EasyUC: Using EASYCRYPT to Mechanize Proofs of
Universally Composable Security'

Ran Canetti
Boston University and Tel Aviv University
canetti@bu.edu

Abstract—We present a methodology for using the EASY-
CRYPT proof assistant (originally designed for mechanizing the
generation of proofs of game-based security of cryptographic
schemes and protocols) to mechanize proofs of security of
cryptographic protocols within the universally composable
(UC) security framework. This allows, for the first time, the
mechanization and formal verification of the entire sequence
of steps needed for proving simulation-based security in a
modular way:

o Specifying a protocol and the desired ideal functionality.

o Constructing a simulator and demonstrating its validity,

via reduction to hard computational problems.

« Invoking the universal composition operation and demon-

strating that it indeed preserves security.

We demonstrate our methodology on a simple example:
stating and proving the security of secure message commu-
nication via a one-time pad, where the key comes from a
Diffie-Hellman key-exchange, assuming ideally authenticated
communication. We first put together EASYCRYPT-verified
proofs that: (a) the Diffie-Hellman protocol UC-realizes an
ideal key-exchange functionality, assuming hardness of the
Decisional Diffie-Hellman problem, and (b) one-time-pad en-
cryption, with a key obtained using ideal key-exchange, UC-
realizes an ideal secure-communication functionality. We then
mechanically combine the two proofs into an EASYCRYPT-
verified proof that the composed protocol realizes the same
ideal secure-communication functionality.

Although formulating a methodology that is both sound and
workable has proven to be a complex task, we are hopeful that
it will prove to be the basis for mechanized UC security analyses
for significantly more complex protocols and tasks.

I. INTRODUCTION

Cryptographic protocols are magical: they allow us to
conjure alternative realities where information is created,
shared, evolved, analyzed, combined, separated, seemingly
destroyed, and then reconstructed elsewhere in idealized and
abstract ways that defy physical common sense—and then,
amazingly enough, they show us how to actually realize
these alternative realities on our laptops.

This magic comes at a price: to make it work, we must
resign to the fact that guarantees might be imperfect and
allow for small probability of error. Furthermore, the guaran-
tees might only hold against resource bounded adversaries;

IThis is an extended abstract. See the full version at the IACR ePrint
Archive (2019), and at https:/github.com/easyuc/EasyUC.

Alley Stoughton
Boston University
stough@bu.edu

Mayank Varia
Boston University
varia@bu.edu

consequently, proofs may need to rely on reductions to the
intractability of some underlying computational problems.

Additionally, one has to know how to align one’s spells:
verifying seemingly natural properties like correctness, se-
crecy, information flow, knowledge, influence, or bias be-
comes delicate and error-prone. Indeed, even formalizing
such concepts requires arguing about the capabilities and
knowledge of computationally bounded adversarial entities
that interact with multiple algorithms in a distributed, multi-
component system.

Then, proofs (or reductions) that a protocol possesses a
property must show how to translate the capabilities and
knowledge of a computationally bounded adversary in one
distributed, multi-component system to adversarial capabil-
ities and knowledge in another system, which might also
be distributed and multi-component. Indeed, cryptographic
modeling and analysis has time and again succumbed to
subtle but devastating mistakes (see e.g., [1]-[3]).

Cryptographic approaches to defining security: Several
methodologies for “magic control”—i.e., specifying and
analyzing security properties of cryptographic protocols—
have been developed over the years.

One such methodology is the game-based security ap-
proach in which a hypothetical adversary interacts with a
“tester” or a “game master” who mediates the adversary’s
access to components of the scheme and who also deter-
mines at the end of the interaction whether the adversary
succeeded in its goal. A cryptographic scheme is deemed
to satisfy game-based security if no sufficiently bounded
adversary succeeds with probability more than allowed by
the game. This is a relatively simple formalism that involves
only a single universal quantifier (asymptotics aside).

However, plain game-based security definitions often have
limited expressive power. Specifically, in situations where
the security requirements combine both secrecy and cor-
rectness in non-trivial ways (such as zero-knowledge proofs,
secure computation, garbling, functional encryption and oth-
ers) plain game-based definitions do not seem to suffice. In
such situations the more expressive formalism of simulation-
based security (often called the real/ideal paradigm) turns
out to be more useful. Simulation-based security can be
thought of as an interaction between a game-master and

three entities: an adversary, a simulator, and a distinguisher.
The game master chooses at random to play either the real
game with the distinguisher and the adversary, or else to
play the ideal game with the distinguisher and the simulator.
The definition of security requires that for any (bounded)
adversary there exists a computationally bounded simulator
such that no computationally bounded distinguisher will be
able to tell the real game from the ideal one with significant
advantage. Here the ideal game typically represents the
desired behavior of the system, whereas the real game repre-
sents the actual execution environment under consideration.

Even simulation-based notions of security can fall short
of capturing security properties nimbly enough. Indeed, time
and again such notions have failed to preserve security when
schemes and protocols are composed with one another in
adversarially coordinated ways (see e.g., [4]-[6]). Still, a
special class of simulation-based notions of security, namely
notions of universally composable (UC) security, do allow
capturing security properties of protocols so that these
properties are preserved even when the analyzed protocols
are composed with arbitrary other protocols [7], [8].

UC security can be thought of as a variant of simulation-
based security, where the interaction among the distin-
guisher, the adversary (or simulator), and the game master
is stylized in a specific way that allows the distinguisher
“maximum interaction” with the adversary (or simulator).
Furthermore, UC security has an alternative (and mathemat-
ically equivalent) formulation which considers only a single,
simple adversary. We are thus left with the structurally
simple requirement that there exists a simulator such that
no distinguisher can tell the real interaction from the ideal
interaction with the simulator.

More specifically, the ideal game represents an interaction
of the distinguisher (who is now called the environment) with
the simulator and an entity, called an ideal functionality,
that represents the desiderata from the task at hand by
way of an idealized mechanism. The real game represents
an execution of the analyzed protocol within the model
of computation under consideration. This means that, to
demonstrate that a protocol complies with the specification,
the analyst should exhibit a simulator, and then demonstrate
that no environment can tell whether it is interacting with the
protocol in the real game, or else with the ideal functionality
and the simulator in the ideal game. In that case we say that
the protocol UC-realizes the ideal functionality.

Beyond providing an expressive way of formulating secu-
rity and functionality specifications for protocols, universally
composable (UC) security is attractive in that it allows for
security-preserving modular design of protocols, or more
generally complex systems—thus significantly simplifying
the overall design and analysis process. Indeed, UC security
has become the method of choice for formulating and prov-
ing security of cryptographic protocols, whenever possible.

There are a number of frameworks that allow representing

protocols and formulating UC security properties with vary-
ing levels of expressivity and generality, e.g., [3], [7]-[11].

Formal and mechanized analysis: Although formulating
adequate notions of security for simple tasks and proving the
security of simple protocols based on simple-to-state com-
putational intractability assumptions can be a fun challenge
for a creative mind, doing so for even moderately complex
protocols (let alone at the scale of real-world systems) is a
daunting task. Formalisms such as the UC framework or the
sequence-of-games formalism [12]-[14] make proofs more
modular and structured; still, even with these mechanisms
in place, the complexity of manual proofs is far beyond the
reach of human capabilities.

Several approaches to mechanizing the verification of
cryptographic security properties have been proposed. The
works of Abadi-Rogaway and Micciancio-Warinschi [15],
[16] demonstrate that game-based cryptographic properties
in the symbolic model can be formulated in a logic that can
be mechanically verified. Indeed, the PROVERIF Tool [17]
of Blanchet was able to verify these (and other) properties
mechanically. Backes and Pfitzmann [18], and later Canetti
and Herzog [19], demonstrate that a similar translation can
be done for universally composable notions of security.
However this approach turned out to be limited in scope,
since it required separating the analysis to two disjoint parts:
an “abstract” part where the analysis is purely combinatorial
(and typically deterministic) without computational hardness
considerations, and the remaining “computational” part that
translates algorithmic constructs that rely on computational
hardness to abstract constructs with idealized security. Fur-
thermore, only the “abstract” part is mechanized.

An alternative approach, taken in CRYPTOVERIF [20]-
[23], and later by other proof assistants such as EASYCRYPT
[24]-[31], FCF [32]-[34], and CRYPTHOL [35], [36], ap-
plies to cryptographic proofs that are based in the sequence-
of-games formalism. These tools provide probabilistic pro-
gramming languages to formalize the games in the sequence,
and support the automatic or machine-assisted generation
and verification of the transitions between games, as well as
the overall proof. This approach proved very successful and
allowed formally and mechanically verifying game-based
security notions of many primitives, schemes and protocols.
Some simulation-based security analyses have been carried
out as well, with a variety of challenges being reported [29]—
[31]. However, to the best of our knowledge, none of these
tools have been used so far to mechanize UC-style security
analyses (with the potential exception of the concurrent work
of [37]).

A. This Work

We report on an ongoing effort to show how EASYCRYPT
can be used to formally specify and mechanically verify
security properties of protocols, expressed within the UC
framework. The overarching goal is to be able to specify

protocols, ideal functionalities, and simulators within the
EASYCRYPT language and mechanize proofs of UC security.
In more detail, we seek to:

o Represent cryptographic protocols within the UC
framework, or rather a variant of UC that replaces in-
teractive Turing machines with EASYCRYPT modules.

o Specify security requirements for cryptographic tasks,
by way of formulating appropriate ideal functionalities
within the same variant of the UC framework.

e Formally verify that a protocol UC-realizes an ideal
functionality under appropriate intractability assump-
tions. This requires defining an appropriate simulator
and then proving a concrete upper bound € on the ability
of the environment to distinguish an interaction with the
protocol from an interaction with the ideal functionality
and the simulator. The bound € can either be stated
in absolute terms or relative to the concrete ability of
breaking the underlying computational assumption.

o Apply the universal composition operation to protocols
and formally prove using the EASYCRYPT tool that
the operation preserves security, as predicted by the
universal composition theorem.

