
Graph Sketching Against Adaptive Adversaries
Applied to the Minimum Degree Algorithm

Matthew Fahrbach∗, Gary L. Miller†, Richard Peng∗, Saurabh Sawlani∗. Junxing Wang† and Shen Chen Xu‡
∗School of Computer Science, Georgia Institute of Technology, Atlanta, USA

Email: matthew.fahrbach@gatech.edu, rpeng@cc.gatech.edu, sawlani@gatech.edu
†School of Computer Science, Carnegie Mellon University. Pittsburgh, USA

Email: glmiller@cs.cmu.edu, junxingw@cs.cmu.edu
‡Facebook, Menlo Park, USA
Email: shenchex@cs.cmu.edu

Abstract—Motivated by the study of matrix elimination
orderings in combinatorial scientific computing, we utilize
graph sketching and local sampling to give a data structure
that provides access to approximate fill degrees of a matrix
undergoing elimination in polylogarithmic time per elimination
and query. We then study the problem of using this data
structure in the minimum degree algorithm, which is a widely-
used heuristic for producing elimination orderings for sparse
matrices by repeatedly eliminating the vertex with (approx-
imate) minimum fill degree. This leads to a nearly-linear
time algorithm for generating approximate greedy minimum
degree orderings. Despite extensive studies of algorithms for
elimination orderings in combinatorial scientific computing,
our result is the first rigorous incorporation of randomized
tools in this setting, as well as the first nearly-linear time
algorithm for producing elimination orderings with provable
approximation guarantees.

While our sketching data structure readily works in the
oblivious adversary model, by repeatedly querying and greed-
ily updating itself, it enters the adaptive adversarial model
where the underlying sketches become prone to failure due
to dependency issues with their internal randomness. We show
how to use an additional sampling procedure to circumvent this
problem and to create an independent access sequence. Our
technique for decorrelating interleaved queries and updates to
this randomized data structure may be of independent interest.

I. INTRODUCTION

Randomization has played an increasingly fundamental
role in the design of modern data structures. The current
best algorithms for fully-dynamic graph connectivity [28],
[29], shortest paths [1], graph spanners [4], maximal match-
ings [32], and the dimensionality-reductions of large ma-
trices [24], [26] all critically rely on randomization. An
increasing majority of these data structures operate under
the oblivious adversary model, which assumes that updates
are generated independently of the internal randomness used
in the data structure. In contrast, many applications of data

This document is an extended abstract which has neither full proofs
nor our full set of results. Readers are strongly encouraged to read
the full version of the paper [12] instead, which can be found at
https://arxiv.org/abs/1804.04239.

structures are adaptive—meaning that subsequent updates
may depend on the output of previous queries. A classical
example of this paradigm is the combination of greedy al-
gorithms with data structures, including Dijkstra’s algorithm
for computing shortest paths and Kruskal’s algorithm for
finding minimum spanning trees. The limitations imposed
by adaptive adversaries are beginning to receive attention in
the dynamic connectivity [29] and spanner [5] literature, but
even for these problems there remains a substantial gap be-
tween algorithms that work in the adaptive adversary model
and those that work only against oblivious adversaries [25].
Motivated by a practically important example of adaptive

invocations to data structures for greedy algorithms, we
study the minimum degree algorithm for sparse matrix
factorization and linear system solving [10]. This heuristic
for precomputing an efficient pivot ordering is ubiquitous
in numerical linear algebra libraries that handle large sparse
matrices, and relies on a graph-theoretic interpretation of
Gaussian elimination. In particular, the variables and nonze-
ros in a linear system correspond to vertices and edges in a
graph, respectively. When the variable associated with vertex
u is eliminated, a clique is induced on the neighborhood
of u, and then u is deleted from the graph. This heuristic
repeatedly eliminates the vertex of minimum degree in this
graph, which corresponds to the variable with the fewest
nonzeros in its row and column.
Computing elimination orderings that minimize the num-

ber of additional nonzeros, known as fill, has been shown to
be computationally hard [30], [34], even in parameterized
settings [7], [23]. However, the practical performance of
direct methods has greatly benefited from more efficient
algorithms for analyzing elimination orderings [3], [9]. Tools
such as elimination trees [17] can implicitly represent fill in
time that is nearly-linear in the number of original nonzeros,
which allows for efficient prediction and reorganization of
future computation and, more importantly, memory band-
width. In contrast to the abundance of algorithms built
on examining elimination orderings via implicit representa-
tion [21], [31], surprisingly little attention has been given to

���

�����*&&&���UI�"OOVBM�4ZNQPTJVN�PO�'PVOEBUJPOT�PG�$PNQVUFS�4DJFODF

��������������������¥�����*&&&
%0*���������'0$4�����������

producing elimination orderings implicitly. In the survey by
Heggernes et al. [20], the authors give an O(n2m) algorithm
for computing a minimum degree ordering, which is more
than the cost of Gaussian elimination itself and significantly
more than the nearly-linear time algorithms for analyzing
such orderings [17].

Main Results: We begin our study by combining
implicit representations of fill with graph sketching. The
nonzero entries of a partially eliminated matrix can be
represented as the set of vertices reachable within two hops
in a graph that undergoes edge contractions [17]. This allows
us to incorporate ℓ0-sketches [8], which were originally
developed to estimate the cardinality of reachable sets of
vertices in directed graphs. By augmenting ℓ0-sketches with
suitable data structures, we obtain the following result for
dynamically maintaining fill structure.

Theorem 1. Against an oblivious adversary, we can
maintain (1 ± ϵ)-approximations to the degrees of the
graph representation of a matrix undergoing elimination in
O(log3 nϵ−2) per operation.

We also give an exact version of this data structure for
cases where the minimum degree is always small (e.g.,
empirical performance of Gaussian elimination on grid
graphs [6]). Ignoring issues of potential dependent random-
ness, the approximation guarantees of this data structure
provide us with an ordering that we call an approximate
greedy minimum degree ordering, where at each step a vertex
whose degree is close to the minimum is pivoted. It is
unclear if such an ordering approximates a true minimum
degree ordering, but such guarantees are more quantifiable
than previous heuristics for approximating minimum degree
orderings [2], [20].
However, using this randomized data structure in a greedy

manner exposes the severe limitations of data structures that
only work in the oblivious adversary model. The updates
(i.e. the vertices we eliminate) depend on the output to pre-
vious minimum-degree queries, and hence its own internal
randomness. The main result in this paper is an algorithm
that uses dynamic sketching, as well as an additional routine
for estimating degrees via local sampling, to generate an
approximate greedy minimum degree sequence in nearly-
linear time against adaptive adversaries.

Theorem 2. Given an n× n matrix A with nonzero graph
structure G containing m nonzeros, we can produce a
(1 + ϵ)-approximate greedy minimum degree ordering in
O(m log5 nϵ−2) time.

Techniques: Several components of our algorithm are
highly tailored to the minimum degree algorithm. For ex-
ample, our dynamic sketches and local degree estimation
routine depend on the implicit representation of intermediate
states of Gaussian elimination [17]. That said, our underly-
ing randomized techniques (e.g., ℓ0-sketches [8] and wedge

sampling [11]) are new additions to combinatorial scientific
computing.
The primary focus of this paper is modifying the guar-

antees in the oblivious adversary model from Theorem 1 to
work within a greedy loop (i.e. an adaptive adversary) to give
Theorem 2. However, we do not accomplish this by making
the queries deterministic or worst-case as in [5], [28], [29].
Instead, we use an external randomized routine for estimat-
ing fill degrees to create a fixed sequence of updates. The
randomness within the sketching data structure then becomes
independent to the update sequence, but its internal state
is still highly useful for determining which vertices could
have approximate minimum degree. We then efficiently
construct the update sequence using recent developments for
randomized graph algorithms that use exponential random
variables [27]. Our use of sketching can also be viewed as
a pseudodeterminstic algorithm whose goal is to efficiently
recover a particular sequence of vertices [13], [18]. We
believe that both of these views are valuable to the study
of randomness and for better understanding the relationship
between oblivious and adaptive adversaries.

