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Abstract—We present a methodology for using the EASY-
CRYPT proof assistant (originally designed for mechanizing the
generation of proofs of game-based security of cryptographic
schemes and protocols) to mechanize proofs of security of
cryptographic protocols within the universally composable
(UC) security framework. This allows, for the first time, the
mechanization and formal verification of the entire sequence
of steps needed for proving simulation-based security in a
modular way:

• Specifying a protocol and the desired ideal functionality.
• Constructing a simulator and demonstrating its validity,

via reduction to hard computational problems.
• Invoking the universal composition operation and demon-

strating that it indeed preserves security.

We demonstrate our methodology on a simple example:
stating and proving the security of secure message commu-
nication via a one-time pad, where the key comes from a
Diffie-Hellman key-exchange, assuming ideally authenticated
communication. We first put together EASYCRYPT-verified
proofs that: (a) the Diffie-Hellman protocol UC-realizes an
ideal key-exchange functionality, assuming hardness of the
Decisional Diffie-Hellman problem, and (b) one-time-pad en-
cryption, with a key obtained using ideal key-exchange, UC-
realizes an ideal secure-communication functionality. We then
mechanically combine the two proofs into an EASYCRYPT-
verified proof that the composed protocol realizes the same
ideal secure-communication functionality.

Although formulating a methodology that is both sound and
workable has proven to be a complex task, we are hopeful that
it will prove to be the basis for mechanized UC security analyses
for significantly more complex protocols and tasks.

I. INTRODUCTION

Cryptographic protocols are magical: they allow us to

conjure alternative realities where information is created,

shared, evolved, analyzed, combined, separated, seemingly

destroyed, and then reconstructed elsewhere in idealized and

abstract ways that defy physical common sense—and then,

amazingly enough, they show us how to actually realize

these alternative realities on our laptops.

This magic comes at a price: to make it work, we must

resign to the fact that guarantees might be imperfect and

allow for small probability of error. Furthermore, the guaran-

tees might only hold against resource bounded adversaries;

1This is an extended abstract. See the full version at the IACR ePrint
Archive (2019), and at https://github.com/easyuc/EasyUC.

consequently, proofs may need to rely on reductions to the

intractability of some underlying computational problems.

Additionally, one has to know how to align one’s spells:

verifying seemingly natural properties like correctness, se-

crecy, information flow, knowledge, influence, or bias be-

comes delicate and error-prone. Indeed, even formalizing

such concepts requires arguing about the capabilities and

knowledge of computationally bounded adversarial entities

that interact with multiple algorithms in a distributed, multi-

component system.

Then, proofs (or reductions) that a protocol possesses a

property must show how to translate the capabilities and

knowledge of a computationally bounded adversary in one

distributed, multi-component system to adversarial capabil-

ities and knowledge in another system, which might also

be distributed and multi-component. Indeed, cryptographic

modeling and analysis has time and again succumbed to

subtle but devastating mistakes (see e.g., [1]–[3]).

Cryptographic approaches to defining security: Several

methodologies for “magic control”—i.e., specifying and

analyzing security properties of cryptographic protocols—

have been developed over the years.

One such methodology is the game-based security ap-

proach in which a hypothetical adversary interacts with a

“tester” or a “game master” who mediates the adversary’s

access to components of the scheme and who also deter-

mines at the end of the interaction whether the adversary

succeeded in its goal. A cryptographic scheme is deemed

to satisfy game-based security if no sufficiently bounded

adversary succeeds with probability more than allowed by

the game. This is a relatively simple formalism that involves

only a single universal quantifier (asymptotics aside).

However, plain game-based security definitions often have

limited expressive power. Specifically, in situations where

the security requirements combine both secrecy and cor-

rectness in non-trivial ways (such as zero-knowledge proofs,

secure computation, garbling, functional encryption and oth-

ers) plain game-based definitions do not seem to suffice. In

such situations the more expressive formalism of simulation-

based security (often called the real/ideal paradigm) turns

out to be more useful. Simulation-based security can be

thought of as an interaction between a game-master and



three entities: an adversary, a simulator, and a distinguisher.

The game master chooses at random to play either the real

game with the distinguisher and the adversary, or else to

play the ideal game with the distinguisher and the simulator.

The definition of security requires that for any (bounded)

adversary there exists a computationally bounded simulator

such that no computationally bounded distinguisher will be

able to tell the real game from the ideal one with significant

advantage. Here the ideal game typically represents the

desired behavior of the system, whereas the real game repre-

sents the actual execution environment under consideration.

Even simulation-based notions of security can fall short

of capturing security properties nimbly enough. Indeed, time

and again such notions have failed to preserve security when

schemes and protocols are composed with one another in

adversarially coordinated ways (see e.g., [4]–[6]). Still, a

special class of simulation-based notions of security, namely

notions of universally composable (UC) security, do allow

capturing security properties of protocols so that these

properties are preserved even when the analyzed protocols

are composed with arbitrary other protocols [7], [8].

UC security can be thought of as a variant of simulation-

based security, where the interaction among the distin-

guisher, the adversary (or simulator), and the game master

is stylized in a specific way that allows the distinguisher

“maximum interaction” with the adversary (or simulator).

Furthermore, UC security has an alternative (and mathemat-

ically equivalent) formulation which considers only a single,

simple adversary. We are thus left with the structurally

simple requirement that there exists a simulator such that

no distinguisher can tell the real interaction from the ideal

interaction with the simulator.

More specifically, the ideal game represents an interaction

of the distinguisher (who is now called the environment) with

the simulator and an entity, called an ideal functionality,

that represents the desiderata from the task at hand by

way of an idealized mechanism. The real game represents

an execution of the analyzed protocol within the model

of computation under consideration. This means that, to

demonstrate that a protocol complies with the specification,

the analyst should exhibit a simulator, and then demonstrate

that no environment can tell whether it is interacting with the

protocol in the real game, or else with the ideal functionality

and the simulator in the ideal game. In that case we say that

the protocol UC-realizes the ideal functionality.

Beyond providing an expressive way of formulating secu-

rity and functionality specifications for protocols, universally

composable (UC) security is attractive in that it allows for

security-preserving modular design of protocols, or more

generally complex systems—thus significantly simplifying

the overall design and analysis process. Indeed, UC security

has become the method of choice for formulating and prov-

ing security of cryptographic protocols, whenever possible.

There are a number of frameworks that allow representing

protocols and formulating UC security properties with vary-

ing levels of expressivity and generality, e.g., [3], [7]–[11].

Formal and mechanized analysis: Although formulating

adequate notions of security for simple tasks and proving the

security of simple protocols based on simple-to-state com-

putational intractability assumptions can be a fun challenge

for a creative mind, doing so for even moderately complex

protocols (let alone at the scale of real-world systems) is a

daunting task. Formalisms such as the UC framework or the

sequence-of-games formalism [12]–[14] make proofs more

modular and structured; still, even with these mechanisms

in place, the complexity of manual proofs is far beyond the

reach of human capabilities.

Several approaches to mechanizing the verification of

cryptographic security properties have been proposed. The

works of Abadi-Rogaway and Micciancio-Warinschi [15],

[16] demonstrate that game-based cryptographic properties

in the symbolic model can be formulated in a logic that can

be mechanically verified. Indeed, the PROVERIF Tool [17]

of Blanchet was able to verify these (and other) properties

mechanically. Backes and Pfitzmann [18], and later Canetti

and Herzog [19], demonstrate that a similar translation can

be done for universally composable notions of security.

However this approach turned out to be limited in scope,

since it required separating the analysis to two disjoint parts:

an “abstract” part where the analysis is purely combinatorial

(and typically deterministic) without computational hardness

considerations, and the remaining “computational” part that

translates algorithmic constructs that rely on computational

hardness to abstract constructs with idealized security. Fur-

thermore, only the “abstract” part is mechanized.

An alternative approach, taken in CRYPTOVERIF [20]–

[23], and later by other proof assistants such as EASYCRYPT

[24]–[31], FCF [32]–[34], and CRYPTHOL [35], [36], ap-

plies to cryptographic proofs that are based in the sequence-

of-games formalism. These tools provide probabilistic pro-

gramming languages to formalize the games in the sequence,

and support the automatic or machine-assisted generation

and verification of the transitions between games, as well as

the overall proof. This approach proved very successful and

allowed formally and mechanically verifying game-based

security notions of many primitives, schemes and protocols.

Some simulation-based security analyses have been carried

out as well, with a variety of challenges being reported [29]–

[31]. However, to the best of our knowledge, none of these

tools have been used so far to mechanize UC-style security

analyses (with the potential exception of the concurrent work

of [37]).

A. This Work

We report on an ongoing effort to show how EASYCRYPT

can be used to formally specify and mechanically verify

security properties of protocols, expressed within the UC

framework. The overarching goal is to be able to specify
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protocols, ideal functionalities, and simulators within the

EASYCRYPT language and mechanize proofs of UC security.

In more detail, we seek to:

• Represent cryptographic protocols within the UC

framework, or rather a variant of UC that replaces in-

teractive Turing machines with EASYCRYPT modules.

• Specify security requirements for cryptographic tasks,

by way of formulating appropriate ideal functionalities

within the same variant of the UC framework.