In this work, we make significant steps towards this
overarching goal. Specifically, we formulate a somewhat
restricted variant of the UC framework (essentially, we as-
sume static and known subroutine structure and hierarchical
addressing). Still, this variant allows expressing a rich class
of cryptographic protocols and ideal functionalities. Next
we provide a library of EASYCRYPT modules that allows
expressing executions, within the UC model, of (1) a given
protocol with arbitrary environment and adversary, and (2)
a given ideal functionality, with an arbitrary environment,
and a given simulator that interfaces with an arbitrary
adversary. Furthermore, the library allows expressing as an
EASYCRYPT goal the statement that, given a protocol, an
ideal functionality, and a simulator, no environment and ad-
versary can distinguish between an execution of the protocol,
and an execution of the ideal functionality alongside the
simulator. Finally, we give a generic way to express the
universal composition (UC) operation, and we provide a
general methodology for proving its validity.

Remarks: Four comments are in order at this point.

First, this work inherits EASYCRYPT’s informal treat-
ment of runtimes. That is, we do not provide any formal
mechanism for verifying the runtimes of components, most
prominently of the simulator; this analysis is left to be done
manually. While for our restricted case this does not appear
to be a severe limitation, adding an EASYCRYPT mechanism
for formally asserting runtime bounds would be useful.

Second, recall that the UC operation takes descriptions of
three protocols—p, ¢ and m—and returns the protocol p? =™
where each instance of ¢, when called as subroutine of p, is
replaced by an instance of 7. For simplicity, in this work we
only treat the case where a single instance of ¢ is replaced

by an instance of m. We note that no generality is lost since
the general case can be obtained by iterated applications
of this single-instance case. Crucially, this holds since the
complexity of the simulator in the UC framework is always
bounded by the complexity of the adversary plus a fixed
polynomial overhead.

Third, while our case study does not use subroutines that
are globally accessible or share state with other protocols,
we are not aware of any limitation that would prevent our
framework from being adapted to handle such cases as well.

Fourth, we note that, throughout this work, we stick
with the formulation of UC security that directly models
an arbitrary adversary, rather than restricting attention to the
dummy adversary model. This is done for convenience: With
an arbitrary adversary, UC security is trivially transitive,
which is very useful as exemplified in the case study
(see below and and in Section V). Furthermore, since UC
simulation is black-box and in-line, the added complexity
incurred by the analyst due to working with an arbitrary
adversary is minimal; see Section VI for discussion.

B. Case Study

We demonstrate the validity of our methodology on
an example which, while relatively simple, contains all
the components mentioned above. Specifically, we give an
EASYCRYPT-aided formal analysis of UC-security of a
Diffie-Hellman key-exchange protocol, followed by the one-
time-pad encryption of a message with the resulting key—
assuming ideally authenticated communication. That is:

o« We give EASYCRYPT formulations of an ideal secure
message communication (SMC) functionality SMCldeal,
an ideal key-exchange functionality KEldeal, and an
ideal message authentication functionality Forw.

o We give EASYCRYPT formulations of two differ-
ent 2-party protocols: Diffie-Hellman key exchange,
KEReal, and a secure message communication protocol,
SMCReal(KE), in which the parties use as a one-time
pad the shared key produced by an abstract module
KE. Both protocols use Forw to transmit all messages.

e We formally verify that KEReal UC-realizes KEldeal
under the Decisional Diffie-Hellman (DDH) assump-
tion. This requires construction of a simulator KESim,
construction of a DDH-breaking adversary from the
environment and adversary, and proving that the ability
of the environment to distinguish KEReal and the adver-
sary from KEldeal and the application of KESim to the
adversary is upper-bounded by the ability of the DDH-
breaking adversary to distinguish the DDH games.

o We formally verify that SMCReal(KEldeal)—that is,
SMCReal where the abstract module KE is instanti-
ated with ideal key exchange KEldea—UC-realizes
SMCldeal. That is, we construct a simulator SMCSim and
formally verify that no environment can distinguish be-
tween the two interactions. (Here there is no reduction.)

o We formally verify that SMCReal(KEReal) UC-emulates
SMCReal(KEldeal). This amounts to verifying an instance
of the universal composition theorem. (UC-emulation is
a generalization of UC-realization to the case where the
emulated protocol is not an ideal functionality.)

« Using transitivity, we deduce that SMCReal(KEReal) UC-
realizes SMCldeal.

The EASYCRYPT code for the case study can be down-
loaded from the EasyUC project’s GitHub repository: https:
//github.com/easyuc/EasyUC

C. Reflections

Building a framework that is EASYCRYPT-compatible, a
faithful representation of (a subset of) the UC framework,
and at the same time also workable, turned out to be a
highly non-trivial challenge. We view our work so far as a
first step towards the general goal, outlined above, of being
able to generate tool-assisted, formally verified proofs of UC
security with relative ease.

Immediate goals include further extending our library of
EASYCRYPT modules, formalizing and verifying the UC
composition theorem more generally, and providing addi-
tional support to facilitate the expression of UC protocols,
ideal functionalities, and simulators as well as the generation
of EASYCRYPT proofs. Here developing a domain-specific
dialect of the EASYCRYPT programming language will
prove useful.

In Section VI, we describe some of the main difficulties
we faced in our work, and point the way toward future work.

II. RELATED WORK

There are a number of analytical frameworks that allow
representing protocols and formulating UC security proper-
ties with varying levels of expressivity and generality, e.g.,
[3], [7]-[11]. While these definitions differ in many details,
their high-level structures are very similar. Our work can be
viewed as providing a way to mechanize security proofs in
any one of these models.

Bohl and Unruh [38] introduce a variant of UC Security
for the symbolic model, working within an applied -
calculus.

Interactive Lambda Calculus (ILC) [39] is a process calcu-
lus formulation of UC, consisting of the 7-calculus with an
affine typing system enforcing that only one process is active
at a time. In the metatheory, they introduce randomness
by supplying processes with bit sequences, and then define
UC-realizability, the UC composition operation, and prove
the UC composition theorem. They leave as future work
interfacing their framework with a mechanized proof system.

Blanchet [40] has proved composition theorems that may
be stated and used in CRYPTOVERIF, allowing one to
give modular security analyses of the composition of key-
exchange protocols with symmetric-key protocols that use

the exchanged keys. These composition theorems work with
a game-based notion of security.

Constructive cryptography [41] is a paradigm for defining
the security of cryptographic schemes and protocols that
focuses on constructing resources with stronger security
properties from ones with weaker security properties. Secu-
rity in constructive cryptography is defined via simulation,
and constructive cryptography has a composition theorem.
A CRYPTHOL formalization of elements of constructive
cryptography can be found in [37]. As a case study, this
work (which is concurrent with our work) securely composes
one-time pad encryption with message authentication.

III. BACKGROUND
A. EasyCrypt

EASYCRYPT’s programming language has modules,
which consist of procedures and global variables. Procedures
are written in a simple imperative language featuring while
loops and random assignments.

EASYCRYPT has four logics: a probabilistic, relational
Hoare logic, relating pairs of procedures; a probabilistic
Hoare logic allowing one to prove facts about the probability
of a procedure’s execution resulting in a postcondition
holding; an ordinary Hoare logic; and an ambient higher-
order logic for proving general mathematical facts, as well as
for connecting judgments from the other logics. For instance,
one may use the probabilistic, relational Hoare logic to
prove an equivalence between the boolean-returning main
procedures of two modules whose postcondition says the
procedures’ results are equal, and then use the ambient logic
to prove that the two procedures are equally likely to return
true. One may prove facts involving abstract modules, e.g.,
ones representing adversaries or environments.

Proofs are carried out using tactics, which transform
the current proof goal into zero or more subgoals. Simple
ambient logic goals may be automatically proved using
SMT solvers. Once found, an EASYCRYPT proof script
can be replayed step-by-step, or checked in batch-mode.
Proofs may be structured as sequences of lemmas, and
EASYCRYPT’s theories may be used to group definitions,
modules and lemmas together. Theories may be specialized
using a process called cloning.

B. Universally Composable Security

Universally Composable (UC) security is a framework
that formulates security properties of cryptographic proto-
cols by way of “emulating” an idealized process where the
desired behavior of the protocol is guaranteed by fiat. A main
ingredient in the idealized process is the ideal functionality,
where the desired behavior is specified by way of a program.
One salient property of UC definitions of security is their
robustness to the execution environment: If a protocol 7
emulates some ideal functionality F, then 7 continues to
realize F in any context.

In this section, we follow the simplified UC model in [8,
2018 version, §2]. The framework consists of the following
components: (1) a model for executing a protocol, (2) an
idealized model for running an ideal functionality, (3) a
definition of UC-realizability that requires that interactions
with the protocol and ideal functionality are indistinguish-
able, and (4) a security-preserving composition operation.

Model of protocol execution: The model for executing
protocol 7 consists of a set of computational entities (called
machines) that run 7, together with two adversarial enti-
ties: an environment and an adversary. An execution is a
sequence of activations, where the environment is activated
first, and during each activation the activated machine sends
a message to one other machine, which is activated next.
There are three types of messages: input messages, out-
put messages, and adversarial messages. The environment
provides input messages to the protocol machines and to
the adversary. The adversary can send output messages to
the environment or adversarial messages to the protocol
machines. The protocol machines can send inputs to other
machines, outputs to other machines or to the environment,
and adversarial messages to the adversary. While the general
UC framework permits creation of new protocol machines
on the fly, in this work we restrict ourselves to systems
with a fixed number of machines. The execution terminates
when the environment generates a single-bit output. The
adversarial messages capture both adversarially controlled
communication and also corruption of machines.

Ideal model: An ideal functionality is a machine F that
captures the desired behavior of the protocol. The ideal
model is the same model for protocol execution, where
the protocol is now an “ideal protocol” that consists of
F plus a number of “dummy parties” that transfer inputs
(coming from the environment) to F and outputs (coming
from F) to the environment. All adversarial messages from
the adversary are directed to F.

