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• A two-population Keller–Segel model exhibits two qualitatively distinct behaviors.
• We derive an ODE system that represents dynamics of population spatial profiles.
• The derived system predicts how parameter changes affect outcomes.
• Experimental results reveal behaviors predicted by the model.
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a b s t r a c t

We study the interaction of two bacterial pulses in a one-dimensional nutrient gradient. Simulations of
theKeller–Segel chemotaxismodel reveal twoqualitatively distinct behaviors. As the twopulses approach
one another, they either combine and move as a single pulse or, surprisingly, change direction and begin
moving away from each other in the direction from which they originated. To study this phenomenon,
we introduce a heuristic approximation to the spatial profiles of the pulses in the Keller–Segel model and
derive a system of ordinary differential equations approximating the dynamics of the pulse centers of
mass and widths. This approximation simplifies analysis of the global dynamics of the bacterial system
and allows us to efficiently explore qualitative behavior changes under a range of parameter variations.
We end by presenting experimental data showing that populations of E. coli display behavior that
qualitatively agrees with our theoretical results.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A bacterial pulse is a common pattern of collective bacterial
migration, which has been well characterized across many stud-
ies [1–5]. Pulses occur when cellular concentration is large enough
for directional movement by chemotaxis (or any other form of
taxis; e.g., [4]) to overcome diffusion, allowing the bacteria to
concentrate into a close group [6,7]. Such collective behavior has
been identified as a mechanism that provides bacteria with cer-
tain selective advantages; for example, aggregation supports the
formation of biofilms, which confer protection against antibiotics
and other environmental stress [8,9]. While much is known about
single-pulse systems, multiple-pulse systems have received com-
paratively little attention. Recently, it was shown that traveling
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bacterial pulses containing two species of bacteria can synchro-
nize or bifurcate into two pulses traveling in the same direction,
depending primarily on the relative speeds of the two bacterial
species and on the relative abundance each species [2]. Here we
consider a system in which two pulses of the same species move
toward one another along a depletable nutrient gradient.

Experimentally, external gradients have previously been shown
to play an important role in collective behavior of species that
move by chemotaxis. For example, it has been shown that a nu-
trient gradient can give rise to a traveling pulse in a population
that moves by chemotaxis [5]. Similar results have been found for
temperature and oxygen as well [4,10–12]. An invaluable mathe-
matical tool for studying collective behavior by chemical sensing is
the Keller–Segel chemotaxis model. Since its inception, the Keller–
Segel model has successfully captured important characteristics
of the dynamics of a variety of species, from cellular slime molds
such asDictyostelium discoideum to bacteria such as Escherichia coli
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to insects such as the fruit fly Drosophila melanogaster [13–17].
Here we use an adaptation of the Keller–Segel model to analyze
the transient dynamics of two pulses of bacteria that move toward
one another in a one-dimensional nutrient gradient. The pulses are
assumed to be maintained by cell–cell interaction via a secreted
chemoattractant, while their directional movement follows a nu-
trient gradient created by the bacteria through consumption. Such
a model has been shown in the past to accurately describe the
behavior of bacterial pulses in 1-d [4]. Our numerical analysis of
this model reveals that at least two outcomes are possible. In the
first, the two pulses combine to form a single pulse that moves
either to the left or right, depending on initial conditions. In the
second, the two pulses initially approach one another but turn
around before combining and move in the direction from which
they respectively originated.

Pulse–pulse interaction has been studied in a variety of
reaction–diffusion systems, including the Gierer–Meinhardt and
Gray–Scott models [18–21]. In these works, asymptotic matching
is used to derive leading-order ordinary differential equations
(ODEs) for the distance between the centers of pulses. The stability
of the origin of the resulting ODE determines whether the two
pulses are predicted to combine or repel. However, this framework
depends heavily on the dynamics of the pulses being slow, and
does not allow for analysis of the transient behavior of pulses.
Here, we introduce a straightforward heuristic approximation to
the spatial profile of each pulse using a Gaussian distribution as
a method of moment closure [22]. From this assumption, we are
able to derive explicit ODEs describing the dynamics of the centers
of mass and the widths of the pulses. In contrast to the Keller–
Segel partial differential equation (PDE) model, our ODE model
eases linear stability analysis of equilibrium states and numerical
simulation and allows phase plane analysis in some situations.
In these ways, our approximate model facilitates analysis of the
global dynamics of the bacterial system and enables us to effi-
ciently explore qualitative behavior changes across variations of
parameters. We show that our approximatemodel agrees with the
Keller–Segel model in predicting that bacterial accumulation is the
result of an instability of the uniform state that occurs when the
bacterial population size is made sufficiently large. We then define
a boundary value problem using our model to analyze parameter
conditions that lead to the turnaround of the bacterial populations
and conditions that cause them to combine, obtaining mecha-
nistic predictions for future experimental consideration. Finally,
we present experimental results that demonstrate that the two
behaviors, theoretically predicted by the model, are indeed viable
outcomes experimentally aswell. The experimental systemwe use
consists of two E. coli populations that are placed on opposite ends
of a long channel with a supply of nutrient between them. As a
result, bacterial pulses evolve on both ends of the channel and
move steadily toward the center of the channel. We track their
motion as they travel as pulses toward one another and observe
that once the distance between them shrinks sufficiently, they
combine andmove together in one direction in some cases, or turn
around and move back apart in others. These results suggest that
the ODE model that we have developed may serve as a useful tool
for future studies of bacterial motion.

2. Model derivation and simulation

2.1. Keller–Segel model framework

The Keller–Segel model is a classic partial differential equations
model that describes the collective motion of a cellular population
that moves by chemotaxis along a chemical gradient created by
an attractant produced by the population. In its original and most
common form, the model incorporates two modes of motion:

linear diffusion and chemotaxis up the chemical gradient (for a
derivation of these dynamics, see, e.g., [13,14]). In its simplest form,
the Keller–Segel model is given by

∂b

∂t
= Db

∂2b

∂x2
− χa

∂

∂x

[

b
∂a

∂x

]

∂a

∂t
= Da

∂2a

∂x2
+ rb − δa,

(1)

where b(t, x) represents a bacterial concentration and a(t, x) rep-
resents its chemoattractant density at time t and spatial coordinate
x [13]. Here we consider an adaptation of the Keller–Segel model
to study two interacting pulses of bacteria in a one-dimensional
nutrient gradient. We denote the two bacterial concentrations by
b(t, x) and β(t, x) at time t ≥ 0 and spatial coordinate 0 ≤ x ≤
L. We assume the bacterial populations diffuse at linear rate Db.
Here we consider the effects of two chemical substances. First,
we denote by a(t, x) and α(t, x) the chemoattractant produced by
the bacterial populations b(t, x) and β(t, x), respectively. The two
bacterial populations are assumed to be the same species, and
we therefore further assume that both populations are mutually
attracted to both chemoattractant concentrations.We assume that
the chemoattractant is produced by the bacteria at constant rate
r , diffuses at rate Da, and naturally degrades at rate δ and both
bacterial populations are attracted up this chemical gradient at rate
χa. Second, we include an externally added nutrient, with concen-
tration φ(t, x), that diffuses at rate Dφ and the bacteria consume at
constant rate κ . Both bacterial populations move up this nutrient
gradient at rate χφ . While cellular division has been shown to be
a mechanism by which traveling waves can form in Keller–Segel-
type models (e.g., [23]), our present focus is on the interaction of
bacterial pulses by chemotaxis alone, and we consequently omit
bacterial growth from ourmodel [5]. Under these assumptions, the
resulting model takes the form
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(2)

with no-flux boundary conditions

∂y

∂x

∣

∣

∣

∣

x=0,L

= 0 (3)

for all y ∈ {b, β, a, α, φ}. Parameter descriptions are summarized
in Table 1.