• Formally verify that a protocol UC-realizes an ideal

functionality under appropriate intractability assump-

tions. This requires defining an appropriate simulator

and then proving a concrete upper bound ǫ on the ability

of the environment to distinguish an interaction with the

protocol from an interaction with the ideal functionality

and the simulator. The bound ǫ can either be stated

in absolute terms or relative to the concrete ability of

breaking the underlying computational assumption.

• Apply the universal composition operation to protocols

and formally prove using the EASYCRYPT tool that

the operation preserves security, as predicted by the

universal composition theorem.

In this work, we make significant steps towards this

overarching goal. Specifically, we formulate a somewhat

restricted variant of the UC framework (essentially, we as-

sume static and known subroutine structure and hierarchical

addressing). Still, this variant allows expressing a rich class

of cryptographic protocols and ideal functionalities. Next

we provide a library of EASYCRYPT modules that allows

expressing executions, within the UC model, of (1) a given

protocol with arbitrary environment and adversary, and (2)

a given ideal functionality, with an arbitrary environment,

and a given simulator that interfaces with an arbitrary

adversary. Furthermore, the library allows expressing as an

EASYCRYPT goal the statement that, given a protocol, an

ideal functionality, and a simulator, no environment and ad-

versary can distinguish between an execution of the protocol,

and an execution of the ideal functionality alongside the

simulator. Finally, we give a generic way to express the

universal composition (UC) operation, and we provide a

general methodology for proving its validity.
Remarks: Four comments are in order at this point.

First, this work inherits EASYCRYPT’s informal treat-

ment of runtimes. That is, we do not provide any formal

mechanism for verifying the runtimes of components, most

prominently of the simulator; this analysis is left to be done

manually. While for our restricted case this does not appear

to be a severe limitation, adding an EASYCRYPT mechanism

for formally asserting runtime bounds would be useful.

Second, recall that the UC operation takes descriptions of

three protocols—ρ, φ and π—and returns the protocol ρφ→π

where each instance of φ, when called as subroutine of ρ, is

replaced by an instance of π. For simplicity, in this work we

only treat the case where a single instance of φ is replaced

by an instance of π. We note that no generality is lost since

the general case can be obtained by iterated applications

of this single-instance case. Crucially, this holds since the

complexity of the simulator in the UC framework is always

bounded by the complexity of the adversary plus a fixed

polynomial overhead.

Third, while our case study does not use subroutines that

are globally accessible or share state with other protocols,

we are not aware of any limitation that would prevent our

framework from being adapted to handle such cases as well.

Fourth, we note that, throughout this work, we stick

with the formulation of UC security that directly models

an arbitrary adversary, rather than restricting attention to the

dummy adversary model. This is done for convenience: With

an arbitrary adversary, UC security is trivially transitive,

which is very useful as exemplified in the case study

(see below and and in Section V). Furthermore, since UC

simulation is black-box and in-line, the added complexity

incurred by the analyst due to working with an arbitrary

adversary is minimal; see Section VI for discussion.

B. Case Study

We demonstrate the validity of our methodology on

an example which, while relatively simple, contains all

the components mentioned above. Specifically, we give an

EASYCRYPT-aided formal analysis of UC-security of a

Diffie-Hellman key-exchange protocol, followed by the one-

time-pad encryption of a message with the resulting key—

assuming ideally authenticated communication. That is:

• We give EASYCRYPT formulations of an ideal secure

message communication (SMC) functionality SMCIdeal,

an ideal key-exchange functionality KEIdeal, and an

ideal message authentication functionality Forw.

• We give EASYCRYPT formulations of two differ-

ent 2-party protocols: Diffie-Hellman key exchange,

KEReal, and a secure message communication protocol,

SMCReal(KE), in which the parties use as a one-time

pad the shared key produced by an abstract module

KE. Both protocols use Forw to transmit all messages.

• We formally verify that KEReal UC-realizes KEIdeal

under the Decisional Diffie-Hellman (DDH) assump-

tion. This requires construction of a simulator KESim,

construction of a DDH-breaking adversary from the

environment and adversary, and proving that the ability

of the environment to distinguish KEReal and the adver-

sary from KEIdeal and the application of KESim to the

adversary is upper-bounded by the ability of the DDH-

breaking adversary to distinguish the DDH games.

• We formally verify that SMCReal(KEIdeal)—that is,

SMCReal where the abstract module KE is instanti-

ated with ideal key exchange KEIdeal—UC-realizes

SMCIdeal. That is, we construct a simulator SMCSim and

formally verify that no environment can distinguish be-

tween the two interactions. (Here there is no reduction.)
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• We formally verify that SMCReal(KEReal) UC-emulates

SMCReal(KEIdeal). This amounts to verifying an instance

of the universal composition theorem. (UC-emulation is

a generalization of UC-realization to the case where the

emulated protocol is not an ideal functionality.)

• Using transitivity, we deduce that SMCReal(KEReal) UC-

realizes SMCIdeal.

The EASYCRYPT code for the case study can be down-

loaded from the EasyUC project’s GitHub repository: https:

//github.com/easyuc/EasyUC

C. Reflections

Building a framework that is EASYCRYPT-compatible, a

faithful representation of (a subset of) the UC framework,

and at the same time also workable, turned out to be a

highly non-trivial challenge. We view our work so far as a

first step towards the general goal, outlined above, of being

able to generate tool-assisted, formally verified proofs of UC

security with relative ease.

Immediate goals include further extending our library of

EASYCRYPT modules, formalizing and verifying the UC

composition theorem more generally, and providing addi-

tional support to facilitate the expression of UC protocols,

ideal functionalities, and simulators as well as the generation

of EASYCRYPT proofs. Here developing a domain-specific

dialect of the EASYCRYPT programming language will

prove useful.

In Section VI, we describe some of the main difficulties

we faced in our work, and point the way toward future work.

II. RELATED WORK

There are a number of analytical frameworks that allow

representing protocols and formulating UC security proper-

ties with varying levels of expressivity and generality, e.g.,

[3], [7]–[11]. While these definitions differ in many details,

their high-level structures are very similar. Our work can be

viewed as providing a way to mechanize security proofs in

any one of these models.

Böhl and Unruh [38] introduce a variant of UC Security

for the symbolic model, working within an applied π-

calculus.

Interactive Lambda Calculus (ILC) [39] is a process calcu-

lus formulation of UC, consisting of the π-calculus with an

affine typing system enforcing that only one process is active

at a time. In the metatheory, they introduce randomness

by supplying processes with bit sequences, and then define

UC-realizability, the UC composition operation, and prove

the UC composition theorem. They leave as future work

interfacing their framework with a mechanized proof system.

Blanchet [40] has proved composition theorems that may

be stated and used in CRYPTOVERIF, allowing one to

give modular security analyses of the composition of key-

exchange protocols with symmetric-key protocols that use

the exchanged keys. These composition theorems work with

a game-based notion of security.

Constructive cryptography [41] is a paradigm for defining

the security of cryptographic schemes and protocols that

focuses on constructing resources with stronger security

properties from ones with weaker security properties. Secu-

rity in constructive cryptography is defined via simulation,

and constructive cryptography has a composition theorem.

A CRYPTHOL formalization of elements of constructive

cryptography can be found in [37]. As a case study, this

work (which is concurrent with our work) securely composes

one-time pad encryption with message authentication.

III. BACKGROUND

A. EasyCrypt

EASYCRYPT’s programming language has modules,

which consist of procedures and global variables. Procedures

are written in a simple imperative language featuring while

loops and random assignments.

EASYCRYPT has four logics: a probabilistic, relational

Hoare logic, relating pairs of procedures; a probabilistic

Hoare logic allowing one to prove facts about the probability

of a procedure’s execution resulting in a postcondition

holding; an ordinary Hoare logic; and an ambient higher-

order logic for proving general mathematical facts, as well as

for connecting judgments from the other logics. For instance,

one may use the probabilistic, relational Hoare logic to

prove an equivalence between the boolean-returning main

procedures of two modules whose postcondition says the

procedures’ results are equal, and then use the ambient logic

to prove that the two procedures are equally likely to return

true. One may prove facts involving abstract modules, e.g.,

ones representing adversaries or environments.

Proofs are carried out using tactics, which transform

the current proof goal into zero or more subgoals. Simple

ambient logic goals may be automatically proved using

SMT solvers. Once found, an EASYCRYPT proof script

can be replayed step-by-step, or checked in batch-mode.

Proofs may be structured as sequences of lemmas, and

EASYCRYPT’s theories may be used to group definitions,

modules and lemmas together. Theories may be specialized

using a process called cloning.

B. Universally Composable Security

Universally Composable (UC) security is a framework

that formulates security properties of cryptographic proto-

cols by way of “emulating” an idealized process where the

desired behavior of the protocol is guaranteed by fiat. A main

ingredient in the idealized process is the ideal functionality,

where the desired behavior is specified by way of a program.

One salient property of UC definitions of security is their

robustness to the execution environment: If a protocol π
emulates some ideal functionality F , then π continues to

realize F in any context.
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In this section, we follow the simplified UC model in [8,

2018 version, §2]. The framework consists of the following

components: (1) a model for executing a protocol, (2) an

idealized model for running an ideal functionality, (3) a

definition of UC-realizability that requires that interactions

with the protocol and ideal functionality are indistinguish-

able, and (4) a security-preserving composition operation.