Organization: In Section II we formalize the implicit
representation of fill and variants of minimum degree order-
ings. In Section III we give an overview of our results, along
with a brief description of the algorithms and techniques we
employ. The use of sketching and sampling to obtain our
exact and approximate algorithms are given in Section IV
and Section V, respectively. We also detail our derandom-
ization routine in Section V, which is crucial for using our
randomized data structure against an adaptive adversary. In
Section VI we demonstrate how to estimate fill degrees via
local sampling, and in Section VII we show how to maintain
sketches as vertices are pivoted.

II. PRELIMINARIES

A. Gaussian Elimination and Fill Graphs
Gaussian elimination is the process of repeatedly elim-

inating variables from a system of linear equations, while
maintaining an equivalent system on the remaining variables.
Algebraically, this involves taking an equation involving a
target variable and subtracting (a scaled version of) this
equation from all others involving the target variable. We
assume throughout the paper that the systems are symmetric
positive definite (SPD) and thus the diagonal will remain
positive, allowing for any pivot order. This further implies
that we can apply elimination operations to columns in
order to isolate the target variable, resulting in the Schur
complement.
A particularly interesting fact about Gaussian elimination

is that the numerical Schur complement is unique irrespec-
tive of the pivoting order. Under the now standard assump-
tion that nonzero elements do not cancel each other out [15],
this commutative property also holds for the combinatorial
nonzero structure. By interpreting the nonzero structure of a

���

symmetric matrix A as an adjacency matrix for a graph G,
we can define the change to the nonzero structure of A as
a graph-theoretic operation on G analogous to the Schur
complement.
Our notation extends that of Gilbert, Ng, and Peyton [17],

who worked with known elimination orderings and treated
the entire fill pattern (i.e. additional nonzeros entries) stat-
ically. Because we work with partially eliminated states,
we will need to distinguish between the eliminated and
remaining vertices in G. We implicitly address this by letting
x and y denote eliminated vertices and by letting u, v, and
w denote remaining vertices. The following definition of a
fill graph allows us to determine the nonzero structure on
the remaining variables of a partially eliminated system.

Definition 1. The fill graph G+ = (V +, E+) is a graph on
the remaining vertices such that the edge (u, v) ∈ E+ if u
and v are connected by a (possibly empty) path of eliminated
vertices.

This characterization of fill means that we can read-
ily compute the fill degree of a vertex v, denoted by
deg+(v) = |N+(v)|, in a partially eliminated state without
explicitly constructing the matrix. We can also iteratively
form G+ from the original graph G by repeatedly removing
an eliminated vertex x along with its incident edges, and
then adding edges between all of the neighbors of x to form
a clique. This operation gives the nonzero structure of the
Schur complement.

Lemma 1. For any graph G = (V,E) and vertex v ∈ V ,
given an elimination ordering S we can compute deg+(v)
at the step when v is eliminated in O(m) time.

This kind of path finding among eliminated vertices adds
an additional layer of complexity to our data structures. To
overcome this, we contract eliminated vertices into their con-
nected components (with respect to their induced subgraph
in G), which leads to the component graph.

Definition 2. We use G◦= (V ◦
comp, V

◦
rem, E

◦) to denote the
component graph. The set of vertices in V ◦

comp is formed by
contracting edges between eliminated vertices, and the set
of vertices that have not been eliminated is V ◦

rem. The set of
edges E◦ is implicitly given by the contractions.

Note that G◦ is quasi-bipartite, as the contraction rule
implies there are no edges between vertices in V ◦

comp. It will
be useful to refer to two different kinds of neighborhoods in
a component graph. For any vertex v in G◦, let N◦

rem(v) be
the set of neighbors of v are in V ◦

rem, and let N◦
comp(v) denote

the neighbors of v that are in V ◦
comp. We also use the notation

deg◦rem(v) = |N◦
rem(v)| and deg◦comp(v) = |N◦

comp(v)|.

B. Minimum Degree Orderings
The minimum degree algorithm is a greedy heuristic

for reducing the cost of solving sparse linear systems that

repeatedly eliminates the variable involved in the fewest
number of equations [15]. Although there are many situ-
ations where this is suboptimal, it is remarkably effective
and widely used in practice. For example, the approximate
minimum degree algorithm (AMD) [2] is a heuristic for
generating minimum degree orderings that plays an integral
role in the sparse linear algebra packages in MATLAB,
Mathematica, and Julia.
For any elimination ordering (u1, u2, . . . , un), we let Gi

be the graph with vertices u1, u2, . . . , ui marked as elim-
inated and ui+1, ui+2, . . . , un marked as remaining. We
denote the corresponding sequence of fill graphs by
(G+

0 , G
+
1 , . . . , G

+
n), where G+

0 = G and G+
n is the empty

graph. Throughout the paper, we frequently use the notation
[n] = {1, 2, . . . , n} when iterating over sets.

Definition 3. A minimum degree ordering is an elimination
ordering such that for all i ∈ [n], the vertex ui has minimum
fill degree in G+

i−1. Concretely, this means deg+i−1(ui) =
minv∈V +

i−1
deg+i−1(v).

The data structures we use for finding the vertices with
minimum fill degree are randomized, so we need to be care-
ful to not introduce dependencies between different steps of
the algorithm when several vertices are of minimum degree.
To avoid this problem, we require that the lexicographically-
least vertex be eliminated in the event of a tie.
Our notion for approximating a minimum degree ordering

is based on finding a vertex at each step whose degree is
close to the minimum in G+

t , which is the goal of the AMD
algorithm. This decision process has no lookahead, and thus
does not in any way approximate the minimum possible total
fill incurred during Gaussian elimination, which is known to
be NP-complete [34].

Definition 4. A (1+ϵ)-approximate greedy minimum degree
ordering is an elimination ordering such that at each step i ∈
[n], we have deg+i−1(ui) ≤ (1 + ϵ)minv∈V +

i−1
deg+i−1(v).

III. OVERVIEW

We discuss the main components of our algorithms in
three parts: sketching fill graphs, dealing with adaptive
adversaries using decorrelation, and local estimation of fill
degrees. Lastly, we explain the implications of our results to
the study of algorithms for computing elimination orderings.

A. Dynamically Sketching Fill Graphs

The core problem of estimating fill degrees can be viewed
as estimating the cardinality of sets undergoing unions and
deletion of elements. To see this connection, assume for
simplicity that no edges exist between the remaining vertices
in the component graph G◦. Split each remaining vertex u
into two vertices u1 and u2, and replace every edge (u, x)
to a component vertex x by the directed edges (u1, x) and
(x, u2). The fill degree of u is the number of remaining

���

vertices v2 reachable from u1 (not including u1). Cohen [8]
developed a nearly-linear time size-estimation framework
for reachability problems using sketching and ℓ0-estimators.
Adapting this framework to our setting for fill graphs leads
to the following kind of ℓ0-sketch data structure. We refer
to the set N(u) ∪ {u} as the 1-neighborhood of u, and we
call its cardinality deg(u) + 1 the 1-degree of u.

Definition 5. A 1-neighborhood ℓ0-sketch of a graph G is
constructed as follows:
1) Each vertex u ∈ V independently generates a random

key R(u) uniformly from [0, 1).
2) Then each vertex determines which of its neighbors

(including itself) has the smallest key. We denote this
by MINIMIZER(u)

def
= argminv∈N(u)∪{u} R(v).