We note that if we define b̂ = b + β and â = a + α,
system (2) can be written as a three-equation system in terms of

b̂, â, and φ. However, we make the distinction between bacterial
and chemoattractant concentrations for the sake of distinguishing
between populations numerically, and also to simplify the analysis
once we introduce an approximation in Section 3.1.

To further ease numerical analysis, we nondimensionalize
model (2) as follows:

b = Nb̃; β = Nβ̃; a = Kã; α = K α̃; φ = Mφ̃; x = Lx̃,

where L is the domain length, and N , K , and M are large numbers
approximating the maximum size of the bacterial, chemoattrac-
tant, and nutrient concentrations, respectively. Here we assume
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that L = 20 cm, K = M ∼ 1014 cm−1 and N ∼ 108 cells cm−1. We

provide the details in the supplementary information, and similar

nondimensionalization techniques can be found in, e.g., [13]. After

nondimensionalization, the parameter values we use are those

given in Table 1. The natural dimensions (before nondimension-

alization) are included. All nondimensionalized rate parameters

have units s−1, and the spatial domain is the unit interval [0, 1].
For simplicity, we immediately replace the nondimensionalized
symbols b̃, β̃ , ã, α̃, φ̃, and x̃ with b, β , a, α φ, and x, respectively,

in the nondimensionalized system. The boundary conditions (3)

therefore become

∂y

∂x

∣

∣

∣

∣

x=0,1

= 0 (4)

for all y ∈ {b, β, a, α, φ}.
In the normalized domain, we assume the initial profile of

the externally added nutrient is near-uniform in the interior but

depleted by the bacteria on the endpoints. In particular, we choose

this profile to be given by the reflected sigmoid

φ(0, x) =
{

F (x − 0.1), 0 ≤ x ≤ 0.5,
F (0.9 − x), 0.5 < x ≤ 1

, (5)

where F (x) = φ0/(1+exp(−100x)) is a logistic function and φ0 is a

parameter. This profile is visualized in Fig S2 in the Supplementary

Material.

We choose all model parameters except κ based on those re-

ported in [4] and [5]. The model found in [4] assumes that nutrient

consumption is proportional to the bacterial density only, repre-

sented by the term −κb. Here, we model nutrient consumption

with amass action termproportional to the product of the bacterial

density and nutrient, −κbφ (cf. [2]). This consumption rate can be

viewed as an approximation of more detailed consumption terms,

such as the common Monod equation, and importantly requires

that both bacteria and nutrient be present in order for nutrient to

be consumed [24]. The consumption rate parameter used here is

therefore much smaller than that found in the literature.

2.2. Numerical results

Here we present simulation results of the two-population

Keller–Segel system (2), focusing on two robust behaviors of the

system. In each simulation, we initialize the system with the two

populations accumulated on opposite ends of the spatial domain.

We assume that sufficient time has passed so that the bacteria have

consumed the nutrient at the densely populated regions at the

ends of the domain so that the nutrient concentration is initially

distributed as the symmetric sigmoid function given by Eq. (5).

Without the nutrient, the bacterial populations would remain

accumulated at their respective ends of the domain, maintaining

a concentration of chemoattractant, and would not travel toward

each other. Before we present our main numerical results, we

briefly review the necessary condition on the Keller–Segel model

for pulse-like solutions to form.

To form andmaintain a coherent aggregation peak, which call a

pulse, the bacterial population size must exceed a critical thresh-

old [4]. If the cell density is too low, the secreted attractant cannot

accumulate fast enough to achieve the minimal concentration

required for other bacteria to sense it. The Keller–Segel model cap-

tures this phenomenon: cellular populations evolving according to

this model can only form a nontrivial pulse if the population size is

sufficiently large relative to model parameters [6,7,13,14]. Below

this critical threshold, the only solution is the uniform solution,

b = btot = constant, β = βtot = constant, and a = r(btot +
βtot )/δ. Model (2) in particular predicts that in order to maintain a

Fig. 1. Bacteria dynamics predicted by the Keller–Segelmodel with population size

below critical threshold (6). The two populations originating at opposite domain

boundaries initially move up the nutrient gradient toward each other but cannot

maintain pulse-like profiles. Here btot + βtot = 0.1, below the critical threshold of

b∗
tot + β∗

tot ≈ 0.24.

nontrivial pulse, the total amount of bacteria must be greater than
the critical threshold defined by [6]

b∗
tot + β∗

tot = Db[π2Da + δ]
rχa

. (6)

For the parameters in Table 1, this threshold is b∗
tot + β∗

tot ≈
0.24. The nutrient φ does not affect the asymptotic stability of the
uniform state because it vanishes at steady state. The presence
of nutrient can cause transient bacterial pulses to form, but the
system will always settle into the uniform state when the total
amount of bacteria is below the threshold specified in Eq. (6).

Fig. 1 shows an example of a simulation of model (2) when the
combined bacterial population size is less than threshold (6). The
two populations initially form pulses and move up the nutrient
gradient toward the center, but eventually lose their pulse-like
shapes and diffuse out to uniformly fill the spatial domain.

When the total amount of bacteria exceeds threshold (6), the
bacterial populations will asymptotically form a pulse along one or
both of the boundaries of the spatial domain. We will henceforth
only consider bacterial population sizes above this threshold.

We now present our primary numerical result. Figs. 2 and 3
show examples of two striking qualitatively distinct behaviors.
Both figures were generated by simulating model (2) with both
bacterial and chemoattractant concentrations initially distributed
at the one-population, external nutrient-free steady state (with b

and a accumulated along the left boundary and β and α along the
right). The simulations in the two figures differed only in the initial
bacterial population sizes, btot = βtot . In Fig. 2, btot = βtot = 3.2,
and the two bacterial populations move up the nutrient gradient
toward one another until they meet and combine into a single
pulse. Due to the overall symmetry of the initial conditions, the
pulse remains in the center of the domain for roughly ten times
longer than it took the pulses to reach the center. The combined
pulse eventually propagates to the left end of the domain, due
to small asymmetries in the initial conditions or numerical error;
noise would also be a factor in corresponding experiments. We
note that there is nothing special about the left end of the domain,
and that small perturbations to the initial conditions could result
in movement to the right end. In Fig. 3, btot = βtot = 4, and
the two populations again initially move up the nutrient gradient,
but eventually change direction and move backwards toward the
chemoattractant that is accumulated near the boundaries.
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Table 1

Parameters used in model (1). The values listed are the nondimensionalized values we use in our

simulations, though we list the corresponding pre-nondimensionaliziation units of each parameter in

the ‘‘Natural dimensions’’ column. Before the nondimensionalization procedure described above, all

parameters other than κ are based on those measured and fitted in [4] and [5].

