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1  | INTRODUC TION

One of the chief ecological discoveries of recent decades is the 
finding that biotic responses to climatic variation include dramatic 
changes in phenology and geography. For example, the first flow-
ering date for many temperate zone plant species has advanced 
by many weeks (Parmesan, 2007; Root et al., 2003), and eleva-
tional and geographic range limits for many species of both plants 
and animals are shifting (Chen, Hill, Ohlemüller, Roy, & Thomas, 
2011; Parmesan & Yohe, 2003; Walther et al., 2002). These biotic 

responses appear to be robust and generalizable across species, 
but some variation in responses has been observed (Mills et al., 
2017; Sagarin, Barry, Gilman, & Baxter, 1999; Thomas & Lennon, 
1999). While we also know that populations can respond directly 
to climate variation (Andrewartha & Birch, 1954; Diamond et al., 
2016), understanding and predicting more nuanced responses is 
an ever more pressing need as climate patterns shift. For exam-
ple, physiological stress associated with abiotic variation has led 
to morphological evolution (Parmesan, 2006; Smith, Betancourt, & 
Brown, 1995) and to population declines (Both, Bouwhuis, Lessells, 
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Abstract
Certain general facets of biotic response to climate change, such as shifts in phenol-
ogy and geographic distribution, are well characterized; however, it is not clear 
whether the observed similarity of responses across taxa will extend to variation in 
other population‐level processes. We examined population response to climatic vari-
ation using long‐term incidence data (collected over 42 years) encompassing 149 but-
terfly species and considerable habitat diversity (10 sites along an elevational gradient 
from sea level to over 2,700 m in California). Population responses were character-
ized by extreme heterogeneity that was not attributable to differences in species 
composition among sites. These results indicate that habitat heterogeneity might be 
a buffer against climate change and highlight important questions about mechanisms 
maintaining interpopulation differences in responses to weather. Despite overall het-
erogeneity of response, population dynamics were accurately predicted by our model 
for many species at each site. However, the overall correlation between observed 
and predicted incidence in a cross validation analysis was moderate (Pearson's 
r = 0.23, SE 0.01), and 97% of observed data fell within the predicted 95% credible 
intervals. Prediction was most successful for more abundant species as well as for 
sites with lower annual turnover. Population‐level heterogeneity in response to cli-
mate variation and the limits of our predictive power highlight the challenges for a 
future of increasing climatic variability.
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& Visser, 2006; Gibbons et al., 2000), although considerably less 
is known about the generality of these phenomena compared to 
changes in phenology and geography. Nor do we know the extent 
to which responses to climate variation are consistent among pop-
ulations of a species that occur in different habitats. In part, this is 
because many of these population responses are not as easily stan-
dardized across studies (as compared to, for example, first flower-
ing date or upper elevational limit, but see Mills et al., 2017). One 
way to address this gap in our knowledge is with single studies that 
encompass a large number of species and habitat types (Oliver, Roy, 
Hill, Brereton, & Thomas, 2010). Sufficiently large studies, of which 
we offer one here, should be able to ask, for example, if certain 
climate variables have more or less widespread effects (positive or 
negative) on population dynamics across species, and if these ef-
fects are specific to local environmental or habitat conditions. Such 
studies can also provide an assessment of our ability to predict re-
sponses to climate change.

Here we examine a large, single‐observer butterfly dataset en-
compassing 149 species observed along an elevational gradient 
that includes one of the highest mountain ranges in North America 
(Figure 1, Table S1). This transect, comprised of ten sites, extends 
from sea level to the east side of the Sierra Nevada Mountains. 
These sites were visited approximately every 2 weeks (excluding 
months at higher elevations when temperatures are below the level 
at which insects are active), and the presence or absence of individ-
ual butterfly species was noted by AMS. The duration of surveys 
varies across sites, with Suisun Marsh (SM) having the longest re-
cord (42 years analyzed here, 1972–2013) and the shortest records 
being 26 years (1988–2013) for three sites (West Sacramento [WS], 
North Sacramento [NS], and Washington [WA]; Figure 1) (mean = 
34.7 years, Table S1). We considered every species by site combi-
nation to be a population. From these observations, our index of 
population dynamics (which we refer to as “day positives”) was cal-
culated as the number of days in a year that a given species was 