To give some intuition for how sketching is used to
estimate cardinality, observe that choosing keys indepen-
dently and uniformly at random essentially assigns a random
vertex N(u)∪{u} to be MINIMIZER(u). Therefore, the key
value R(MINIMIZER(u)) is correlated with deg(u)+1. This
correlation is the cornerstone of sketching. If we construct
k = Ω(log nϵ−2) independent sketches, then by concentra-
tion we can use an order statistic of Ri(MINIMIZER(u)) over
all k sketches to give an ϵ-approximation of deg(u)+1 with
high probability.
To maintain sketches of the fill graph as it undergoes

vertex eliminations, we first need to implicitly maintain the
component graph G◦ (Lemma 10). We demonstrate how to
efficiently propagate key values in a sketch as vertices are
pivoted in Section VII. For now, it is sufficient to know that
each vertex in a sketch has an associated min-heap that it
uses to report and update its minimizer. Because eliminating
vertices leads to edge contractions in the component graph,
there is an additional layer of intricacies that we need to
resolve using amortized analysis.
Suppose v is the vertex eliminated as we transition from

G◦
t to G◦

t+1. The sketch propagates this information to
relevant vertices in the graph using a two-level notification
mechanism. The neighbors of v are informed first, and then
they notify their neighbors about the change, all the while
updating the key values in their heaps. While this algorithm
is relatively simple, bounding its running time is nontrivial
and requires a careful amortized analysis to show that the
bottleneck operation is the merging of component vertices.
We demonstrate the working of this two-level notification
algorithm for pivoting vertices along with its performance
bounds in Section VII.

B. Correlation and Decorrelation
We now discuss how we use the randomized sketching

data structure within a greedy algorithm. We start with a
simple concrete example to illustrate a problem that an
adaptive adversary can cause. Consider a data structure that
uses sketching to estimate the cardinality of a subset S ⊆ [n]

under the insertion and deletion of elements. This data
structure randomly generates a subset of keys T ⊆ [n] such
that |T | = Θ(log nϵ−2), and it returns as its estimate the
scaled intersection n·|S ∩ T | /|T |, which is guaranteed to be
within an ϵn-additive error of the true value |S| by Chernoff
bounds, assuming that T is generated independently of S.

Clearly this cardinality-estimation algorithm works in the
oblivious adversary model. However, an adaptive adversary
can use answers to previous queries to infer the set of secret
keys T in O(n) updates and queries. Consider the following
scheme in Figure 1 that returns S = T .

1) Initialize S = [n].
2) For each i = 1 to n:

a) Delete i from S. If the estimated size of S
changed, reinsert i into S.

3) Return S.

Figure 1: An adaptive routine that amplifies the error of a
cardinality-estimation scheme using a fixed sketch.

While the updates performed by a greedy algorithm are
less extreme than this, in the setting where we maintain
the cardinality of the smallest of k dynamic sets, having
access to elements in the minimizer does allow for this kind
of sketch deduction. Any accounting of correlation (in the
standard sense) also allows for worst-case kinds of adaptive
behavior, similar to the scheme above.
To remove potential correlation, we use an external rou-

tine that is analogous to the local degree-estimation algo-
rithm used in the approximate minimum degree algorithm
and runs in time close to the degree it estimates. In this
simplified example above, suppose for each cardinality query
that the data structure first regenerates T . Then the proba-
bility that i belongs to S is Θ(log nϵ2/n). Stepping through
all i ∈ [n], it follows that the expected number of deletions
is Θ(log nϵ−2), and hence S remains close to size n with
high probability.
Reinjecting randomness is a standard method for decor-

relating a data structure across steps. However, if we extend
this example to the setting where we maintain the cardinality
of k sets (similar to our minimum degree algorithm), then
the previous idea requires that we reestimate the size of
every set to determine the one with minimum cardinality. As
a result, this approach is prohibitively expensive. However,
these kinds of cardinality estimations are actually local—
meaning that it is sufficient to instead work with a small
and accurate subset of candidates sets. If we compute the
set with minimum cardinality among the candidates using an
external estimation scheme, then this decision is independent
of the random choice of T in the sketching data structure,
allowing us to use the sketching data structure to generate
the list candidates.
Our algorithm for generating an approximate greedy min-

���

imum degree ordering relies on a similar external routine
called ESTIMATEFILL1DEGREE(u, ϵ), which locally esti-
mates the fill 1-degree of u at any step of the algorithm in
time proportional to deg(u) in the original graph. We further
describe this estimator in Section III-C and present the full
sampling algorithm in Section VI. In Section V we show
that to generate an approximate greedy minimum degree
sequence, it is instead sufficient to pivot the remaining vertex

argmin
u∈V +

(
1 − ϵ · Exp(1)

log n

)
· ESTIMATEFILL1DEGREE (u)

at each step, where Exp(1) is drawn from an exponential
distribution. We call this the ϵ-decayed minimum over all
external estimates.
Analogous to our example of set cardinality estimation

above, evaluating the degrees of every remaining vertex
using ESTIMATEFILL1DEGREE at each step is expensive
and leads to a total cost of Ω(nm). However, we can use
the sketching data structure and the following observations
about the perturbation coefficient to sample a small number
of candidate vertices that contains the ϵ-decayed minimum.

• For a set of vertices whose degrees are within 1 ±
ϵ/ log n of each other, it suffices to consider O(1)
of them by generating the highest order statistics of
exponential random variables in decreasing order.

• By the memoryless property of the exponential distri-
bution, if we call ESTIMATEFILL1DEGREE, then with
constant probability it will be for the vertex we pivot.
Thus, we can charge the cost of these evaluations to the
original edges and retain a nearly-linear running time.

Invoking ESTIMATEFILL1DEGREE only on the candidate
vertices allows us to efficiently find the ϵ-decayed minimizer
in each step, which leads to the nearly-linear runtime as
stated in Theorem 2. The key idea is that any dependence
on the ℓ0-sketches stops after the candidates are generated,
since their degrees only depend on the randomness of an
external cardinality-estimation routine.

C. Local Estimation of Fill Degrees

A critical part of the approximate min-degree algorithm
is the ESTIMATEFILL1DEGREE function, which estimates
the fill 1-degree of a vertex u ∈ V + using fresh randomness
and O(deg(u) log2 nϵ−2) oracle queries to the component
graph G◦. At the beginning of [12, Section VI] we show how
to construct a (0, 1)-matrix A where each row corresponds
to a remaining neighborhood of a component neighbor of u.
The number of nonzero columns in A is equal to deg+(u).
Using only the following matrix operations (corresponding
to component graph oracle queries), we analyze the more
general problem of counting the number of nonzero columns
in a matrix.

• ROWSIZE(A, i): Returns the number of nonzero ele-
ments in row i of A.

• SAMPLEFROMROW(A, i): Returns a random column
index j from the nonzero entries of row i of A.

• QUERYVALUE(A, i, j): Returns the value of A(i, j).

D. Significance to Combinatorial Scientific Computing
Despite the unlikelihood of theoretical gains for solv-

ing linear systems by improved direct methods for sparse
Gaussian elimination, we believe our study could influence
combinatorial scientific computing in several ways. First,
we provide evidence for the nonexistence of nearly-linear
time algorithms for finding exact minimum degree orderings
by proving conditional hardness results. Our reduction uses
the observation that determining if a graph can be covered
by a particular union of cliques (or equivalently, that the
fill graph is a clique after eliminating certain vertices) is
equivalent to the orthogonal vectors problem [33]. Assuming
the strong exponential time hypothesis, this leads to a con-
ditional hardness of Ω(m4/3−θ) for computing a minimum
degree ordering. However, we believe that this result is
suboptimal and that a more careful construction could lead
to Ω(nm1−θ)-hardness.
On the other hand, advances in minimum degree al-

gorithms cannot be justified in practice solely by worst-
case asymptotic arguments. In general, nested dissection
orderings are asymptotically superior in quality to mini-
mum degree orderings [22]. Furthermore, methods based
on Krylov spaces, multiscale analysis, and iterative meth-
ods [14], [19] are becoming increasingly popular as they
continue to improve state-of-the-art solvers for large sparse
systems. Such advancements are also starting to be reflected
in theoretical works. As a result, from both a theoretical and
practical perspective, we believe that the most interesting
question related to minimum degree algorithms is whether or
not such sequences lead to computational gains for problems
of moderate size.