Parameter Value Natural dimensions

Db Diffusivity of bacteria 0.001 cm2 s−1

Da Diffusivity of attractant 0.03 cm2 s−1

Dφ Diffusivity of nutrient 0.03 cm2 s−1

χa Chemotactic sensitivity to attractant 0.025 cm3 s−1

χφ Chemotactic sensitivity to nutrient 0.015 cm3 s−1

r Production rate of attractant by bacteria 0.05 cells−1 s−1

δ Natural decay rate of attractant 0.005 s−1

κ Consumption rate of nutrient by bacteria 0.001 (cells/cm)−1 s−1

φ0 Initial nutrient abundance parameter 20 Dimensionless

Fig. 2. Bacterial pulses combining under the dynamics of system (2) with boundary conditions (4) and initial bacterial population size btot = βtot = 3.2. (A) Snapshots of the

bacterial profiles at different times. The arrows indicate direction of motion. By t = 25, the two populations have combined and begun moving toward the left boundary.

(B) The positions of the peaks of the bacterial pulses over time. The visualized time period only includes an early window after the pulses combine, excluding the long pause

before the two peaks eventually move to the left end of the domain. See Fig S3 in the Supplementary Material for visualization of the chemoattractant and nutrient profiles.

Fig. 3. Bacterial pulses turning around under the dynamics of system (2) with boundary conditions (4) and initial bacterial population size btot = βtot = 4. (A) Snapshots of

the bacterial profiles at different times. Arrows indicate direction of motion. (B) The positions of the peaks of the bacterial pulses over time. See Fig S4 in the Supplementary

Material for visualization of the chemoattractant and nutrient profiles.

Though the distinction between these outcomes results from
a change in the bacterial population size, we note that we can
produce similar results by changing other model parameters. For
example, if we start from conditions that result in the two popu-
lations combining, reducing the initial abundance of the nutrient
results in both populations turning around (data not shown).

We seek to understand possible mechanisms of these distinct
outcomes. We observe that both the combining outcome and the
turnaround outcome can be characterized by the relative position
of the center ofmass of the two bacterial populations: if the centers
of mass coalesce, then the two populations have combined; if
they change direction and approach the opposite boundaries of
the domain, then the two populations have turned around. In the
following section, we use a simple approximation to the spatial
profile of each population to derive a system of ordinary differen-
tial equations (ODEs) describing the dynamics of the size, center

of mass, and variance of the spatial profile of each bacterial pulse.
By tracking information about these critical characteristics in an
ODE setting, we can much more efficiently explore and generate
predictions about parameter-dependence of solution behavior.

3. Moment closure

3.1. Gaussian approximation to the spatial distribution yields an ODE

model

Here we consider the temporal dynamics of the spatial mo-
ments of the bacterial, chemoattractant, and nutrient distributions.
Because the pulse–pulse interaction occurs in the interior of the
spatial domain, we are concerned with transient behavior of the
bacteria away from the spatial boundaries. We therefore remove
boundary effects by considering the spatial domain (−∞, ∞).
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Table 2

System variables and parameters (dimensionless) used in model (8).

Variable Initial condition

b0, β0 Total bacteria 3.2 or 4

a0, α0 Total chemoattractant rb0/δ

φ0 Total nutrient 35

µb, µβ Center of mass of bacteria 0,1

µa, µα Center of mass of chemoattractant 0,1

µφ Center of mass of nutrient 0.5

σ 2
b , σ 2

β Variance of the bacteria profile 0.005

σ 2
a , σ 2

α Variance of the chemoattractant profile 0.2

σ 2
φ Variance of the nutrient profile 0.1

Parameter Value

Db Diffusivity of bacteria 10−5

Da Diffusivity of attractant 0.0002

Dφ Diffusivity of nutrient 0.0002

χa Chemotactic sensitivity to attractant 0.00025

χφ Chemotactic sensitivity to nutrient 0.0002

r Production rate of attractant by bacteria 0.05

δ Natural decay rate of attractant 0.005

κ Consumption rate of nutrient by bacteria 0.001

The ith moment of population s ∈ {b, β, a, α, φ} is defined as

si(t) =
∫ ∞

−∞
xis(t, x)dx,

for i = 0, 1, . . . For each of the five populations s, the quantity s0
is interpreted as the total amount of s in the system, µs := s1/s0 is
the location of the center of mass of s, and σ 2

s := s2/s0 − (s1/s0)
2

is the variance of the profile of s. Differentiating s0, µs, and σ 2
s ,

for s ∈ {b, β, a, α, φ}, with respect to time provides a system of
ordinary differential equations describing the temporal dynamics
of these variables. For example, the differential equation governing
the dynamics of b0 is

ḃ0 =
∫ ∞

−∞

∂

∂t
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=
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∣
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−∞
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(7)

and that of µb is

µ̇b = d

dt
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]

= 1

b0

[

0 − Dbb
∣

∣

∞
−∞ + χa〈bax〉 + χφ〈bφx〉

]

= χa〈bax〉 + χφ〈bφx〉
b0

,

where 1/b0 factors out because b0 is a constant by (7), the boundary
terms are zero by assumption, and

〈fg〉 =
∫ ∞

−∞
f (x)g(x)dx.

Similarly, differentiating each of the remaining variables produces
the following system of fifteen ordinary differential equations:

ḃ0 = 0

ȧ0 = rb0 − δa0

β̇0 = 0

α̇0 = rβ0 − δα0

φ̇0 = −κ〈bφ〉 − κ〈βφ〉

µ̇b = χa〈bax〉 + χa〈bαx〉 + χφ〈bφx〉
b0

µ̇a = rb0

a0
(µb − µa)

µ̇β = χa〈βax〉 + χa〈βαx〉 + χφ〈βφx〉
β0

µ̇α = rβ0

α0

(µβ − µα)

µ̇φ = − κ
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φ0

(〈xβφ〉 − µφ〈βφ〉)

σ̇ 2
b = 2Db + 2

× χa〈(x − µb)bax〉 + χa〈(x − µb)bαx〉 + χφ〈(x − µb)bφx〉
b0

σ̇ 2
a = 2Da + rb0
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(

σ 2
b − σ 2
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β = 2Db + 2

× χa〈(x − µβ )βax〉 + χa〈(x − µβ )βαx〉 + χφ〈(x − µβ )βφx〉
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σ̇ 2
α = 2Da + rβ0
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(

σ 2
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α + (µβ − µα)
2
)
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σ 2
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2βφ〉

)

.