Model of protocol execution: The model for executing

protocol π consists of a set of computational entities (called

machines) that run π, together with two adversarial enti-

ties: an environment and an adversary. An execution is a

sequence of activations, where the environment is activated

first, and during each activation the activated machine sends

a message to one other machine, which is activated next.

There are three types of messages: input messages, out-

put messages, and adversarial messages. The environment

provides input messages to the protocol machines and to

the adversary. The adversary can send output messages to

the environment or adversarial messages to the protocol

machines. The protocol machines can send inputs to other

machines, outputs to other machines or to the environment,

and adversarial messages to the adversary. While the general

UC framework permits creation of new protocol machines

on the fly, in this work we restrict ourselves to systems

with a fixed number of machines. The execution terminates

when the environment generates a single-bit output. The

adversarial messages capture both adversarially controlled

communication and also corruption of machines.

Ideal model: An ideal functionality is a machine F that

captures the desired behavior of the protocol. The ideal

model is the same model for protocol execution, where

the protocol is now an “ideal protocol” that consists of

F plus a number of “dummy parties” that transfer inputs

(coming from the environment) to F and outputs (coming

from F ) to the environment. All adversarial messages from

the adversary are directed to F .

UC-emulation and UC-realization: A protocol π UC-

realizes an ideal functionality F if for any environment and

adversary there exists a simulator such that the environment

cannot guess (with probability significantly more than ½)

whether it is interacting with the adversary and π (the “real”

game), or with the simulator and the ideal protocol for

F (the “ideal game”). More formally, we want that the

absolute value of the difference between the probabilities

that the environment returns true in the real and ideal games

is not significantly more than 0. The definition naturally

generalizes to the case where the latter protocol, φ, is a

general protocol rather than an ideal protocol for F ; in this

case we say that π UC-emulates φ. From its definition, we

can see that UC-emulation is transitive.

We note that this definition of security is equivalent to

the seemingly more relaxed variant (the “dummy adversary

model”) where the adversary is restricted to only forwarding

messages between the environment and the parties (on their

adversarial links). It is also equivalent to the seemingly more

restrictive variant where the simulator only has black-box

access to the adversary; this is the variant that we formalize

within EASYCRYPT.

Universal composition: The universal composition opera-

tion considers three protocols: protocol ρ that includes calls

to a “subroutine protocol” φ, and another protocol π. The

composed protocol, denoted ρφ→π, is the protocol where

subroutine calls to φ are replaced with subroutine calls to

π. The universal composition theorem states that, if π UC-

emulates φ, then ρφ→π UC-emulates ρ. That is, for any

protocol ρ, making subroutine calls to protocol π (instead

of the potentially idealized φ) does not change the overall

behavior. This is indeed a strong guarantee with far-reaching

consequences.

IV. OUR MODELING OF UC WITHIN EASYCRYPT

A. Our Variant of UC

Our UC model makes four changes from prior works

for ease of instantiation within EASYCRYPT: moving from

interactive Turing machines to EASYCRYPT modules, re-

stricting to statically created functionalities, formalizing the

UC message routing system, and designing an interface

module to firewall the environment, a functionality, and the

adversary from each other.

First, because EASYCRYPT’s programming language is

based around a module system, it is natural to represent

the environment, protocol instances, ideal functionalities,

and adversaries as EASYCRYPT modules, which have local,

private state. Although the usage is non-standard, we refer

to (real) protocol instances as “real functionalities”, so

that both real and ideal functionalities are functionalities.

All of the parties of a real functionality live within the

same EASYCRYPT module, and functionalities can have

sub-functionalities. Because EASYCRYPT has parameterized

modules, functionalities can be parameterized by other func-

tionalities, and we can realize UC’s composition operator as

module application.

Second, modules in EASYCRYPT are statically deployed,

before proofs are developed (or, in the semantics, code is

run). Consequently, we work with a restricted version of UC

in which the environment and functionalities cannot dynam-

ically create new functionality instances. We can, however,

statically create (using EASYCRYPT’s cloning mechanism)

as many instances of each functionality as are needed.

Third, we designed a formal addressing system for mes-

sage routing between the environment, functionalities and

the adversary. In this system: functionalities have addresses,

which are hierarchical (like postal addresses); and the

addresses of sub-functionalities are sub-addresses of their

parent functionalities. We give messages destination and

source addresses, and the environment, functionalities and

the adversary must route messages to their destinations. We

have two kinds of messages:
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Environment

Interface

Functionality Adversary

Figure 1. Overall Architecture

• direct messages, which are used when supplying inputs

to functionalities, and when returning results from

functionalities; and

• adversarial messages, which are used for communi-

cation between functionalities and the adversary, and

between the adversary and the environment.

We employ a hierarchical addressing system in order to

simplify message routing. E.g., when a functionality receives

a message from the environment (or a parent functionality)

that’s addressed to one of its sub-functionalities, it routes the

message to that sub-functionality. Although this addressing

system is sufficient for this paper, we may explore alterna-

tives in future work. On top of our addressing system, we

have built a simple naming scheme; see the discussion of

ports in Subsection IV-B.

Fourth, the environment doesn’t directly communicate

with a functionality and adversary; instead it communicates

with a special routing device we call an interface, as

illustrated in Figure 1. An interface contains a functionality

and an adversary. Direct messages from the environment that

come to the interface must be destined for its functionality

part; adversarial messages must be destined for its adversary

part. The interface allows its functionality to send direct

message to the environment, and adversarial messages to

the adversary. It allows its adversary to send adversarial

messages to both its functionality and the environment.

A simulator is a parameterized adversary: it may be

applied to (wrapped around) an adversary, with the result

being an adversary. Simulators pass messages from the

environment on to the adversary (its parameter). They catch

messages coming out of the adversary that are destined for

a real functionality, responding to them in an attempt to

fool the adversary into thinking it’s interacting with the

real functionality. But they don’t restrict the adversary’s

communication with the environment. This is illustrated in

Figure 2.

Interfaces must be configured—via what we call input

guards—to restrict which adversarial messages can flow

from the environment to the adversary. Their role is (1) to

stop the environment from being able to send arbitrary mes-

sages to simulators—messages that must only come from

ideal functionalities, while (2) allowing messages through

that are needed to support modular proof.

real functionality

Simulator

Adversary

ideal functionality environment

spoofing

Figure 2. Simulator Architecture

Functionalities can also employ input guards, controlling

which messages they are willing to accept. Normally, a

functionality will handle all allowed direct messages at

the top-level, not allowing the environment to send direct

messages to the functionality’s sub-functionalities. But it

will allow adversarial messages to flow back and forth

between the adversary and sub-functionalities.

The parties of a real functionality only communicate

via sub-functionalities. E.g., they may employ forwarding

sub-functionalities, allowing their communications to be

observed and controlled by the adversary. Or they might

employ key-exchange sub-functionalities, in order to agree

on keys with each other.

Even though EASYCRYPT’s module language has a stack-

based procedure call semantics, we can easily program real

and ideal functionalities, simulators, adversaries, interfaces

and environments, using message routing. In this way, we

naturally realize UC’s coroutine communication style within

EASYCRYPT’s procedural language. In Figures 1 and 2,

when messages travel down, this is realized via procedure

calls; when messages travel up, it’s via procedure returns.

B. Formalization in EASYCRYPT

Now we consider the formalization of our UC variant in

EASYCRYPT. Addresses are simply lists of integers:

type addr = int list.

If α and β are addresses, we define α ≤ β iff α is a prefix

of β, and we read β ≥ α as β is a sub-address of α.

The destinations and sources of messages are actually ports,

which consist of pairs of addresses and port indices:

type port = addr ∗ int.

A message with destination port (α, i) is to be delivered to

the functionality with address α, and the functionality is free

to interpret the port index i however it wishes. Typically,

each party of a real functionality has one or more port

indices associated with it.

The values included in messages are elements of a recur-

sive universal datatype
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type univ = [
UnivUnit | UnivBase of base | UnivBool of bool | UnivInt of int

| UnivReal of real | UnivAddr of addr | UnivPort of port
| UnivPair of (univ ∗ univ) ].

where the type base can be instantiated with whatever basic

type is needed in a given application. Here UnivBase, UnivInt,

etc., are the constructors of the datatype. E.g.

UnivPair (UnivInt 4, UnivPair (UnivBool true, UnivInt 2))

is a value of type univ, which we can think of as representing

(4, (true, 2)).
Message modes are either direct or adversarial:

type mode = [ Dir | Adv ].

And messages themselves are four-tuples:

type msg =
(mode ∗ (* mode *)
port ∗ (* destination port *)
port ∗ (* source port *)
univ). (* value being communicated *)

Source ports are informational; depending upon where the

message has come from, they can’t necessarily be trusted.

The root address [ ] (the empty list) is reserved for the

environment.

For what follows, we need the notion of an option type.

Given a type t, the type t option consists of None plus all

values of the form Somex, where x is an element of t.
We have a polymorphic operator oget : 'a option → 'a so that

oget (Some x) = x, and oget None is some unknown but fixed

value.

The following module type will be used for ideal func-

tionalities, real functionalities, and adversaries:

module type FUNC = {
proc init(self adv : addr) : unit
proc invoke(m : msg) : msg option }.

