NOM (200 mg L"), and BSA (200 mg L) with NOM (100 mg L")

Results and Discussion
Batch single-component adsorption of BSA and NOM onto TiO> NPs

Batch adsorption experiments were performed at pH 7 to 7.5, where the TiO, NPs have a
1£1<20 mV,%"7 and both BSA and NOM are negatively charged (isoelectric point of BSA = 5.1;7*
zeta potential for NOM at pH 7 = -40 mV).* The adsorption behavior will be determined by
attractive forces, including Van der Waals forces, hydrophobic interactions, hydrogen bonding,

and Ca?’ bridging in our media, as well as repulsive electrostatic and hydrophilic forces. While
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uncoated TiO2> NPs aggregate rapidly in this medium, increasing concentrations of BSA and NOM

provided steric/electrosteric colloidal stability,”> 76

as observed by DLS (Figure S4). Aggregation
at lower adsorbate:NP ratios could reduce the available surface area for adsorption, but we
obtained similar BSA adsorption isotherms at different TiO, concentrations, (0.5 and 1) g L™,
suggesting the effect may be minimal. To obtain the entire isotherm with measurable solution
concentrations, the initial concentrations of adsorbate used were higher than typical environmental
concentrations, particularly for proteins which represent a small percent of dissolved organic
carbon (DOC) in surface waters.”® ”7 However, the lower extent of our remaining (equilibrium)
solution concentrations (= 4 mg L) is within the range of higher concentrations observed (e.g. up
to 40 mg L' of DOC in wetlands,?® or (1 to 50) mg L™! protein in urban watersheds and wastewater
effluents’®30).

A Langmuir adsorption isotherm (Equation S2) was able to fit the single-component
adsorption of BSA and NOM (Figure 1), with saturation adsorbed masses, gmax, of (2.6 and 0.90)
mg m~, respectively, fitted by nonlinear regression. These values are higher than other reports,
e.g. 1.7 mg m? for BSA at pH 7.3,8! and =~ 0.2 mg m™ for NOM at pH 7,>* and likely attributable
to the presence of Ca>" which enhances both albumin and NOM adsorption to TiO> by bridging.®*
85 Therefore, we caution extrapolation of results to media lacking Ca®*. The Langmuir isotherm
constant, K, for BSA (1.1 L mg') was higher than that for NOM (0.051 L mg'). We interpret K
only as an empirical fitting parameter indicative of the steeper slope of the BSA isotherm and also
note wide 95% confidence intervals on the fitted K for BSA (Table S1).

We investigated the NOM adsorption in further detail, considering the heterogeneity of the

NOM itself. Batch UV-vis absorbance data showed an increase in the spectral slope of the NOM

remaining in solution after adsorption (Figure S5), indicative of preferential adsorption of higher

11
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molar mass species with “activated” aromatic groups (i.e., those with polar ring substitutions, e.g.,
carbonyl, carboxyl, and ester groups).®® The SEC analysis (Figure S3), along with providing
adsorbed mass of NOM, confirmed preferential adsorption of higher molar mass NOM, consistent
with prior studies.'®?® The direct relationship between spectral slope and molar mass was also
verified by SEC-UV-DAD analysis®” ® (Figure S6). Finally, ATR-FTIR analysis showed that the
non-adsorbing, lower molar mass fraction contained higher amounts of functional groups at 1120
cm’! (Figure S7), which are observed in hydrophilic NOM fractions and attributed to the C-O
stretch of alcohol or carbohydrate species.®® 87 The preferential adsorption was used to inform the

properties of adsorbing NOM when parameterizing the competitive adsorption models hereafter.

Batch competitive adsorption from mixtures of NOM and BSA is kinetically-determined and
monolayer-limited

Adsorption from mixtures of NOM and BSA onto TiO2 was measured in two sets of batch
experiments: varying the concentration of BSA in the presence of 100 mg L' NOM, and vice versa
(Figure 1). NOM largely outcompetes BSA for adsorption, contrary to expectations from the
single-component isotherms. To further explore this phenomenon, experimental observations were
compared to two theoretical models: an equilibrium Langmuir adsorption model, and a kinetic
adsorption model. Our goal is to identify a simple analytical model capable of describing the
competitive adsorption when parameterized using only the single-component Langmuir
parameters and known or measured properties of the macromolecules and NPs.