F I G U R E  1   Site locations and example 
probability densities. (a) Butterflies have 
been monitored for up to 42 years at 
these 10 sites, which comprise a transect 
across northern California. (e) The 
transect covers a diversity of habitats 
from sea level (Suisun Marsh, SM) to 
2,775 m (Castle Peak, CP), and from the 
Sacramento River delta, to the Coast 
Range and Sierra Nevada mountains, 
to the high desert of the western Great 
Basin. Data for 149 butterfly species were 
analyzed with a linear, hierarchical model. 
Model‐based probability densities of 
site‐level standardized β coefficients are 
shown for weather covariates, including: 
(b) spring precipitation, (c) summer 
minimum temperature, and (d) the year 
effect. The vertical, dashed lines in b–d 
indicate a value of zero. The transect sites 
span habitat variation including (f) alpine 
habitat at Castle Peak (CP), (g) montane 
habitat at Lang Crossing (LC), and (h) low 
elevation, mixed agricultural and urban 
habitat in West Sacramento
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observed, out of the total number of visits to a site. This incidence‐
based approach is logistically feasible for a large fauna, and day 
positives encompass multiple population features including overall 
abundance and duration of flight window (Casner, Forister, Ram, & 
Shapiro, 2014b; Forister, Jahner, Casner, Wilson, & Shapiro, 2011) 
(Supporting Information). The effects of weather variables on day 
positives can be effectively modeled in a hierarchical Bayesian 

framework (Harrison et al., 2015; Nice, Forister, Gompert, Fordyce, 
& Shapiro, 2014) that estimates the effect of climatic variation at 
multiple levels including individual populations (population‐level 
parameters) and among populations at individual sites (site‐level 
parameters) (Figure 1). Here we employ this Bayesian hierarchical 
modeling approach and focus specifically on site‐level parameters 
that capture the response to climatic variation in the constituent 

F I G U R E  2   The effect of weather variables on butterfly communities. Each panel includes the median values (points) and 95% CIs (bars) 
for the site‐level responses (standardized β coefficients) to weather variables and the year effect. Sites are arranged from west (bottom = 
SM) to east (top = SV). Colors and site abbreviations are the same as in Figure 1. Note that the scale of x‐axes varies among panels. Vertical 
dashed lines represent values of zero
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populations of species at each site (Nice et al., 2014). In this way, we 
can specifically quantify effects across species at a community level. 
We ask whether responses to climate variation are similar among 
sites, and explore our ability to predict these responses and the fac-
tors that limit prediction.

2  | MATERIAL S AND METHODS

2.1 | Data collection, climate covariates, and 
statistical model

Data on the presence and absence of butterflies were collected by a 
single observer (AMS) from biweekly visits to ten sites that compose 
a transect across California (Figure 1, Table S1). We used data from 
1972 to 2013. These data were pruned to remove any species that 
was observed less than 5 years at a particular site. Further details 
of data collection have been described elsewhere (Forister et al., 
2011, 2010; Shapiro, 2011). Parts of these data have been used to 
address a variety of questions about butterfly responses to climate 
variability (Espeset et al., 2016; Forister et al., 2018, 2011, 2010; 
Forister & Shapiro, 2003; Harrison et al., 2015; Nice et al., 2014; 
Pardikes, Harrison, Shapiro, & Forister, 2017; Pardikes, Shapiro, 
Dyer, & Forister, 2015; Shapiro, 2011; Thorne, O'Brien, Forister, & 
Shapiro, 2006) and other factors (Forister et al., 2016). Here we pre-
sent the first hierarchical analysis of these data focused on site‐level 
variation.