(8)

Unless otherwise specified, the parameter values used are those
found in Table 2. These values are based on those used in the
Keller–Segelmodel (2), thoughwemust rescale chemotactic sensi-
tivity anddiffusivity tomaintain similar effects of these parameters
on the lengthened spatial scale. The corresponding parameters
used in the ODE model (8) are consequently smaller than their
counterparts in the PDE model (2).

The nonlinearities within the Keller–Segel model (2) naturally
result in mixed moments in system (8). We seek a method of
moment closure that does not sacrifice important aspects of the
system, namely the pulse-like shape of each population. To this
end, we assume that each populationmaintains a Gaussian profile;
that is,

s(t, x) = s0(t)

σs(t)
√

π
exp

(−(x − µs(t))
2

σ 2
s (t)

)

. (9)

We note that while we could have chosen as our approximation
any function that is pulse-like, such as sech(x), our choice of a
Gaussian distribution allows us to explicitly evaluate each integral
that appears in system (8).

3.2. Stability of uniform state

We begin our analysis of the approximate model (8) by con-
sidering the stability of uniform solutions. A foundational result
for the original one-population Keller–Segel model (1) is its ability
to explain bacterial pulse formation as a Turing instability of the
uniform state. In particular, the size of the bacterial population
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Fig. 4. Phase plane of system (11) describing steady states of the Gaussian approximation model. (A) The bacterial size b0 = 0.008 is below the critical threshold b∗
0 .

Trajectories approach the σ 2
a -nullcline (red) and then both σ 2

a and σ 2
b tend to infinity. (B) The bacterial population size b0 = 0.012 is above the critical threshold b∗

0 . The

left-most equilibrium point is a stable node (green dot). The right-most equilibrium point is a saddle (red dot), the stable manifold of which is shown as the green curve. To

the left of this stable manifold, trajectories tend toward the stable node, and the bacteria consequently form a pulse. To the right of the manifold, trajectories tend to infinity,

and the bacteria diffuse out to the uniform solution. Arrows in both panels indicate the direction of flow and the black dots indicate representative initial conditions . (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

must exceed threshold (6) in order for the bacteria to form and
maintain a pulse. To show that system (8) reproduces this result,
we consider the b-asubsystem of (8), namely

ḃ0 = 0

ȧ0 = rb0 − δa0

µ̇b = χa〈bax〉 + χa〈bαx〉 + χφ〈bφx〉
b0

µ̇a = rb0

a0
(µb − µa)

σ̇ 2
b = 2Db

+ 2
χa〈(x − µb)bax〉 + χa〈(x − µb)bαx〉 + χφ〈(x − µb)bφx〉

b0

σ̇ 2
a = 2Da + rb0

a0

(

σ 2
b − σ 2

a + (µb − µa)
2
)

The differential equation for µa indicates that we must have
µb = µa at any equilibrium point, but the specific value of these
two variables is arbitrary (in other words, the bacterial and chem-
ical pulse must accumulate around the same spatial coordinate,
but that coordinate can be anywhere). We therefore introduce the
relative coordinate µ = µb − µa. Under this transformation,
imposing assumption (9) and evaluating the integrals remaining
in the b-a-subsystem in (8) produces

ḃ0 = 0

ȧ0 = rb0 − δa0

µ̇ =
[ −2χaa0√

π (σ 2
b + σ 2

a )
3/2

exp

( −µ2

σ 2
b + σ 2

a

)

− rb0

a0

]

µ

σ̇ 2
b = 2Db − 2

χaa0σ
2
b√

π (σ 2
b + σ 2

a )
5/2

(

σ 2
b + σ 2

a − 2µ2
)

exp

( −µ2

σ 2
b + σ 2

a

)

σ̇ 2
a = 2Da + rb0

a0
(σ 2

b − σ 2
a + µ2).

(10)

From the first twoequations, any fixedpoint of this systemmust
satisfy a∗

0 = rb∗
0/δ, where b∗

0 is a constant. Since the term inside the
brackets in theµ equation is strictly negative, any fixed pointmust
also satisfy µ = 0. The remaining two-variable system is

σ̇ 2
b = 2

(

Db − χarb
∗
0σ

2
b√

πδ(σ 2
b + σ 2

a )
3/2

)

σ̇ 2
a = 2Da + δ(σ 2

b − σ 2
a ).

(11)

The generic cases of the nullclines for system (11) are plotted in
Fig. 4. In Fig. 4A, the total amount of bacteria is b0 = 0.01 and the
system contains no fixed points. The variance of both populations
blows up to infinity as time gets large for any initial condition; that
is, the bacterial population will always diffuse out into a uniform
state if the population size is too low. In Fig. 4B, b0 is increased to
0.012, and two fixed points exist: a stable node and a saddle point.
The stable equilibrium point is analogous to the pulse solution
of system (1): the bacterial population and its chemoattractant
accumulate around the same center of mass (µ = µb − µa = 0)
with a small variance around this point. Starting with a variance in
the bacterial population that is too large (that is, to the right of the
separatrix of the saddle point), however, results in the variance of
both populations increasing without bound. This case is analogous
to the system converging to the uniform solution, and so model
(10) is generically bistable when b0 is above a critical threshold.

Fig. 5 shows the saddle-node bifurcation as a function of b0, the
total amount of bacteria. We can explicitly calculate the critical
value of b0 at which the bifurcation occurs as a function of model
parameters. The nullclines of system (11) intersect when

Db − χarb0σ
2
b√

πδ(2σ 2
b + 2Da/δ)3/2

= 0,

or equivalently,

(σ 2
b )

3 +
(

3
Da

δ
− χ2

a r
2b20

8πδ2D2
b

)

(σ 2
b )

2 + 3D2
a

δ2
σ 2
b + D3

a

δ3
= 0. (12)

When

3
Da

δ
− χ2

a r
2b20

8πδ2D2
b

= −15

4

Da

δ
, (13)

Eq. (12) can be written
(

σ 2
b − 2

Da

δ

)2 (

σ 2
b + Da

4δ

)

= 0,

and therefore Eq. (13) is the condition for when the two positive
roots of (12) coalesce. This condition gives us the critical bifurca-
tion value for b0,

b∗
0 = Db

√
54πDaδ

rχa

. (14)

If b0 > b∗
0, then Eq. (12) has two roots and a stable pulse solution of

system (10) exists, and if b0 < b∗
0, then the equation has no roots

and the uniform state is the only asymptotic solution of the system.
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Fig. 5. Bifurcation diagram of system (11). The green curve corresponds to the σ 2
b

coordinate of the stable node, and the red dashed curve corresponds to the σ 2
b

coordinate of the saddle point. The σ 2
b coordinate of the saddle point increases

rapidly with b0 , and consequently the separatrix in Fig. 4 gets pushed farther to

the right, promoting pulse formation . (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

Comparison to the critical value of btot in the Keller–Segel system

(1),

btot = Db(π
2Da + δ)

rχa

,

shows that a change in any of the model parameters for (10)

produces the same qualitative effect on the critical value as in the

PDE system (1) (e.g., increasingDb increases the critical valuewhile

increasing r lowers the value), though the critical value scales

differently in Da and δ.