The competitive Langmuir adsorption model for n competing adsorbates is presented in
Equation 1:8

q; = dmax,iKiCf,i
;=
1+ X7, (KjCej)

(1

12
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where ¢; (mg m?) is the adsorbed mass of species i, and Cr; (mg L) is the final solution
concentration of i at the end of the adsorption experiment. gmax; (mg m?) and K; (L mg™') are the
maximum monolayer adsorbed capacity and the Langmuir isotherm constant, respectively, from
each single-component isotherm. This equilibrium model was not capable of predicting adsorption
from the mixtures (Figure 1), significantly overestimating the adsorbed mass of BSA relative to
NOM. A key assumption of the Langmuir model is that adsorption is reversible, and compounds
with higher affinity will displace others to achieve equilibrium. Contrarily, the observed data
suggest that our system does not meet Langmuir assumptions.

The alternative limiting case is a kinetic adsorption model in which NOM and BSA adsorb
irreversibly. Trreversible attachment has been modeled by random sequential adsorption (RSA)

89,90

models or analogously by colloid deposition models.”! For adsorption onto NPs in suspension,

dNoo i

> can be described by the Smoluchowski

the depletion rate of adsorbate from solution,

equation® with a dynamic site blocking function, B(6):"!

dNoo,i

~24 = —a[4nD (Ry + Ry)Nrio, [Neo i B(6) = —atk;Noo ;B(6) )

where N, is the number concentration of macromolecules in bulk solution at time ¢, D is the
summed diffusion coefficients for the macromolecule and NP, Ry and R; are the hydrodynamic
radii of the macromolecule and NP, Nrjo, is the number concentration of TiO> NPs, « is the
attachment efficiency, and @represents the fractional surface coverage. The diffusion-limited rate

coefficient for favorable attachment (no energy barrier) is represented by ks,i. Notably, this model

will always predict the same final surface coverage at infinite time, regardless of solution

13
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concentration. Hence, this model is incapable of predicting the observed concentration-dependent
single-component adsorption isotherms without incorporating additional conditions, such as
spreading of macromolecules upon adsorption.”® ** The paradoxical nature of observing both
irreversible and concentration-dependent adsorption has been discussed in the protein adsorption
literature.”% %>

We do not propose to provide the most complete model to address this scenario but rather
to obtain a simple kinetic model capable of explaining our experimental data on final adsorbed
layer composition. We proceed by simplifying Equation 2 to eliminate the site-blocking function
and assume favorable attachment (or equivalent attachment efficiencies for NOM and BSA).
Incorporating site blocking requires a numerical solution and will not change the final adsorbed
layer composition predicted, since the adsorption rates of all adsorbates are affected equally.
Obtaining attachment efficiencies would require kinetic data or otherwise treatment of the

attachment efficiencies as fitting parameters in the model.

For favorable attachment without site blocking, integrating Equation 2 yields Equation 3:

In (Noo,i) = —47TD(R1 + RZ)NTiOZt = _kf,it (3)

No,;

where Ny, is the initial concentration of species i. The depleted concentration and adsorbed mass
of each species at each time ¢ is then obtained by a mass balance. Having eliminated the site
blocking function, a stopping criterion is needed to end the adsorption of each species. In defining
this criterion, we incorporate concentration-dependent adsorption (i.e. the possibility for

undersaturation) by specifying that the adsorption of each species ends when it has reached

14
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“equilibrium” with the surface sites that are unoccupied by the competing species j, as defined in