UC-emulation and UC-realization: A protocol m UC-
realizes an ideal functionality F if for any environment and
adversary there exists a simulator such that the environment
cannot guess (with probability significantly more than %2)
whether it is interacting with the adversary and 7 (the “real”
game), or with the simulator and the ideal protocol for
F (the “ideal game”). More formally, we want that the
absolute value of the difference between the probabilities
that the environment returns true in the real and ideal games
is not significantly more than 0. The definition naturally
generalizes to the case where the latter protocol, ¢, is a
general protocol rather than an ideal protocol for F; in this
case we say that m UC-emulates ¢. From its definition, we
can see that UC-emulation is transitive.

We note that this definition of security is equivalent to
the seemingly more relaxed variant (the “dummy adversary
model”’) where the adversary is restricted to only forwarding
messages between the environment and the parties (on their

adversarial links). It is also equivalent to the seemingly more
restrictive variant where the simulator only has black-box
access to the adversary; this is the variant that we formalize
within EASYCRYPT.

Universal composition: The universal composition opera-
tion considers three protocols: protocol p that includes calls
to a “subroutine protocol” ¢, and another protocol 7. The
composed protocol, denoted p?~™, is the protocol where
subroutine calls to ¢ are replaced with subroutine calls to
m. The universal composition theorem states that, if 7 UC-
emulates ¢, then p®~™ UC-emulates p. That is, for any
protocol p, making subroutine calls to protocol 7 (instead
of the potentially idealized ¢) does not change the overall
behavior. This is indeed a strong guarantee with far-reaching
consequences.

IV. OUR MODELING OF UC WITHIN EASYCRYPT
A. Our Variant of UC

Our UC model makes four changes from prior works
for ease of instantiation within EASYCRYPT: moving from
interactive Turing machines to EASYCRYPT modules, re-
stricting to statically created functionalities, formalizing the
UC message routing system, and designing an interface
module to firewall the environment, a functionality, and the
adversary from each other.

First, because EASYCRYPT’s programming language is
based around a module system, it is natural to represent
the environment, protocol instances, ideal functionalities,
and adversaries as EASYCRYPT modules, which have local,
private state. Although the usage is non-standard, we refer
to (real) protocol instances as “real functionalities”, so
that both real and ideal functionalities are functionalities.
All of the parties of a real functionality live within the
same EASYCRYPT module, and functionalities can have
sub-functionalities. Because EASYCRYPT has parameterized
modules, functionalities can be parameterized by other func-
tionalities, and we can realize UC’s composition operator as
module application.

Second, modules in EASYCRYPT are statically deployed,
before proofs are developed (or, in the semantics, code is
run). Consequently, we work with a restricted version of UC
in which the environment and functionalities cannot dynam-
ically create new functionality instances. We can, however,
statically create (using EASYCRYPT’s cloning mechanism)
as many instances of each functionality as are needed.

Third, we designed a formal addressing system for mes-
sage routing between the environment, functionalities and
the adversary. In this system: functionalities have addresses,
which are hierarchical (like postal addresses); and the
addresses of sub-functionalities are sub-addresses of their
parent functionalities. We give messages destination and
source addresses, and the environment, functionalities and
the adversary must route messages to their destinations. We
have two kinds of messages:

Environment

Interface

Functionality

Figure 1.

Overall Architecture

o direct messages, which are used when supplying inputs
to functionalities, and when returning results from
functionalities; and

e adversarial messages, which are used for communi-
cation between functionalities and the adversary, and
between the adversary and the environment.

We employ a hierarchical addressing system in order to
simplify message routing. E.g., when a functionality receives
a message from the environment (or a parent functionality)
that’s addressed to one of its sub-functionalities, it routes the
message to that sub-functionality. Although this addressing
system is sufficient for this paper, we may explore alterna-
tives in future work. On top of our addressing system, we
have built a simple naming scheme; see the discussion of
ports in Subsection IV-B.

Fourth, the environment doesn’t directly communicate
with a functionality and adversary; instead it communicates
with a special routing device we call an inferface, as
illustrated in Figure 1. An interface contains a functionality
and an adversary. Direct messages from the environment that
come to the interface must be destined for its functionality
part; adversarial messages must be destined for its adversary
part. The interface allows its functionality to send direct
message to the environment, and adversarial messages to
the adversary. It allows its adversary to send adversarial
messages to both its functionality and the environment.

A simulator is a parameterized adversary: it may be
applied to (wrapped around) an adversary, with the result
being an adversary. Simulators pass messages from the
environment on to the adversary (its parameter). They catch
messages coming out of the adversary that are destined for
a real functionality, responding to them in an attempt to
fool the adversary into thinking it’s interacting with the
real functionality. But they don’t restrict the adversary’s
communication with the environment. This is illustrated in
Figure 2.

Interfaces must be configured—via what we call input
guards—to restrict which adversarial messages can flow
from the environment to the adversary. Their role is (1) to
stop the environment from being able to send arbitrary mes-
sages to simulators—messages that must only come from
ideal functionalities, while (2) allowing messages through
that are needed to support modular proof.

ideal functionality environment

Simulator

® real functionality ®
spoofing

[Adversary }

Figure 2.

Simulator Architecture

Functionalities can also employ input guards, controlling
which messages they are willing to accept. Normally, a
functionality will handle all allowed direct messages at
the top-level, not allowing the environment to send direct
messages to the functionality’s sub-functionalities. But it
will allow adversarial messages to flow back and forth
between the adversary and sub-functionalities.

The parties of a real functionality only communicate
via sub-functionalities. E.g., they may employ forwarding
sub-functionalities, allowing their communications to be
observed and controlled by the adversary. Or they might
employ key-exchange sub-functionalities, in order to agree
on keys with each other.

Even though EASYCRYPT’s module language has a stack-
based procedure call semantics, we can easily program real
and ideal functionalities, simulators, adversaries, interfaces
and environments, using message routing. In this way, we
naturally realize UC’s coroutine communication style within
EASYCRYPT’s procedural language. In Figures 1 and 2,
when messages travel down, this is realized via procedure
calls; when messages travel up, it’s via procedure returns.

B. Formalization in EASYCRYPT

Now we consider the formalization of our UC variant in
EASYCRYPT. Addresses are simply lists of integers:

type addr = int list.

If « and [are addresses, we define o < 3 iff « is a prefix
of 5, and we read 5 > « as (3 is a sub-address of a.
The destinations and sources of messages are actually ports,
which consist of pairs of addresses and port indices:

type port = addr * int.

A message with destination port («,) is to be delivered to
the functionality with address «, and the functionality is free
to interpret the port index ¢ however it wishes. Typically,
each party of a real functionality has one or more port
indices associated with it.

The values included in messages are elements of a recur-
sive universal datatype

type univ = [
UnivUnit | UnivBase of base | UnivBool of bool | Univint of int
| UnivReal of real | UnivAddr of addr | UnivPort of port
| UnivPair of (univ * univ)].

where the type base can be instantiated with whatever basic
type is needed in a given application. Here UnivBase, Univint,
etc., are the constructors of the datatype. E.g.

UnivPair (Univint 4, UnivPair (UnivBool true, Univint 2))

is a value of type univ, which we can think of as representing
(4, (true, 2)).
Message modes are either direct or adversarial:

type mode = [Dir | Adv].

And messages themselves are four-tuples:

type msg =
(mode * (* mode +)
port x (=destination port =)
port * (=source port)
univ). (= value being communicated =)

Source ports are informational; depending upon where the
message has come from, they can’t necessarily be trusted.
The root address [] (the empty list) is reserved for the
environment.

For what follows, we need the notion of an option type.
Given a type t, the type ¢ option consists of None plus all
values of the form Somex, where z is an element of t.
We have a polymorphic operator oget : 'a option — 'a so that
oget (Some z) = x, and oget None is some unknown but fixed
value.

The following module type will be used for ideal func-
tionalities, real functionalities, and adversaries:

module type FUNC = {
proc init(self adv : addr) : unit
proc invoke(m : msg) : msg option }.

A module with this module type implements at least the
procedures init and invoke with the indicated types. It will
have global variables (local to the module, but global to its
procedures), which hold its private, persistent state. unit is a
placeholder type, with a single element, so init doesn’t return
anything of interest. It is called—at initialization time—with
its own address (self) and the address of the adversary (adv).
It will store those addresses in global variables, initialize
whatever other global variables the functionality uses to
maintain its state, and initialize all of its sub-functionalities.
The procedure invoke, on the other hand, is called at runtime
with a message m addressed to the functionality or one of
its sub-functionalities. Eventually, it will return either None
to indicate it has failed, or Some m’, where the message m’
is what the functionality (or one of its sub-functionalities)

wants to send to some other functionality, the adversary, or
the environment (depending upon its destination address).
A real functionality will have an internal distribution loop
that routes messages within the functionality, letting the
functionality’s parties and sub-functionalities communicate
with each other.

An adversary is just a module with module type FUNC.
(I.e., from the point of view of the module system, ad-
versaries and functionalities are interchangeable.) When an
adversary’s init procedure is called, its second parameter (the
adversary’s address) is normally set to the root address of the
environment, []. A simulator is an adversary that’s param-
eterized by an adversary. L.e., it’s a parameterized module
whose parameter has module type FUNC; once we apply a
simulator to an adversary, the result also has module type
FUNC. When a simulator’s init procedure is called with its
address and the root address of the environment, it initializes
the adversary it’s been applied to, using the same addresses.
There is no address hierarchy within adversaries/simulators,
but there is a port index hierarchy. A simulator handles
messages destined for its port index, passing other messages
on to the adversary—or to a nested simulator. Multiple port
indices are associated with nested simulators—one for each
level of simulation.

An interface, which we should think of as containing
within itself a functionality and an adversary (or simulator
wrapped around an adversary, ...), is a module with the
following module type:

module type INTER = {
proc init(func adv : addr, in_guard : int fset) : unit
proc invoke(m : msg) : msg option }.