A module with this module type implements at least the

procedures init and invoke with the indicated types. It will

have global variables (local to the module, but global to its

procedures), which hold its private, persistent state. unit is a

placeholder type, with a single element, so init doesn’t return

anything of interest. It is called—at initialization time—with

its own address (self) and the address of the adversary (adv).

It will store those addresses in global variables, initialize

whatever other global variables the functionality uses to

maintain its state, and initialize all of its sub-functionalities.

The procedure invoke, on the other hand, is called at runtime

with a message m addressed to the functionality or one of

its sub-functionalities. Eventually, it will return either None

to indicate it has failed, or Some m′, where the message m′

is what the functionality (or one of its sub-functionalities)

wants to send to some other functionality, the adversary, or

the environment (depending upon its destination address).

A real functionality will have an internal distribution loop

that routes messages within the functionality, letting the

functionality’s parties and sub-functionalities communicate

with each other.

An adversary is just a module with module type FUNC.

(I.e., from the point of view of the module system, ad-

versaries and functionalities are interchangeable.) When an

adversary’s init procedure is called, its second parameter (the

adversary’s address) is normally set to the root address of the

environment, [ ]. A simulator is an adversary that’s param-

eterized by an adversary. I.e., it’s a parameterized module

whose parameter has module type FUNC; once we apply a

simulator to an adversary, the result also has module type

FUNC. When a simulator’s init procedure is called with its

address and the root address of the environment, it initializes

the adversary it’s been applied to, using the same addresses.

There is no address hierarchy within adversaries/simulators,

but there is a port index hierarchy. A simulator handles

messages destined for its port index, passing other messages

on to the adversary—or to a nested simulator. Multiple port

indices are associated with nested simulators—one for each

level of simulation.

An interface, which we should think of as containing

within itself a functionality and an adversary (or simulator

wrapped around an adversary, . . .), is a module with the

following module type:

module type INTER = {
proc init(func adv : addr, in guard : int fset) : unit
proc invoke(m : msg) : msg option }.

As with functionalities, init is called at initialization time,

telling the interface the addresses of its functionality and

adversary, and allowing it to initialize its global variables

and initialize its functionality and adversary. But what of the

third argument to init, which consists of a finite set of port

indices? Well, it’s an input guard detailing the port indices

of the adversary that the environment can communicate

with. The standard interface only allows messages addressed

to those indices of the adversary’s address to go through,

plus the special port index 0, which is always accessible

to the environment. Indeed, communications between the

environment and adversary often go between ports ([ ], 0)
and (adv , 0), where adv is the adversary’s address.

The procedure invoke is called at runtime with a message

destined for either the functionality or the adversary, and it

eventually returns either None or Some of a message destined

for the environment. The standard interface enforces these

message communication rules:

• the environment can send direct messages to the func-

tionality, and adversarial messages to the adversary at

port index 0 plus the input guard port indices;
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• the functionality can send direct messages to the envi-

ronment, as well as adversarial messages to any port

index of the adversary other than 0;

• the adversary can send adversarial messages to both the

functionality and the environment.

When communication rules are violated; the standard inter-

face returns None, indicating failure.

An interface’s input guard is used to stop the environment

from being able to send messages to the port index of a

simulator—messages which should only come from an ideal

functionality (or, in the case of nested simulators, from an

outer simulator). Otherwise, the environment would be able

to trivially distinguish the real and ideal games. On the other

hand, to support modular proof, some messages from the

environment destined to port indices other than 0 must be

allowed to flow to the adversary.

The parameterized module MI (for make interface) builds

a standard interface from a functionality and adversary

module MI (Func : FUNC, Adv : FUNC) : INTER = { . . . }.

An environment implements the following module type,

module type ENV (Inter : INTER) = {
proc main(func adv : addr, in guard : int fset) : bool {Inter.invoke}

}.

which means it is parameterized by an interface, and it

implements a main function with the indicated type that is

only allowed to call the invoke procedure of the interface (i.e.,

the environment may not initialize the interface). main should

be called with the same arguments that are passed to the

interface’s init function, and main returns the environment’s

boolean judgment.

Finally, the Exper module (for “experiment”) is defined as

follows:

module Exper (Inter : INTER, Env : ENV) = {
module E = Env(Inter) (* connect Env and Inter *)
proc main(func adv : addr, in guard : int fset) : bool = {

var b : bool; Inter.init(func, adv, in guard);
b <@ E.main(func, adv, in guard); return b; } }.

(EASYCRYPT uses <@ for the assignment to a variable of

the result of a procedure call.) It is parameterized by an

interface and an environment. Its main function should be

called with the addresses of the interface’s functionality and

adversary (which should be incomparable) as well as the

interface’s input guard. It then initializes the interface (which

will initialize the functionality and adversary), before calling

the main function of the environment (which has been given

access to the interface). The environment may call the invoke

procedure of the interface as many times as it likes, before

eventually returning a boolean judgment, which is returned

as the result of the experiment.

V. CASE STUDY: SECURE MESSAGE COMMUNICATION

To see how we could carry out modular proofs of security

using our UC in EASYCRYPT architecture, we formulated

what we hoped was the simplest interesting case study that

would let us prove a UC security theorem and then apply

it in a larger system. We wanted the proof of the security

theorem to employ a cryptographic reduction. We settled on

the application being secure message communication (SMC)

using a one-time pad that was agreed using Diffie-Hellman

key-exchange.

A. SMC Protocol

The SMC protocol uses the following types and opera-

tions:

type key. (* group of keys *)
op ( ˆˆ ) : key → key → key. (* binary operation on keys *)
op kid : key. (* identity key *)
op kinv : key → key. (* key inverse *)
type exp. (* commutative semigroup of exponents *)
op ( * ) : exp → exp → exp. (* multiplication of exponents *)
op dexp : exp distr. (* full, uniform, lossless distribution *)
op g : key. (* generator key *)
op ( ˆ ) : key → exp → key. (* key exponentiation *)
type text. (* plain texts *)
op inj : text → key. (* injection *)
op proj : key → text option. (* partial projection *)

First of all we have a type key, together with a binary oper-

ation ˆˆ, a constant kid (key identity), and a unary operation

kinv (key inverse), satisfying the group axioms. Then we

have a type exp (exponent), together with a commutative and

associative binary operation ∗. Next, we have a probability

distribution dexp on exponents in which every exponent has

a non-zero and equal weight in the distribution—i.e., equal

chance of being chosen in a random assignment from dexp—

and where the sum of those weights is 1. Next, we have

a generator key g plus a key exponentiation operation ˆ

together with axioms saying that every key is determined

in a unique way via raising g to an exponent, and that for

all exponents q1 and q2, (g ˆ q1) ˆ q2 = g ˆ (q1 ∗ q2). It follows

there is an operation log : key → exp (the discrete logarithm)

such that log and the result of raising g to an exponent are

mutual inverses. EASYCRYPT has no cost model, i.e., no

notion of how expensive it might be to compute the discrete

log. We can show that (k ˆ q1) ˆ q2 = k ˆ (q1 ∗ q2) for all

keys k (not just for g). Finally, we have a type text of plain

texts, together with an injection inj from text into key, and a

partial projection back the other way—partial because some

keys (group elements) will be mapped to None, i.e., won’t

correspond to plain texts. This means that the cardinality of

text will be strictly less than that of key. In practice, we can

instantiate the injection/partial projection pair with text as a

set of fixed-length bitstrings and key as either a multiplicative

group of integers modulo a prime or one of a number of

elliptic curve groups [42].
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α and β are the addresses of the functionality and adversary,

respectively. 1–3 are port indices. The thicker circles around

1 and 2 indicate that direct messages are received from,

and/or sent to, the environment on these port indices.

Figure 3. SMC Ideal Functionality

To be able to send messages involving exponents, keys

and plain texts, we instantiate (via theory cloning) the type

base of our universe type univ with this datatype:

type base = [ BaseExp of exp | BaseKey of key | BaseText of text ].

The secure message communication (SMC) protocol has

two parties. Party 1 has a plain text t it wants to commu-

nicate with Party 2. We are assuming an adversary who

can observe and delay communication, but cannot corrupt

communication. The two parties first agree on a key k using

Diffie-Hellman key-exchange (see below). Party 1 then sends

e = inj t ˆˆ k to Party 2 (recall that ˆˆ is the group operation),

which computes oget(proj(e ˆˆ inv k)) to recover t. Here, proj

will produce a non-None optional value, and oget will just

strip off the Some.

In Diffie-Hellman key-exchange, Party 1 generates a ran-

dom exponent q1, and sends g ˆ q1 to Party 2. Party 2 then

generates a random exponent q2, and obtains the shared key

by computing (g ˆ q1) ˆ q2 = g ˆ (q1 ∗ q2). It then sends g ˆ q2
to to Party 1, which obtains the shared key by computing

(g ˆ q2) ˆ q1 = g ˆ (q2 ∗ q1) = g ˆ (q1 ∗ q2).