IV. SKETCHING TO COMPUTE DEGREES

In this section we show that if an ℓ0-sketch can efficiently
be maintained for a dynamic graph, then we can use the same
set of sketches at each step to find the vertex with minimum
fill degree and eliminate it. We explore the dynamic ℓ0-
sketch data structure for efficiently propagating key values
under pivots in detail in Section VII (and for now we
interface it via Theorem 5). This technique leads to improved
algorithms for computing the minimum degree ordering of
a graph, which we analyze in two different settings.
First, we consider the case where the minimum degree at

each step is bounded. In this case we choose a fixed number
of ℓ0-sketches and keep track of every minimizer of a vertex
over all of the sketch copies. Note that we can always use n
as an upper bound on the minimum fill degree.

Theorem 3. There is an algorithm DELTACAPPEDMINDE-
GREE that, when given a graph with a lexicographically-
first min-degree ordering whose minimum degree is always

���

bounded by ∆, outputs this ordering with high probability in
expected time O(m∆ log3 n) and uses space O(m∆ log n).

Second, we modify the algorithm to compute an approx-
imate minimum degree vertex at each step. By maintaining
Θ(log nϵ−2) copies of the ℓ0-sketch data structure, we are
able to accurately approximate the 1-degree of a vertex
using the (1− 1/e)-thorder statistic of the key values of its
minimizers. We use the following degree data structure to
abstract this idea, which when given an elimination ordering
directly leads to a nearly-linear time algorithm.

Theorem 4. There is a data structure ApproxDegreeDS
that supports the following methods:

• APPROXDEGREEDS PIVOT(u), which pivots a re-
maining vertex u.

• APPROXDEGREEDS REPORT(), which provides
balanced binary search tree (BST) containers
V1, V2, . . . , VB such that all the vertices in the bucket
Vi have 1-degree in the range [(1 + ϵ)i−2, (1 + ϵ)i+2].

The memory usage of this data structure is O(m log nϵ−2).
Furthermore, if the pivots are picked independently from the
randomness used in this data structure (i.e., we work under
the oblivious adversary model) then:

• The cost of all calls to APPROXDEGREEDS PIVOT is
bounded by O(m log3 nϵ−2).

• The cost of each call to APPROXDEGREEDS REPORT
is bounded by O(log2 nϵ−1).

A. Computing the Exact Minimum Degree Ordering
We first consider the case where the minimum degree

in each of the fill graphs G+
t is at most ∆. In this case,

we maintain k = O(∆ logn) copies of the ℓ0-sketch data
structure. By a coupon collector argument, any vertex with
degree at most ∆ contains all of its neighbors in its list of
minimizers with high probability. This implies that for each
t ∈ [n], we can obtain the exact minimum degree in G+

t

with high probability. Figure 2 briefly describes the data
structures we will maintain for this version of the algorithm.

Global Variables: graph G, degree cap ∆.
1) k, the number of sketches set to 10(∆+ 1)⌈log n⌉.
2) k independent ℓ0-sketch data structures

dynamic_sketch[1], . . . ,dynamic_sketch[k].
3) For each vertex u, a balanced binary search tree

minimizers[u] that stores MINIMIZERi(u) across
all i ∈ [k] ℓ0-sketches.

4) A balanced binary tree size_of_minimizers
on all vertices u with the key of u set to the number
of different elements in minimizers[u].

Figure 2: Global variables for the ∆-capped min-degree
algorithm DELTACAPPEDMINDEGREE.

Note that if we can efficiently maintain the data struc-
tures in Figure 2, then querying the minimum element

in size_of_minimizers returns the (lexicographically-
least) vertex with minimum degree. Theorem 5 demonstrates
that we can maintain the ℓ0-sketch data structures efficiently.

DELTACAPPEDMINDEGREE(G,∆)
Input: graph G = (V,E), threshold ∆.
Output: exact lexicographically-first min-degree ordering.
1) For each step t = 1 to n:

a) Set ut ← min(size_of_minimizers).
b) DELTACAPPEDMINDEGREE PIVOT(ut).

2) Return (u1, u2, . . . , un).

DELTACAPPEDMINDEGREE PIVOT(u)
Input: vertex to be pivoted u.
Output: updated global state.
1) For each sketch i = 1 to k:

a) (v1, v2, . . . , vℓ) ←
dynamic_sketch[i].PIVOTVERTEX(u),
the set of vertices in the i-th sketch whose
minimizers changed after pivoting out u.

b) For each j = 1 to ℓ:
i) Update the values corresponding to sketch i

in minimizers[vj].
ii) Update size_of_minimizers entry for

vj with the size of minimizers[vj].

Figure 3: Pseudocode for the exact ∆-capped min-degree
algorithm, which utilizes the global data structures for
DELTACAPPEDMINDEGREE defined in Figure 2.

Theorem 5. Given i.i.d. random variables R(v) associ-
ated with each vertex v ∈ V +

t , there is a data structure
DynamicSketch that, for each vertex u, maintains the
vertex with minimum R(v) among itself and its neighbors
in G+

t . This data structure supports the following methods:
• QUERYMIN(u), which returns MINIMIZER(u) for a

remaining vertex u in O(1) time.
• PIVOTVERTEX(u), which pivots a remaining vertex u

and returns the list of remaining vertices v whose value
of MINIMIZER(v) changed immediately after this pivot.

The memory usage of this data structure is O(m). Moreover,
for any choice of key values R(v):

• The total cost of all the pivots is O(m log2 n).
• The total size of all lists returned by PIVOTVERTEX

over all steps is O(m log n).

This theorem relies on intermediate data structures described
in Section VII, so we defer the proof until the end of that
section. Note that this DynamicSketch data structure will
be essential to all of our min-degree algorithms.
Now consider a sketch of G+ and a vertex u with degree

deg+(u) ≤ ∆. By symmetry of the R(v) values, each vertex
in N+(u) ∪ {u} is the minimizer of u with probability
1/(deg+(u) + 1). Therefore, if we maintain O(∆ logn)

���

independent ℓ0-sketches, we ensure that we have an accurate
estimation of the minimum fill degree with high probability.
The pseudocode for this routine is given in Figure 3.
We formalize the probability guarantees in Lemma 2 and
Lemma 3, which are a restatement of [8, Theorem 2.1].

Lemma 2. For all vertices u such that deg+(u) ≤ 2∆, we
have size_of_minimizers[u] = deg+(u)+1 with high
probability.

Lemma 3. For all vertices u with deg+(u) > 2∆, we have
size_of_minimizers[u] > ∆+1 with high probability.

B. Computing an Approximate Minimum Degree

To avoid bounding the minimum fill degree over all
steps, we modify the previous algorithm to obtain an
approximate min-degree vertex at each step. We reduce
the number of ℓ0-sketches and use the reciprocal of the
(1 − 1/e)-th order statistic to approximate the cardinality
size_of_minimizers[u] (and hence the 1-degree of u)
to obtain a nearly-linear time approximation algorithm.
There is, however, a subtle issue with the randomness

involved with this algorithm. A necessary condition for
the algorithm to succeed as intended is that the sketches
at each step are independent of the past decisions of the
algorithm. Therefore, we must remove all dependencies
between previous and current queries. In Section III-B we
demonstrate how correlations between steps can amplify. To
avoid this problem, we must decorrelate the current state
of the sketches from earlier pivoting updates to the data
structures. We carefully address this issue in Section V.
Instead of simply selecting a vertex with an approximate
min-degree, this algorithm instead requires access to all
vertices whose estimated degree is within a certain range
of values. Therefore, this approximation algorithm uses a
bucketing data structure, as opposed to the previous version
that outputs the vertex to be pivoted. Figure 4 describes the
global data structures for this version of the algorithm.