As with functionalities, init is called at initialization time,
telling the interface the addresses of its functionality and
adversary, and allowing it to initialize its global variables
and initialize its functionality and adversary. But what of the
third argument to init, which consists of a finite set of port
indices? Well, it’s an input guard detailing the port indices
of the adversary that the environment can communicate
with. The standard interface only allows messages addressed
to those indices of the adversary’s address to go through,
plus the special port index 0, which is always accessible
to the environment. Indeed, communications between the
environment and adversary often go between ports ([],0)
and (adv,0), where adv is the adversary’s address.

The procedure invoke is called at runtime with a message
destined for either the functionality or the adversary, and it
eventually returns either None or Some of a message destined
for the environment. The standard interface enforces these
message communication rules:

« the environment can send direct messages to the func-
tionality, and adversarial messages to the adversary at
port index O plus the input guard port indices;

« the functionality can send direct messages to the envi-
ronment, as well as adversarial messages to any port
index of the adversary other than 0;

« the adversary can send adversarial messages to both the
functionality and the environment.

When communication rules are violated; the standard inter-
face returns None, indicating failure.

An interface’s input guard is used to stop the environment
from being able to send messages to the port index of a
simulator—messages which should only come from an ideal
functionality (or, in the case of nested simulators, from an
outer simulator). Otherwise, the environment would be able
to trivially distinguish the real and ideal games. On the other
hand, to support modular proof, some messages from the
environment destined to port indices other than 0 must be
allowed to flow to the adversary.

The parameterized module Ml (for make interface) builds
a standard interface from a functionality and adversary

module Ml (Func : FUNC, Adv : FUNC) : INTER={ ... }.

An environment implements the following module type,

module type ENV (Inter : INTER) = {
proc main(func adv : addr, in_guard : int fset) : bool {Inter.invoke }

which means it is parameterized by an interface, and it
implements a main function with the indicated type that is
only allowed to call the invoke procedure of the interface (i.e.,
the environment may not initialize the interface). main should
be called with the same arguments that are passed to the
interface’s init function, and main returns the environment’s
boolean judgment.

Finally, the Exper module (for “experiment”) is defined as
follows:

module Exper (Inter : INTER, Env : ENV) = {
module E = Env(Inter) (» connect Env and Inter)
proc main(func adv : addr, in_guard : int fset) : bool = {
var b : bool; Inter.init(func, adv, in_guard);
b <@ E.main(func, adv, in_guard); return b; } }.

(EASYCRYPT uses <@ for the assignment to a variable of
the result of a procedure call.) It is parameterized by an
interface and an environment. Its main function should be
called with the addresses of the interface’s functionality and
adversary (which should be incomparable) as well as the
interface’s input guard. It then initializes the interface (which
will initialize the functionality and adversary), before calling
the main function of the environment (which has been given
access to the interface). The environment may call the invoke
procedure of the interface as many times as it likes, before
eventually returning a boolean judgment, which is returned
as the result of the experiment.

V. CASE STUDY: SECURE MESSAGE COMMUNICATION

To see how we could carry out modular proofs of security
using our UC in EASYCRYPT architecture, we formulated
what we hoped was the simplest interesting case study that
would let us prove a UC security theorem and then apply
it in a larger system. We wanted the proof of the security
theorem to employ a cryptographic reduction. We settled on
the application being secure message communication (SMC)
using a one-time pad that was agreed using Diffie-Hellman
key-exchange.

A. SMC Protocol

The SMC protocol uses the following types and opera-
tions:

type key. (* group of keys =)

op (™) : key — key — key. (= binary operation on keys =)
op kid : key. (= identity key =)

op kinv : key — key. (= key inverse =)

type exp. (» commutative semigroup of exponents =)

op (=) :exp — exp — exp. (» multiplication of exponents =)
op dexp : exp distr. (= full, uniform, lossless distribution =)
op g : key. (x generator key *)

op (") : key — exp — key. (= key exponentiation =)

type text. («plain texts =)

op inj : text — key. (+injection =)

op proj : key — text option. (= partial projection =)

First of all we have a type key, together with a binary oper-
ation ™, a constant kid (key identity), and a unary operation
kinv (key inverse), satisfying the group axioms. Then we
have a type exp (exponent), together with a commutative and
associative binary operation *. Next, we have a probability
distribution dexp on exponents in which every exponent has
a non-zero and equal weight in the distribution—i.e., equal
chance of being chosen in a random assignment from dexp—
and where the sum of those weights is 1. Next, we have
a generator key g plus a key exponentiation operation "
together with axioms saying that every key is determined
in a unique way via raising g to an exponent, and that for
all exponents ¢; and g2, (9" q1) "g2 = g (1 * ¢2). It follows
there is an operation log : key — exp (the discrete logarithm)
such that log and the result of raising g to an exponent are
mutual inverses. EASYCRYPT has no cost model, i.e., no
notion of how expensive it might be to compute the discrete
log. We can show that (k" q1) " g2 = k" (g1 * g2) for all
keys k (not just for g). Finally, we have a type text of plain
texts, together with an injection inj from text into key, and a
partial projection back the other way—partial because some
keys (group elements) will be mapped to None, i.e., won’t
correspond to plain texts. This means that the cardinality of
text will be strictly less than that of key. In practice, we can
instantiate the injection/partial projection pair with text as a
set of fixed-length bitstrings and key as either a multiplicative
group of integers modulo a prime or one of a number of
elliptic curve groups [42].

a
SMCldeal p

Party 1 Party 2 Sim

O o ©

« and [are the addresses of the functionality and adversary,
respectively. 1-3 are port indices. The thicker circles around
1 and 2 indicate that direct messages are received from,
and/or sent to, the environment on these port indices.

SMC Ideal Functionality

Figure 3.

To be able to send messages involving exponents, keys
and plain texts, we instantiate (via theory cloning) the type
base of our universe type univ with this datatype:

type base = [BaseExp of exp | BaseKey of key | BaseText of text].

The secure message communication (SMC) protocol has
two parties. Party 1 has a plain text ¢ it wants to commu-
nicate with Party 2. We are assuming an adversary who
can observe and delay communication, but cannot corrupt
communication. The two parties first agree on a key k using
Diffie-Hellman key-exchange (see below). Party 1 then sends
e =injt ™" k to Party 2 (recall that ** is the group operation),
which computes oget(proj(e *inv k)) to recover ¢t. Here, proj
will produce a non-None optional value, and oget will just
strip off the Some.

In Diffie-Hellman key-exchange, Party 1 generates a ran-
dom exponent ¢;, and sends g~ ¢g; to Party 2. Party 2 then
generates a random exponent g2, and obtains the shared key
by computing (g q1) " g2 = g (q1 * g2). It then sends g~ g2
to to Party 1, which obtains the shared key by computing
(@ @) a1 =9"(2xq) =9 (a1 *q2).

B. Functionalities

We now describe the UC functionalities for SMC, starting
with the ideal functionality for SMC, and then working up
to the SMC real functionality. The SMC ideal functionality,
SMCldeal, can be visualized as in Figure 3. In the figure,
« and (B are the addresses of the functionality and the
adversary, respectively (they were passed to the function-
ality’s init procedure). SMCldeal has no sub-functionalities,
and it employs three port indices, numbered 1, 2 and 3. Port
index 1 corresponds to Party 1, port index 2 corresponds to
Party 2, and port index 3 is used for communication with
the ideal functionality’s simulator. The input guard for the
functionality allows direct messages to port index 1 (port
(ar, 1)), and adversarial messages to port index 3; all other
messages are rejected (meaning None is returned).

SMCldeal has three states:

(1) In State 1, it is waiting for a direct message to port

index 1 from a port pt;, asking to communicate a plain
text ¢ to a port pt,, where pt; and pt, may not be >

Y B

Forw

®

Figure 4. Forwarding Functionality
a B
KEldeal
Party 1 Party 2 Sim

O & ©

Figure 5.

Key-Exchange Ideal Functionality

either a or 3.2 It then sends an adversarial message
containing (pt,, pt,) (but not ¢!) from port index 3 to
port (3, 3), and switches to State 2. The SMC simulator
expects to receive messages from the ideal functionality
on port index 3.3

(2) In State 2, it is waiting for an adversarial message
from port (3, 3) to port index 3. It responds by sending
a direct message containing (pt;,t) to pt, from port
index 2, and switching to State 3.

(3) In State 3, it rejects all messages.

Next we consider an ideal forwarding functionality, Forw,
as illustrated in Figure 4. In the literature, this is a version
of Faum in which the adversary can observe and delay, but
not corrupt, message forwarding. Its input guard allows both
direct and adversarial messages on its single port index, 1.
Forw has three states:

(1) In State 1, it is waiting for a direct message to port
index 1 from a port pt;, asking to communicate a
universe value u to a port pty, where pt; and pt, may
not be > either a or (. It then sends an adversarial
message containing (pty, pty,) from port index 1 to
port (3,1), and switches to State 2. Port index 1 is
the port index of the adversary that handles forwarding
requests.

(2) In State 2, it is waiting for an adversarial message from
port (8,1) to port index 1 approving the forwarding
request. It responds by sending a direct message con-
taining (pt,,u) to pty from port index 1, and switching
to State 3.

(3) In State 3, it rejects all messages.

The ideal key-exchange functionality, KEldeal, is illus-
trated in Figure 5. Its input guard allows direct messages
to port indices 1 and 2, and adversarial messages to port
index 3. It has five states.

(1) In State 1, it is waiting for a direct message to port

2The values of all messages must be encoded as elements of our universal
type, but we omit the details. When unexpected messages are received,
failure results (None is returned).

3The index 3 isn’t hard coded in the EASYCRYPT code, but for simplicity
we’ll use actual numbers in the paper.

Figure 6. Key-Exchange Real Functionality

index 1 from a port pt;, asking to agree on a key with
a port pty, where pt; and pt, may not be > either o
or 8. It then sends an adversarial message containing
(pty, pt,) from port index 3 to port (3, 2), and switches
to State 2. Port index 2 will be the port index of the key-
exchange simulator that expects communications from
the ideal functionality.