We examined the response of populations (i.e., “population‐level 
responses”) and entire butterfly assemblages at sites (i.e., “site‐level 
responses”) to climatic variation using data for 12 local variables 
and one regional variable (Figures 2 and 3). The population, that is, 
a particular species at a particular site, is the basic unit of analysis. 
For example, cabbage white butterflies (Pieris rapae) at Donner Pass 
(DP) constitute a population that is distinct from cabbage whites 
at SM, or painted ladies (Vanessa cardui) at DP. The weather vari-
ables included measures of precipitation, maximum and minimum 
temperatures, and monthly sea‐surface temperatures. Quarterly 
precipitation and temperature records were obtained using PRISM 
(Parameter‐elevation Relationships on Independent Slopes Model, 
PRISM Climate Group, see http://prism.oregonstate.edu) and repre-
sent the year from September of the preceding year to August of the 
current year. Thus, these climate variables were chosen to include 
factors likely to influence the butterfly flight season for each year. 
Precipitation values used here are average daily measures calcu-
lated as monthly averages and then averaged over each season (i.e., 
“Fall Precipitation” is the average daily precipitation for September, 
October, and November for each year). We also used the monthly 
composite sea‐surface temperature and climate data from the El 
Niño‐Southern Oscillation (ENSO) database (specifically we used 
the multivariate ENSO index which is the first principal component 
from six temperature, atmospheric pressure, wind, and cloudiness 
variables available at: http://www.esrl.noaa.gov/psd/enso/mei/
table.html) (Wolter & Timlin, 2011). These ENSO variables have 
been demonstrated to be related to climatic variation and ecological 

variation in North America (e.g., Mochizuki et al., 2010). The multi-
variate ENSO index values are averaged across months to provide a 
yearly average value. The year in which butterfly data were collected 
was also included in the model (i.e., a “year” effect) to assess trends 
over time and to account for other factors influencing species’ oc-
currences besides the climate covariates described above (e.g., biotic 
interactions, pesticides (Forister et al., 2016)). All covariates were 
standardized using z‐transformation.

We used a generalized linear model in a Bayesian, hierarchical 
framework to analyze the butterfly presence/absence data. Day 
positives, the number of days during a year that a butterfly species 
was detected at a transect site, were modeled using the binomial 
distribution with the number of trials equal to the number of visits 
for each year. This fraction of day positives is highly correlated with 
absolute count abundance for most species and we use it here as a 
measure of the response of populations to climate variation (Casner, 
Forister, Ram et al., 2014b; Forister et al., 2011). A generalized linear 
model with a logit link function that incorporated effects of the 13 
climate variables (described above) and the effect of years was fit 
to these data using a hierarchical Bayesian approach implemented 
in the BUGS language (Gilks, Thomas, & Spiegelhalter, 1994) in R (R 
Development Core Team, 2012) using the rjags package with MCMC 
models in JAGS (version 3.2.0) (Plummer, 2003). This Bayesian hi-
erarchical approach has proven to be an effective strategy in other 

F I G U R E  3   Heat map illustrating the patterns of responses 
of butterfly populations to inter‐annual variation in weather at 
each of the transect sites. Sites are arranged from west to east, 
site abbreviations are the same as in Figure 1. Weather variables 
are arranged by similarity of responses. The dendrogram on 
the left shows the patterns of similarities among variables and 
across sites. Sites showed a generally negative response (red 
squares) to increasing summer minimum temperature and spring 
precipitation, but showed a generally positive response (blue 
squares) to increasing summer maximum temperature and summer 
precipitation. Sites showed highly heterogeneous responses to 
most aspects of climate variation, especially, for example, variation 
in spring maximum temperature and winter precipitation. A 
histogram of standardized coefficients is presented at the bottom 
of the figure

http://prism.oregonstate.edu
http://www.esrl.noaa.gov/psd/enso/mei/table.html
http://www.esrl.noaa.gov/psd/enso/mei/table.html
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analyses of these data (Harrison et al., 2015; Nice et al., 2014). 
Our hierarchical model consisted of populations of species nested 
within each site. Model specification is provided in the Supporting 
Information. This framework facilitates the quantification of uncer-
tainty in parameter estimates in the form of credible intervals (CIs) 
for each parameter; and uncertainty is propagated to all levels of the 
hierarchy. For example, we use day positives as a proxy for popula-
tion abundance which undoubtedly introduces uncertainty into the 
estimation of population‐level parameters which in turn contributes 
to uncertainty in site‐level parameters. Thus, the CIs around param-
eter estimates are an accurate accounting of the various kinds of 
error in these analyses, including the error created by day positives 
being an imperfect estimator of abundance (Casner, Forister, Ram et 
al., 2014b; Forister et al., 2011).