3.3. Numerical simulations of system (8)

As with model (2), we will henceforth only consider regimes

under which the bacterial population maintains a size above the

critical threshold b∗
0 and can therefore sustain a pulse. We further

assume symmetric initial conditions, with b0(0) = β0(0) and

a0(0) = α0(0), and that µb(0) = µa(0) = 0, µφ(0) = 0.5, and

µβ (0) = µα(0) = 1. Two example outcomes of simulations of

model (8) demonstrating the observed outcomes from the Keller–

Segel model (2) are shown in Figs. 6 and 7. The only difference

between the two simulations is bacterial population sizes, b0(t) =
b0(0) and β0(t) = β0(0), which we assume are much greater than

the critical threshold b∗
0 in order to guarantee a robust pulse. In

Fig. 6, b0(0) = β0(0) = 3.2 and the two populations combine and

remain stationary after combination. This is in contrast with Fig. 2,

in which the combined population moved toward the left end of

the domain. System (8) is on the spatial domain (−∞, ∞), how-

ever, such that the combined population does not have a boundary

to travel toward and remains stationary once the centers ofmass of

the twobacterial populations and their respective chemoattractant

densities coalesce. In Fig. 7, b0(0) = β0(0) = 4, and the two

populations turn around. The parameters chosen in both simula-

tions are those in Table 2. The results shown in Figs. 6 and 7 are

consistent with the results from simulations of the Keller–Segel

model (2): increasing the initial amount of nutrient causes the

bacteria to switch from a regime in which they turn around to one

in which they combine (please compare to Figs. 2 and 3). We note

that while we have assumed that the two population profiles are

initially symmetric in size and width, small asymmetries do not

affect the qualitative transient behavior (results not shown).

3.4. Mechanism for turnaround

Our simulations confirm that a change to the population sizes
can cause a change in the outcome of the bacterial interaction in
our simplified model, just as an analogous change caused varied
outcomes in the PDE model. Variations in other parameters and
initial conditions, such as the diffusivity of themedium in the chan-
nel and the initial abundance of nutrient, can have similar effects
on the behavior of the bacterial pulses. In considering whether a
bacterial population turns around, we are particularly concerned
with the behavior of the center of mass of the population, µb. One
significant advantage ofmodel (8) over the two-population Keller–
Segel model (2) in this regard is that model (8) explicitly includes
the time derivative of this center of mass and thus allows us to
separately consider the effects that the chemotactic attraction to
the chemoattractant and to the nutrient have on its motion.

For example, consider the differential equation for µb, which is

µ̇b = χa〈bax〉 + χa〈bαx〉 + χφ〈bφx〉
b0

= − 2χaa0(µb − µa)√
π (σ 2

b + σ 2
a )

3/2
exp
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2

σ 2
b + σ 2

a

)

= − 2χaα0(µb − µα)√
π (σ 2

b + σ 2
α )

3/2
exp

(−(µb − µα)
2

σ 2
b + σ 2

α

)

= − 2χφφ0(µb − µφ)√
π (σ 2

b + σ 2
φ )

3/2
exp

(

−(µb − µφ)
2

σ 2
b + σ 2

φ

)

,

(15)

where each of the three terms in the sum on the right hand side of
(15) can be interpreted, in order, as the rate of change in position
of the center of mass of b due to its own chemoattractant, due to
the other population’s chemoattractant, and due to the nutrient.
If we denote the distance between the center of mass of the
bacterial pulse b and that of any of the attracting substances by x

and the sum of the variances of the bacterial population and the
same substance by y, then the rate of change of µb due to that
substance is of the form (x/y3/2) exp(−x2/y). Thus, if the centers
of mass of the bacterial pulse and an attractant lie at the same
position, then the bacterial population experiences no chemotactic
pull due to that attractant. If the distance between the pulses is
large, the chemotactic pull is exponentially small but nonzero.
The chemotactic attraction is maximized with respect to distance
x when the two pulses are a small but nonzero distance away
from one another. For small variances, the two pulses must be
very close in order to provide a large chemotactic attraction. This
makes sense, since if both populations are accumulated in very
tight pulses, the overlap between the two will be minimal, and
consequently the chemical gradient sensed by the bacteria will be
small. If the variance of either population is large, however, then
even if the distance between the two pulses is large, the pulses
can overlap nontrivially, and the bacteria will be attracted up the
chemical gradient.

Since we assume that µb(0) = µa(0) = 0, µφ(0) = 0.5, and
µβ (0) = µα(0) = 1, we have that µ̇b(0) > 0 and µ̇a(0) = 0.
The center of mass of the bacteria is therefore generically ahead
(with respect to the direction ofmotion) of the center ofmass of the
chemoattractant for early time. We can now apprehend the mech-
anism that allows for the bacteria to turn around: the bacteria are
attracted inward toward the nutrient and the second population’s
chemoattractant and outward by their own chemoattractant. If the
outward attraction becomes stronger than the inward attraction,
then the bacteria will turn around.

Upon inspecting Eq. (15), it is clear that the chemotactic pull
toward any given substance is related to the chemotactic sensitiv-
ity to the substance (χa and χφ), the distance between the center
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Fig. 6. Bacterial pulses combine under the dynamics of system (8). The two populations move toward one another up the nutrient gradient until they collide and combine

to form a single pulse. The bacterial population sizes were b0(0) = β0(0) = 3.2. (A) Snapshots of the bacterial spatial profiles at different times, given by (9). The arrows

indicate direction ofmotion. (B) The positions of the peaks of the bacterial pulses over time. See Fig S5 in the SupplementaryMaterial for visualization of the chemoattractant

and nutrient profiles.

Fig. 7. Bacterial pulses turn around under the dynamics of system (8). The two populations initially move toward one another up the nutrient gradient but later change

direction and move back toward their own accumulated chemoattractant. The bacterial population sizes were b0(0) = β0(0) = 4. (A) Snapshots of the bacterial spatial

profiles (9) at different times. The arrows indicate direction of motion. (B) The positions of the peaks of the bacterial pulses over time. See Fig S6 in the Supplementary

Material for visualization of the chemoattractant and nutrient profiles.

of mass of the bacterial population and that of the substance, the

variance of the pulse of the substance, and the total amount of the

substance present. Since the latter three quantities are dynamic

variables, direct analysis of their effects on the transient behavior

of µb is not viable. Instead, we consider the effects of parameters

related to the dynamics of these variables.

3.5. Capturing turnaround

Our goal in studying system (8) is to determine parameter

conditions under which the two populations combine and those

under which they turn around. Straightforward analysis of sys-

tem (8) reveals that, asymptotically, µb = µβ ; that is, the two

bacterial pulses will always combine in large time, in contrast

to solutions of the Keller–Segel model (2). We therefore must

take care in deciding what qualifies as a turnaround in model (8).