In State 2, it is waiting for an adversarial message from
port (8, 2) to port index 3. It responds by generating an
exponent g, sending a direct message containing (pt,, g"
q) to port pt, from port index 2, and switching to State 3.
(g~ q is the key exchanged in the ideal functionality.)
In State 3, it is waiting for a direct message to port
index 2 from port pt, initiating the second phase of
key-exchange. It then sends an adversarial message
containing no data from port index 3 to port (3, 2), and
switches to State 4.

In State 4, it is waiting for an adversarial message from
port (3,2) to port index 3. It responds by sending a
direct message containing g~ ¢ to port pt; from port
index 1, and switching to State 5.

(5) In State 5, it rejects all messages.

@)

3

“

The real key-exchange functionality, KEReal, is illustrated
in Figure 6. It has two forwarding sub-functionalities, with
the indicated sub-addresses (ol means to add 1 at the end
of the list). Its input guard allows direct messages to
port indices 1 and 2, and adversarial messages to al and
2. Port indices 1 and 3 correspond to Party 1 of the
functionality, whereas port indices 2 and 4 correspond to
Party 2. The functionality has an internal distribution loop
that routes messages from the outside to the parties and sub-
functionalities (if allowed by the input guard), and allows the
two parties and the sub-functionalities to communicate. Both
parties have three states.

Party 1 behaves as follows:

(1) In State 1, Party 1 is waiting for a direct message to port
index 1 from a port pt;, asking to agree on a key with a
port pty, where pt; and pt, may not be > either « or 3.
It then generates a random exponent g;, sends a message
from port index 3 (its internal port index) to Forw; at
port (al, 1), asking it to forward (pt;, pty,g°q1) to port
index 4 (Party 2’s internal port index), and switches to
State 2.

(2) In State 2, Party 1 is waiting for a direct message to

10

Figure 7. SMC Real Functionality
port index 3 from (a2,1) (Forws) containing the data
((a,4), ka). (ko will be g* g2, where ¢o is Party 2’s pri-
vate exponent.) It responds by sending a direct message
containing the key k2" q1 ((97¢2) "q1 = 9" (q1 * ¢2)) to
port pt; from port index 1, and switching to State 3.
(3) In State 3, it rejects all messages.

Party 2 behaves as follows:

(1) In State 1, Party 2 is waiting for a direct message to
port index 4 from port (al,1) (Forwy), containing the
data ((«, 3), (pty, pty, k1)). (k1 will be g*¢1, where ¢; is
Party 1’s private exponent.) It then generates a random
exponent go, sends a direct message containing (pt,, k1"
g@2) to port pt, from port index 2, and switches to State 2.
(k1" q2 is the key (9" q1) "q2 = 9" (q1 * g2).)

In State 2, Party 2 is waiting for a direct message to port
index 2 from port pt, initiating the second phase of key-
exchange. It responds by sending a message from port
index 4 to Forws at port («2,1), asking it to forward
g~ g2 to port index 3, and switches to State 3.

(3) In State 3, it rejects all messages.

@)

Here is the sequence of message transmissions of a
successful execution of KEReal:

ptl &) (Oé, 1)/(0&, 3) ((a,4), (pty, Pta, 9 q1)) (

(a1, 1) {22008, (4 4)/(a,2)
(Pt1, 0 (@1xa2)), pty — (@,2)/(a,4)
U D:9%), (42,1) -+ (a2,1)

a171)-.-

9" (q1%42)

UD:99), (0, 8)/(a, 1) LU, o

where single arrows are direct messages, and double arrows
are adversarial messages, and where the elided steps involve
the forwarders’ interactions with the adversary.

Finally, the SMC key-exchange functionality, SMCReal,
is illustrated in Figure 7. It has two sub-functionalities,
with the indicated sub-addresses: a forwarder and a key-
exchange functionality KE, which is a parameter to SMCReal.
Technically, SMCReal is a parameterized functionality, not a
functionality: we have to apply it to KEReal or KEldeal or
some other functionality, in order to obtain a functionality.
Its input guard allows direct messages to port index 1,
and adversarial messages to al and a2 (and their sub-
addresses). Port indices 1 and 3 correspond to Party 1 of

the functionality, whereas port indices 2 and 4 correspond
to Party 2. As with KEReal, the functionality has an internal
distribution loop. Both parties have three states.

Party 1 behaves as follows:

(1) In State 1, Party 1 is waiting for a direct message to port
index 1 from a port pt;, asking to securely communicate
a plain text ¢ to a port pty, where pt; and pt, may not be
> either « or S. It responds by sending a direct message
to Party 1 of the key-exchange sub-functionality at port
(a2, 1) from port index 3 asking to agree on a key with
port index 4, and then switching to State 2.

In State 2, Party 1 is waiting for a direct message to
port index 3 from (2,1) (Party 1 of the key-exchange
sub-functionality) containing the data k (the agreed
upon key). It responds by sending a message from port
index 3 to Forw at port (al, 1), asking it to forward
(pty, ptq, injt™k) to port index 4, and switches to State 3.
(3) In State 3, it rejects all messages.

@

Party 2 behaves as follows:

(1) In State 1, Party 2 is waiting for a direct message to port
index 4 from port (a2,2) (Party 2 of the key-exchange
sub-functionality), containing the data ((a,3),k) (k is
the agreed upon key). It responds by sending a direct
message from port index 4 back to (a2,2), initiating
the second phase of key-exchange.

In State 2, Party 2 is waiting for a direct message
to port index 4 from port («l,1) (Forw) contain-
ing ((a,3), (pty,pty,e)). It responds by sending to
pty a direct message from port index 2 containing
(pty, oget(proj(e ~ kinv k))) (whose plain text is equal to
t), and switching to State 3.

(3) In State 3, it rejects all messages.

@

Here is the sequence of message transmissions of a
successful execution of SMCReal:

pty M (CY, 1)/((1,3) M (042, 1) T

((,3), k)

(a2,2)
(a,4) = (02,2) -+ (a2,1) & (a,3)

(a0, 4), (pty, pts, N})

(al,1) -+ (al,1)
(((!,3),(pt1,pt2,injt k)) (0[74)/(0672) (ptlvt) pt2,

where the elided steps involve (1) the key-exchange func-
tionality’s (either real or ideal) interaction with the adver-
sary/simulator, and (2) the forwarder’s interaction with the
adversary.

C. Road-map for Proof of SMC Security

In the rest of this section, we describe our tool-
assisted formal proofs of the following statements: (1)
SMCReal(KEReal) UC-realizes SMCldeal; (2) KEReal UC-
realizes KEldeal; (3) SMCReal(KEldeal) UC-realizes SMCldeal;
and (4) SMCReal(KEReal) UC-emulates SMCReal(KEldeal). (1)
is our overall goal. In Subsection V-D, we describe the proof

11

of (2). At the beginning of Subsection V-E, we describe the
proof of (3). Then we describe how (2) is lifted to a proof of
(4), instantiating the UC composition theorem. Finally, we
show how (4) and (3) combine to give us (1), instantiating
transitivity of UC emulation.

D. Proof of Security of Key-Exchange

In our proof of the security of key-exchange, we need to
define a key-exchange simulator, KESim, and give an upper
bound (hopefully a small one!) for the absolute value of the
difference between the probabilities that the real and ideal
experiments return true:

*|Pr[Exper(MI(KEReal, Adv), Env).
main(func', adv', in_guard') @ &m : res] —
Pr[Exper(MI(KEldeal, KESim(Adv)), Env).
main(func', adv', in_guard') @ &m : res]|

In the above, res stands for “result”—the boolean result of
the experiment. Env and Adv will be restricted to adversaries
that don’t read or write the variables of each other or MI,
KEReal, KEldeal, KESim and another module to be introduced
shortly. The addresses of the functionality and adversary,
func' and adv', will be assumed to be incomparable. The
restriction on the input guard in_guard' will be described in
the next paragraph. &m is the initial memory. KEReal, KEIdeal
and KESim initialize their own global variables, and so their
operation is independent from &m. But Env and Adv may fail
to initialize their own global variables, and so their operation
may be dependent upon &m.

KESim is parameterized by an adversary; we have to
apply it to an adversary Adv in order to get an adversary
KESim(Adv). Its job is to let the environment and adversary
communicate normally, and to fool them into thinking they
are interacting with KEReal and not KEldeal. The input guard
in_guard' must not include port index 2, because the ideal
functionality communicates with the simulator on that port
index. When the simulator gets its first message from the
ideal functionality, it learns the address of the ideal (and also
real) functionality, and so learns which messages from the
adversary it should intercept. It will play the role of the two
forwarding sub-functionalities of KEReal, and will generate
the needed random exponents, ¢; and g2, itself. The problem
to overcome in the proof is that the key g~ ¢ sent by KEldeal
to the environment will necessarily have no connection to
the key agreed by the parties of KEReal.

This is where the Decisional Diffie-Hellman assumption
comes in:

module type DDH_ADV = { proc main(k1 k2 k3 : key) : bool }.
module DDH1 (Adv : DDH_ADV) = {
proc main() : bool = {
var b : bool; var 1, g2 : exp; g1 <$ dexp; g2 <$ dexp;
b <@ Adv.main(g "q1, g "g2, g “(q1 = g2)); return b; } }.
module DDH2 (Adv : DDH_ADV) = {
proc main() : bool = {
var b : bool; var g1, g2, g3 : exp;

g1 <$ dexp; g2 <$ dexp; g3 <$ dexp;
b <@ Adv.main(g "q1,9"°q2, g "g3); returnb; } }.

(EASYCRYPT uses <$ for random assignments from distri-
butions.) A DDH adversary is given three keys, and must
return a boolean judgment. The two DDH games are pa-
rameterized by a DDH adversary, and their main procedures
return its boolean judgment. The first two keys passed to
the adversary’s main procedure in the two games are the
same: g"q1 and g~ g2, where q1 and g2 are randomly chosen
exponents. But the third arguments are different: g (q1 % q2)
versus g " g3, with a random q3.