Posterior distributions for all parameters were estimated using 
two MCMC chains with 30,000 steps each in JAGS. To confirm that 
the MCMC algorithm sampled the stationary distribution, diagnos-
tic tests were performed for each analysis (Supporting Information). 
Standardized regression coefficients, β coefficients, and 95% equal‐
tail CIs were calculated for each of the 10 sites and for all 665 popu-
lations across all sites for all 13 climate covariates and year (i.e., there 
are 10 sites (site level) and 665 species by site combinations (popu-
lation level) for which coefficients were estimated, see Supporting 
Information). The site level is the highest level of the hierarchical 
model, which means that each site is modeled independently. Site‐
level coefficients and CIs were plotted and population‐level values 
were tabulated. Variation among sites was examined and illustrated 
by constructing a heat map for the site‐level coefficients for all 13 
weather covariates for all 10 sites in R using the gplots package (R 
Development Core Team, 2012). To assess whether heterogeneity 
in response to climate variation among sites was a product of dif-
ferences in species composition across the 10 transect sites, we re-
peated the hierarchical analysis described above, but restricted this 
analysis to 18 species which occur at all sites (Table S2). We then 
calculated the Pearson correlation coefficient, r, between site‐level 
parameter estimates from the full model and the parameters esti-
mated from the limited set of 18 species.

2.2 | Model validation and predictability

We assessed model performance using a posterior predictive check 
with cross validation that involved dropping out 10% of the data and 
using the model parameters to predict the missing day positive data. 
This was done 10 times dropping different parts of the dataset to 
generate an entire predicted dataset. We then estimated the corre-
lation between observed and predicted probabilities of occurrence 
as a global measure of model fit, and we calculated the proportion 
of the observed day positives that fell within the 95% CI of the pre-
dicted day positives as another estimate of model precision.

We used the same modeling and posterior predictive check strat-
egy to measure our ability to predict the observed data for different 
periods of time, for resident species (those which maintain breeding 
populations at specific sites; Forister et al., 2016; Nice et al., 2014; 

Pardikes et al., 2015), versus non‐resident butterfly species (which 
do not breed locally), and for each site. Here we define “predictabil-
ity” as the correlation between observed and predicted probabilities 
of occurrence. Specifically, we asked whether the model can predict 
data from 7 years from 2007 to 2013. These 7 years include two 
major droughts in California from 2007 to 2009 and from 2011 to 
2013 (Supporting Information). Given that periods of drought can 
have dramatic and complex effects on butterfly populations (Ehrlich 
et al., 1980; Shapiro, 1979), we consider these extreme years to 
be an appropriate test of the predictive power of our hierarchical 
model. The day positive data for these 7 years were removed from 
the dataset and predicted as in the posterior predictive checks 
using the remaining 35 years of data. Estimates were obtained from 
20,000 MCMC steps. As we did for the posterior predictive checks 
(above), predictions were assessed by calculating Pearson's correla-
tion coefficient, r, between observed and predicted probabilities of 
occurrence for each population (site × species) for which the mean 
number of day positives across years was greater than one. In this 
case, correlations between observed and predicted probabilities of 
occurrence were calculated specifically for the 7‐year‐period from 
2007 to 2013. We also counted how often the observed data were 
contained within the predicted data 95% CI. The model's ability to 
predict occurrences for these 7 years from 2007 to 2013 was com-
pared to the model's predictions for sets of seven contiguous years 
replicated as 1972–1978, 1979–1985, 1986–1992, 1993–1999, and 
2000–2006, and for seven randomly selected years (replicated five 
times). For each of these analyses, separate runs of the model were 
used to predict occurrences for the years in question.

2.3 | Species turnover and predictability

We examined how variation in butterfly community richness and 
evenness might covary with our model's ability to predict butterfly 
occurrences. Specifically, we examined sequential turnover in com-
munity composition using Hill numbers (Hill, 1973; Jost, 2006, 2007; 
Marion, Fordyce, & Fitzpatrick, 2017). Hill number (qD) values vary 
as a function of the parameter q, which determines the relative sen-
sitivity to common versus rare species. When q = 0, the measure is 
analogous to richness, where each species is weighted equally re-
gardless of abundance. When q = 1, species are weighted by their 
relative abundance as in the commonly used Shannon's index. When 
q = 2, rarer species are down‐weighted in importance as in the 
commonly used Simpson's index. Higher orders of q continue to in-
creasingly down‐weight the importance of rare species. β‐diversity 
expressed as Hill numbers provide the “effective number” of distinct 
communities in a sample. Pairwise β‐diversity as Hill numbers pro-
vides an intuitive summary of community dissimilarity (Hill, 1973; 
Jost, 2006, 2007; Marion et al., 2017). Here, qDβ is constrained be-
tween 1 and 2, where qDβ = 1 indicates that two community samples 
are identical (i.e., effectively one distinct community), and where 
qDβ = 2 indicates that two community samples are completely dif-
ferent (i.e., effectively two distinct communities). Subtracting one 
from qDβ provides turnover, or the expected proportional change 
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from one sample to the next. We calculated mean sequential turno-
ver across years for orders of q equal to zero, one and two and exam-
ined the correlation between turnover and the correlation between 
predicted and observed probabilities of occurrence. A positive cor-
relation would indicate that our model performs better when there 
is greater among‐year variation in community composition and even-
ness, whereas a negative correlation would indicate that our model 
performs best when communities are more similar, on average, from 
year‐to‐year.