One possible condition is that µ̇b(t1) = 0 and µ̇β (t2) = 0 for

some times t1 and t2 (indicating that the centers of mass of both

populations have changed direction). However, this condition is

not sufficient to determine when the populations turn around and

move away from one another. Fig. 8 shows an example where both

populations quickly turn around but shortly thereafter turn back

around and combine. Though the center ofmass of each population

does change direction in this example, the overall outcome is not

compatiblewith turnaround observed in simulations of the Keller–

Segel model, in which the two populations accumulate along

Fig. 8. False turnaround. The vertical dashed line marks a turnaround in the center

of mass of both populations, but the populations combine together a short time

later.

opposite ends of the domain. We therefore adopt a more robust

but subjective criterion for turnaround.

To arrive at this criterion, we first consider the equation defin-

ing the dynamics between the two bacterial pulses in system (8),

say µbβ = µb − µβ with the additional assumption that µb = µa

and µβ = µα . The latter assumption allows us to study the pulse–

pulse interaction without the influence of transient behavior. The
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differential equation governing the dynamics of µbβ is then

µ̇bβ =
(

− 2χarβ0

δ
√

π (σ 2
b + σ 2

α )
3/2

exp

(

−µ2
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σ 2
b + σ 2
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δ
√

π (σ 2
β + σ 2

a )
3/2

exp

(

−µ2
bβ

σ 2
β + σ 2

a

))

µbβ .

Note that the chemotactic attraction of a bacterial population
decays exponentially with the distance between the center of
mass of the bacteria and that of the chemoattractant. Thus, if
the two bacterial populations are sufficiently far apart, then the
chemotactic pull from each pulse of chemoattractant to the more
distant bacterial population is negligible, and the populations can
separately approach ameta-stable state: each population develops
into its own pulse-like structure, subject to only an exponentially
small effect from the other population’s chemoattractant. This
state is intuitively consistent with the outcome of the Keller–Segel
model in which the two bacterial populations accumulate along
the boundaries of the domain. In asymptotic time, the two pop-
ulations will combine, but the farther apart the two populations
are, the longer it will take for the combination to occur. Once the
populations do become sufficiently close, however, the relative ef-
fect that each population experiences from the other population’s
chemoattractant becomes nontrivial, and they combine together
relatively quickly. We hence reason that if the two populations
have not combined after a large but finite amount of time, they
must be in a meta-stable non-combined state. We therefore take
as our condition for turnaround that the centers of mass of the two
populations are distinct after a large amount of time; that is, that
|µb(tc) − µβ (tc)| > ǫ for some small, fixed distance ǫ at some large
time t = tc .

We must take care in choosing values for ǫ and tc . For instance,
to establish a boundary between the turnaround outcome and the
combination outcome, we must choose ǫ small enough so that the
two populations will quickly combine if their center of masses are
ǫ apart. We determine through numerical simulation that when
the distance between the center of masses reaches ǫ = 0.1, that
distance decreases monotonically and quickly. Similarly, we must
choose tc large enough to guarantee that the system has in fact
reached a meta-stable state and to avoid a false turnaround, as
illustrated in Fig. 8. Fig. 9 shows the time t = tc at which the two
populations will be ǫ = 0.1 apart over varied parameter values
based on direct simulations. In each panel, the curve defines a
boundary. For example, if φ0(0) is to the right of the curve in the
first panel, then the two populations will be ǫ apart sooner than tc .
In each case, the curve becomes very steepnear a critical parameter
value. Consequently, as long we choose tc sufficiently large that
the boundary curve is approximately vertical at t = tc , our choice
will not have much impact on the parameter value that defines
our boundary. Guided by this reasoning, we choose to take as our
condition for turnaround that the centers of the two populations
are ǫ = 0.1 units away from one another at time tc = 500.

To apply this condition, we solve a modification of system
(8) as a boundary value problem (BVP) with boundary condition
|µb − µβ | = ǫ = 0.1 at time t = tc = 500. To satisfy all boundary
conditions, we must consider one of the pertinent parameters as a
stationary variable, as in [25]. For example, to determine the effect
ofχa on the transient behavior,we include thedifferential equation
χ̇a = 0 in the BVP system. We then use the continuation software
AUTO to solve this BVP across values of the selected parameter [26].
The solution curve in parameter space defines a boundary between
regions in which our model predicts that the bacteria turn around
and in which it predicts that they combine.

Fig. 10 shows the results of solving this boundary value prob-
lem. In this figure, we denote the equal size of the two bacterial

populations by N0 := b0 = β0, the diffusivity of the bacteria by
D = Db, and we assume that Da = Dφ = 20×D. Each panel shows
a given parameter space divided into two regions. Parameter pairs
chosen from the gray region in each panel represent a regime
in which the two bacterial populations turn around; parameters
chosen from thewhite region correspond to a regime inwhich they
combine. These figures provide a picture of the relative contribu-
tions of the parameters considered. For example, Fig. 10A shows
that if the bacterial population size is increased, thenmore nutrient
is needed to induce the bacterial populations to combine. This is
easy to understand: if the bacterial populations are larger, then
they produce more chemoattractant, and the outward attraction
toward the bacteria’s own chemoattractant will be stronger, such
that combination requires a stronger inward attraction toward the
nutrient.

Fig. 10B and C are more subtle. Increasing D can be interpreted
as, for example, decreasing the viscosity of the medium in which
the bacteria are suspended, thereby increasing the diffusivity of the
bacterial and chemical populations. Fig. 10B shows that the higher
the diffusion rate, the less initial nutrient is necessary to cause
the bacterial population to combine. For too fluid of a medium,
the chemoattractant of both populations spreads quickly across
the spatial domain to reach the other population. This results in
a mutual attraction of both populations toward one another, and
the nutrient is no longer needed to pull both populations inward.
Fig. 10C similarly shows that in order for the two populations
to turn around when diffusivity is high, they need a large initial
population size, which provides a large initial supply of chemoat-
tractant. We note that this result only holds for small diffusivity.
For diffusivity sufficiently large, both bacterial populationswill not
be able to maintain a pulse-like shape and will simply diffuse out.

Fig. 10D shows the chemotactic sensitivity of the bacteria to-
ward the chemoattractant, χa, versus the sensitivity toward the
nutrient, χφ . While these parameters are unlikely to change nat-
urally, this figure is easily interpreted and agrees with intuition:
a strong attraction toward the nutrient will always result in the
bacterial populations being pulled quickly inward and combining.
If the attraction toward the chemoattractant is sufficiently high
relative to the attraction toward the nutrient, then the bacteriawill
be pulled strongly outward toward the previously accumulated
chemoattractant located closer to its initial position and hence the
pulses will turn around.

Fig. 10A and D agree with the results of the PDE model (2),
visualized in Figs. 2 and 3: increased population size increases the
likelihood of the two populations turning around.While we do not
visualize the results of the PDE model for any other parameter,
we confirmed by direct simulation that for the PDE model, the
transitions in dynamics observed by analogous parameter changes
(increases or decreases) agree with those shown in Fig. 10.

4. E. coli dynamics in vitro

Now thatwe have shown that ourmathematicalmodel predicts
several distinct spatiotemporal behaviors, we consider the types of
bacterial motion seen in a corresponding experimental setting.