The idea for applying the Decisional Diffie-Hellman as-
sumption is to start from the real experiment, and move in
a sequence of games to a game (7 in which g1 and g2 are
chosen at the game’s beginning, and there are precisely three
places where they are used, as g"q1, g"q2 and g~ (q1 * g2).
We can then build a DDH adversary DDH_ADV as a function
of Env and Adv, in such a way that G; can be shown to be
equivalent to DDH1(DDH_Adv(Env, Adv)). Then we can switch
to DDH2(DDH_Adv(Env, Adv)), adding

*|Pr[DDH1(DDH_Adv(Env, Adv)).main() @ &m : res] —
Pr[DDH2(DDH_Adv(Env, Adv)).main() @ &m : res]|

(the probability the constructed DDH adversary wins the
DDH game) to the cumulative upper bound of our sequence
of games, and then move from DDH2(DDH_Adv(Env, Adv)) to
a G4 that’s just like G; but where g * (q1 * g2) has been
replaced by g " g3, where g3 is also randomly chosen at the
game’s beginning and only used once. Because the random
exponents used by KEReal, KEldeal and KESim are not cho-
sen at the games’ beginnings, we must use EASYCRYPT’s
eager/lazy sampling facilities to accomplish the above. But
thankfully, there is an existing library and methodology for
doing this.

Consequently, our key-exchange security theorem (KEReal
UC-realizes KEldeal) will be the following:

lemma ke_security
(Adv <: FUNC{MI, KEReal, KEldeal, KESim, DDH_Adv})
(Env <: ENV{Adv, MI, KEReal, KEldeal, KESim, DDH_Adv})
(func' adv' : addr, in_guard' : int fset) &m :
exper_pre func' adv' = ! (2 \in in_guard') =
DDH_Adv.func{m} = func' = DDH_Adv.adv{m} = adv' =
DDH_Adv.in_guard{m} = in_guard' =
*|Pr[Exper(MI(KEReal, Adv), Env).
main(func', adv', in_guard') @ &m : res] —
Pr[Exper(MI(KEldeal, KESim(Adv)), Env).
main(func', adv', in_guard’) @ &m : res]| <
*|Pr[DDH1(DDH_Adv(Env, Adv)).main() @ &m : res] —
Pr[DDH2(DDH_Adv(Env, Adv)).main() @ &m : res]|.

The lists of modules inside the assumptions

(Adv <: FUNC{MI, KEReal, KEldeal, KESim, DDH_Adv})
(Env <: ENV{Adv, MI, KEReal, KEldeal, KESim, DDH_Adv})

detail the restrictions on what modules Adv and Env may read

or write the global variables of. Note that DDH_Adv has been
added to the lists of module restrictions. The assumption
exper_pre func' adv' says that func' and adv' are incomparable.
Finally, the assumption

DDH_Adv.func{m} = func' = DDH_Adv.adv{m} = adv' =
DDH_Adv.in_guard{m} = in_guard' =

says the initial values of the global variables func, adv and
in_guard of DDH_Adv are func', adv' and in_guard'. Because
EASYCRYPT modules may not be parameterized by ordinary
values (as opposed to modules), there is currently no other
way to give our constructed DDH adversary access to these
values.

When assessing whether the upper bound

*|Pr[DDH1(DDH_Adv(Env, Adv)).main() @ &m : res] —
Pr[DDH2(DDH_Adv(Env, Adv)).main() @ &m : res]|.

is small enough, one must consult the actual code for
DDH_Adv and make additional assumptions about Env and
Adv. For instance, one might assume that Env and Adv run
in probabilistic polynomial time, and then give a paper-and-
pencil proof that so does DDH_Adv(Env, Adv). EASYCRYPT
doesn’t help us in this analysis.

Here is what our overall sequence of games for the key-
exchange security proof looks like: Because KEReal has sub-
functionalities, it is convenient to begin our sequence of
games by formulating a version of the real functionality,
KERealSimp, that has no sub-functionalities. The difficulty
of proving such a step is that the source and target experi-
ments are structurally dissimilar. This involves working with
a relational invariant tracking how the source and target
experiments evolve. At the top-level of the proof, we can
reduce the equivalence of the experiments to an equivalence
between their interfaces—and so no longer have to consider
the environment at all. Then we can do the same thing with
the interfaces, no longer having to consider the adversary.

When the source and target functionalities are in a rela-
tional state, we need to show that in all the ways they can
evolve, we will return to both sides being in a relational state,
and that eventually we’ll return from the functionality. The
way that we do such a proof is via symbolic evaluation—
essentially running the code via proof tactics. We can push
assignments into the precondition, and we can inline calls
of concrete procedures. If the next statement to run is a
conditional or while loop where we know enough to prove
that its boolean expression is true or false, we can reduce the
conditional to its then or else part, or reduce the while loop
to either nothing (the false case) or the body of the while
loop followed by the while loop itself. When we don’t know
enough to say whether a boolean expression is true or false,
we have to resort to case analysis. There is more discussion
of the challenges of symbolic evaluation in Section VI.

This gets us to the point where we can deploy the

Decisional Diffie-Hellman assumption, starting from an ex-
periment involving KERealSimp. The proof of the final step of
the sequence of games involves moving from an experiment
involving a version of KERealSimp—KEHybrid—in which the
agreed upon key is generated from a random exponent
(like in KEldeal) to the experiment involving KEldeal and
KESim(Adv):

Pr[Exper(MI(KEHybrid, Adv), Env).
main(func', adv', in_guard') @ &m : res] =

Pr[Exper(MI(KEldeal, KESim(Adv)), Env).
main(func', adv', in_guard') @ &m : res].

As usual, this step involves working with a relational invari-
ant and symbolic evaluation guided by case analysis, but
there is a twist. Because we are working with adversaries
that may or may not return to the environment after being
invoked, we have a phenomenon in which—after a call to
the adversary—the same relational state may hold in two
distinct situations:

« when the call to the adversary was after the relational
state was first established by execution of the real
functionality or ideal functionality/simulator; or

o when the call to the adversary was initiated by a call to
the interface (by the environment) when the relational
state already held.

We must unify these two cases, as otherwise the proof effort
would double at each relational proof step, and so would
increase exponentially over the entire sequence of relational
state changes. We accomplish this by proving a single lemma
that’s applicable to both of these situations. The lemma for
the last relational state is first proved, the lemma for the
penultimate relational state uses the lemma for the final one,
and so on. We would have to do all of this using induction,
if we didn’t have a finite sequence of relational states. See
Section VI for more discussion.

E. Proof of Security of SMC

The design of the SMC simulator—SMCSim—and
the proof of the following lemma, which states that
SMCReal(KEldeal) UC-realizes SMCldeal,

lemma smc_security2
(Adv <: FUNC{MI, SMCReal, SMCldeal, SMCSim, KEldeal})
(Env <: ENV{Adv, MI, SMCReal, SMCldeal, SMCSim, KEldeal})
(func' adv' : addr, in_guard' : int fset) &m :
exper_pre func' adv' = ! (3 \in in_guard') =
Pr[Exper(MI(SMCReal(KEldeal), Adv), Env).
main(func', adv', in_guard') @ &m : res] =
Pr[Exper(MI(SMCldeal, SMCSim(Adv)), Env).
main(func', adv', in_guard') @ &m : res].

is similar to the final step of the key-exchange security
proof. Messages to SMCSim from the ideal functionality
come on port index 3, and thus we must assume that 3 is
not an element of the input guard, in_guard'. In the proof’s
sequence of games, we start out by moving to a version

13

Environment

Interface
X

@ SMCReal(KE) B
Figure 8. SMCReal in Relation to Environment and Adversary
IS M
CompEnv
Interface
X
o
SMCReal (KEStub) Bl Ay
. \\)

Interface
Y

a2

Figure 9. SMCReal in Relation to Composed Environment and Adversary

of SMCReal(KEldeal)—SMCRealKEldealSimp—that has no sub-
functionalities. The other and final step of the sequence
of games—the one that involves SMCSim—is similar in
structure to the last-step of the key-exchange security proof.
To handle the use of one-time-pad encryption, we use EASY-
CRYPT’s tactic for handling random assignments with an
isomorphism on the dexp distribution involving the plain text
chosen by the environment. This is a familiar EASYCRYPT
technique.

What remains is to lift our proof that KEReal UC-
realizes KEldeal to a proof that SMCReal(KEReal) UC-emulates
SMCReal(KEldeal). This is an instance of the UC composition
theorem. In pictorial terms, we need to relate two instan-
tiations of the diagram in Figure 8, where the port index
2 of KESim is not an element of the input guard X. In
the first instantiation, KE is KEReal and Adv is Adv; and in
the second one, KE is KEldeal, and Adv is KESim(Adv). We
accomplish this by proving a “bridging” lemma showing the
equivalence between this diagram and the one in Figure 9.
This second diagram involves a composed environment,
which is parameterized by an environment and interface:

module CompEnv (Env : ENV, Inter : INTER) ={ - - - }.

Given an environment Env, CompEnv(Env) is itself an
environment—it’s waiting for the interface Inter.

In the diagram of Figure 9, the real environment is inside
the composed environment. The experiment of the composed
environment makes use of two “stubs”, one for the key-
exchange functionality, and one for the adversary. In normal
operation, the stubs pass messages through, calling the invoke
procedure of the interface for KE/Adv, or returning a message
returned from that invoke procedure to their caller. We need
that the “lower” input guard X is a subset of the “upper”
input guard Y, so that messages to the adversary from the
real environment that are allowed by X can flow through
AdvStub and make it to Adv. Because SMCReal’s forwarder,
Forw, needs to be able to exchange adversarial messages with
the adversary, we also need that Y includes port index 1,
which is used for forwarding control. If SMCReal made use
of other sub-functionalities, the port indices by which those
sub-functionalities communicated with the adversary would
also have to be included in Y.