Equation 4:

qmax,iKiCi(tsto ,i) q;
iten) = ) (13 @

qmax, J

In specifying gmax, for the site depletion, we assume that the total available surface area
occupied at the saturation adsorbed mass is equivalent across all adsorbates. Equations 3 and 4 are
solved together to obtain different stopping times, fsxop,, for each adsorbate. Importantly, the
adsorption is made irreversible by holding the adsorbed mass of faster-adsorbing species fixed at
qi(tstop,i) for all ¢ > tsop,;. Thereafter, the slower-colliding species can continue adsorbing to any
remaining available sites until reaching its own stopping time. The final state is at disequilibrium
compared to Equation 1. Note that if the irreversibility criterion is eliminated and g and C are taken
at equilibrium, Equation 4 becomes equivalent to the competitive Langmuir model (Equation 1).

Overall, this kinetic model predicts the experimental data for the final adsorbed layer
composition significantly better than the equilibrium Langmuir model across all mixtures (Figure
1). The smaller size (higher diffusion coefficient) and higher number concentration of NOM
relative to BSA results in a higher adsorbed mass for NOM than predicted by the Langmuir
equilibrium model. Because of the high K parameter for BSA, the kinetic model predicts > 80%
overall surface saturation for any initial BSA concentration > 1 mg L' (in the presence of 100 mg
L' of NOM). The key assumptions of irreversible and monolayer-limited adsorption in this model

were then directly tested in ATR-FTIR experiments.

Multilayers form upon sequential exposure of TiO> NPs to pure NOM and pure BSA

15
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In situ ATR-FTIR spectroscopy has previously been applied to evaluate the adsorption of
BSA %4719 NOM, ™ polymers,®” and other compounds®®1%° onto TiO: and other surfaces. %193
This method allows semi-quantitative analysis of the kinetics and extent of adsorption onto NPs.
First, individual spectra of adsorbed NOM or BSA were collected during adsorption to the TiO»
NP film from 100 mg L solutions (Figure S8). The strong peaks at (1410 and 1570) cm™' for

adsorbed NOM are likely attributable to deprotonated carboxyl groups (—COO")!'%* 19 and also

87, 106 87, 106

include contributions from aliphatic hydrocarbons and aromatic alkenes, respectively,
that absorb in these regions. Consistent with our batch fractionation results (Figure S7), the peak
at 1125 cm™ (C-O stretch of carbohydrates) in the < 10 kDa NOM fraction was not observed in
the adsorbing NOM. For BSA, the two main peaks correspond to amide I at (1600 to 1700) cm’!
for C=0 stretching, and amide II at (1500 to 1600) cm™ for N-H bending and C-N stretching.!%%197

Then, a sequential adsorption experiment was performed in which the surface of the
deposited NPs was equilibrated with NOM (100 mg L) as the kinetically-favored adsorbate,
followed by pure BSA (100 mg L. To quantify adsorption of multiple species, previous studies
used peak heights when peaks did not overlap significantly for adsorbed protein!'® and other
compounds.*® Here, the broad bands for NOM and BSA overlap extensively, but peak locations
did not shift significantly in mixed layers compared to the single-component adsorption. Hence,
the mixed layer spectra were successfully modeled as a linear combination of the single-component
adsorbed BSA and NOM spectra in the range of (1300 to 1800) cm™ (Equation S6, Figure S9).
The fitted coefficients, Agg, and Aoy, are only semi-quantitative but can be evaluated for trends

in the adsorbed mass of each species within each experiment or when ratioed to normalize for TiO»

surface or sample volume probed.

16



337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

While in other cases, surface ligands with low affinity have been found to be displaced by
higher affinity species,!? results here agree with adsorption irreversibility: the adsorbed amount
of NOM remained nearly constant during the subsequent adsorption of BSA (Figure S9). More
notably, the extensive BSA adsorption suggests that pure BSA significantly overcoats adsorbed
NOM, similar to other sequential adsorption experiments reporting multilayer formation of pure
proteins onto humic-coated minerals.****

Comparing the batch (mixture) and in situ ATR-FTIR (sequential) adsorption, the
formation of NOM-protein coronas on TiO2 NPs then appears to be fundamentally different when
the NPs are exposed to a mixture (monolayer restriction) versus sequential exposure to pure
solutions (multilayer adsorption). To explain these contradictory behaviors, we hypothesize that
intermolecular complexation between humic substances and proteins in solution, well-known to

48-52

occur, changes adsorption from mixtures compared to pure substances. Hence, we investigated

the role of intermolecular interactions through additional SEC and in situ ATR-FTIR experiments.