3  | RESULTS

The effect of climatic variation on butterfly populations was readily 
detected and heterogeneous. All weather variables were character-
ized by varying effects along the elevational gradient, with positive 
effects (i.e. positive regression coefficients) in some locations and 
negative effects in others (see Figure 2 and Table S3 for coefficients 
from the hierarchical model, see Figures S1–S13 and Tables S5–S7 
for details of individual climate variables, see Tables S9–S11 for 
population‐level coefficients). Despite transect‐wide heterogeneity, 
adjacent sites in some cases showed similar effects; see, for example 
the positive effects of increasing sea surface temperatures (El Niño‐
Southern Oscillation), or spring minimum temperatures at lower el-
evations and the more negative or neutral effects of these variables 
at higher elevations (Figure 2). A smaller number of variables show 
even greater consistency of effect, including the generally positive 
effects of increasing summer maximum temperatures (warmer daily 
high temperatures) and the negative effects of spring precipitation 
(see Figure 3 where variables are clustered by similarity of popu-
lation‐level response). The positive effects of increasing summer 
maximum temperatures might be a simple consequence of acceler-
ated growth in ectothermal organisms under higher temperatures 

(Kingsolver, 2000). The negative relationship with spring precipita-
tion is likely a consequence of reduced feeding time during cloudy 
conditions having a negative impact on butterfly abundance, direct 
mortality associated with wet conditions, disruption of phenological 
matching between butterfly and host plants, or indirect effects me-
diated by changes in host plant quality (Bale et al., 2002; Parmesan 
& Yohe, 2003; Stefanescu, Penuelas, & Filella, 2003).

The heterogeneity in response to climate variation observed 
among sites was not directly attributable to differences in spe-
cies composition. The correlation between site‐level parameter 
estimates (standardized β coefficients) from the full data and the 
restricted data of 18 species (Supporting Information) was high 
(Pearson's r = 0.82), indicating that the observed heterogeneity in 
response to climate variation is not solely explained by differences 
in species composition among sites (Table S2, Figure S14).

Despite the overall high heterogeneity across transect sites in 
response to climate variation, these responses of butterfly popula-
tions were predictable, but to varying degrees. We used a posterior 
predictive check with cross validation to assess the model's abil-
ity to predict the observed data (Supporting Information). Overall, 
predictability, measured as the correlation between observed and 
predicted probabilities of occurrence, across the entire dataset was 
modest (Pearson's r = 0.23, SE 0.01, Table S8), yet 97% of observed 
day positives fell within the 95% CIs of the predicted day positives 
(Table S8). Predictability was lowest for relatively rare butterflies 
and there was a generally positive correlation between observed 
day positives and our ability to predict butterfly occurrences (Table 
S8, Figure S16). This pattern was evident at the site‐level as well: 
sites with higher mean day positives exhibited greater predictability 
(Figure 4a). However, resident butterflies were not more readily pre-
dicted by our model compared with nonresidents despite resident 
butterflies having higher occurrences (day positives) than nonresi-
dents (Figure S16).