There is a subtlety regarding the definitions of KEStub and
AdvStub. Suppose that SMCReal calls KEStub with a direct
message destined for KE. KEStub passes this message to
the interface for KE/Adv, which routes it to KE. KE and Adv
may then exchange adversarial messages, and it may happen
that, at some point, Adv returns an adversarial message
that’s not destined for KE (it might be destined for the real
environment), and so is returned out of the interface for
KE/Adv to KEStub. KEStub is programmed to work specially
when an adversarial message has been returned to it. It
stores the message in a mailbox it shares with AdvStub, and
then returns an adversarial message with address 5 back to
SMCReal, which returns it to its interface, which routes it
to AdvStub. AdvStub is programmed to then recognize that
the mailbox it shares with KEStub is full, and to return the
contents of the mailbox to the interface, as if the message
had been returned to it in the first place. Similarly, when a
direct message is returned from KE to its interface, and then
to AdvStub, AdvStub uses the shared mailbox to arrange for
the message to be returned from KEStub to SMCReal.

Because the internal distribution loop of SMCReal is writ-
ten to be resilient to badly behaved implementations of its
parameter KE, we would ideally like to prove the equivalence
between the two diagrams for an arbitrary functionality,
KE. Unfortunately that’s impossible with the current version
of EASYCRYPT. The problem is that Adv and KE could
exchange messages forever, so that execution would never
return back to the environment. In Section VI, we speculate
on how EASYCRYPT might be improved so as to allow
a single and simple proof of the bridging lemma. But in
our case study, we had to fall back on a more cumbersome
approach. We proved two bridging lemmas, one for KEReal
and one for KEldeal, and in the KEReal case, we did the
core work using KERealSimp. In both cases, we defined a
termination metric on the key-exchange functionality’s state,

14

and we proved that its invoke procedure either decreases the
metric by one, or preserves the metric and returns None. Then
we proved the bridging lemmas by a rather complex mathe-
matical induction whose property, P(n), is the conjunction
of three probabilistic relational Hoare logic judgments, one
for each of the three repeating code configurations of the
two experiments. The proofs involved a great deal of guided
symbolic evaluation. The real and ideal proofs are identical
up to some textual substitutions, but there is no way at
present of unifying them.
Our bridging lemmas are:

lemma smc_sec1_ke_real_bridge
(Adv <: FUNC{MI, SMCReal, KEReal, CompEnv}
(Env <: ENV{Adv, MI, SMCReal, KEReal, CompEnv}
(func' adv' : addr, in_guard_low' in_guard_hi' : int fset) &m :
exper_pre func' adv' =
in_guard_low' \subset in_guard_hi' = 1 \in in_guard_hi' =
CompEnv.in_guard_low{m} = in_guard_low' =
Pr[Exper(MI(SMCReal(KEReal), Adv), Env).
main(func', adv', in_guard_low') @ &m : res] =
Pr[Exper(MI(KEReal, Adv), CompEnv(Env)).
main(func' ++ [2], adV', in_guard_hi') @ &m : res].
lemma smc_sec1_ke_ideal bridge
(+same args and assumptions as smc_sec1_ke_real_bridge =)
Pr[Exper(MI(SMCReal(KEldeal), Adv), Env).
main(func', adv', in_guard_low') @ &m : res] =
Pr[Exper(MI(KEldeal, Adv), CompEnv(Env)).
main(func' ++ [2], adV', in_guard_hi') @ &m : res].

From these lemmas, plus our security of key-exchange
lemma (ke_security), we can immediately get that
SMCReal(KEReal) UC-emulates SMCReal(KEldeal):

lemma smc_security1
(Adv <: FUNC{MI, SMCReal, KEReal, KEldeal,
KESim, DDH_Adv, CompEnv})
(Env <: ENV{Adv, MI, SMCReal, KEReal,
KEldeal, KESim, DDH_Adv, CompEnv})
(func' adv' : addr, in_guard' : int fset) &m :
exper_pre func' adv' = ! (2 \in in_guard') =
CompEnv.in_guard_low{m} = in_guard' =
KeyEx.DDH_Adv.func{m} = func' ++ [2] =
KeyEx.DDH_Adv.adv{m} = adv' =
KeyEx.DDH_Adv.in_guard{m} = in_guard' °|" fset1 1 =
*|Pr[Exper(MI(SMCReal(KEReal), Adv), Env).
main(func', adv', in_guard') @ &m : res] —
Pr[Exper(MI(SMCReal(KEldeal), KESim(Adv)), Env).
main(func', adv', in_guard’) @ &m : res]| <
*|Pr[lDDH1(DDH_Adv(CompEnv(Env), Adv)).main() @ &m : res] —
Pr[DDH2(DDH_Adv(CompEnv(Env), Adv)).main() @ &m : res]|.

*I' is the union operation for finite sets, and fset1 1 is {1}.
The statement of smc_seci_ke_ideal_bridge doesn’t involve
KESim; it’s expressed in terms of an arbitrary adversary
Adv. But when we prove smc_securityl, we simply apply
smc_sec1_ke_ideal_bridge to KESim(Adv). When applying the
bridging lemmas, we set in_guard_low' to in_guard’, and
in_guard_high' to the union of in_guard' and {1}. And this
union is also the input guard used with ke_security. The
functionality address used with ke_security is func' ++ [2]. Note
that the security upper bound involves the application of the
DDH adversary to the composed environment.

Then we can combine smc_securityl and the instantiation
of smc_security2 to KESim(Adv) to get our overall security
result that SMCReal(KEReal) UC-realizes SMCldeal:

lemma smc_security
(Adv <: FUNC{MI, SMCReal, SMCldeal, SMCSim, KEReal,
KEldeal, KESim, DDH_Adv, CompEnv})
(Env <: ENV{Adv, MI, SMCReal, SMCldeal, SMCSim, KEReal,
KEldeal, KESim, DDH_Adv, CompEnv})
(func' adv' : addr, in_guard' : int fset) &m :
exper_pre func' adv' = ! (2 \in in_guard’) = ! (3 \in in_guard') =
CompEnv.in_guard_low{m} = in_guard' =
KeyEx.DDH_Adv.func{m} = func' ++ [2] =
KeyEx.DDH_Adv.adv{m} = adv' =
KeyEx.DDH_Adv.in_guard{m} = in_guard' °|" fset1 1 =
*|Pr[Exper(MI(SMCReal(KEReal), Adv), Env).
main(func', adv', in_guard’) @ &m : res] —
Pr[Exper(MI(SMCldeal, SMCSimComp(Adv))), Env).
main(func', adv', in_guard') @ &m : res]| <
*|Pr[DDH1(DDH_Adv(CompEnv(Env), Adv)).main() @ &m : res] —
Pr[DDH2(DDH_Adv(CompEnv(Env), Adv)).main() @ &m : res]|.

where the composed simulator SMCSimComp is defined by

module SMCSimComp (Adv : FUNC) = SMCSim(KESim(Adv)).

This realizes an instance of the transitivity of UC-
emulation. Because the universal quantification of Adv of
smc_security2 includes SMCSim in its restriction, when we
apply smc_security2 to KESim(Adv), this necessitates a check
that KESim and SMCSim don’t read or write each other’s
global variables. The overall restriction on the input guard is
that it not include either 2 or 3, as those are the port indices
excluded by smc_securityl and smc_security2, respectively.

VI. LESSONS LEARNED AND FUTURE WORK

Through our case study, we have validated our EASY-
CRYPT architecture and methodology for stating and ver-
ifying statements within the universally composable se-
curity framework. We were able to naturally define real
functionalities (namely, protocols), ideal functionalities, and
simulators. We: mechanized proofs of UC-realizability, one
of which employed a computational reduction; applied the
UC composition operation; proved an instance of the UC
composition theorem; and used an instance of the transitivity
of UC-emulation.

Despite the relative simplicity of the protocols of our
case study, pushing it to a successful conclusion took an
immense amount of work (nine months of effort resulting
in some 18,000 lines of definitions and proofs). Since this is
clearly not a scalable amount of effort, we present a number
of lessons learned, as well as potential directions for tool
development that will support more efficient and streamlined
proof generation.

Domain Specific Language for Defining Functionali-
ties: Because EASYCRYPT’s programming language is
procedure-based, as opposed to directly supporting the
coroutine-based communication of UC, defining functionali-
ties and simulators involves a large amount of “boilerplate”:

15

they need internal distribution loops that route messages
from the outside to the parties and sub-functionalities, and
allow the parties and sub-functionalities to communicate.
Simulators have to manually route messages between the
environment and adversary.

Writing this boilerplate code is tedious and error prone,
and could be avoided given a domain specific language
(DSL) for writing functionalities and simulators. Then a
functionality designer could focus on the interesting parts
of their design, relying on the DSL’s implementation to
automatically generate the boilerplate. We are in the early
stages of designing and implementing such a DSL.

The implementation of our DSL will automate the check-
ing of various properties that must currently be manually
checked by the designer: ensuring that all messages sent by
functionalities have accurate source addresses; ensuring that
simulators do not observe or interfere with communication
between the environment and adversary; and ensuring that
the parties of a functionality only interact with each other
via sub-functionalities (not, e.g., by modifying each other’s
states).

Our DSL will be usable by crypto theorists lacking a
formal methods background, allowing them to more eas-
ily express functionalities and simulators. In the short-to-
medium-term, our plan is to implement a tool that translates
the DSL into actual EASYCRYPT code. But in the longer
term, it may be possible to develop EASYCRYPT tactics that
work directly with the DSL programs.

Support for Symbolic Evaluation: Simulation-based argu-
ments naturally involve working with structurally dissimilar
programs. Such proofs make use of relational invariants.
When the real and ideal games are in program states
satisfying a relational invariant, one must employ symbolic
evaluation—essentially running the programs using proof
tactics—to get both programs back to points where they
again satisfy the relational invariant. As explained in Sub-
section V-D, we can push assignments into the precondition,
inline calls of concrete procedures, and reduce conditionals
and while loops when we can prove the truth/falsity of their
boolean expressions.

EASYCRYPT currently lacks support for automating sym-
bolic evaluation, and this will have to be rectified for
complex simulation-based proofs to be feasible. One pos-
sibility is to implement a proof tactic that works as follows.
The user will specify an upper bound on the number of
steps of program evaluation they would like to carry out.
When confronted with a conditional or while loop, the
tactic will use SMT solvers (using user-specified lemmas)
to establish the truth or falsity of the boolean expression
of the conditional/while loop. When this process fails, the
tactic will terminate early, giving the user an unsolved goal
to peruse. But when it succeeds, the truth/falsity can be
recorded, enabling an optimized version of the tactic that
makes use of the previously learned sequence of truth/falsity

observations.