4.1. Experimental methods

Wild type Escherichia coli (E. coli) RP437, expressing either
yellow fluorescent protein (YFP) or red fluorescent protein (td-
Tomato) from a medium copy number plasmid (pZA) under the
control of the constitutive λ-Pr promoter, were grown in M9
minimal medium supplemented with 1 g/l casamino acids, and
4 g/l glucose (M9CG) at 30 ◦C until early exponential growth
phase (Optical Density at 600 nm (OD600 nm) = 0.1) [27]. The
cultures were then centrifuged for 5 min at 10,000 rpm, and
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Fig. 9. Dependence of time to combine on model parameters. For the centers of mass of the two bacterial populations to be ǫ = 0.1 space units apart at time t, the

parameter on the horizontal axis must take the value specified by the curve. Sensitivity of the time to combine, tc , on each parameter considered decreases once tc exceeds

some quantitative threshold. Similar figures for parameters N0 and D not shown.

Fig. 10. Boundaries in parameter space between combination (white) and turnaround (gray). The criterion for combination is µb − µβ = 0 before t = 500. Whenever a

parameter is not varied, the common bacterial population size N0 = 3, while D = 10−5 , χa = 0.00025, χφ = 0.0002, and φ0(0) = 35.

resuspended in fresh M9CG medium at an OD600 nm = 0.3. Each
of the bacterial cultures was loaded onto one end of a set of ∼2 cm
long, thin channels (800 µm wide, 20–25 µm deep) fabricated
in polydimethylsiloxane (PDMS) and adhered to a microscope
glass slide (Fig. 11). The channels were pre-filled with fresh M9CG
medium. The bacteria on both ends of the channel were allowed
to migrate into the channel. The channel was then sealed on
both ends with an epoxy glue to prevent any flow through the
channel during observations. This method was successfully used
in a previous study [4], and the absence of a flow was confirmed
by adding latex beads to the medium and observing their motion
to verify that it is diffusive. The sample was then mounted onto
an inverted microscope (Zeiss Axiovert 40 CFL), and the bacteria
were observed at room temperature (∼ 22 ◦C) in fluorescence
mode using a 2.5× objective. Shortly after sealing the channel
ends (∼10 - 20 min), a sharp accumulation peak appeared at each
end of the channel. The peaks are due to cell–cell signaling, likely
via the secretion of and attraction to glycine (see Fig S1 in the
Supplementary Material). These peaks then proceeded to advance
as a pulse toward the center of the channel following a nutrient

gradient created by the bacterial nutrient consumption at the
densely populated ends (for more details about this phenomenon
see for example [3–5]). When the two pulses were ∼4 mm away
from each other, their dynamics were recorded, each population in
its corresponding fluorescence colors, at a rate of 1 image/9 s using
a charge-coupled device (CCD) camera (ProgressMF, Jenoptik). The
fluorescence profile reflecting the bacterial concentration along
the channel was measured using ImageJ (NIH). For each of the
examples presented in Video Sets 1-4, the fluorescence intensity is
depicted in units of themaximalmeasured fluorescence at thepeak
of the concentration and the background was subtracted for better
comparison. Note that due to technical limitations of imaging that
prevent us from acquiring larger images, Movie Sets 1-4 display
only a ∼ 3.5 mm long section of the channel where the two
populationsmeet. The integral of the fluorescence intensity profile
over the whole range is therefore changing primarily due to new
bacteria entering the frame, less so due to bacterial reproduction.
Under the experimental conditions used here (culture medium
being M9CG and incubation temperature being ∼ 22 ◦C) the
reproduction rate of the bacteria is about once every 2 h, whereas
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Fig. 11. The experimental setup: a set of narrow channels (800 µm ×20 µm),

2 cm long, microfabricated with polydimethyl-siloxane (PDMS) using the common

techniques [3] and adhered to a microscope slide by plasma cleaning, while leaving

both ends open for loading the bacteria. After the bacteria are loaded on both ends,

the ends of the channels are sealed via epoxy glue.

the tracking of bacterial positions occurred over periods of less
than one hour (e.g., Fig. 12).

4.2. Experimental results

Two bacterial cultures, each expressing a different color fluo-
rescent protein (red or yellow), were loaded onto opposite ends
of a long narrow channel filled with M9CG medium (Fig. 11). The
bacteria were then observed via fluorescence microscopy at low
magnification (2.5×) to allow visualization of collective behavior.
Our observations reveal that each bacterial population initially
accumulates near the end of the channel forming a sharp concen-
tration peak. Each concentration peak then proceeds to propagate
as a pulse toward the center of the channel. Subsequently, as
predicted by the model, two possible outcomes were observed
(Fig. 12A–B). In the first, the two populations combine and either
move together toward one end of the channel (Fig. 12A, observed
in three out of seventeen experiments) or stay at the collision
location, while their accumulation peak reduces in amplitude and
widens gradually by diffusion (data not shown, observed in seven
out of seventeen experiments). In the second case (Fig. 12B), the
two populations’ peaks never meet; rather, they approach each
other initially and then turn around, with each moving toward
the end of the channel where it originated (observed in seven
out of seventeen experiments). Additional visualization of these
behaviors is provided in the Video Sets 1-4.

While it appears that the initial position of the centers ofmass of
the bacterial populations differs between Fig. 12A and B, this is not
the case and is due to recording limitations. In each experiment,
the bacterial populations travel a similar distance before they
enter the 3.5 mm section of the channel being recorded, and the
asymmetry between initial position in this frame is only due to
small differences in arrival time.

5. Discussion

In this paper, we studied the interaction of bacterial pulses
in a one-dimensional nutrient gradient. We presented numerical
results showing that the classic Keller–Segel model for bacterial
chemotaxis predicts that two bacterial populationsmoving toward
one another in a nutrient gradient can change direction and move
back in the directions from which they came, rather than continu-
ing toward each other to combine into one unified population. To
facilitate analysis of the transient and global dynamics of the sys-
tem, we developed a system of ordinary differential equations ap-
proximating the spatiotemporal dynamics of the spatial moments
of each bacterial population and associated attractants represented

in the Keller–Segel model. Our approximation eases the explo-
ration of effects of parameter variation on population dynamics.
After verifying that the approximate model agrees qualitatively
with the Keller–Segel model, we defined a condition on model
parameters that determineswhether the bacterial populationswill
combine or turn around, then develop and numerically solve a
boundary value problem to find the boundary between these two
outcomes in various parameter spaces. We end by presenting ex-
perimental results that show that two populations of E. coli behave
according to the predictions of our model when moving toward
one another in a long channel.