Global Variables: graph G, error tolerance ϵ > 0.
1) k, the number of sketches set to 50

⌈
log nϵ−2

⌉
.

2) k independent ℓ0-sketch data structures:
dynamic_sketch[1], . . . ,dynamic_sketch[k].

3) For each vertex u, a balanced binary search tree
minimizers[u] that stores MINIMIZERi(u) across
all i ∈ [k] ℓ0-sketches, and maintains the element in
minimizers[u] with rank ⌊k (1 − 1/e)⌋ .

4) A balanced binary tree quantile over all vertices
u whose key is the ⌊k (1 − 1/e)⌋-ranked element in
minimizers[u].

Figure 4: Global variables and data structures for
APPROXDEGREEDS, which returns (implicit) partitions of
vertices into buckets with ϵ-approximate degrees.

To successfully use fewer sketches, for a given ver-
tex u we estimate the cardinality of the set of its min-
imizers via its order statistics instead of using the exact
cardinality as we did before with the binary search tree
size_of_minimizers[u]. Exploiting correlations in the
order statistics of sketches is often the underlying idea
behind efficient cardinality estimation. In particular, we
make use of the following lemma, which is essentially a
restatement of [8, Propositions 7.1 and 7.2].

Lemma 4. Suppose that we have k copies of the ℓ0-sketch
data structure, for k = 50

⌈
log nϵ−2

⌉
. Let u be any vertex

such that deg(u) + 1 > 2ϵ−1, and let Q(u) denote the
⌊k (1 − 1/e)⌋-ranked key value in the list minimizers[u].
Then 1−ϵ

deg(u)+1 ≤ Q(u) ≤ 1+ϵ
deg(u)+1 with high probability.

This idea leads to a subroutine for providing implicit
access to all vertices with approximately the same degree.
This is critical for our nearly-linear time algorithm, and we
explain its intricacies in Section V. The pseudocode for this
subroutine is given in Figure 5.

APPROXDEGREEDS PIVOT(u)
Input: vertex to be pivoted, u.
Output: updated global state.
1) For each sketch i = 1 to k:

a) (v1, v2, . . . , vℓ) ←
dynamic_sketch[i].PIVOTVERTEX(u),
the set of vertices in the i-th sketch whose
minimizers changed after we pivot out u.

b) For each j = 1 to ℓ:
i) Update the values corresponding to sketch i

in minimizers[vj], which in turn updates
its ⌊k(1 − 1/e)⌋-ranked quantile.

ii) Update the entry for vj in quantile with
the new value of the ⌊k(1 − 1/e)⌋-ranked
quantile of minimizers[vj].

APPROXDEGREEDS REPORT()
Output: bucketing of the vertices by their fill 1-degrees.
1) For each i = 0 to B = O(log nϵ−1):

a) Set Vi to be the split binary tree in
quantile that contains all nodes with
⌊k(1 − 1/e)⌋-ranked quantiles in the range
[(1 + ϵ)−(i+1) , (1 + ϵ)−i].

2) Return (V1, V2, . . . , VB).

Figure 5: Pseudocode for the data structure that returns
pointers to binary trees containing partitions of the remain-
ing vertices into sets with ϵ-approximate degrees.

Observe that because 1-degrees are bounded by n, if we
call APPROXDEGREEDS REPORT then B = O(log nϵ−1)
with high probability by Lemma 4. Therefore, this data
structure can simply return pointers to the first element in

���

each of the partitions V1, V2, . . . , VB . Note that there will
be overlaps between the 1-degree intervals, so determining
which bucket contains a given vertex is ambiguous if its
order statistic is near the boundary of an interval.
An immediate corollary of Theorem 4 is that we can

provide access to approximate min-degree vertices for a
fixed sequence of updates by always returning an entry from
the first nonempty bucket.

Corollary 1. For a fixed ordering (u1, u2, . . . , un), we can
find (1 + ϵ)-approximate minimum degree vertices in each
of the intermediate states in O(m log3 nϵ−2) time.

V. GENERATING DECORRELATED SEQUENCES

In this section we present a nearly-linear time (1 + ϵ)-
approximate marginal min-degree algorithm. This algorithm
relies on degree approximation via sketching, as described
in Theorem 4. In particular, it uses the randomized data
structure ApproxDegreeDS, which provides access to
buckets of vertices where the i-th bucket contains vertices
with fill 1-degree in the range [(1 + ϵ)i−2, (1 + ϵ)i+2].

Theorem 6. The APPROXMINDEGREESEQUENCE algo-
rithm produces a (1 + ϵ)-approximate marginal min-degree
ordering in expected O(m log5 nϵ−2) time with high prob-
ability.

At each step of this algorithm, reporting any member of
the first nonempty bucket gives an approximate minimum
degree vertex to pivot. However, such a choice must not have
any dependence on the randomness used to get to this step,
and more importantly, it should not affect pivoting decisions
in future steps. To address this, we introduce an additional
layer of randomization that decorrelates the ℓ0-sketches and
the choice of vertices to pivot. Most of this section focuses
on efficiently decorrelating such sequences.
The pseudocode for APPROXMINDEGREESEQUENCE is

given in Figure 6. This algorithm makes use of the following
global data structures and subroutines.

• ApproxDegreeDS: Returns buckets of vertices with
approximately equal 1-degrees (Section IV-B).

• EXPDECAYEDCANDIDATES: Takes a sequence of val-
ues that are within 1 ± ϵ of each other, randomly
perturbs the elements, and returns the new (ϵ-decayed)
sequence (Section V-A).

• ESTIMATEFILL1DEGREE: Gives an ϵ-approximation to
the 1-degree of any vertex (Section VI).

Theorem 7. There is a data structure that maintains a
component graph G◦ under (adversarial) vertex pivots in
a total of O(m log2 n) time and supports the operation
ESTIMATEFILL1DEGREE(u, ϵ), which given a vertex u
and error threshold ϵ > 0, returns with high probability
an ϵ-approximation to the fill 1-degree of u by making
O(deg(u) log2 nϵ−2) oracle queries to G◦.

The most important part of this algorithm is arguably
the use of exponential random variables to construct a
list of candidates that is completely uncorrelated with the
randomness used to generate the ℓ0-sketches and the choice
of previous vertex pivots.

APPROXMINDEGREESEQUENCE(G, ϵ)
Input: graph G with n vertices, error ϵ.
Output: (1 + ϵ)-approximate min-degree sequence.
1) Set a smaller error ϵ̂ ← ϵ/Θ (log n).
2) Initialize the approximate degree reporting data

structure ApproxDegreeDS(G, ϵ̂).
3) For each t = 1 to n:

a) Compute buckets of 1-degrees (V1, . . . , VB)
← APPROXDEGREEDS REPORT().

b) Let imin be the min index of nonempty buckets.
c) Set candidates[t] ← ∅.
d) For each i = imin to B, perturb and

rank vertices by their approximate 1-degree,
candidates[t] ← candidates[t] ∪
EXPDECAYEDCANDIDATES (Vi, ϵ̂, i).

e) Trim candidates[t] so that its entries
(δu, u, i) satisfy (1 − δu) (1 + ϵ̂)i < (1 + ϵ̂)7 ·
min(δv,v,j)∈candidates[t] (1 − δv) (1 + ϵ̂)j .

f) Let ut be the vertex that is the minimizer
over all (δv, v, i) ∈ candidates[t] of
(1 − δv) ESTIMATEFILL1DEGREE (v, ϵ) .

g) APPROXDEGREEDS PIVOT (ut).
4) Return (u1, u2, . . . , un).