Proving or Mechanizing the UC Composition Theorem:
In our case study, we didn’t prove the UC Composition
Theorem, but simply proved the needed instance of the
theorem. This involved the definition of a composed en-
vironment, and proving a “bridging” lemma involving the
composed environment. As explained in Subsection V-E, this
process is—we believe—completely general. Proving the
general composition theorem in EASYCRYPT itself won’t
be possible, because it generalizes over all possible protocol
contexts, and there’s no way to do a structural induction over
modules in EASYCRYPT

There are two possibilities for handling the composi-
tion theorem in EASYCRYPT. One is to do a proof in
EASYCRYPT’s metatheory, e.g., a proof in the existing Coq
development of EASYCRYPT’s metatheory. Then the UC
composition theorem could be safely added to EASYCRYPT,
as a tactic or tactics. The other possibility is to automate
the process of finding EASYCRYPT proofs of the needed
bridging lemmas. Then support for the composition theorem
could be added to EASYCRYPT without adding anything to
its trusted computing base.

As explained in Subsection V-E, were were unable to
prove a single bridging lemma involving an arbitrary black
box (key-exchange) functionality, due to possibility that
the functionality and adversary could exchange messages
forever. Instead, we had to prove a pair of lemmas, which
were identical up to textual substitutions—one for the real
functionality and one for the ideal functionality. This ap-
proach allowed us to define termination metrics on the
functionalities’ states, and to prove the bridging lemmas
using a complex mathematical induction. We believe that
the unrestricted bridging lemma is true, however, and we
intend to investigate improvements to EASYCRYPT’s logics
allowing the unrestricted lemma to be proved.

The Dummy Adversary Model: The formalization of UC-
emulation in terms of an environment and adversary, as
opposed to a single entity playing both roles, has the pleasing
consequence that UC-emulation is obviously transitive—
a fact we used in our case study proof (see the end of
Subsection V-E). However, proofs of UC-realizability are
normally done in the so-called dummy adversary model (see
Subsection III-B), i.e., for an adversary that is controlled
by the environment. The dummy adversary lemma says that
security with reference to the dummy adversary implies UC-
realizability in general.

In our case study (see the discussion in Subsection V-D),
we carried out our proofs of UC-realizability assuming an
arbitrary adversary. This meant we had to deal with the
fact that the same relational state might hold in two distinct
situations, after a call to the adversary:

(1) when the call to the adversary was after the relational
state was first established by execution of the real
functionality or ideal functionality/simulator (in which

16

case the dummy adversary would return control to the
environment, asking for instructions); or

when the call to the adversary was initiated by the
environment’s call to the interface when the relational
state already held.

(@)

We unified these goals into a single lemma, that was proved
once, but applied twice. As future work, we have in mind a
simplification of this approach in which such lemmas don’t
have to be explicitly stated or applied. In their proofs, users
will only have to explicitly handle instances of case (2),
with the framework automatically recognizing and handling
instances of case (1). In other words, they will be able
to work as if they were working in the dummy adversary
model.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under Grants No. 1414119 and No. 1801564.
Ran Canetti is a member of the Check Point Institute for
Information Security at Tel Aviv University. We thank the
anonymous referees for the detailed and insightful feedback
they provided on the submitted version of our paper. It is
a pleasure to acknowledge useful discussions with Manuel
Barbosa, Gilles Barthe, Joshua Gancher, Assaf Kfoury and
Tomislav Petrovic.

REFERENCES

[1] M. Bellare and P. Rogaway, “Entity authentication and key
distribution,” in CRYPTO, 1993, pp. 232-249.

[2] V. Shoup, “OAEP reconsidered,” J. Cryptology, vol. 15, no. 4,

pp. 223-249, 2002.

[3] D. Hotheinz and V. Shoup, “GNUC: A new universal compos-

ability framework,” J. Cryptology, vol. 28, no. 3, pp. 423-508,

2015.

[4] O. Goldreich and H. Krawczyk, “On the composition of zero-

knowledge proof systems,” SIAM J. Comput., vol. 25, no. 1,

pp- 169-192, 1996.

[5] D. Dolev, C. Dwork, and M. Naor, “Nonmalleable cryptog-

raphy,” SIAM J. Comput., vol. 30, no. 2, pp. 391-437, 2000.

[6] R. Canetti, “Security and composition of cryptographic pro-

tocols: A tutorial,” in Secure Multi-Party Computation, 2013,

pp. 61-119.

[7] B. Pfitzmann and M. Waidner, “A model for asynchronous

reactive systems and its application to secure message trans-

mission,” in /[EEE S&P, 2001, pp. 184-200.

[8] R. Canetti, “Universally composable security: A new

paradigm for cryptographic protocols,” in FOCS, 2001, pp.

136-145.

[9] M. Backes, B. Pfitzmann, and M. Waidner, “The reactive

simulatability (RSIM) framework for asynchronous systems,”

Inf. Comput., vol. 205, no. 12, pp. 1685-1720, 2007.

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

R. Kiisters and M. Tuengerthal, “The IITM model: a simple
and expressive model for universal composability,” JACR
Cryptology ePrint Archive, no. 25, 2013.

R. Canetti, A. Cohen, and Y. Lindell, “A simpler variant
of universally composable security for standard multiparty
computation,” in CRYPTO, 2015, pp. 3-22.

M. Bellare and P. Rogaway, “Code-based game-playing
proofs and the security of triple encryption,” JACR Cryptology
ePrint Archive, no. 331, 2004.

——, “The security of triple encryption and a framework for
code-based game-playing proofs,” in EUROCRYPT, 2006, pp.
409-426.

V. Shoup, “Sequences of games: a tool for taming complexity
in security proofs,” JACR Cryptology ePrint Archive, 2004.

M. Abadi and P. Rogaway, “Reconciling two views of cryp-
tography (the computational soundness of formal encryp-
tion),” J. Cryptology, vol. 15, no. 2, pp. 103-127, 2002.

D. Micciancio and B. Warinschi, “Completeness theorems
for the abadi-rogaway language of encrypted expressions,”
J. Comput. Secur., vol. 12, no. 1, pp. 99-129, Jan. 2004.

B. Blanchet, M. Abadi, and C. Fournet, “Automated verifica-
tion of selected equivalences for security protocols,” in LICS,
2005, pp. 331-340.

M. Backes and B. Pfitzmann, “A cryptographically sound
security proof of the needham-schroeder-lowe public-key
protocol,” in FST TCS, 2003, pp. 1-12.

R. Canetti and J. Herzog, “Universally composable symbolic
security analysis,” J. Cryptology, vol. 24, no. 1, pp. 83-147,
2011.

B. Blanchet, “Computationally sound mechanized proofs of
correspondence assertions,” in CSF, 2007, pp. 97-111.

K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models
and reference implementations for the TLS 1.3 standard
candidate,” in IEEE S&P, 2017, pp. 483-502.

B. Blanchet, “Symbolic and computational mechanized veri-
fication of the ARINCS823 avionic protocols,” in CSF, 2017,
pp. 68-82.

N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated
verification for secure messaging protocols and their im-
plementations: A symbolic and computational approach,” in
IEEE Euro S&P, 2017, pp. 435-450.

G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt,
and P.-Y. Strub, “EasyCrypt: A tutorial,” in Foundations of
Security Analysis and Design VII. Springer International
Publishing, 2014, vol. 8604, pp. 146-166.

G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin,
“Computer-aided security proofs for the working cryptogra-
pher,” in CRYPTO, 2011, pp. 71-90.

17

[26]

(27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella Béguelin,
“Beyond provable security: verifiable IND-CCA security of
OAEP,” in CT-RSA, 2011, pp. 180-196.

G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, M. Ti-
bouchi, and J. Zapalowicz, “Making RSA-PSS provably se-
cure against non-random faults,” in CHES, 2014, pp. 206—-
222.

G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt, “Mind
the gap: Modular machine-checked proofs of one-round key
exchange protocols,” in EUROCRYPT, 2015, pp. 689-718.

A. Stoughton and M. Varia, “Mechanizing the proof of adap-
tive, information-theoretic security of cryptographic protocols
in the random oracle model,” in CSF, 2017, pp. 83-99.

J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir,
B. Grégoire, V. Laporte, and V. Pereira, “A fast and verified
software stack for secure function evaluation,” in CCS, 2017,
pp- 1989-2006.

H. Haagh, A. Karbyshev, S. Oechsner, B. Spitters, and
P. Strub, “Computer-aided proofs for multiparty computation
with active security,” in CSF, 2018, pp. 119-131.

A. Petcher and G. Morrisett, “The foundational cryptography
framework,” in POST, 2015, pp. 53-72.

, “A mechanized proof of security for searchable sym-
metric encryption,” in CSF, 2015, pp. 481-494.

L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified
correctness and security of OpenSSL HMAC,” in USENIX
Security, 2015, pp. 207-221.

D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL:
Game-based proofs in higher-order logic,” JACR Cryptology
ePrint Archive, no. 753, 2017.

A. Lochbihler and S. R. Sefidgar, “A tutorial introduction to
CryptHOL,” IACR Cryptology ePrint Archive, no. 941, 2018.

, “Constructive cryptography in HOL,” Archive of For-
mal Proofs, 2018.

F. Bohl and D. Unruh, “Symbolic universal composability,”
in CSF, 2013, pp. 257-271.

K. Liao, M. Hammer, and A. Miller, “ILC: A calculus for
composable, computational cryptography,” in PLDI, 2019.

B. Blanchet, “Composition theorems for CryptoVerif and
application to TLS 1.3,” in CSF, 2018, pp. 16-30.

U. Maurer, “Constructive cryptography - A new paradigm for
security definitions and proofs,” in TOSCA, 2011, pp. 33-56.

M. Tibouchi, “Elligator squared: Uniform points on elliptic
curves of prime order as uniform random strings,” in FC,
2014, pp. 139-156.