Solution-phase complexation occurs between BSA and NOM

SEC experiments were performed to evaluate complexation interactions between NOM
and BSA in the solution phase. BSA elutes from the SEC column from = (11 to 18) min as two
peaks, corresponding to BSA dimer and monomer, which were considered together in the analyses.
NOM elutes primarily as a broad peak from = (15 to 26) min. Upon increasing the ratio of NOM
to BSA in solution, UV absorbance and RI in the BSA region increase significantly (Figure 2),
indicating attachment of aromatic NOM species onto BSA. Complexation also quenches the BSA
fluorescence, consistent with previous reports'®” and possibly indicative of binding of the NOM

with fluorescent tryptophan residues in BSA or a change in BSA conformation. As with adsorption
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to the TiO2 NPs, NOM with higher molar masses have slightly higher affinity to complex with
BSA. The amount of NOM attached to the BSA estimated by SEC-RI analysis showed increasing
complexation with the ratio of NOM:BSA, and complexation was observed to proceed over =~ 5 h

before equilibrating (Figure S10).

Co-adsorption is followed by suppressed multilayer formation in simultaneous adsorption from
NOM-BSA mixtures onto TiO> NPs

In situ ATR-FTIR was used to investigate the simultaneous adsorption of NOM and BSA
onto TiO2 NPs and evaluate the effects of complexation in solution on the adsorption from NOM-
BSA mixtures onto TiO NPs. First, simultaneous adsorption of BSA (100 mg L') and NOM (100
mg L) onto the uncoated TiO, was evaluated. While both species increasingly adsorb over time,
the ratio of adsorbed BSA to NOM decreases over the first hour (Figure 3). This trend can be
explained either by a lower affinity of BSA to adsorb upon complexation, or increasing co-
adsorption of NOM with BSA as it complexes to BSA over = 5 h at the concentrations used here.
Batch adsorption experiments using isolated NOM-protein complexes suggested that
complexation does not largely suppress BSA adsorption onto uncoated TiO; (Figure S11); hence,
co-adsorption of NOM complexed with BSA may contribute more to the results observed in the
initial stage of adsorption to the uncoated TiO2 NPs.

The larger picture from the mixture experiment is that the overall BSA adsorption does
indeed appear to be suppressed in the mixture relative to pure BSA: specifically, BSA adsorption
begins to plateau within 1 h in the mixture (Figure 4), but remains nearly linear over 1 h when
adsorbing from pure solution even after NOM has pre-adsorbed (Figure S9). We hypothesize that

over longer time scales, complexation of NOM onto dissolved BSA hinders the ability of BSA to
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overcoat adsorbed layers after the TiO; surface has been saturated. To test this hypothesis,
adsorption from NOM-BSA mixtures onto NOM-coated TiO> NPs was evaluated (Figure 4 and
S12) and compared to subsequent adsorption of the pure BSA for various concentrations of BSA
and NOM. In all cases, after providing adequate opportunity for adsorption from the NOM-BSA
mixtures, subsequent injection of pure BSA led to further protein adsorption beyond that in the
mixtures. Hence, adsorption sites must be available to pure BSA that are not available to the
complexed BSA. We propose that the complexed BSA fills remaining bare TiO; sites (since NOM
is not completely saturated from 100 mg L™ starting conditions), but has little affinity to overcoat
the adsorbed NOM after complexing with NOM in solution. On the contrary, the pure BSA is
capable to attach onto the adsorbed NOM to form an overcoating. While modeling this behavior
without more quantitative kinetic data is outside the scope of this study, possible extensions to the
kinetic model are discussed in the SI that could describe this multilayer formation.