Figure 6: Pseudocode for the (1 + ϵ)-approximate marginal
minimum degree ordering algorithm.

A. Implicitly Sampling ϵ-Decayed Minimums

The key idea in this section is the notion of ϵ-decay, which
we use to slightly perturb approximate 1-degree sequences.
It is motivated by the need to decorrelate the list of vertices
grouped approximately by their 1-degree from previous
sources of randomness in the algorithm. In the following
definition, n is the number of vertices in the original graph
before pivoting and c1 > 1 is a constant.

Definition 6. Given (x1, x2, . . . , xk) ∈ Rk, we construct
the corresponding ϵ-decayed sequence (y1, y2, . . . , yk) by
independently sampling the exponential random variables
δi ∼ ϵ̂ · Exp(1), where ϵ̂ = ϵ/(c1 log n) as in line 1 in AP-
PROXMINDEGREESEQUENCE, and letting yi ← (1 − δi)xi.
We say that the ϵ-decayed minimum of (x1, x2, . . . , xk) is
the value min(y1, y2, . . . , yk).

Definition 7. Given an error ϵ > 0 and an ϵ-approximate
1-degree estimation routine ESTIMATE1DEGREE(G, u), an
ϵ-decayed minimum degree ordering is a sequence such that:
1) The vertex ut corresponds to the ϵ-decayed minimum

���

of ESTIMATE1DEGREE
(
G+

t−1, v
)
over all remaining

vertices v ∈ V +
t−1.

2) Graph G+
t is obtained after eliminating ut from G+

t−1.

Observe that the randomness of this perturbed degree
estimator is regenerated at each step and thus removes any
previous dependence. Next, we show that this adjustment is
a well-behaved approximation, and then we show how to
efficiently sample an ϵ-decayed minimum degree.

Lemma 5. Let Y be an ϵ-decayed minimum of
(x1, x2, . . . , xk). We have Y ≥ (1− ϵ)min (x1, x2, . . . , xk)
with high probability.

By the previous lemma, to produce a (1+ ϵ)-approximate
marginal minimum degree ordering, it suffices to compute
an ϵ-decayed minimum degree ordering. Specifically, at each
step we only need to find the ϵ-decayed minimum among the
approximate fill 1-degrees of the remaining vertices. It turns
out, however, that computing the approximate 1-degree for
each remaining vertex in every iteration is expensive, so we
avoid this problem by using EXPDECAYEDCANDIDATES on
each bucket of vertices to carefully select a representative
subset of candidates, and then we pivot out the minimizer
over all buckets. The pseudocode for this subroutine is given
in Figure 7, where we again let ϵ̂ = ϵ/(c1 log n) for some
constant c1 > 1. Next, we show that this sampling technique
is equivalent to finding the ϵ-decayed minimum over all
remaining vertices with high probability.

EXPDECAYEDCANDIDATES(S, ϵ̂,label)
Input: sequence S = (s1, s2, . . . , sk) whose values are
within a factor of (1+c2ϵ̂) of each other for some constant
c2 > 0, error ϵ̂, label corresponding to S.
Output: candidates for the ϵ-decayed minimum of S.

1) Sample order statistics from Exp(1) in decreasing
order until Xk

(i) ≥ Xk
(k) − c2:

(Xk
(k), X

k
(k−1), . . . , X

k
(k−m+1)) ←

SAMPLEDECREASINGEXPONENTIALS(k, c2).
2) For each i = 1 to m, let δi ← ϵ̂ ·Xk

(k−i+1).
3) Assign each δi to an random element sπ(i) in S

without replacement.
4) Return [(δ1, sπ(1),label), . . . , (δm, sπ(m),label)].

Figure 7: Pseudocode for generating an expected constant-
size list of candidates for the ϵ-decayed minimum of a
sequence of values that are within (1 + c2ϵ̂) of each other.

Note that the input sequence to EXPDECAYEDCANDI-
DATES requires that all its elements are within a factor of
(1 + c2ϵ̂) of each other. We achieve this easily using the
vertex buckets returned by APPROXDEGREEDS REPORT in
Section IV-B when ϵ̂ is the error tolerance. The next lemma
shows that the approximate vertex 1-degrees in any such
bucket satisfy the required input condition.

Lemma 6. For any bucket Vi of vertices returned by
APPROXDEGREEDS REPORT, there is a constant c2 > 0
such that all of the approximate 1-degrees are within a factor
of (1 + c2ϵ̂) of each other.

The most important part of EXPDECAYEDCANDIDATES
is generating the order statistics efficiently. In [12, Figure 9]
(SAMPLEDECREASINGEXPONENTIALS) we show how to
iteratively sample the variables Xk

(i) in decreasing order
using [12, Lemma 5.3]. This technique is critically important
for us because we only consider order statistics satisfying
the condition Xk

(k)− c2, which is at most a constant number
of variables in expectation.
Next, to show that our algorithm is correct, we must

prove that (1) the algorithm selects a bounded number of
candidates in expectation at each step, and (2) the true ϵ-
decayed minimum belongs to the candidate list. We analyze
both of these conditions in the following lemma.

Lemma 7. If x1, x2, . . . , xk are within a factor
of (1 + c2ϵ̂) of each other, then the ϵ-decayed
minimum is among the candidates returned by
EXPDECAYEDCANDIDATES((x1, x2, . . . , xk), ϵ̂, ·).
Furthermore, the expected number of candidates returned
is bounded by the constant ec2 .

We cannot simply work with the first nonempty bucket
because the randomness introduces a 1 ± ϵ perturbation.
Furthermore, the bucket containing the vertex with minimum
degree is dependent on the randomness of the sketches
(as discussed in Theorem 4). To bypass this problem we
inject additional, uncorrelated randomness into the algo-
rithm at each step to find O(1) candidates for each of the
O(log nϵ̂−1) buckets, which increases the number of global
candidates to O(log nϵ̂−1). Then in the penultimate step of
each iteration, before we compute the approximate 1-degrees
of candidate vertices (which is somewhat expensive), we
carefully filter the global list so that the global ϵ-decayed
minimum remains in the list with high probability.

Lemma 8. Let (δu, u, i) be the entry over all en-
tries (δv, v, j) ∈ candidates[t] that minimizes
(1 − δv) ESTIMATEFILL1DEGREE(v, ϵ). Then with high
probability we have (1 − δu) (1 + ϵ̂)i ≤
(1 + ϵ̂)7 min(δv,v,j)∈candidates[t] (1 − δv) (1 + ϵ̂)j .

Now that we have all of the building blocks for decorrela-
tion via ϵ-decayed minimums, we can prove the correctness
of the (1 + ϵ)-approximate marginal minimum degree algo-
rithm and bound its running time. Due to space constraints,
we defer the details of the proof to the full version [12,
Section 5.3].