B. Functionalities

We now describe the UC functionalities for SMC, starting

with the ideal functionality for SMC, and then working up

to the SMC real functionality. The SMC ideal functionality,

SMCIdeal, can be visualized as in Figure 3. In the figure,

α and β are the addresses of the functionality and the

adversary, respectively (they were passed to the function-

ality’s init procedure). SMCIdeal has no sub-functionalities,

and it employs three port indices, numbered 1, 2 and 3. Port

index 1 corresponds to Party 1, port index 2 corresponds to

Party 2, and port index 3 is used for communication with

the ideal functionality’s simulator. The input guard for the

functionality allows direct messages to port index 1 (port

(α, 1)), and adversarial messages to port index 3; all other

messages are rejected (meaning None is returned).

SMCIdeal has three states:

(1) In State 1, it is waiting for a direct message to port

index 1 from a port pt1, asking to communicate a plain

text t to a port pt2, where pt1 and pt2 may not be ≥

1

α
Forw

β

Figure 4. Forwarding Functionality

Party 2

31 2

α β

KEIdeal

Party 1 Sim

Figure 5. Key-Exchange Ideal Functionality

either α or β.2 It then sends an adversarial message

containing (pt1, pt2) (but not t!) from port index 3 to

port (β, 3), and switches to State 2. The SMC simulator

expects to receive messages from the ideal functionality

on port index 3.3

(2) In State 2, it is waiting for an adversarial message

from port (β, 3) to port index 3. It responds by sending

a direct message containing (pt1, t) to pt2 from port

index 2, and switching to State 3.

(3) In State 3, it rejects all messages.

Next we consider an ideal forwarding functionality, Forw,

as illustrated in Figure 4. In the literature, this is a version

of Fauth in which the adversary can observe and delay, but

not corrupt, message forwarding. Its input guard allows both

direct and adversarial messages on its single port index, 1.

Forw has three states:

(1) In State 1, it is waiting for a direct message to port

index 1 from a port pt1, asking to communicate a

universe value u to a port pt2, where pt1 and pt2 may

not be ≥ either α or β. It then sends an adversarial

message containing (pt1, pt2, u) from port index 1 to

port (β, 1), and switches to State 2. Port index 1 is

the port index of the adversary that handles forwarding

requests.

(2) In State 2, it is waiting for an adversarial message from

port (β, 1) to port index 1 approving the forwarding

request. It responds by sending a direct message con-

taining (pt1, u) to pt2 from port index 1, and switching

to State 3.

(3) In State 3, it rejects all messages.

The ideal key-exchange functionality, KEIdeal, is illus-

trated in Figure 5. Its input guard allows direct messages

to port indices 1 and 2, and adversarial messages to port

index 3. It has five states.

(1) In State 1, it is waiting for a direct message to port

2The values of all messages must be encoded as elements of our universal
type, but we omit the details. When unexpected messages are received,
failure results (None is returned).

3The index 3 isn’t hard coded in the EASYCRYPT code, but for simplicity
we’ll use actual numbers in the paper.
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Figure 6. Key-Exchange Real Functionality

index 1 from a port pt1, asking to agree on a key with

a port pt2, where pt1 and pt2 may not be ≥ either α
or β. It then sends an adversarial message containing

(pt1, pt2) from port index 3 to port (β, 2), and switches

to State 2. Port index 2 will be the port index of the key-

exchange simulator that expects communications from

the ideal functionality.

(2) In State 2, it is waiting for an adversarial message from

port (β, 2) to port index 3. It responds by generating an

exponent q, sending a direct message containing (pt1, gˆ

q) to port pt2 from port index 2, and switching to State 3.

(g ˆ q is the key exchanged in the ideal functionality.)

(3) In State 3, it is waiting for a direct message to port

index 2 from port pt2 initiating the second phase of

key-exchange. It then sends an adversarial message

containing no data from port index 3 to port (β, 2), and

switches to State 4.

(4) In State 4, it is waiting for an adversarial message from

port (β, 2) to port index 3. It responds by sending a

direct message containing g ˆ q to port pt1 from port

index 1, and switching to State 5.

(5) In State 5, it rejects all messages.

The real key-exchange functionality, KEReal, is illustrated

in Figure 6. It has two forwarding sub-functionalities, with

the indicated sub-addresses (α1 means to add 1 at the end

of the list α). Its input guard allows direct messages to

port indices 1 and 2, and adversarial messages to α1 and

α2. Port indices 1 and 3 correspond to Party 1 of the

functionality, whereas port indices 2 and 4 correspond to

Party 2. The functionality has an internal distribution loop

that routes messages from the outside to the parties and sub-

functionalities (if allowed by the input guard), and allows the

two parties and the sub-functionalities to communicate. Both

parties have three states.

Party 1 behaves as follows:

(1) In State 1, Party 1 is waiting for a direct message to port

index 1 from a port pt1, asking to agree on a key with a

port pt2, where pt1 and pt2 may not be ≥ either α or β.

It then generates a random exponent q1, sends a message

from port index 3 (its internal port index) to Forw1 at

port (α1, 1), asking it to forward (pt1, pt2, g ˆq1) to port

index 4 (Party 2’s internal port index), and switches to

State 2.

(2) In State 2, Party 1 is waiting for a direct message to

Party 2

Forw KE

βα2α1 β

1 2 3 4

SMCReal(KE)

α β

Party 1

Figure 7. SMC Real Functionality

port index 3 from (α2, 1) (Forw2) containing the data

((α, 4), k2). (k2 will be g ˆ q2, where q2 is Party 2’s pri-

vate exponent.) It responds by sending a direct message

containing the key k2 ˆ q1 ((g ˆ q2) ˆ q1 = g ˆ (q1 ∗ q2)) to

port pt1 from port index 1, and switching to State 3.

(3) In State 3, it rejects all messages.

Party 2 behaves as follows:

(1) In State 1, Party 2 is waiting for a direct message to

port index 4 from port (α1, 1) (Forw1), containing the

data ((α, 3), (pt1, pt2, k1)). (k1 will be gˆq1, where q1 is

Party 1’s private exponent.) It then generates a random

exponent q2, sends a direct message containing (pt1, k1 ˆ

q2) to port pt2 from port index 2, and switches to State 2.

(k1 ˆ q2 is the key (g ˆ q1) ˆ q2 = g ˆ (q1 ∗ q2).)
(2) In State 2, Party 2 is waiting for a direct message to port

index 2 from port pt2 initiating the second phase of key-

exchange. It responds by sending a message from port

index 4 to Forw2 at port (α2, 1), asking it to forward

g ˆ q2 to port index 3, and switches to State 3.

(3) In State 3, it rejects all messages.

Here is the sequence of message transmissions of a

successful execution of KEReal:

pt1
pt

2−−→ (α, 1)/(α, 3)
((α, 4), (pt

1
, pt

2
, gˆq1))

−−−−−−−−−−−−−−→ (α1, 1) · · ·

(α1, 1)
((α, 3), (pt

1
, pt

2
, gˆq1))

−−−−−−−−−−−−−−→ (α, 4)/(α, 2)

(pt
1
, gˆ(q1∗q2))

−−−−−−−−−→ pt2 −→ (α, 2)/(α, 4)

((α, 3), gˆq2)
−−−−−−−−→ (α2, 1) · · · (α2, 1)

((α, 4), gˆq2)
−−−−−−−−→ (α, 3)/(α, 1)

gˆ(q1∗q2)
−−−−−−→ pt1,

where single arrows are direct messages, and double arrows

are adversarial messages, and where the elided steps involve

the forwarders’ interactions with the adversary.

Finally, the SMC key-exchange functionality, SMCReal,

is illustrated in Figure 7. It has two sub-functionalities,

with the indicated sub-addresses: a forwarder and a key-

exchange functionality KE, which is a parameter to SMCReal.

Technically, SMCReal is a parameterized functionality, not a

functionality: we have to apply it to KEReal or KEIdeal or

some other functionality, in order to obtain a functionality.

Its input guard allows direct messages to port index 1,

and adversarial messages to α1 and α2 (and their sub-

addresses). Port indices 1 and 3 correspond to Party 1 of
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the functionality, whereas port indices 2 and 4 correspond

to Party 2. As with KEReal, the functionality has an internal

distribution loop. Both parties have three states.

Party 1 behaves as follows:

(1) In State 1, Party 1 is waiting for a direct message to port

index 1 from a port pt1, asking to securely communicate

a plain text t to a port pt2, where pt1 and pt2 may not be

≥ either α or β. It responds by sending a direct message

to Party 1 of the key-exchange sub-functionality at port

(α2, 1) from port index 3 asking to agree on a key with

port index 4, and then switching to State 2.

(2) In State 2, Party 1 is waiting for a direct message to

port index 3 from (α2, 1) (Party 1 of the key-exchange

sub-functionality) containing the data k (the agreed

upon key). It responds by sending a message from port

index 3 to Forw at port (α1, 1), asking it to forward

(pt1, pt2, inj tˆˆk) to port index 4, and switches to State 3.

(3) In State 3, it rejects all messages.

Party 2 behaves as follows:

(1) In State 1, Party 2 is waiting for a direct message to port

index 4 from port (α2, 2) (Party 2 of the key-exchange

sub-functionality), containing the data ((α, 3), k) (k is

the agreed upon key). It responds by sending a direct

message from port index 4 back to (α2, 2), initiating

the second phase of key-exchange.