F I G U R E  4   Overall site‐level predictability increases with increasing mean butterfly occurrences and decreases with year‐to‐year species 
turnover and over time. (a) Predictability, defined as the mean correlation between observed and predicted butterfly occurrences (day 
positives), is lowest for transect sites with lower mean day positives. Lower elevation sites, with longer seasons and more opportunities 
to observe butterflies had higher mean predictability compared to higher elevation sites. Colors and site abbreviations are the same as in 
Figure 1. (b) Transect sites with higher species turnover had lower mean predictability. Year‐to‐year turnover was estimated with the Hill 
number (qD) exponent, q = 2 (Hill, 1973; Jost, 2006, 2007; Marion et al., 2017) with rarer species down‐weighted in importance as in the 
commonly used Simpson's index (see Supporting Information). Mean turnover is the expected proportional change in the community at a site 
from 1 year to the next
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Our ability to predict butterfly occurrences was also lowest for 
sites with high year‐to‐year species turnover (Figure 4b). For the 
Hill numbers we calculated at three orders of q (0, 1, and 2), there 
was a negative correlation between turnover and predictability 
(Figure 4b, Figure S15). This negative relationship persisted when 
the contribution of rare species was down‐weighted (Figure 4b), 
which indicates that the effect of community turnover is important 
and not simply a product of rare species being more difficult to pre-
dict. The negative impact of higher turnover on our predictive abil-
ity suggests that habitats with frequent disturbance (e.g., fire prone 
areas), or high immigration (e.g., mountain top habitats or other 
islands), will be least predictable, an effect that might be exacer-
bated if increasing climate variability (Cai et al., 2014; Cubasch et 
al., 2001; Seneviratne, Donat, Mueller, & Alexander, 2014) causes 
greater turnover.

Our ability to predict was also variable across time. We asked 
specifically if parameters estimated from 35 years of data could 
be used to predict species occurrences during the 7‐year‐period 
from 2007 to 2013 that included two severe droughts in California 
(Supporting Information). We found that butterfly occurrences 
were extremely difficult to predict accurately for these 7 years 
(Figure S15c, Table S8). The median predictability for the 2007 to 
2013 period was 0.04 and substantially lower than for sets of seven 
randomly chosen years in which predictability ranged from 0.20 
to 0.29 (Table S8). However, the period 1979–1985 was similarly 
difficult to predict (Figure S15c, Table S8). This suggests that the 
ability to predict species responses to climatic variation is not obvi-
ously tied to extreme weather events such as the recent droughts 
in California.

In contrast to the generally multifarious responses to climatic 
variation, the butterfly faunas at all but one of the sites have 
strong negative associations with year (Table S3, Figure 2). This 
evidence of decline is consistent with previous reports (Pardikes 
et al., 2015). The one exception is at the highest elevation (CP), 
where the local fauna has increased in species richness, apparently 
as a consequence of colonization and persistence of butterflies 
that were previously less common or absent from the highest el-
evation (Forister et al., 2010). We identified several climatic fac-
tors that might be important for explaining declining butterfly 
populations, in particular minimum temperatures. Higher summer 
minimum temperatures (warmer overnight lows) had a negative im-
pact at most sites (Figure 2); and summer minimum temperatures 
are rising across many sites (Figure S11, Table S5) and across the 
state of California (Mazur & Milanes, 2009). Rising minimum sum-
mer temperatures negatively impact larval host plants and nectar 
sources (Kelly & Goulden, 2008). Minimum temperatures in other 
seasons have a more variable effect, which is presumably due to 
habitat differences (Table S1). Indeed, habitat heterogeneity might 
be an important buffer against directional change for mobile or-
ganisms (Harrison & Quinn, 1989; Hindle, Kerr, Richards, & Willis, 
2015; Oliver et al., 2010; Oliver, Stefanescu, Páramo, Brereton, & 
Roy, 2014). Winter minimum temperatures, for example, have both 
strong positive and negative effects across sites and such variation 

could provide refuges for species with population connectivity. 
However, the standardized effect of year at most sites is approx-
imately two times larger than the effects measured for weather 
variables (Figure 2, Table S3). Because the strong year effects were 
estimated in models that controlled for climatic effects, we infer 
that nonclimatic factors are influential in the observed declines. 
These other factors might include interactions with natural enemies 
and invasive species (Graves & Shapiro, 2003), and availability of 
food resources (Tylianakis, Didham, Bascompte, & Wardle, 2008), 
or abiotic factors, such as land use change (Casner, Forister, O’Brien 
et al., 2014a), pesticides (Forister et al., 2016), and other anthropo-
genic effects.