In summary, the complexation interaction between NOM and BSA is a critical process
leading to the occurrence of fundamentally different adsorption phenomena under different NP
exposure conditions and time scales, as depicted in Figure 5. Multilayer formation occurs upon
sequential exposure to pure solutions of NOM and BSA. In mixtures, BSA-NOM complexes can
co-adsorb to the uncoated TiO, at short time scales. However, after the TiO» surface is saturated,
the complexation of NOM to BSA in solution ultimately hinders any further development of
NOM/protein multilayers on the TiO2 NPs, such that monolayer restrictions are reasonable when
modeling batch adsorption from mixtures (Figure 1). Notably, in this system, all possible mixture
interactions (macromolecule-NP, macromolecule-macromolecule, and macromolecule—adsorbed

layer) and their kinetics are important.
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Implications

This study has presented a thorough investigation of the fundamental mechanisms involved
in the competitive adsorption of NOM and proteins (with BSA as a model protein) onto TiO2 NPs,
using both modeling and experimental methods to fully evaluate the adsorption process under a
range of possible NP exposure conditions. The behaviors observed here further expand our
understanding of the role of mixture interactions and kinetics on corona formation in
environmental media. Just as protein corona formation in biological systems is well known to be
a dynamic process, so will prediction of heterogeneous corona formation in environmental systems
require knowledge of not only the matrix and NP composition, but also the intermolecular
interactions in solution and at the NP surface, and the kinetics and history of these interactions.

To our knowledge, this study is the first to directly identify the roles of both dynamic
complexation in solution and the history of the NP surface on the competitive adsorption process
in environmental matrices containing mixtures of NOM and protein. The influence of sequential
exposure observed here will be most relevant during transport of NPs between environments, e.g.
from surface water to a biofilm layer concentrated in proteins, or bio-uptake, where an NOM-
coated NP can obtain a protein corona. Diurnal or seasonal patterns also produce fluctuations in
the composition of organic matter in natural and engineered water treatment systems.

Additional research is needed to evaluate generalizability from the single solution
chemistry and high adsorbate and NP concentrations in this study. The presence of Ca*" in our
samples likely enhanced the adsorption of both proteins and NOM onto TiO2, and hence the
adsorbed masses and adsorption irreversibility may change in media lacking Ca**. pH and ionic

strength also change the NP surface charge or screens charges, affecting adsorption. Using our
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simple kinetic model to extrapolate to lower mixture concentrations (e.g. < 10 mg L of both
adsorbates), NOM is still predicted to outcompete such that the BSA adsorbed mass is relatively
sensitive to the NOM concentration, whereas NOM adsorption is relatively insensitive to the
presence of BSA. However, experiments are needed to confirm. Such studies should address
whether long-term conditioning of NPs in lower, environmentally relevant macromolecule
concentrations (but relatively high concentrations compared to relevant NP concentrations, i.e.
minimal solution depletion) would result in similar adsorbed layers to those measured at high
concentrations. True adsorption irreversibility would suggest that the final corona should not
depend on absolute concentrations given sufficient time for adsorption.

We anticipate systematic investigations for mixtures of macromolecules covering a range
of physicochemical properties (e.g., humic substances, proteins, polysaccharides, lipids, DNA,
etc.) will enable elucidation of overarching rules to predict competitive adsorption onto NPs and
other surfaces in complex environmental media. Future studies are needed to evaluate how the
corona compositions and structures formed under different conditions will affect subsequent NP
behavior in the environment. Most notably, we identified that exposure of the NP to a
homogeneous mixture of NOM and proteins that have already undergone complexation will
produce only a thin monolayer coating, whereas sequential or alternating exposures of the NP to
different ratios of NOM and protein can result in multilayer coatings. The corona thickness and