(2) In State 2, Party 2 is waiting for a direct message

to port index 4 from port (α1, 1) (Forw) contain-

ing ((α, 3), (pt1, pt2, e)). It responds by sending to

pt2 a direct message from port index 2 containing

(pt1, oget(proj(e ˆˆ kinv k))) (whose plain text is equal to

t), and switching to State 3.

(3) In State 3, it rejects all messages.

Here is the sequence of message transmissions of a

successful execution of SMCReal:

pt1
(pt

2
, t)

−−−−→ (α, 1)/(α, 3)
(α, 4)
−−−→ (α2, 1) · · · (α2, 2)

((α, 3), k)
−−−−−−→ (α, 4) −→ (α2, 2) · · · (α2, 1)

k
−→ (α, 3)

((α, 4), (pt
1
, pt

2
, inj tˆˆk))

−−−−−−−−−−−−−−−→ (α1, 1) · · · (α1, 1)

((α, 3), (pt
1
, pt

2
, inj tˆˆk))

−−−−−−−−−−−−−−−→ (α, 4)/(α, 2)
(pt

1
, t)

−−−−→ pt2,

where the elided steps involve (1) the key-exchange func-

tionality’s (either real or ideal) interaction with the adver-

sary/simulator, and (2) the forwarder’s interaction with the

adversary.

C. Road-map for Proof of SMC Security

In the rest of this section, we describe our tool-

assisted formal proofs of the following statements: (1)

SMCReal(KEReal) UC-realizes SMCIdeal; (2) KEReal UC-

realizes KEIdeal; (3) SMCReal(KEIdeal) UC-realizes SMCIdeal;

and (4) SMCReal(KEReal) UC-emulates SMCReal(KEIdeal). (1)

is our overall goal. In Subsection V-D, we describe the proof

of (2). At the beginning of Subsection V-E, we describe the

proof of (3). Then we describe how (2) is lifted to a proof of

(4), instantiating the UC composition theorem. Finally, we

show how (4) and (3) combine to give us (1), instantiating

transitivity of UC emulation.

D. Proof of Security of Key-Exchange

In our proof of the security of key-exchange, we need to

define a key-exchange simulator, KESim, and give an upper

bound (hopefully a small one!) for the absolute value of the

difference between the probabilities that the real and ideal

experiments return true:

`|Pr[Exper(MI(KEReal, Adv), Env).
main(func', adv', in guard') @ &m : res] −

Pr[Exper(MI(KEIdeal, KESim(Adv)), Env).
main(func', adv', in guard') @ &m : res]|

In the above, res stands for “result”—the boolean result of

the experiment. Env and Adv will be restricted to adversaries

that don’t read or write the variables of each other or MI,

KEReal, KEIdeal, KESim and another module to be introduced

shortly. The addresses of the functionality and adversary,

func' and adv', will be assumed to be incomparable. The

restriction on the input guard in guard' will be described in

the next paragraph. &m is the initial memory. KEReal, KEIdeal

and KESim initialize their own global variables, and so their

operation is independent from &m. But Env and Adv may fail

to initialize their own global variables, and so their operation

may be dependent upon &m.

KESim is parameterized by an adversary; we have to

apply it to an adversary Adv in order to get an adversary

KESim(Adv). Its job is to let the environment and adversary

communicate normally, and to fool them into thinking they

are interacting with KEReal and not KEIdeal. The input guard

in guard' must not include port index 2, because the ideal

functionality communicates with the simulator on that port

index. When the simulator gets its first message from the

ideal functionality, it learns the address of the ideal (and also

real) functionality, and so learns which messages from the

adversary it should intercept. It will play the role of the two

forwarding sub-functionalities of KEReal, and will generate

the needed random exponents, q1 and q2, itself. The problem

to overcome in the proof is that the key g ˆ q sent by KEIdeal

to the environment will necessarily have no connection to

the key agreed by the parties of KEReal.

This is where the Decisional Diffie-Hellman assumption

comes in:

module type DDH ADV = { proc main(k1 k2 k3 : key) : bool }.
module DDH1 (Adv : DDH ADV) = {

proc main() : bool = {
var b : bool; var q1, q2 : exp; q1 <$ dexp; q2 <$ dexp;
b <@ Adv.main(g ˆq1, g ˆq2, g ˆ (q1 * q2)); return b; } }.

module DDH2 (Adv : DDH ADV) = {
proc main() : bool = {

var b : bool; var q1, q2, q3 : exp;

11



q1 <$ dexp; q2 <$ dexp; q3 <$ dexp;
b <@ Adv.main(g ˆq1, g ˆq2 , g ˆq3); return b; } }.

(EASYCRYPT uses <$ for random assignments from distri-

butions.) A DDH adversary is given three keys, and must

return a boolean judgment. The two DDH games are pa-

rameterized by a DDH adversary, and their main procedures

return its boolean judgment. The first two keys passed to

the adversary’s main procedure in the two games are the

same: g ˆ q1 and g ˆ q2, where q1 and q2 are randomly chosen

exponents. But the third arguments are different: g ˆ (q1∗ q2)
versus g ˆ q3, with a random q3.

The idea for applying the Decisional Diffie-Hellman as-

sumption is to start from the real experiment, and move in

a sequence of games to a game G1 in which q1 and q2 are

chosen at the game’s beginning, and there are precisely three

places where they are used, as g ˆ q1, g ˆ q2 and g ˆ (q1 ∗ q2).
We can then build a DDH adversary DDH ADV as a function

of Env and Adv, in such a way that G1 can be shown to be

equivalent to DDH1(DDH Adv(Env, Adv)). Then we can switch

to DDH2(DDH Adv(Env, Adv)), adding

`|Pr[DDH1(DDH Adv(Env, Adv)).main() @ &m : res] −
Pr[DDH2(DDH Adv(Env, Adv)).main() @ &m : res]|

(the probability the constructed DDH adversary wins the

DDH game) to the cumulative upper bound of our sequence

of games, and then move from DDH2(DDH Adv(Env, Adv)) to

a G2 that’s just like G1 but where g ˆ (q1 ∗ q2) has been

replaced by g ˆ q3, where q3 is also randomly chosen at the

game’s beginning and only used once. Because the random

exponents used by KEReal, KEIdeal and KESim are not cho-

sen at the games’ beginnings, we must use EASYCRYPT’s

eager/lazy sampling facilities to accomplish the above. But

thankfully, there is an existing library and methodology for

doing this.

Consequently, our key-exchange security theorem (KEReal

UC-realizes KEIdeal) will be the following:

lemma ke security
(Adv <: FUNC{MI, KEReal, KEIdeal, KESim, DDH Adv})
(Env <: ENV{Adv, MI, KEReal, KEIdeal, KESim, DDH Adv})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒ ! (2 \in in guard') ⇒
DDH Adv.func{m} = func' ⇒ DDH Adv.adv{m} = adv' ⇒
DDH Adv.in guard{m} = in guard' ⇒
`|Pr[Exper(MI(KEReal, Adv), Env).

main(func', adv', in guard') @ &m : res] −
Pr[Exper(MI(KEIdeal, KESim(Adv)), Env).

main(func', adv', in guard') @ &m : res]| ≤
`|Pr[DDH1(DDH Adv(Env, Adv)).main() @ &m : res] −

Pr[DDH2(DDH Adv(Env, Adv)).main() @ &m : res]|.

The lists of modules inside the assumptions

(Adv <: FUNC{MI, KEReal, KEIdeal, KESim, DDH Adv})
(Env <: ENV{Adv, MI, KEReal, KEIdeal, KESim, DDH Adv})

detail the restrictions on what modules Adv and Env may read

or write the global variables of. Note that DDH Adv has been

added to the lists of module restrictions. The assumption

exper pre func' adv' says that func' and adv' are incomparable.

Finally, the assumption

DDH Adv.func{m} = func' ⇒ DDH Adv.adv{m} = adv' ⇒
DDH Adv.in guard{m} = in guard' ⇒

says the initial values of the global variables func, adv and

in guard of DDH Adv are func', adv' and in guard'. Because

EASYCRYPT modules may not be parameterized by ordinary

values (as opposed to modules), there is currently no other

way to give our constructed DDH adversary access to these

values.

When assessing whether the upper bound

`|Pr[DDH1(DDH Adv(Env, Adv)).main() @ &m : res] −
Pr[DDH2(DDH Adv(Env, Adv)).main() @ &m : res]|.

is small enough, one must consult the actual code for

DDH Adv and make additional assumptions about Env and

Adv. For instance, one might assume that Env and Adv run

in probabilistic polynomial time, and then give a paper-and-

pencil proof that so does DDH Adv(Env, Adv). EASYCRYPT

doesn’t help us in this analysis.

Here is what our overall sequence of games for the key-

exchange security proof looks like: Because KEReal has sub-

functionalities, it is convenient to begin our sequence of

games by formulating a version of the real functionality,

KERealSimp, that has no sub-functionalities. The difficulty

of proving such a step is that the source and target experi-

ments are structurally dissimilar. This involves working with

a relational invariant tracking how the source and target

experiments evolve. At the top-level of the proof, we can

reduce the equivalence of the experiments to an equivalence

between their interfaces—and so no longer have to consider

the environment at all. Then we can do the same thing with

the interfaces, no longer having to consider the adversary.