Our results leave us with predictions about the mechanisms by
which the E. coli populations manage to turn around and move
away from each other and the nutrient gradient. Model (8) shows
that the center of mass of a bacterial population is generically
between the center of mass of its chemoattractant and that of the
nutrient early in the experiment. This relationship allows the bac-
teria to turn around if the outward attraction toward the chemoat-
tractant becomes stronger than the inward attraction toward the
nutrient. Outward attraction can overcome inward attraction in a
number of ways. For example, if the amount of nutrient between
the bacterial populations is small, it is likely to yield a small at-
tractive gradient and hence the bacteria will turn back toward the
chemoattractant. Our model predicts that if the medium in which
the bacteria are suspended is too fluid, then the two bacterial
populations will likely combine, because the chemoattractant will
spread across the spatial domain, removing the driver of the direc-
tion reversal. Variations in the total amount of available nutrient
or fluidity of the medium can therefore lead to qualitative changes
in the behavior of the bacteria.

We note here that both the PDE and ODE models can pro-
duce the turnaround behavior with only a single population. The
turnaround behavior occurs when the outward attraction of the
chemoattractant gradient overcomes the inward attraction of the
nutrient gradient, and a second population is not necessary to
achieve this outcome. However, the two-population scenario elu-
cidates that turnaround can still happen despite the additional
inward pull of the second population’s chemoattractant and alter-
ation of the nutrient gradient, and also captures the combination
outcome.

The systematic predictions made by our approximate system
agree qualitatively with specific simulations of the Keller–Segel
model. Figs. 2 and 3 provide particular examples in which increas-
ing the bacterial population sizes causes the bacterial pulses to
switch from a combination outcome to a turnaround outcome.
Similarly, increasing the diffusivity of all three populations results
in the bacterial populations combining (results not shown). More-
over, we compare the nutrient and chemoattractant profiles from
the Keller–Segel model and our approximate system in Figs S3–
S6 in the Supplementary Material S1_Text. The figures show that
our approximate system preserves key symmetries observed in
simulations of the Keller–Segel model and qualitatively match the
profiles from the full PDE model. This agreement suggests that our
Gaussian approximation system represents a reasonable source of
predictions to be tested experimentally.

Seven out of the seventeen experimental trials resulted in the
two populations combining then gradually diffusing out. In con-
trast, pulses formed in both the Keller–Segel model (2) and our
approximated model (8) remain formed for all time. This discrep-
ancy is a result of simplifying assumptions inmodel (2). To produce
chemoattractant, E. coli require a source of nutrition: in the absence
of a nutrient, the bacteriawill stop producing chemoattractant, and
consequently any pulse formed will simply diffuse out [28]. Model
(2), and consequently the approximated model (8), assumes that
chemoattractant production is proportional to only the bacteria,
not to the nutrient concentration. This is a common assumption
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Fig. 12. Experimental results. Example curves showing the position of the centers of mass of the two bacterial pulses throughout their interaction in two cases: combining

andmoving together to the left (A), and turning around and eachmoving back toward its original end of the channel (B); note that the left end is at x = 0 and right is at x = 1.

The position of each pulse’s center of mass was calculated using the 10% densest (highest fluorescence intensity) region for each color bacterium. The error bars represent

the standard deviation of the center of mass. The horizontal axis depicts the position scaled between 0 and 1, where 0 is the left end of the channel and 1 is the right end,

separated by 3.5 mm from each other. Movies of the experiments and the fluorescence intensity profiles are provided in Video Sets 1-4 . (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

that greatly simplifies the analysis of pulse formation [5,6,13].
On the other hand, including nutrient-dependent chemoattractant
production, as in the chemotaxis models found in [7,29], repro-
duces the experimentally observed outcome inwhich the bacterial
pulse eventually diffuses out, after consuming the nutrient past a
critical threshold. Because the time necessary for the bacteria to
consume the nutrient past this threshold is longer than the time
necessary for the two pulses to either combine or turn around, our
analytical results describe the transient behavior of the biological
system while nutrient is abundant, and the omission of nutrient-
dependent chemoattractant production in themodel is reasonable.

Our analysis of the two-population system assumes that both
bacterial populations are of equal size. This assumption reduces
the number of free parameters but might be unrealistic, as pop-
ulation size could vary between the two populations during an
experiment. Simulations of system (8) with unequal but similar
population sizes agree qualitatively with those presented in this
paper, and the various forms of dynamics we observed therefore
do not result from a perfect symmetry in the populations. We
also omitted stochastic effects that would be present experimen-
tally. We speculate that such stochasticity would greatly reduce
the delay between the combining of pulses and the onset of the
drift of the combined pulse arising in our simulations (Fig. 2),
presumably representing a manifestation of metastability, but not
in experiments (Fig. 12). Moreover, we note that despite the delay
between combination and drift of the pulses in our simulations, the
combined pulse moves as fast as the single pulses once it begins
moving away from the center, in agreement with the experiments.

Our approximate ODE system and the method used to derive
it provide an efficient and tractable framework for analyzing the
transient dynamics of complex systems. A similar analysis was
conducted in [30], in which the authors used singular perturbation
techniques to derive a Lotka–Volterra-like ODE competitionmodel
between invasive bacteria and host leukocytes from a Keller–
Segel system adapted to model the inflammatory response due
to bacterial infection. The resulting system allowed the authors
to conduct an analysis of global behavior as a function of model
parameters but removed all spatial aspects of the system. Our
approximation preserves the spatial dimension by considering the
temporal dynamics of the key quantities that characterize spatial
features of our model populations.

There are several open directions related to this study. On the
experimental side, our model yields several predictions about how
the outcome of the pulse interaction experiments is expected to
depend on aspects of the experimental set-up, such as nutrient
concentration and medium viscosity. Future experiments can be
used to test these predictions and to guide amore accurate quanti-
tative tuning of our model, which would in turn lead to more pre-
cise predictions. On the theoretical side, a natural extension would

be to explore other, more quantitatively accurate approximations
to the population distributions. While the bacteria maintains a
Gaussian pulse-like distribution in the Keller–Segel model, the
chemoattractant and nutrient populations do not necessarily do
the same, especially as the two populations interact. One could
impose a different assumption on the distributions of the chemical
concentrations, the results of which could be important in under-
standing details of transient behaviors. Similarly, the experimental
set-up discussed in this paper did not allow for measurement of
nutrient profiles, and it would also be of interest to explore the
effects of different initial nutrient distributions on the bacterial dy-
namics that emerge. Our heuristic approximation could also easily
be applied as a method of moment closure for other spatiotempo-
ral models whose nonlinearities make parameter exploration and
transient analysis tedious or impossible. Care must be taken when
approximating a pulse by a Gaussian distribution, however. In [4]
and [5], the bacterial pulses observed were asymmetrical, making
a Gaussian a bad fit. In such cases, the spatial profiles can be ap-
proximated using parameterized non-Gaussian functions allowing
one to derive ODE systems for profile parameters, but the added
asymmetry would likely forfeit the analytical advantage of being
able to compute the integrals in system (8). Finally, it would be
interesting to apply our Gaussian approximationmethod to a two-
dimensional Keller–Segel model and explore transient dynamics,
asymptotic states, and pattern formation. Our methods could also
be used or extended for the study of bacterial interactions in other
spatial domains or scenarios, perhaps taking into account changing
environmental conditions.
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