11,110 and

adsorbed mass are known to dominate the steric or electrosteric repulsion between NPs,
hence our study suggests that the details of the history of NP exposure to various macromolecules
can be important to the overall fate and transport of the NPs. Corona composition, structure, and
32-34

thickness are also likely to change the reactivity of NPs, including photoreactive TiO2 NPs,

where the adsorbed macromolecules will interact with both organic pollutants and reactive oxygen
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species. Finally, the degradation of the corona and transformation of the NP itself can also vary
with corona composition, leading to longer-term differences in NP fate and transport.!'!"!13 The
thoroughly characterized system presented here will be useful to investigate the effect of the
composition and structure of NOM/protein coronas on the photoreactivity of TiO> NPs and

reactive transformations of the corona.
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Figure 1. Batch adsorption isotherms onto TiO2 NPs for (a) the single-component (SC) solution
of NOM and binary-component (BC) mixtures of NOM with a fixed initial concentration of
BSA (100 mg L"), and (b) the SC solution of BSA and BC mixtures of BSA with a fixed initial
concentration of NOM (100 mg L). Isotherms were collected on 500 mg L™ TiO, NPs in a
background of 1.2 mM NaHCO3 and 0.85 mM CaCl, (pH 7 to 7.5). Solid and dashed lines
represent the Langmuir and kinetic models, respectively. Error bars represent the standard

deviation of n = 3 samples.
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Figure 2. SEC-UV2go chromatograms for BSA-NOM mixtures (a) were collected for BSA (100
mg L), NOM (20, 50, 80, 100, 150, and 200 mg L"!, from lower to higher UV absorbances),
and their mixtures. For the BSA peaks, along with the increase in UV absorbance upon NOM
complexation, addition of NOM mass onto the BSA can be identified by RI detection and
quenching of the BSA fluorescence (b). Peak areas in (b) are normalized by the injected BSA
mass. All samples were prepared in a buffer of 1.2 mM NaHCO; with 0.85 mM CaCl: (pH 7),
then measured in an SEC mobile phase of 4 mM phosphate with 25 mM NaCl (pH 7) to avoid
SEC column fouling by NOM in Ca®*-containing medium (SI). Additional data were also
collected for mixtures of 100 mg L' NOM with varying BSA (not shown). Error bars represent

the standard deviation of n = 2 independently prepared samples.
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Figure 3. /n situ ATR-FTIR experiment for simultaneous adsorption from mixtures of BSA
(100 mg L") and NOM (100 mg L™!) onto TiO2 NPs in the same buffer as the batch adsorption
experiments. The mixture was prepared immediately before injecting. (a) The measured spectra
(solid lines) in the range of (1300 to 1800) cm™ were modeled as a linear combination of the
spectra for pure BSA and pure NOM (dashed lines). (b) Fitted adsorbed amounts (4’) of BSA
and NOM both increase over time, while the relative ratio of BSA:NOM decreases. Ratios
plotted represent the average + standard deviation of the ratios determined at each time point

within each of » = 2 independent experiments.
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Figure 4. In situ ATR-FTIR experiment for the sequential adsorption of a mixture of BSA and
NOM, followed by pure BSA, onto NOM-coated TiO2 NPs. The initial NOM layer was pre-
adsorbed from a 100 mg L' solution. Adsorption coefficients (4°) were fitted as described in
the SI. After the adsorption of complexed BSA from a mixture with NOM, additional protein
is able to adsorb readily from a pure BSA solution. Similar results were obtained in replicate
experiments. Considering the results of other combinations of concentrations (Figure S12), the
conceptual model in (b) is proposed where complexed BSA fills any vacant sites on the TiO2

surface, but multilayer formation is strongly suppressed relative to pure BSA.
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Figure 5. Conceptual model for competitive adsorption of NOM and BSA onto TiO» NPs,

accounting for the critical role of dynamic intermolecular interactions. In simultaneous

adsorption experiments (top), complexation of NOM to BSA initially results in co-adsorption

to the uncoated TiO; however, complexation also hinders any subsequent multilayer

adsorption after the TiO; surface is saturated. Sequential adsorption experiments (bottom)

further demonstrated that pure protein readily overcoats NOM, whereas the multilayer

adsorption is suppressed upon complexation of NOM to BSA.
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