When the source and target functionalities are in a rela-

tional state, we need to show that in all the ways they can

evolve, we will return to both sides being in a relational state,

and that eventually we’ll return from the functionality. The

way that we do such a proof is via symbolic evaluation—

essentially running the code via proof tactics. We can push

assignments into the precondition, and we can inline calls

of concrete procedures. If the next statement to run is a

conditional or while loop where we know enough to prove

that its boolean expression is true or false, we can reduce the

conditional to its then or else part, or reduce the while loop

to either nothing (the false case) or the body of the while

loop followed by the while loop itself. When we don’t know

enough to say whether a boolean expression is true or false,

we have to resort to case analysis. There is more discussion

of the challenges of symbolic evaluation in Section VI.

This gets us to the point where we can deploy the
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Decisional Diffie-Hellman assumption, starting from an ex-

periment involving KERealSimp. The proof of the final step of

the sequence of games involves moving from an experiment

involving a version of KERealSimp—KEHybrid—in which the

agreed upon key is generated from a random exponent

(like in KEIdeal) to the experiment involving KEIdeal and

KESim(Adv):

Pr[Exper(MI(KEHybrid, Adv), Env).
main(func', adv', in guard') @ &m : res] =

Pr[Exper(MI(KEIdeal, KESim(Adv)), Env).
main(func', adv', in guard') @ &m : res].

As usual, this step involves working with a relational invari-

ant and symbolic evaluation guided by case analysis, but

there is a twist. Because we are working with adversaries

that may or may not return to the environment after being

invoked, we have a phenomenon in which—after a call to

the adversary—the same relational state may hold in two

distinct situations:

• when the call to the adversary was after the relational

state was first established by execution of the real

functionality or ideal functionality/simulator; or

• when the call to the adversary was initiated by a call to

the interface (by the environment) when the relational

state already held.

We must unify these two cases, as otherwise the proof effort

would double at each relational proof step, and so would

increase exponentially over the entire sequence of relational

state changes. We accomplish this by proving a single lemma

that’s applicable to both of these situations. The lemma for

the last relational state is first proved, the lemma for the

penultimate relational state uses the lemma for the final one,

and so on. We would have to do all of this using induction,

if we didn’t have a finite sequence of relational states. See

Section VI for more discussion.

E. Proof of Security of SMC

The design of the SMC simulator—SMCSim—and

the proof of the following lemma, which states that

SMCReal(KEIdeal) UC-realizes SMCIdeal,

lemma smc security2
(Adv <: FUNC{MI, SMCReal, SMCIdeal, SMCSim, KEIdeal})
(Env <: ENV{Adv, MI, SMCReal, SMCIdeal, SMCSim, KEIdeal})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒ ! (3 \in in guard') ⇒
Pr[Exper(MI(SMCReal(KEIdeal), Adv), Env).

main(func', adv', in guard') @ &m : res] =
Pr[Exper(MI(SMCIdeal, SMCSim(Adv)), Env).

main(func', adv', in guard') @ &m : res].

is similar to the final step of the key-exchange security

proof. Messages to SMCSim from the ideal functionality

come on port index 3, and thus we must assume that 3 is

not an element of the input guard, in guard'. In the proof’s

sequence of games, we start out by moving to a version

Forw

SMCReal(KE)

Adv

X

Interface

Environment

βα

KEα2α1

Figure 8. SMCReal in Relation to Environment and Adversary
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Figure 9. SMCReal in Relation to Composed Environment and Adversary

of SMCReal(KEIdeal)—SMCRealKEIdealSimp—that has no sub-

functionalities. The other and final step of the sequence

of games—the one that involves SMCSim—is similar in

structure to the last-step of the key-exchange security proof.

To handle the use of one-time-pad encryption, we use EASY-

CRYPT’s tactic for handling random assignments with an

isomorphism on the dexp distribution involving the plain text

chosen by the environment. This is a familiar EASYCRYPT

technique.

What remains is to lift our proof that KEReal UC-

realizes KEIdeal to a proof that SMCReal(KEReal) UC-emulates

SMCReal(KEIdeal). This is an instance of the UC composition

theorem. In pictorial terms, we need to relate two instan-

tiations of the diagram in Figure 8, where the port index

2 of KESim is not an element of the input guard X . In

the first instantiation, KE is KEReal and Adv is Adv; and in

the second one, KE is KEIdeal, and Adv is KESim(Adv). We

accomplish this by proving a “bridging” lemma showing the

equivalence between this diagram and the one in Figure 9.

This second diagram involves a composed environment,

which is parameterized by an environment and interface:

module CompEnv (Env : ENV, Inter : INTER) = { · · · }.
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Given an environment Env, CompEnv(Env) is itself an

environment—it’s waiting for the interface Inter.

In the diagram of Figure 9, the real environment is inside

the composed environment. The experiment of the composed

environment makes use of two “stubs”, one for the key-

exchange functionality, and one for the adversary. In normal

operation, the stubs pass messages through, calling the invoke

procedure of the interface for KE/Adv, or returning a message

returned from that invoke procedure to their caller. We need

that the “lower” input guard X is a subset of the “upper”

input guard Y , so that messages to the adversary from the

real environment that are allowed by X can flow through

AdvStub and make it to Adv. Because SMCReal’s forwarder,

Forw, needs to be able to exchange adversarial messages with

the adversary, we also need that Y includes port index 1,

which is used for forwarding control. If SMCReal made use

of other sub-functionalities, the port indices by which those

sub-functionalities communicated with the adversary would

also have to be included in Y .

There is a subtlety regarding the definitions of KEStub and

AdvStub. Suppose that SMCReal calls KEStub with a direct

message destined for KE. KEStub passes this message to

the interface for KE/Adv, which routes it to KE. KE and Adv

may then exchange adversarial messages, and it may happen

that, at some point, Adv returns an adversarial message

that’s not destined for KE (it might be destined for the real

environment), and so is returned out of the interface for

KE/Adv to KEStub. KEStub is programmed to work specially

when an adversarial message has been returned to it. It

stores the message in a mailbox it shares with AdvStub, and

then returns an adversarial message with address β back to

SMCReal, which returns it to its interface, which routes it

to AdvStub. AdvStub is programmed to then recognize that

the mailbox it shares with KEStub is full, and to return the

contents of the mailbox to the interface, as if the message

had been returned to it in the first place. Similarly, when a

direct message is returned from KE to its interface, and then

to AdvStub, AdvStub uses the shared mailbox to arrange for

the message to be returned from KEStub to SMCReal.

Because the internal distribution loop of SMCReal is writ-

ten to be resilient to badly behaved implementations of its

parameter KE, we would ideally like to prove the equivalence

between the two diagrams for an arbitrary functionality,

KE. Unfortunately that’s impossible with the current version

of EASYCRYPT. The problem is that Adv and KE could

exchange messages forever, so that execution would never

return back to the environment. In Section VI, we speculate

on how EASYCRYPT might be improved so as to allow

a single and simple proof of the bridging lemma. But in

our case study, we had to fall back on a more cumbersome

approach. We proved two bridging lemmas, one for KEReal

and one for KEIdeal, and in the KEReal case, we did the

core work using KERealSimp. In both cases, we defined a

termination metric on the key-exchange functionality’s state,

and we proved that its invoke procedure either decreases the

metric by one, or preserves the metric and returns None. Then

we proved the bridging lemmas by a rather complex mathe-

matical induction whose property, P (n), is the conjunction

of three probabilistic relational Hoare logic judgments, one

for each of the three repeating code configurations of the

two experiments. The proofs involved a great deal of guided

symbolic evaluation. The real and ideal proofs are identical

up to some textual substitutions, but there is no way at

present of unifying them.

Our bridging lemmas are:

lemma smc sec1 ke real bridge
(Adv <: FUNC{MI, SMCReal, KEReal, CompEnv}
(Env <: ENV{Adv, MI, SMCReal, KEReal, CompEnv}
(func' adv' : addr, in guard low' in guard hi' : int fset) &m :

exper pre func' adv' ⇒
in guard low' \subset in guard hi' ⇒ 1 \in in guard hi' ⇒
CompEnv.in guard low{m} = in guard low' ⇒
Pr[Exper(MI(SMCReal(KEReal), Adv), Env).

main(func', adv', in guard low') @ &m : res] =
Pr[Exper(MI(KEReal, Adv), CompEnv(Env)).

main(func' ++ [2], adv', in guard hi') @ &m : res].
lemma smc sec1 ke ideal bridge

(* same args and assumptions as smc sec1 ke real bridge *)
Pr[Exper(MI(SMCReal(KEIdeal), Adv), Env).

main(func', adv', in guard low') @ &m : res] =
Pr[Exper(MI(KEIdeal, Adv), CompEnv(Env)).

main(func' ++ [2], adv', in guard hi') @ &m : res].

From these lemmas, plus our security of key-exchange

lemma (ke security), we can immediately get that

SMCReal(KEReal) UC-emulates SMCReal(KEIdeal):

lemma smc security1
(Adv <: FUNC{MI, SMCReal, KEReal, KEIdeal,

KESim, DDH Adv, CompEnv})
(Env <: ENV{Adv, MI, SMCReal, KEReal,

KEIdeal, KESim, DDH Adv, CompEnv})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒ ! (2 \in in guard') ⇒
CompEnv.in guard low{m} = in guard' ⇒
KeyEx.DDH Adv.func{m} = func' ++ [2] ⇒
KeyEx.DDH Adv.adv{m} = adv' ⇒
KeyEx.DDH Adv.in guard{m} = in guard' `|` fset1 1 ⇒
`|Pr[Exper(MI(SMCReal(KEReal), Adv), Env).

main(func', adv', in guard') @ &m : res] −
Pr[Exper(MI(SMCReal(KEIdeal), KESim(Adv)), Env).

main(func', adv', in guard') @ &m : res]| ≤
`|Pr[DDH1(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res] −

Pr[DDH2(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res]|.