4  | DISCUSSION

Unanswered questions remain regarding the causes and conse-
quences of heterogeneous faunal responses to climatic variation. 
We hypothesize that local idiosyncrasies of topography and mi-
croclimate, and their interaction over time, explain much of the 
variation in butterfly responses (Moritz & Agudo, 2013). These 
differences among sites might impact butterflies directly through 
physiological and behavioral mechanisms, or indirectly through 
microclimatic and topographic effects on other species that in-
teract with butterflies (Ovaskainen et al., 2013; Tylianakis et al., 
2008; Van der Putten, Macel, & Visser, 2010). For example, the 
two highest elevation sites (CP and DPs) are often characterized 
by disparate responses to climatic variation (Figure 2), and, despite 
geographic proximity, they contain distinct habitats. DP includes 
extensive wet and dry meadow complexes, while CP extends to 
tree line and alpine vegetation. We do not know, however, if dis-
parate butterfly responses at these sites are primarily driven by 
population differentiation or differences in ecological processes. 
Intraspecific variation in responses could be correlated with geo-
graphic position relative to species’ range margins with peripheral 
populations perhaps being more sensitive to climate variation as 
has been shown in butterflies (Mills et al., 2017). Furthermore, 
habitat heterogeneity might strongly influence patterns of disper-
sal and connectivity among sub‐populations of particular species 
(Warren et al., 2001). Climate change might result in a greater pro-
portion of marginal habitats (i.e., “sink” habitats), although at the 
same time, such habitat heterogeneity might ameliorate some of 
the impacts of climate change, especially for mobile organisms that 
can find refuge in a mosaic of different habitats (Harrison & Quinn, 
1989; Hindle et al., 2015; Nadeau, Urban, & Bridle, 2017; Oliver et 
al., 2010, 2014). This potential benefit of refugial habitats was not 
supported in a recent analysis of these same sites throughout the 
major drought years of 2011–2015 (Forister et al., 2018). Those 
analyses, however, focused on community‐level summary statis-
tics and did not analyze species‐specific responses; thus much 
remains to be learned about the interaction between extreme cli-
matic events and heterogeneity of species‐ and site‐specific re-
sponses that we report here.
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Despite the observed heterogeneity of responses, our overall 
ability to predict butterfly occurrences was relatively good. While 
cross validation demonstrated a modest correlation between ob-
served and predicted occurrences, the vast majority (97%) of 
observed day positives was included in the CIs of predicted oc-
currences. However, predictability was lower for rarer species. 
Predictability was also lower at sites with higher year‐to‐year 
turnover in constituent species and these differences were not 
solely attributable to rare species (Figure 4b). Unexpectedly, pre-
dictability was not different between resident and nonresident 
species, despite the incidence of nonresidents being lower. This 
suggests that rarity is not the only factor determining predictabil-
ity of species. Further, our ability to predict butterfly occurrences 
varied over time with no clear trends or patterns associated with 
climate extremes such as the recent droughts in California (Figure 
S15c). The links presented here between lower predictability, 
lower relative abundance, and increasing turnover of species 
within sites suggest that increasing climate variability (Easterling 
et al., 2000) should contribute to a decrease in predictive power, 
but we did not see this in our analysis across time. More investi-
gation, including studies of other communities and other taxa, is 
required before we fully understand the limits of prediction.

While these unknowns should guide future work, the results re-
ported here offer at least four concrete conclusions. First, we should 
consider among‐site heterogeneity when designing long‐term stud-
ies. The diversified responses to climate variation reported here 
suggest that among‐site habitat heterogeneity might play a critical 
role in mediating how assemblages of species respond to climate 
change. Second, strong heterogeneity of faunal response means 
that global forecasts of biotic effects of climate change will be in-
accurate in some cases, such as when changing climate conditions 
increase population densities in one area and decrease populations 
in another. Third, a substantial proportion of the variation among 
sites, and among populations, is not likely to be explained by abi-
otic factors alone, which suggests a potentially central role for biotic 
interactions influencing heterogeneity of response. Fourth, despite 
the heterogeneity of faunal response to climatic variation, prediction 
of species occurrences was possible, but our ability to predict but-
terfly occurrences was highest for more abundant species and sites 
with lower annual turnover. These results emphasize the benefits 
that could be accrued through analyses of predictability of the pop-
ulation dynamics of diverse taxa. The complex variation observed in 
responses to interannual variation in weather, and the limits to our 
ability to predict those responses, demonstrates that there is much 
more to learn about mechanistic links between climate change and 
population dynamics.
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