VI. ESTIMATING THE FILL 1-DEGREE OF A VERTEX

This section discusses routines for approximating the fill
1-degree of a vertex in a partially eliminated graph. We

���

also show how to maintain the partially eliminated graph
throughout the course of the algorithm, which allows us
to prove Theorem 7. The partially eliminated graph we
use for degree estimation is the component graph G◦,
where connected components of the eliminated vertices are
contracted into single vertices called component vertices.
See Section II-A for a detailed explanation.
Our goal is to efficiently approximate the fill 1-degree of

a given remaining vertex u. By the definition of fill 1-degree
and the neighborhoods of component graphs, it follows that
deg+(u) + 1 = |{u} ∪ N◦

rem(u) ∪
⋃

x∈N◦
comp(u)

N◦
rem(x)|. In

other words, the fill 1-neighborhood of u is set of remaining
1-neighbors of u in the original graph in addition to the
remaining neighbors of each component neighbor of u.
This union-of-sets structure has a natural (0, 1)-matrix

interpretation, where columns correspond to remaining ver-
tices and rows correspond to neighboring component neigh-
borhoods of u (along with an additional row for the 1-
neighborhood of u). For each row i, set the entry A(i, j) = 1
if vertex j is in the i-th neighborhood set and let A(i, j) = 0
otherwise. The problem can then be viewed as querying for
the number of nonzero columns of A. Specifically, we show
how one can accurately estimate fill 1-degrees using the
following matrix queries:

• ROWSIZE(A, i): Return the number of nonzero ele-
ments in row i of A.

• SAMPLEFROMROW(A, i): Returns a column index j
uniformly at random from the nonzero entries of row i
of A.

• QUERYVALUE(A, i, j): Returns the value of A(i, j).
The main result in this section is the follow matrix sampler.

Lemma 9. The algorithm ESTIMATENONZEROCOLUMNS
uses the three operations above that takes as input (implicit)
access to a matrix A and an error ϵ, and returns an ϵ-
approximation to the number of nonzero columns in A with
high probability. The expected total number of operations
used is O(r log2 nϵ−2), where r is the number of rows and n
is the number of columns in A.

Before analyzing this matrix-based estimator, we verify
that Lemma 9 can be used in the graph-theoretic setting to
prove Theorem 7. We use the following tools for querying
degrees and sampling neighbors in a component graph.

Lemma 10. We can maintain a component graph under
vertex pivots in a total time of O(m log2 n). Additionally,
this component graph data structure grants O(log n) time
oracle access for:

• Querying the state of a vertex.
• Querying the component or remaining neighborhood

(and hence degree) of a vertex.
• Uniformly sampling a remaining neighbor of a compo-

nent or remaining vertex.
• Uniformly sampling a random component vertex.

Lemma 9 and Lemma 10 directly imply Theorem 7, which
allows us to efficiently estimate the fill 1-degrees of vertices
throughout the algorithm. Once again, we refer the reader
to the full version [12, Section 6 and 7] for the proofs of
Lemmas 9 and 10.

VII. MAINTAINING GRAPHS UNDER PIVOTS
In this section we discuss how to maintain a dynamic

1-neighborhood sketch (described in Definition 5) of a fill
graph undergoing vertex eliminations to prove Theorem 5.
Since the minimum key value R(v) in the 1-neighborhood
of a vertex continually changes, we track the minimizer of
a vertex via an eager-propagation routine that informs the
neighbors of a pivoted vertex about its minimum key and
propagates key values throughout the graph as needed.
In Figure 8 we list the data structures used to achieve this.

We give the high-level pseudocode for the core subroutines
PIVOTVERTEX, MELD, and INFORMREMAINING.

1) A set V ◦
rem containing the remaining vertices.

2) A set V ◦
comp containing the component vertices.

3) For each x ∈ V ◦
comp, a corresponding min heap

remaining[x] that contains the key values R(v)
of its remaining neighbors v ∈ N◦

rem(x).
4) For each u ∈ V ◦

rem, a min heap fill[u] that
contains the union of remaining[x].MIN() for
each component vertex x ∈ N◦

comp(u), as well as
the key values of the vertices in N◦

rem(u).

Figure 8: Data structures needed to maintain G◦ and an ℓ0-
sketch of G+ under vertex pivots.

PIVOTVERTEX(v)
Input: G◦

t , a vertex v ∈ V ◦
rem to be pivoted.

Output: Vertices in V ◦
rem whose MINIMIZERs changed.

1) For each vertex y ∈ N◦
rem(v), remove v and insert

remaining[v].MIN() to fill[y].
2) For each vertex w ∈ N◦

comp(v),
a) remaining[w].DELETE(R(v)).
b) If R(v) was the old minimum in

remaining[w], run INFORMREMAINING[w].
c) MELD(v, w).

3) Report any vertex whose MINIMIZER changes.

Figure 9: Pseudocode for pivoting a vertex.

To give some intuition for our algorithm, consider the
case where no vertex is deleted but we merge neighbor-
hoods of vertices. In this case, as the neighborhood of a
particular vertex grows, the expected number of times the
minimum R value in this neighborhood changes is O(log n).
In particular, it is possible for the min at some vertex to
change Ω(n) times due to repeated deletions. As a result, we
can only bound the total, or average number of propagations.
This leads to a much more involved amortized analysis,

���

where we also use backwards analysis to explicitly bound
the probability of each informing operation.

MELD(v, w)
Input: A graph state G, two component vertices v and w
to be melded.
Output: Vertices in N◦

rem(w) whose MINIMIZERs changed.
1) For x ∈ {v, w}, rx = remaining[x].MIN().
2) WLOG rv < rw. INFORMREMAINING(w, rw, rv).
3) Merge remaining heaps of v and w.
4) Report any vertex whose MINIMIZER changes.

Figure 10: Pseudocode for melding two component vertices.

INFORMREMAINING(w,Rold, Rnew)
Input: component graph G◦, a vertex w ∈ V ◦

comp, old and
new values for Rmin(N◦

rem(w)): Rold and Rnew.
Output: Vertices in N◦

rem(w) whose MINIMIZERs changed.
1) For each v ∈ N◦

rem(w), replace the entry Rold from
fill[v] with Rnew.

2) Report any vertex whose MINIMIZER changes.

Figure 11: Pseudocode for messaging remaining neighbors.

Given a component graph G◦
t and a (remaining) vertex u

to be pivoted, we use the routine PIVOTVERTEX to produce
a new graph G◦

t+1. In terms of the structure of the graph,
our routine does the same thing as the traditional quotient
graph model for symmetric factorization [16].
Therefore we turn our attention to the problem of main-

taining the minimum R values of the neighborhoods. For
a subset of vertices V ′ ⊆ V ◦

comp, let Rmin(V ′) denote
the minimum R value among all its vertices. Specifically,
we want to maintain the values Rmin(N◦

rem(w)) for every
w ∈ V ◦

comp and Rmin(N+(v)) for every v ∈ V ◦
rem. This

update procedure is a notification mechanism. When the
status of a vertex changes, we update the data structures of
its neighbors correspondingly. The fill[u] heap will then
give Rmin(N+(u)) and be used to estimate the fill-degree
of each remaining vertex as described in Section IV.
Suppose a remaining vertex v is pivoted. Then, for a com-

ponent vertex w, the content of remaining[w] changes
only if v is its neighbor. In particular, since v is no longer
a remaining vertex, its entry needs to be removed from
remaining[z]. Since v is now a component vertex, we
need to construct remaining[v] and update the fill
heaps of its remaining neighbors appropriately. Furthermore,
if R(v) was the minimum element in remaining[w], this
is no longer the case and the other remaining neighbors of
w need to be notified of this (so they can update their fill
heaps). This is done via the call to INFORMREMAINING.
The last step consists of melding the (now component)
vertex v with its existing component neighbors via calls
to MELD. Note that, at all times, we make a note of any

remaining vertex whose MINIMIZER is updated due to the
pivoting.
For every component vertex w such that R(v) is the

minimum value in remaining(w), the routine INFORM-
REMAINING is responsible for updating the contents in
the fill heaps of remaining vertices adjacent to w. This
routine is also required when we merge two component
vertices in the algorithm MELD, since there are now more
entries in the fill heaps of adjacent remaining vertices.
We break down the cost of calls to INFORMREMAINING
into two parts: when it is invoked by PIVOTVERTEX, and
when it is invoked by MELD.