`|` is the union operation for finite sets, and fset1 1 is {1}.

The statement of smc sec1 ke ideal bridge doesn’t involve

KESim; it’s expressed in terms of an arbitrary adversary

Adv. But when we prove smc security1, we simply apply

smc sec1 ke ideal bridge to KESim(Adv). When applying the

bridging lemmas, we set in guard low' to in guard', and

in guard high' to the union of in guard' and {1}. And this

union is also the input guard used with ke security. The

functionality address used with ke security is func' ++ [2]. Note

that the security upper bound involves the application of the

DDH adversary to the composed environment.
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Then we can combine smc security1 and the instantiation

of smc security2 to KESim(Adv) to get our overall security

result that SMCReal(KEReal) UC-realizes SMCIdeal:

lemma smc security
(Adv <: FUNC{MI, SMCReal, SMCIdeal, SMCSim, KEReal,

KEIdeal, KESim, DDH Adv, CompEnv})
(Env <: ENV{Adv, MI, SMCReal, SMCIdeal, SMCSim, KEReal,

KEIdeal, KESim, DDH Adv, CompEnv})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒ ! (2 \in in guard') ⇒ ! (3 \in in guard') ⇒
CompEnv.in guard low{m} = in guard' ⇒
KeyEx.DDH Adv.func{m} = func' ++ [2] ⇒
KeyEx.DDH Adv.adv{m} = adv' ⇒
KeyEx.DDH Adv.in guard{m} = in guard' `|` fset1 1 ⇒
`|Pr[Exper(MI(SMCReal(KEReal), Adv), Env).

main(func', adv', in guard') @ &m : res] −
Pr[Exper(MI(SMCIdeal, SMCSimComp(Adv))), Env).

main(func', adv', in guard') @ &m : res]| ≤
`|Pr[DDH1(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res] −

Pr[DDH2(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res]|.

where the composed simulator SMCSimComp is defined by

module SMCSimComp (Adv : FUNC) = SMCSim(KESim(Adv)).

This realizes an instance of the transitivity of UC-

emulation. Because the universal quantification of Adv of

smc security2 includes SMCSim in its restriction, when we

apply smc security2 to KESim(Adv), this necessitates a check

that KESim and SMCSim don’t read or write each other’s

global variables. The overall restriction on the input guard is

that it not include either 2 or 3, as those are the port indices

excluded by smc security1 and smc security2, respectively.

VI. LESSONS LEARNED AND FUTURE WORK

Through our case study, we have validated our EASY-

CRYPT architecture and methodology for stating and ver-

ifying statements within the universally composable se-

curity framework. We were able to naturally define real

functionalities (namely, protocols), ideal functionalities, and

simulators. We: mechanized proofs of UC-realizability, one

of which employed a computational reduction; applied the

UC composition operation; proved an instance of the UC

composition theorem; and used an instance of the transitivity

of UC-emulation.

Despite the relative simplicity of the protocols of our

case study, pushing it to a successful conclusion took an

immense amount of work (nine months of effort resulting

in some 18,000 lines of definitions and proofs). Since this is

clearly not a scalable amount of effort, we present a number

of lessons learned, as well as potential directions for tool

development that will support more efficient and streamlined

proof generation.

Domain Specific Language for Defining Functionali-

ties: Because EASYCRYPT’s programming language is

procedure-based, as opposed to directly supporting the

coroutine-based communication of UC, defining functionali-

ties and simulators involves a large amount of “boilerplate”:

they need internal distribution loops that route messages

from the outside to the parties and sub-functionalities, and

allow the parties and sub-functionalities to communicate.

Simulators have to manually route messages between the

environment and adversary.

Writing this boilerplate code is tedious and error prone,

and could be avoided given a domain specific language

(DSL) for writing functionalities and simulators. Then a

functionality designer could focus on the interesting parts

of their design, relying on the DSL’s implementation to

automatically generate the boilerplate. We are in the early

stages of designing and implementing such a DSL.

The implementation of our DSL will automate the check-

ing of various properties that must currently be manually

checked by the designer: ensuring that all messages sent by

functionalities have accurate source addresses; ensuring that

simulators do not observe or interfere with communication

between the environment and adversary; and ensuring that

the parties of a functionality only interact with each other

via sub-functionalities (not, e.g., by modifying each other’s

states).

Our DSL will be usable by crypto theorists lacking a

formal methods background, allowing them to more eas-

ily express functionalities and simulators. In the short-to-

medium-term, our plan is to implement a tool that translates

the DSL into actual EASYCRYPT code. But in the longer

term, it may be possible to develop EASYCRYPT tactics that

work directly with the DSL programs.

Support for Symbolic Evaluation: Simulation-based argu-

ments naturally involve working with structurally dissimilar

programs. Such proofs make use of relational invariants.

When the real and ideal games are in program states

satisfying a relational invariant, one must employ symbolic

evaluation—essentially running the programs using proof

tactics—to get both programs back to points where they

again satisfy the relational invariant. As explained in Sub-

section V-D, we can push assignments into the precondition,

inline calls of concrete procedures, and reduce conditionals

and while loops when we can prove the truth/falsity of their

boolean expressions.

EASYCRYPT currently lacks support for automating sym-

bolic evaluation, and this will have to be rectified for

complex simulation-based proofs to be feasible. One pos-

sibility is to implement a proof tactic that works as follows.

The user will specify an upper bound on the number of

steps of program evaluation they would like to carry out.

When confronted with a conditional or while loop, the

tactic will use SMT solvers (using user-specified lemmas)

to establish the truth or falsity of the boolean expression

of the conditional/while loop. When this process fails, the

tactic will terminate early, giving the user an unsolved goal

to peruse. But when it succeeds, the truth/falsity can be

recorded, enabling an optimized version of the tactic that

makes use of the previously learned sequence of truth/falsity
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observations.

Proving or Mechanizing the UC Composition Theorem:

In our case study, we didn’t prove the UC Composition

Theorem, but simply proved the needed instance of the

theorem. This involved the definition of a composed en-

vironment, and proving a “bridging” lemma involving the

composed environment. As explained in Subsection V-E, this

process is—we believe—completely general. Proving the

general composition theorem in EASYCRYPT itself won’t

be possible, because it generalizes over all possible protocol

contexts, and there’s no way to do a structural induction over

modules in EASYCRYPT.

There are two possibilities for handling the composi-

tion theorem in EASYCRYPT. One is to do a proof in

EASYCRYPT’s metatheory, e.g., a proof in the existing Coq

development of EASYCRYPT’s metatheory. Then the UC

composition theorem could be safely added to EASYCRYPT,

as a tactic or tactics. The other possibility is to automate

the process of finding EASYCRYPT proofs of the needed

bridging lemmas. Then support for the composition theorem

could be added to EASYCRYPT without adding anything to

its trusted computing base.

As explained in Subsection V-E, were were unable to

prove a single bridging lemma involving an arbitrary black

box (key-exchange) functionality, due to possibility that

the functionality and adversary could exchange messages

forever. Instead, we had to prove a pair of lemmas, which

were identical up to textual substitutions—one for the real

functionality and one for the ideal functionality. This ap-

proach allowed us to define termination metrics on the

functionalities’ states, and to prove the bridging lemmas

using a complex mathematical induction. We believe that

the unrestricted bridging lemma is true, however, and we

intend to investigate improvements to EASYCRYPT’s logics

allowing the unrestricted lemma to be proved.

The Dummy Adversary Model: The formalization of UC-

emulation in terms of an environment and adversary, as

opposed to a single entity playing both roles, has the pleasing

consequence that UC-emulation is obviously transitive—

a fact we used in our case study proof (see the end of

Subsection V-E). However, proofs of UC-realizability are

normally done in the so-called dummy adversary model (see

Subsection III-B), i.e., for an adversary that is controlled

by the environment. The dummy adversary lemma says that

security with reference to the dummy adversary implies UC-

realizability in general.

In our case study (see the discussion in Subsection V-D),

we carried out our proofs of UC-realizability assuming an

arbitrary adversary. This meant we had to deal with the

fact that the same relational state might hold in two distinct

situations, after a call to the adversary:

(1) when the call to the adversary was after the relational

state was first established by execution of the real

functionality or ideal functionality/simulator (in which

case the dummy adversary would return control to the

environment, asking for instructions); or

(2) when the call to the adversary was initiated by the

environment’s call to the interface when the relational

state already held.

We unified these goals into a single lemma, that was proved

once, but applied twice. As future work, we have in mind a

simplification of this approach in which such lemmas don’t

have to be explicitly stated or applied. In their proofs, users

will only have to explicitly handle instances of case (2),

with the framework automatically recognizing and handling

instances of case (1). In other words, they will be able

to work as if they were working in the dummy adversary

model.
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