Lemma 11. The expected total number of updates to re-
maining vertices made by INFORMREMAINING when in-
voked from PIVOTVERTEX over any sequence of n pivots
that are independent of the R values is O(m).

Lemma 12. Over any fixed sequence of calls to MELD, the
expected number of updates to the fill heaps in remaining
vertices is bounded by O(m log n).

The above lemmas directly imply the main result for this
section, Theorem 5. We defer the proofs of Lemma 11 and
Lemma 12 to the full version [12, Section 7].

ACKNOWLEDGEMENTS

We thank John Gilbert and Gramoz Goranci for many
helpful discussions regarding various topics in this paper.
We also acknowledge Animesh Fatehpuria for independently
obtaining a construction for covering set systems, which we
use to achieve a hardness result for computing a minimum
degree ordering assuming the strong exponential time hy-
pothesis. We also thank the anonymous reviewers for their
insightful comments
Matthew Fahrbach is supported in part by a National

Science Foundation Graduate Research Fellowship under
grant DGE-1650044. Richard Peng and Saurabh Sawlani are
supported in part by the National Science Foundation under
Grant No. 1637523. Part of this work was done while Shen
Chen Xu was at Carnegie Mellon University.

REFERENCES

[1] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully
dynamic all-pairs shortest paths with worst-case update-time
revisited. In Symposium on Discrete Algorithms (SODA),
pages 440–452, 2017.

[2] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An
approximate minimum degree ordering algorithm. SIAM J.
Matrix Anal. Appl., 17(4):886–905, October 1996.

[3] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff.
Algorithm 837: AMD, an approximate minimum degree or-
dering algorithm. ACM Trans. Math. Softw., 30(3):381–388,
September 2004.

[4] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar.
Fully dynamic randomized algorithms for graph spanners.
ACM Transactions on Algorithms (TALG), 8(4):35, 2012.

���

[5] Greg Bodwin and Sebastian Krinninger. Fully dynamic span-
ners with worst-case update time. In 24th Annual European
Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark, pages 17:1–17:18, 2016.

[6] Claudson Bornstein, Bruce Maggs, Gary Miller, and R Ravi.
Parallelizing elimination orders with linear fill. In Founda-
tions of Computer Science, 1997. Proceedings., 38th Annual
Symposium on, pages 274–283. IEEE, 1997.

[7] Yixin Cao and R. B. Sandeep. Minimum fill-in: Inapproxima-
bility and almost tight lower bounds. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’17, pages 875–880, 2017.

[8] Edith Cohen. Size-estimation framework with applications
to transitive closure and reachability. J. Comput. Syst. Sci.,
55(3):441–453, December 1997.

[9] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and
Esmond G. Ng. A column approximate minimum degree
ordering algorithm. ACM Trans. Math. Softw., 30(3):353–
376, 2004.

[10] Timothy A Davis, Sivasankaran Rajamanickam, and Wis-
sam M Sid-Lakhdar. A survey of direct methods for sparse
linear systems. Acta Numerica, 25:383–566, 2016.

[11] Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approx-
imately counting triangles in sublinear time. SIAM Journal
on Computing, 46(5):1603–1646, 2017.

[12] Matthew Fahrbach, Gary L Miller, Richard Peng, Saurabh
Sawlani, Junxing Wang, and Shen Chen Xu. Graph sketching
against adaptive adversaries applied to the minimum degree
algorithm. arXiv preprint arXiv:1804.04239, 2018.

[13] Eran Gat and Shafi Goldwasser. Probabilistic search algo-
rithms with unique answers and their cryptographic applica-
tions. Electronic Colloquium on Computational Complexity
(ECCC), 18:136, 2011.

[14] André Gaul, Martin H Gutknecht, Jorg Liesen, and Reinhard
Nabben. A framework for deflated and augmented krylov
subspace methods. SIAM Journal on Matrix Analysis and
Applications, 34(2):495–518, 2013.

[15] A. George and W. H. Liu. The evolution of the minimum
degree ordering algorithm. SIAM Rev., 31(1):1–19, March
1989.

[16] Alan George and Joseph W. Liu. Computer Solution of Large
Sparse Positive Definite. Prentice Hall Professional Technical
Reference, 1981.

[17] John R Gilbert, Esmond G Ng, and Barry W Peyton. An
efficient algorithm to compute row and column counts for
sparse Cholesky factorization. SIAM Journal on Matrix
Analysis and Applications, 15(4):1075–1091, 1994.

[18] Oded Goldreich, Shafi Goldwasser, and Dana Ron. On
the possibilities and limitations of pseudodeterministic algo-
rithms. In Proceedings of the 4th Conference on Innovations
in Theoretical Computer Science, ITCS ’13, pages 127–138.
ACM, 2013.

[19] Martin H Gutknecht. A brief introduction to Krylov space
methods for solving linear systems. In Frontiers of Compu-
tational Science, pages 53–62. Springer, 2007.

[20] Pinar Heggernes, S. C. Eisestat, Gary Kumfert, and Alex
Pothen. The computational complexity of the minimum

degree algorithm. Technical report, Institute for Computer
Applications in Science and Engineering, 2001.

[21] Bruce Hendrickson and Alex Pothen. Combinatorial scientific
computing: The enabling power of discrete algorithms in
computational science. In Proceedings of the 7th Inter-
national Conference on High Performance Computing for
Computational Science, VECPAR’06, pages 260–280, 2007.

[22] Bruce Hendrickson and Edward Rothberg. Improving the run
time and quality of nested dissection ordering. SIAM Journal
on Scientific Computing, 20(2):468–489, 1998.

[23] Haim Kaplan, Ron Shamir, and Robert E Tarjan. Tractability
of parameterized completion problems on chordal, strongly
chordal, and proper interval graphs. SIAM Journal on Com-
puting, 28(5):1906–1922, 1999.

[24] Michael Kapralov, Yin Tat Lee, C. N. Musco, C. P. Musco,
and Aaron Sidford. Single pass spectral sparsification in
dynamic streams. SIAM Journal on Computing, 46(1):456–
477, 2017.

[25] Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic
graph connectivity in polylogarithmic worst case time. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1131–1142.
Society for Industrial and Applied Mathematics, 2013.

[26] Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant
Sachdeva. A framework for analyzing resparsification algo-
rithms. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
2032–2043. SIAM, 2017.

[27] Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen
Xu. Improved parallel algorithms for spanners and hopsets.
In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 192–201. ACM,
2015.

[28] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic
spanning forest with worst-case update time: adaptive, las
vegas, and o(n1/2− ϵ)-time. In Symposium on Theory of
Computing (STOC), pages 1122–1129, 2017.

[29] Danupon Nanongkai, Thatchaphol Saranurak, and Christian
Wulff-Nilsen. Dynamic minimum spanning forest with
subpolynomial worst-case update time. In Symposium on
Foundations of Computer Science (FOCS), pages 950–961,
2017.

[30] Assaf Natanzon, Ron Shamir, and Roded Sharan. A polyno-
mial approximation algorithm for the minimum fill-in prob-
lem. SIAM Journal on Computing, 30(4):1067–1079, 2000.

[31] Uwe Naumann and Olaf Schenk. Combinatorial Scientific
Computing. Chapman & Hall/CRC, 1st edition, 2012.

[32] Shay Solomon. Fully dynamic maximal matching in constant
update time. In Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on, pages 325–334.
IEEE, 2016.

[33] Ryan Williams. A new algorithm for optimal 2-constraint sat-
isfaction and its implications. Theoretical Computer Science,
348(2-3):357–365, 2005.

[34] Mihalis Yannakakis. Computing the minimum fill-in is np-
complete. SIAM Journal on Algebraic Discrete Methods,
2(1):77–79, 1981.

���

