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Abstract

We study the problem of approximating the partition function of the ferromagnetic Ising
model with both pairwise as well as higher order interactions (equivalently, in graphs as well
as hypergraphs). Our approach is based on the classical Lee–Yang theory of phase transitions,
along with a new Lee–Yang theorem for the Ising model with higher order interactions, and
on an extension of ideas developed recently by Barvinok, and Patel and Regts that can be
seen as an algorithmic realization of the Lee–Yang theory. Our first result is a deterministic

polynomial time approximation scheme (an FPTAS) for the partition function in bounded
degree graphs that is valid over the entire range of parameters β (the interaction) and λ (the
external field), except for the case |λ| = 1 (the “zero-field” case). A polynomial time ran-

domized approximation scheme (FPRAS) for all graphs and all β, λ, based on Markov chain
Monte Carlo simulation, has long been known. Unlike most other deterministic approxima-
tion algorithms for problems in statistical physics and counting, our algorithm does not rely
on the “decay of correlations” property, but, as pointed out above, on Lee–Yang theory. This
approach extends to the more general setting of the Ising model on hypergraphs of bounded
degree and edge size, where no previous algorithms (even randomized) were known for a
wide range of parameters. In order to achieve this latter extension, we establish a tight version
of the Lee–Yang theorem for the Ising model on hypergraphs, improving a classical result of
Suzuki and Fisher.
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1 Introduction

The Ising model, first studied a century ago as a model for magnetic materials by Lenz and
Ising [26], has since become an important tool for the modeling of interacting systems. In
the Ising model, such a system is represented as a graph G = (V , E), so that the individual
entities comprising the system correspond to the vertices V and their pairwise interactions to
the edges E . A configuration of the system is an assignment σ : V → {+,−} of one of two
possible values (often called “spins”) to each vertex. The model then induces a probability
distribution (known as a Gibbs distribution) over these global configurations in terms of local
parameters that model the interactions of the vertices.

In our setting, it will be convenient to parameterize these interactions in terms of a vertex

activity or fugacity λ, that models an “external field” and determines the propensity of a
vertex to be in the + configuration, and an edge activity β ≥ 0 that models the tendency of
vertices to agree with their neighbors. The model assigns to each configuration σ a weight

w(σ ):=β |{{u,v}∈E | σ (u)�=σ (v)}|λ|{v | σ (v)=+}| = β |E
(
S,S

)
|λ|S|,

where S = S(σ ) is the set of vertices assigned spin + in σ and E
(
S, S

)
is the set of edges

in the cut
(
S, S

)
(i.e., the number of pairs of adjacent vertices assigned opposite spins). The

probability of configuration σ under the Gibbs distribution is then μ(σ ) := w(σ )/Z
β

G(λ),

where the normalizing factor Z
β

G(λ) is the partition function defined as

Z
β

G(λ):=
∑

σ :V →{+,−}

w(σ ) =
∑

S⊆V

β |E
(
S,S

)
|λ|S|. (1)

Notice that the partition function may be interpreted combinatorially as a cut generating
polynomial in the graph G.

In this paper we focus on the original ferromagnetic case in which β < 1, so that con-
figurations in which a larger number of neighboring spins agree (small cuts) have higher
probability. The anti-ferromagnetic regime β > 1 is qualitatively very different, and prefers
configurations with disagreements between neighbors. We note also that all our results in
this paper hold in the more general setting where there is a different interaction βe on each
edge, provided that all the βe satisfy whatever constraints we are putting on β. (So, e.g., in
the ferromagnetic case βe < 1 for all e.) In addition, our results allow β to be negative and
λ to be complex; this will be discussed in more detail below.

As in almost all statistical physics and graphical models, the partition function captures
the computational complexity of the Ising model. Partition functions are #P-hard1 to compute
exactly in virtually any interesting case (e.g., this is true for the Ising model except in the trivial
cases λ = 0 or β ∈ {0, 1}), so attention is focused on approximation. An early result in the
field due to Jerrum and Sinclair [28] establishes a fully polynomial randomized approximation

scheme for the Ising partition function, valid for all graphs G and all values of the parameters
(β, λ) in the ferromagnetic regime. Like many of the first results on approximating partition
functions, this algorithm is based on random sampling and the Markov chain Monte Carlo
method.

1 If a combinatorial counting problem, such as computing a partition function in a statistical physics model,
is #P-hard, then it can be solved in polynomial time only if all counting problems belonging to a very rich
class can be solved in polynomial time. Hence #P-hardness is widely regarded as compelling evidence of the
intractibility of efficient exact computation. For a more detailed account of this phenomenon in the context of
partition functions, see, e.g., [47, Appendix A].
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For several statistical physics models on bounded degree graphs (including the anti-
ferromagnetic Ising model [31,48] and the “hard core”, or independent set model [55]),
fully-polynomial deterministic approximation schemes have since been developed, based on
the decay of correlations property in those models: roughly speaking, one can estimate the
local contribution to the partition function at a given vertex v by exhaustive enumeration
in a neighborhood around v, using decay of correlations to truncate the neighborhood at
logarithmic diameter. The range of applicability of these algorithms is of course limited to
the regime in which decay of correlations holds, and indeed complementary results prove
that the partition function is NP-hard to approximate outside this regime [20,50]. Perhaps
surprisingly, however, no deterministic approximation algorithm is known for the classical
ferromagnetic Ising partition function that works over anything close to the full range of the
randomized algorithm of [28]: to the best of our knowledge, the best deterministic algorithm,
due to Zhang, Liang and Bai [57], is based on correlation decay and is applicable to graphs
of maximum degree Δ only when β > 1 − 2/Δ.

The restricted applicability of correlation decay based algorithms for the ferromagnetic
Ising model arises from two related reasons: the first is that this model does not exhibit
correlation decay for β sufficiently close to 0 (for any given value of the external field), so
any straightforward approach based only on this property cannot be expected to work for
all β. Secondly, there is a regime of parameters for which, even though decay of correlation
holds, there is evidence to believe that it cannot be exploited to give an algorithm using the
usual techniques: see [48, Appendix 2] for a more detailed discussion of this point.

The first goal of this paper is to supply such a deterministic algorithm which covers almost
the entire range of parameters of the model except for the “zero-field” case |λ| = 1:

Theorem 1.1 Fix any Δ > 0. There is a fully polynomial time approximation scheme

(FPTAS)2 for the Ising partition function Z
β

G(λ) in all graphs G of maximum degree Δ

for all edge activities −1 ≤ β ≤ 1 and all (possibly complex) vertex activities λ with

|λ| �= 1.

Remarks (i) For fixed Δ and λ such that |λ| < 1, the running time of the FPTAS for producing

a (1 ± ε)-factor approximation on n-vertex graphs of degree at most Δ is (n/ε)
O

(
log Δ

|1−|λ||

)

(the
running times of the algorithms in Theorems 1.3 and 1.4 have a similar dependence on λ

and Δ). Such dependence on the “distance to the critical boundary” (in this case, the circle
|λ| = 1) of the degree of the polynomial bounding the running time of the FPTAS appears
to be a common feature of algorithms based on correlation decay [31,49,55] as well as our
present analytic continuation approach. In contrast, approximate counting algorithms based
on Markov chain Monte Carlo (e.g., [18,27,35]) often have the desirable feature that they are
in a sense “fixed parameter tractable”: even as the fixed parameters of the problems are moved
close to the boundary up to which the algorithm is applicable, the degree of the polynomial
bounding their running time does not increase; it is only the constant factors which increase
to infinity. A similar phenomenon occurs in the case of the dependence of the exponent of the
running time on the maximum degree of the graph: MCMC methods have no dependence,
while both correlation decay and the methods used here have an exponent linear in log Δ. In
the present case, this dependence seems to be inevitable since a crucial step in the algorithm is
the enumeration of all connected sub-graphs of size roughly Θ(log n), and the number of such

2 An FPTAS takes as input an n-vertex (hyper)graph G, model parameters β, λ, and an accuracy parameter ε ∈

(0, 1) and outputs a value that approximates Z
β
G

(λ) within a factor 1 ± ε [see also Eq. (3)]. The running time
of the algorithm is polynomial in n and 1/ε.
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sub-graphs may grow as nΘ(log Δ) (see Sect. 3, and in particular, the proof of Lemma 3.9). (ii)
Note that although λ, β are positive in the “physically relevant” range in most applications of
the Ising model, the above theorem also applies more generally to β ∈ [−1, 1] and complex
valued λ not on the unit circle. Moreover, we can allow edge-dependent activities βe provided
all of them lie in [−1, 1]. (iii) A result of Goldberg and Jerrum [21, Lemmas 7 and 16] shows
that if one can approximate the partition function of the Ising model at λ = 1 with edge-
dependent activities βe ∈ [−1, 1] in polynomial time, then there is a deterministic polynomial
time algorithm for approximately counting perfect matchings in graphs. This leads to the
following tantalizing possibility: extending Theorem 1.1 to the case λ = 1 (which lies at the
boundary of the current range of applicability of the theorem) will lead to a deterministic
FPTAS for counting perfect matchings in graphs, a problem that continues to remain wide
open. (Note that if Theorem 1.1 applied to the case λ = 1 with edge dependent activities
βe ∈ [−1, 1], then it would apply to unbounded degree graphs as well. This is because in this
case, a high degree vertex can be replaced by a “comb” in which each edge has activity 0.)

The above theorem is actually a special case of a more general theorem for the hypergraph
version of the Ising model (Theorem 1.3 below). We now illustrate our approach to proving
these theorems, which will also allow us to introduce and motivate our further results in the
paper.

In contrast to previous algorithms based on correlation decay, our algorithm is based on
isolating the complex zeros of the partition function Z := Z

β

G(λ) (viewed as a polynomial
in λ for a fixed value of β). This approach was introduced recently by Barvinok [6,7] (see also
the recent monograph by Barvinok [8] for a discussion of the approach in a more general
context). We start with the observation that the 1 ± ε multiplicative approximation of Z

required for an FPTAS corresponds to a O(ε) additive approximation of log Z . Barvinok’s
approach considers a Taylor expansion of log Z around a point λ0 such that Z(λ0) is easy to
evaluate. (For the Ising model, λ0 = 0 is such a choice.) It then seeks to evaluate the function
at other points by carrying out an explicit analytic continuation. More concretely, suppose it
can be shown that there are no zeros of Z in the open disk D(λ0, r) of radius r around λ0.
From standard results in complex analysis, it then follows that the Taylor expansion around
λ0 of log Z is absolutely convergent in D(λ0, r) and further, that the first m terms of this

expansion evaluated at a point λ ∈ D(λ0, r) provide a O
(

nαm

1−α

)
additive approximation of

log Z(λ), where α = |λ − λ0| /r < 1, and n is the degree of Z as a polynomial in λ. We note
that Barvinok’s approach may be seen as an algorithmic counterpart of the traditional view
of phase transitions in statistical physics in terms of analyticity of log Z [56].

To apply this approach in the case of the ferromagnetic Ising model, we may appeal to
the famous Lee–Yang theorem of the 1950s [30], which establishes that the zeros of Z(λ)

all lie on the unit circle in the complex plane. This allows us to take λ0 = 0 and r = 1 in
the previous paragraph, and thus approximate Z(λ) at any point λ satisfying |λ| < 1. This
extends to all λ with |λ| �= 1 via the fact that Z(λ) = λn Z( 1

λ
).

Remark We note that the case |λ| = 1 is likely to require additional ideas because it is
known that there exist bounded degree graphs (namely Δ-ary trees) for which the partition
function Z

β

G(λ) has complex zeros within distance O(1/n) of λ = 1, where n is the size
of the graph. In fact, the zeros are even known to become dense on the whole unit circle
as n increases to infinity [4,5]. This precludes the possibility of efficiently carrying out the
analytic continuation procedure for log Z to arbitrary points on the unit circle, and to the
point λ = 1 in particular.
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Converting the above approach into an algorithm requires computing the first k coefficients
in the Taylor expansion of log Z around λ0. Barvinok showed that this computation can in
turn be reduced to computing the O(k) lowest-degree coefficients of the partition function
itself. In the case of the Ising model, computing k such coefficients is roughly analogous to
computing k-wise correlations between the vertex spins, and doing so naively on a graph of n

vertices requires time Ω(nk). Until recently, no better ways to perform this calculation were
known and hence approximation algorithms using this approach typically required quasi-
polynomial time3 in order to achieve a (1 ± 1/poly(n))-factor multiplicative approximation
of Z (equivalently, a 1/poly(n) additive approximation of log Z ), since this requires the
Taylor series for log Z to be evaluated to k = Ω(log n) terms [7,9,10].

Recently, Patel and Regts [42] proposed a way to get around this barrier for several classes
of partition functions. Their method is based on writing the coefficients in the Taylor series
of log Z as linear combinations of counts of connected induced subgraphs of size up to
Θ(log n). This is already promising, since the number of connected induced subgraphs of
size O(log n) of a graph G of maximum degree Δ is polynomial in the size of G when Δ is a
fixed constant. Further, the count of induced copies of such a subgraph can also be computed
in time polynomial in the size of G [15]. Patel and Regts built on these tools to show a way to
compute the Θ(log n) Taylor coefficients of log Z needed in Barvinok’s approach for several
families of partition functions, for some of which correlation decay based algorithms are still
not known.

Unfortunately, for the case of the Ising model, it is not clear how to write the Taylor
coefficients in terms of induced subgraph counts. Indeed, in their paper [42, Theorem 1.4],
Patel and Regts apply their method to the Ising model viewed as a polynomial in β rather
than λ, which allows them to use subgraph counts. However, this prevents them from using
the Lee–Yang theorem, and they are consequently able to establish only a small zero-free
region. As a result, they can handle only the zero-field “high-temperature” regime (where
in fact the correlation decay property also holds), specifically the regime |β − 1| ≤ 0.34/Δ

and λ = 1.
In this paper, we instead propose a generalization of the framework of Patel and Regts

to labelled hypergraphs via objects that we call insects. In the special case of graphs, an
insect can be seen as a graph that includes edges to additional boundary vertices: we refer
to Sect. 3.1 for precise definitions. Using the appropriate notions for counting induced sub-
insects, we are then able to write the coefficients arising in the Taylor expansion of log Z for
the Ising model in terms of induced sub-insect counts, and derive from there algorithms for
computing Ω(log n) such coefficients in polynomial time in graphs of bounded degree. This
establishes Theorem 1.1. We note that if one is only interested in deriving Theorem 1.1, then
this can also be done using the notion of fragments, developed by Patel and Regts [42] in the
different context of edge coloring models, which turns out to be a special case of our notion
of insects.

Our framework of insects, however, also allows us to extend the above approach to edge-
dependent activities and, more significantly, to the much more general setting where G is
a hypergraph, as studied, for example, in the classical work of Suzuki and Fisher [54], and
also more recently in the literature on approximate counting [19,33,51]. In a hypergraph
of edge size k ≥ 3, the pairwise interactions in the standard Ising model are replaced by
higher-order interactions of order k. We note that the Jerrum–Sinclair MCMC approach [28]
apparently does not extend to hypergraphs, and there is currently no known polynomial time
approximation algorithm (even randomized) for a wide range of β in this setting. For a

3 A quasi-polynomial time algorithm is one which runs in time exp{O((log n)c)} for some constant c > 1.
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hypergraph H = (V , E), configurations are again assignments of spins to the vertices V and
the partition function Z

β

H (λ) is defined exactly as in (1), where the cut E(S, S) consists of
those hyperedges with at least one vertex in each of S and S. The computation of coefficients
via insects carries through as before, but the missing ingredient is an extension of the Lee–
Yang theorem to hypergraphs. Suzuki and Fisher [54] prove a weak version of the Lee–Yang
theorem for hypergraphs (see Theorem 4.3 in Sect. 4), which we are able to strengthen to
obtain the following optimal statement, which is of independent interest:

Theorem 1.2 Let H = (V , E) be a hypergraph with maximum hyperedge size k ≥ 3. Then

all the zeros of the Ising model partition function Z
β

H (λ) lie on the unit circle if the edge

activity β lies in the range − 1
2k−1−1

≤ β ≤ 1

2k−1 cosk−1
(

π
k−1

)
+1

. Further, when β �= 1 does not

lie in this range, there exists a hypergraph H with maximum hypergraph edge size at most k

such that the zeros of the Ising partition function Z
β

H (λ) of H do not lie on the unit circle.

Remark Once again, we can allow edge-dependent activities βe provided all of them lie in
the range stipulated above. This extension also applies to Theorem 1.3 below.

Note that the classical Lee–Yang theorem (for the graph case k = 2) establishes this
property for 0 ≤ β ≤ 1 (the ferromagnetic regime). Our proof of Theorem 1.2 follows along
the lines of Asano’s inductive proof of the Lee–Yang theorem [3], but we need to carefully
analyze the base case (where H consists of a single hyperedge) in order to obtain the above
bounds on β. The optimality of the range of β in our result follows essentially from the fact
that our analysis of the base case is tight. For a detailed comparison with the Suzuki–Fisher
theorem, see the Remark following Corollary 4.5.

Combining Theorem 1.2 with our earlier algorithmic approach immediately yields the
following generalization of Theorem 1.1 to hypergraphs.

Theorem 1.3 Fix any Δ > 0 and k ≥ 3. There is an FPTAS for the Ising partition function

Z
β

H (λ) in all hypergraphs H of maximum degree Δ and maximum edge size k, for all edge

activities β in the range of Theorem 1.2 and all vertex activities |λ| �= 1.

Finally, we extend our results to general ferromagnetic two-spin systems on hypergraphs,
again as studied in [54]. A two-spin system on a hypergraph H = (V , E) is specified by
hyperedge activities ϕe : {+,−}|e| → C for e ∈ E , and a vertex activity ψ : {+,−} → C.
(Note that we treat each hyperedge e as a set of vertices.) Then the partition function is
defined as:

Z
ϕ,ψ
H :=

∑

σ :V →{+,−}

∏

e∈E

ϕe

(
σ
∣∣
e

) ∏

v∈V

ψ(σ (v)).

Without loss of generality, we will henceforth assume that ϕe(−, · · · ,−) = 1, and that
ψ(−) = 1, ψ(+) = λ. We can then write the partition function as

Z
ϕ
H (λ) =

∑

σ :V →{+,−}

∏

e∈E

ϕe

(
σ
∣∣
e

)
λ|{v:σ (v)=+}|. (2)

We call a hypergraph two-spin system symmetric if ϕe(σ ) = ϕe(−σ ). Suzuki and
Fisher [54] proved a Lee–Yang theorem for symmetric hypergraph two-spin systems (which
is weaker than our Theorem 1.2 above when specialized to the Ising model). Combining this
with our general algorithmic approach yields our final result:
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Theorem 1.4 Fix any Δ > 0 and k ≥ 2 and a family of symmetric edge activities ϕ = {ϕe}

satisfying |ϕe(+, · · · ,+)| ≥ 1
4

∑
σ∈{+,−}V |ϕe(σ )|. Then there exists an FPTAS for the

partition function Z
ϕ
H (λ) of the corresponding symmetric hypergraph two-spin system in all

hypergraphs H of maximum degree Δ and maximum edge size k for all vertex activities

λ ∈ C such that |λ| �= 1.

The remainder of the paper is organized as follows. In Sect. 2, we spell out Barvinok’s
approach to approximating partition functions using Taylor series. Section 3 introduces the
notion of insects and shows how to use them to efficiently compute the lowest-degree coeffi-
cients of the partition function in the general context of hypergraphs; as discussed above, this
machinery applied to graphs, in conjunction with the Lee–Yang theorem, implies Theorem
1.1. Finally, in Sect. 4 we prove our extension of the Lee–Yang theorem to the hypergraph
Ising model (Theorem 1.2), and then use it and the Suzuki–Fisher theorem to prove our
algorithmic results for hypergraphs, Theorems 1.3 and 1.4.

1.1 RelatedWork

The problem of computing partition functions has been widely studied, not only in statistical
physics but also in combinatorics, because the partition function is often a generating function
for combinatorial objects (cuts, in the case of the Ising model). There has been much progress
on dichotomy theorems, which attempt to completely classify these problems as being either
#P-hard or computable (exactly) in polynomial time (see, e.g., [16,22]).

Since the problems are in fact #P-hard in most cases, algorithmic interest has focused
largely on approximation, motivated also by the general observation that approximating
the partition function is polynomial time equivalent to sampling (approximately) from the
underlying Gibbs distribution [29]. In fact, most early approximation algorithms exploited
this connection, and gave fully-polynomial randomized approximation schemes (FPRAS) for
the partition function using Markov chain Monte Carlo (MCMC) samplers for the Gibbs
distribution. In particular, for the ferromagnetic Ising model, the MCMC-based algorithm of
Jerrum and Sinclair [28] is valid for all positive real values of λ and for all graphs, irrespective
of their vertex degrees. (For the connection with random sampling in this case, see [43].) This
was later extended to ferromagnetic two-spin systems by Goldberg, Jerrum and Paterson [23].
Similar techniques have been applied recently to the related random-cluster model by Guo
and Jerrum [24].

Much detailed work has been done on MCMC for Ising spin configurations for several
important classes of graphs, including two-dimensional lattices (e.g., [34,38,39]), random
graphs and graphs of bounded degree (e.g., [41]), the complete graph (e.g., [32]) and trees
(e.g., [11,40]); we do not attempt to give a comprehensive summary of this line of work here.

In the anti-ferromagnetic regime (β > 1), deterministic approximation algorithms based
on correlation decay have been remarkably successful for graphs of bounded degree. Specif-
ically, for any fixed integer Δ ≥ 3, techniques of Weitz [55] give a deterministic FPTAS for
the anti-ferromagnetic Ising partition function on graphs of maximum degree Δ throughout
a region RΔ in the (β, λ) plane (corresponding to the regime of uniqueness of the Gibbs
measure on the Δ-regular tree) [31,48]. A complementary result of Sly and Sun [50] (see
also [20]) shows that the problem is NP-hard outside RΔ. In contrast, no MCMC based algo-
rithms are known to provide an FPRAS for the anti-ferromagnetic Ising partition function
throughout RΔ. More recently, correlation decay techniques have been extended to obtain
deterministic approximation algorithms for the anti-ferromagnetic Ising partition function on
hypergraphs over a range of parameters [33], as well as to several other problems not related
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to the Ising model. In the ferromagnetic setting, however, for reasons mentioned earlier,
correlation decay techniques have had more limited success: Zhang et al. [57] handle only
the “high-temperature” regime of the Ising model, while the recent results for ferromagnetic
two-spin systems of Guo and Lu [25] do not apply to the case of the Ising model.

In a parallel line of work, Barvinok initiated the study of Taylor approximation of the loga-
rithm of the partition function, which led to quasipolynomial time approximation algorithms
for a variety of counting problems [6,7,9,10]. More recently, Patel and Regts [42] showed
that for several models that can be written as induced subgraph sums, one can actually obtain
an FPTAS from this approach. In particular, for problems such as counting independent sets
with negative (or, more generally, complex valued) activities on bounded degree graphs, they
were able to match the range of applicability of existing algorithms based on correlation
decay, and were also able to extend the approach to Tutte polynomials and edge-coloring
models (also known as Holant problems) where little is known about correlation decay.

The Lee–Yang program was initiated by Lee and Yang [56] in connection with the analysis
of phase transitions. By proving the famous Lee–Yang circle theorem for the ferromagnetic
Ising model [30], they were able to conclude that there can be at most one phase transition
for the model. Asano [3] extended the Lee–Yang theorem to the Heisenberg model, and
provided a simpler proof. Asano’s work was generalized further by Suzuki and Fisher [54],
while Sinclair and Srivastava [47] studied the multiplicity of Lee–Yang zeros. A complete
characterization of Lee–Yang polynomials that are independent of the “temperature” of the
model was recently obtained by Ruelle [44]. The study of Lee–Yang type theorems for other
statistical physics models has also generated beautiful connections with other areas of mathe-
matics. For example, Shearer [46] and Scott and Sokal [45] established the close connection
between the location of the zeros of the independence polynomial and the Lovász Local
Lemma, while the study of the zeros of generalizations of the matching polynomial was used
in the recent celebrated work of Marcus, Spielman and Srivastava on the existence of Ramanu-
jan graphs [36]. Such Lee–Yang type theorems are exemplars of the more general stability
theory of polynomials [12,13], a field of study that has had numerous recent applications to
theoretical computer science and combinatorics (see, e.g., [1,2,14,36,37,47,53]).

2 Approximation of the Log-Partition Function by Taylor Series

In this section we present an approach due to Barvinok [7] for approximating the partition
function of a physical system by truncating the Taylor series of its logarithm, as discussed
in the introduction. We will work in our most general setting of symmetric two-spin systems
on hypergraphs, which of course includes the Ising model (on graphs or hypergraphs) as a
special case. As in (2), such a system has partition function

Z
ϕ
H (λ) =

∑

σ :V →{+,−}

∏

e∈E

ϕe

(
σ
∣∣
e

)
λ|{v:σ (v)=+}|.

Our goal is an FPTAS for Z
ϕ
H (λ), i.e., a deterministic algorithm that, given as input H , {ϕe},

λ with |λ| �= 1 and ε ∈ (0, 1], runs in time polynomial in n = |H | and ε−1 and outputs a
(1 ± ε)-multiplicative approximation of Z

ϕ
H (λ), i.e., a number Ẑ satisfying

|Ẑ − Z
ϕ
H (λ)| ≤ ε|Z

ϕ
H (λ)|. (3)
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(Note that in our setting Ẑ and Z
ϕ
H (λ) may be complex numbers.) By the symmetry ϕe(σ ) =

ϕe(−σ ), we also have Zϕ(λ) = λn Zϕ( 1
λ
), so that without loss of generality we may assume

|λ| < 1.
For fixed H and (hyper)edge activities ϕ, we will write Z(λ) = Z

ϕ
H (λ) for short. Letting

f (λ) = log Z(λ), using the Taylor expansion around λ = 0 we get

f (λ) =

∞∑

j=0

f ( j)(0) ·
λ j

j !
, (4)

where f (0) = log Z(0) = 0. Note that Z = exp( f ), and thus an additive error in f

translates to a multiplicative error in Z . More precisely, given ε ≤ 1/4, and f , f̃ ∈ C such
that | f − f̃ | ≤ ε, we have

| exp( f̃ ) − exp( f )| = | exp( f̃ − f ) − 1| × | exp( f )| ≤ 4ε| exp( f )|,

where the last inequality, valid for ε ≤ 1/4, follows by elementary complex analysis. In other
words, to achieve a multiplicative approximation of Z within a factor 1 ± ε, as required by
an FPTAS, it suffices to obtain an additive approximation of f within ε/4.

To get an additive approximation of f , we use the first m terms in the Taylor expansion.

Specifically, we compute fm(λ) :=
∑m

j=0 f ( j)(0) · λ j

j ! . We show next how to compute the

derivatives f ( j)(0) from the derivatives of Z itself (which are more readily accessible).
To compute f ( j)(0), note that f ′(λ) = 1

Z(λ)
dZ(λ)

dλ
, or dZ(λ)

dλ
= f ′(λ)Z(λ). Thus for any

m ≥ 1,

dm

dλm
Z(λ) =

m−1∑

j=0

(
m − 1

j

)
d j

dλ j
Z(λ) ·

dm− j

dλm− j
f (λ). (5)

Given d j

dλ j Z(λ)
∣∣
λ=0 for j = 0, . . . , m, Eq. (5) is a triangular system of linear equations in{

f ( j)(0)
}m

j=1 of representation length poly(m), and is non-degenerate since Z(0) = 1; hence
it can be solved in poly(m) time.

We can now specify the algorithm: first compute
{

d j

dλ j Z(λ)
∣∣
λ=0

}m

j=0
; next, use the system

in Eq. (5) to solve for
{

f ( j)(0)
}m

j=1; and finally, compute and ouput the approximation fm(λ).
To quantify the approximation error in this algorithm, we need to study the locations of

the complex roots r1, . . . , rn of Z . Throughout this paper, we will be using (some variant
of) the Lee–Yang theorem to argue that, for the range of interactions ϕ we are interested in,
the roots ri all lie on the unit circle in the complex plane, i.e., |ri | = 1 for all i . Note that
since we are assuming that ϕe(−, · · · ,−) = 1, the constant term

∏n
i=1(−ri ) of Z(λ) is 1,

and hence we have Z(λ) =
∏

i (1 − λ
ri

). The log partition function can then be written as

f (λ) = log Z(λ) =

n∑

i=1

log

(
1 −

λ

ri

)
= −

n∑

i=1

∞∑

j=1

1

j

(
λ

ri

) j

. (6)

Note that due to the uniqueness of the Taylor expansion of meromorphic functions, the two
power series expansions of f (λ) in Eqs. (4) and (6) are identical in the domain of their conver-
gence. Denoting the first m terms of the above expansion by fm(λ) = −

∑n
i=1

∑m
j=1

1
j
( λ

ri
) j ,

the error due to truncation is bounded by

| f (λ) − fm(λ)| ≤ n

∞∑

j=m+1

|λ| j

j
≤

n |λ|m+1

(m + 1)(1 − |λ|)
,
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recalling that by symmetry we are assuming |λ| < 1. Thus to get within ε/4 additive error, it
suffices to take m ≥ 1

log(1/|λ|)

(
log( 4n

ε
) + log( 1

1−|λ| )
)
. The following result summarizes our

discussion so far.

Lemma 2.1 Given ε ∈ (0, 1), m ≥ 1
log(1/|λ|)

(
log( 4n

ε
) + log( 1

1−|λ| )
)
, and the values{

d j

dλ j Z(λ)
∣∣
λ=0

}m

j=0
, fm(λ) can be computed in time poly(n/ε). Moreover, if the Lee–Yang the-

orem holds for the partition function Z(λ), then | fm(λ) − f (λ)| < ε/4, and thus exp( fm(λ))

approximates Z(λ) within a multiplicative factor 1 ± ε.

The missing ingredient in turning Lemma 2.1 into an FPTAS is the computation of the

derivatives d j

dλ j Z(λ)
∣∣
λ=0 for 1 ≤ j ≤ m, which themselves are just multiples of the m + 1

lowest-degree coefficients of Z . Computing these values naively using the definition of Z(λ)

requires nΩ(m) time. Since m is required to be of order Ω(log(n/ε)), this results in only a
quasi-polynomial time algorithm. In the next section, we show how to compute these values
in polynomial time when H is a hypergraph of bounded degree and bounded hyperedge size,
which when combined with Lemma 2.1 gives an FPTAS.

3 Computing Coefficients via insects

As discussed in the introduction, Patel and Regts [42] recently introduced a technique for
efficiently computing the low-degree coefficients of a partition function using induced sub-
graph counts. In this section we introduce the notion of sub-insect counts, and show how
it allows the Patel–Regts framework to be adapted to any hypergraph two-spin system with
vertex activities (including the Ising model with vertex activities as a special case). We will
align our notation with [42] as much as possible. From now on, unless otherwise stated, we
will use G to denote a hypergraph. Recall from the introduction the partition function of a
two-spin system on a hypergraph G = (V , E):

Z
ϕ
G(λ) =

∑

σ :V →{+,−}

∏

e∈E

ϕe

(
σ
∣∣
e

)
λ|{v:σ (v)=+}|. (7)

Due to the normalization ϕe(−, · · · ,−) = 1, each term in the summation depends only on the
set S = {v : σ (v) = +} and the labelled induced sub-hypergraph

(
S ∪ ∂S, E[S] ∪ E(S, S)

)
,

where E[S] is the set of edges within S, ∂S is the boundary of S defined as ∂S:=
⋃

v∈S NG(v)

\S, and NG(v) is the set of vertices adjacent to the vertex v in G. This fact motivates the
induced sub-structures we will consider.

Let σ S be the configuration where the set of vertices assigned +-spins is S, that is,
σ S(v) = + for v ∈ S and σ S(v) = − otherwise. We will also write ϕe(S):=ϕe(σ

S
∣∣
e
) for

simplicity. Thus the partition function can be written

Z
ϕ
G(λ) =

∑

S⊆V

∏

e:e∩S �=∅

ϕe(S)λ|S|.

We start with the standard factorization of the partition function in terms of its complex
zeros r1, . . . , rn , where n = |V |. As explained in the paragraph preceding Eq. (6), the
assumption ϕe(−, · · · ,−) = 1 allows one to write the partition function as

Z
ϕ
G(λ) =

n∏

j=1

(1 − λ/r j ) =

n∑

i=0

(−1)i ei (G)λi ,
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where ei (G) is the elementary symmetric polynomial of degree i evaluated at ( 1
r1

, · · · , 1
rn

).
On the other hand, we can also express the coefficients ei (G) combinatorially using the

definition of the partition function:

ei (G) = (−1)i
∑

S⊆V
|S|=i

∏

e:e∩S �=∅

ϕe(S). (8)

Once we have computed the first m coefficients of Z (i.e., the values ei (G) for i =

1, . . . , m), where m = Ω

(
log(n/ε)−log(1−|λ|)

log(1/|λ|)

)
, we can use Lemma 2.1 to obtain an FPTAS

as claimed in Theorems 1.1, 1.3 and 1.4. The main result in this section will be an algorithm
for computing these coefficients ei (G):

Theorem 3.1 Fix k,Δ ∈ N and C > 0. There exists a deterministic poly(n/ε)-time algorithm

that, given any n-vertex hypergraph G of maximum degree Δ and maximum hyperedge

size k, and any ε ∈ (0, 1), computes the coefficients ei (G) for i = 1, . . . , m, where m =


C log(n/ε)�.

3.1 Insects in a Hypergraph

To take advantage of the fact that each term in Eq. (7) only depends on the set S and the
induced sub-hypergraph

(
S ∪ ∂S, E[S] ∪ E(S, S)

)
, we define the following structure.

Definition 3.2 Given a vertex set S and a set E of hyperedges, H = (S, E) is called an insect

if for all e ∈ E , e ∩ S �= ∅. The set S is called the label set of the insect H and the set
B(H):=

(⋃
e∈E e

)
\S is called the boundary set.

Given an insect H , we use the notation V (H) for its label set. The size |H | of the insect
H is defined to be

∣∣V (H)
∣∣. An insect H = (S, E) is said to be connected if the hypergraph

(S, {e ∩ S | e ∈ E}) is connected. It is said to be disconnected otherwise. In the latter case,
there exists a partition of S into non-empty sets S1, S2, and a partition of E into sets E1 and
E2, such that (Si , Ei ) are insects for i = 1, 2, and the sets S2 ∩ B(H1) and S1 ∩ B(H2) are
empty. In this case, we write H = H1 � H2, and say that the insects H1 and H2 are disjoint.
(Note that disjoint insects may share boundary vertices.)

Remark Note that a hypergraph G = (V , E) can itself be viewed as an insect. However, as
is clear from the definition, not all insects are hypergraphs.

In order to exploit the structure of the terms in Eq. (7) alluded to above, we now define
the notion of an induced sub-insect of an insect. Given an insect H = (S, E) and a subset
S′ of S, we define the induced sub-insect H+

[
S′

]
as (S′,

{
e ∈ E | e ∩ S′ �= ∅

}
). Further, we

say that an insect H is an induced sub-insect of an insect G, denoted H ↪→ G, if there is a
set S ⊆ V (G) such that G+ [S] = H .

3.2 Weighted Sub-insect Counts

Just as graph invariants may be expressed as sums over induced subgraph counts, we will
consider weighted sub-insect counts of the form f (G) =

∑
S⊆V (G) aG+[S] and the func-

tions f expressible in this way. Here G is any insect, and the coefficients aH depend only
on H , not on G.
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Let G
Δ,k
t be the set of insects up to size t , with maximum degree Δ and maximum

hyperedge size k. Note that since insects are labelled, this is an infinite set. We will fix Δ

and k throughout, and write G:=
⋃

t≥1 G
Δ,k
t . Let 1[H ↪→ G] be the indicator that H is an

induced sub-insect of G, that is,

1[H ↪→ G] = 1 if there is a set S ⊆ V (G) such that G+ [S] = H , and 0 otherwise.

A weighted sub-insect count f (G) of the form considered above can then also be written as
f (G) =

∑
H∈G aH ·1[H ↪→ G]. This alternative notation helps simplify the presentation of

some of the combinatorial arguments below. Note that even though G is infinite, the above sum
has only finitely many non-zero terms for any finite insect G. Further, as insects are labelled,
f (G) may also depend on the labelling of G, unlike a graph invariant where isomorphic
copies of a graph yield the same value.

A weighted sub-insect count f is said to be additive if, given any two disjoint insects G1

and G2, f (G1 � G2) = f (G1) + f (G2). An argument due to Csikvári and Frenkel [17],
also employed in the case of graph invariants by Patel and Regts [42], can then be adapted
to give the following:

Lemma 3.3 Let f be a weighted sub-insect count, so that f may be written as

f (G) =
∑

H∈G

aH · 1[H ↪→ G] .

Then f is additive if and only if aH = 0 for all insects H that are disconnected.

Proof When H is connected, we have 1[H ↪→ G1 � G2] = 1[H ↪→ G1] + 1[H ↪→ G2];
thus f given in the above form is additive if aH ′ = 0 for all H ′ that are not connected.

Conversely, suppose f is additive. By the last paragraph, we can assume without loss
of generality that the sequence aH is supported on disconnected insects (by subtracting the
component of f supported on connected H ). We now show that for such an f , aH must be
0 for all disconnected H as well.

For if not, let H be a (necessarily disconnected) insect of smallest size for which aH �= 0.
Since aJ = 0 for all insects J with |J | < |H |, we must have f (J ) = 0 for all such
insects. Also, since H is disconnected, there exist non-empty insects H1 and H2 such that
H = H1 � H2. By additivity, we then have f (H) = f (H1) + f (H2) = 0, where the last
equality follows since both |H1|, |H2| are strictly smaller than |H |. On the other hand, since
H is an insect with the smallest possible number of vertices such that aH �= 0, we also have
f (H) = aH 1[H ↪→ H ] = aH . This implies aH = 0, which is a contradiction. Hence we
must have aH = 0 for all disconnected H . ��

The next lemma implies that the product of weighted sub-insect counts can also be
expressed as a weighted sub-insect count. We begin with a definition.

Definition 3.4 An insect H1 = (S1, E1) is compatible with another insect H2 = (S2, E2) if
the insect H :=(S1 ∪ S2, E1 ∪ E2) satisfies H+ [S1] = H1 and H+ [S2] = H2.

Lemma 3.5 Let H1 = (S1, E1), H2 = (S2, E2) be arbitrary insects.

(i) If H1 and H2 are not compatible, then there is no insect G such that H1 ↪→ G and

H2 ↪→ G. In other words, for every insect G,

1[H1 ↪→ G] 1[H2 ↪→ G] = 0.
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(ii) If H1 and H2 are compatible, then for every insect G,

1[H1 ↪→ G] 1[H2 ↪→ G] = 1[H ↪→ G] ,

where H is the insect (S1 ∪ S2, E1 ∪ E2), and satisfies H+ [Si ] = Hi for i = 1, 2.

Proof We start by making two observations. First, if G+ [S1] = H1 and G+ [S2] = H2 then
G+ [S1 ∪ S2] = H = (S1 ∪ S2, E1 ∪ E2). Second, if T ⊆ S ⊆ V and G1:=G+ [S] then
G+

1 [T ] = G+ [T ].
Suppose first that H1 and H2 are not compatible. Suppose, for the sake of contradiction,

that there exists an insect G such that G+ [Si ] = Hi for i = 1, 2. Then, from the first
observation above we have G+ [S1 ∪ S2] = H = (S1 ∪ S2, E1 ∪ E2), while from the second
observation we have H+ [Si ] = G+ [Si ] = Hi for i = 1, 2. This contradicts the assumption
that H1 and H2 are incompatible. Thus, we must have 1[H1 ↪→ G] 1[H2 ↪→ G] = 0 for
every G, proving part (i).

Now suppose that H1 and H2 are compatible. As seen above, G+ [Si ] = Hi for i = 1, 2
implies that G+ [S1 ∪ S2] = H . On the other hand, if G+ [S1 ∪ S2] = H , then by the
compatibility of H1 and H2, and the second observation above, G+ [Si ] = H+ [Si ] = Hi

for i = 1, 2. This proves part (ii) of the lemma. ��

An immediate corollary of the above lemma is that a product of weighted sub-insect counts
is also a sub-insect count supported on slightly larger insects.

Corollary 3.6 If f1(G) =
∑

H aH · 1[H ↪→ G] and f2(G) =
∑

H bH · 1[H ↪→ G] are

weighted sub-insect counts, then so is g(G):= f1(G) f2(G). Moreover, if f1, f2 are supported

on sub-insects of sizes ≤ t1, t2 respectively (i.e., if aH = 0 when |H | > t1 and bH = 0 when

|H | > t2), then g is supported on sub-insects of size ≤ t1 + t2.

Proof For compatible insects Hi = (Si , Ei ) we denote by H1 ∪ H2 the insect (S1 ∪ S2, E1 ∪

E2). Now, for any insect G we have,

g(G) =
∑

H1,H2

aH1 bH2 · 1[H1 ↪→ G] · 1[H2 ↪→ G]

=
∑

H1,H2 compatible

aH1 bH2 · 1[H1 ∪ H2 ↪→ G]

=
∑

H

cH · 1[H ↪→ G] ,

where in the second line we have used Lemma 3.5, and where

cH :=
∑

H1,H2 compatible
H=H1∪H2

aH1 bH2 . (9)

Note that the number of non-zero terms in the definition of each cH is finite, and that |H1 ∪

H2| ≤ |H1| + |H2|. This completes the proof. ��

3.3 Enumerating Connected Sub-insects

We observe next that ei (G), as defined in Eq. (8), can be written as a weighted sub-insect
count. Accordingly, we generalize Eq. (8) to arbitrary insects G of maximum degree Δ and
hyperedge size k as follows:
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ei (G) = (−1)i
∑

S⊆V (G)
|S|=i

∏

e:e∩S �=∅

ϕe(S) =
∑

H∈G
Δ,k
i

μH · 1[H ↪→ G] , (10)

where μH := (−1)i
∏

e:e∩V (H)�=∅ ϕe(V (H)). Note that this definition coincides with Eq.
(8) when G is a hypergraph, and also extends the definition of the partition function from
hypergraphs to insects via the equation ZG(λ) =

∑|G|
i=0(−1)i ei (G)λi ; when G = (S, E)

this definition is equivalent to that of the partition function on the hypergraph (S ∪ B(G), E),
with the vertices in B(G) set to ‘−’. This latter observation implies that when the insect G

is disconnected and G = G1 � G2, we have ZG(λ) = ZG1(λ)ZG2(λ).
We now consider the computational properties of the above expansion. Note that each

coefficient μH is readily computable in time poly(|H | ); however, as discussed in the intro-
duction, the number of H ∈ G

Δ,k
i such that 1[H ↪→ G] �= 0 is Ω(ni ), so that a naive

computation of ei (G) using Eq. (10) would be inefficient. To prove Theorem 3.1, we con-
sider the set of connected insects, denoted by C

Δ,k
i , rather than G

Δ,k
i . We will show in this

subsection that C
Δ,k
i can be efficiently enumerated, and then in the following subsection

reduce the above summation over G
Δ,k
i to enumerations of C

Δ,k
i .

As in [42], we use the following calculation of Borgs et al. [15, Lemma 2.1 (c)].

Lemma 3.7 Let G be a multigraph with maximum degree Δ (counting edge multiplicity) and

let v be a vertex of G. Then the number of subtrees of G with t vertices containing the vertex

v is at most
(eΔ)t−1

2 .

Proof Consider the infinite rooted Δ-ary tree TΔ. The number of subtrees with t vertices

starting from the root is 1
t

(
tΔ
t−1

)
<

(eΔ)t−1

2 . (See also [52, Theorem 5.3.10].) The proof is
completed by observing that the set of t-vertex subtrees of G containing vertex v can be
mapped injectively into subtrees of TΔ containing the root. ��

Corollary 3.8 Let G be a hypergraph with maximum degree Δ and maximum hyperedge size

k, and let v ∈ V (G). Then the number of connected induced sub-insects of G of size t whose

label set contains the vertex v is at most
(eΔk)t−1

2 .

Proof Consider the multigraph H obtained by replacing every hyperedge of size r in G by
an r -clique. For any connected induced sub-insect A of G, the label set V (A) is connected
in H . Now, for any two distinct connected induced sub-insects A and B, let SA and SB be
the sets of trees in H that span the label sets V (A) and V (B) of A and B respectively. Since
the label sets of A and B are different, we must have SA ∩ SB = ∅. Thus the number of
connected subtrees on t vertices in H which contain the vertex v is an upper bound on the
number of connected induced sub-insects in G whose label set contains v.

Finally, in the multigraph H the maximum degree is Δk, so by Lemma 3.7 the number of

such subtrees is at most (eΔk)t−1

2 . ��

As a consequence we can efficiently enumerate all connected induced sub-insects of
logarithmic size in a bounded degree graph. This follows from a similar reduction to a
multigraph, applying [42, Lemma 3.4]. However, for the sake of completeness we also include
a direct proof.

Lemma 3.9 For a hypergraph G of maximum degree Δ and maximum hyperedge size k, there

exists an algorithm that enumerates all connected induced sub-insects of size at most t in G

and runs in time Õ(nt3(eΔk)t+1). Here Õ hides factors of the form polylog(n) , polylog(Δk)

and polylog(t).
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Proof Let Tt be the set of S ⊆ V (G) such that |S| ≤ t and G+[S] is connected. Note that
given S ∈ Tt , G+[S] will be a sub-insect of size t , and this clearly enumerates all of them.
Also, by Corollary 3.8, |Tt | ≤ O(n(eΔk)t ). Thus it remains to give an algorithm to construct
Tt in about the same amount of time.

We construct Tt inductively. For t = 1, T1:=V (G). Then given Tt−1, define the multiset

T
∗

t :=Tt−1 ∪ {S ∪ {v} : S ∈ Tt−1 and v ∈ NG(S)\S} .

Since |NG(S)| < tΔk, we can compute the set NG(S)\S in time O(tΔk), and construct
T ∗

t in time Õ(|Tt−1| t2Δk) = Õ(nt2(eΔk)t ). Finally, we remove duplicates in T ∗
t to get Tt

(e.g., by sorting the sets S ∈ T ∗
t , where each is represented as a string of length Õ(t)), in

time Õ(nt3(eΔk)t ).
Starting from T1, inductively we perform t iterations to construct Tt . Thus the overall

running time is
∑t

i=1 Õ(ni3(eΔk)i ) = Õ(nt3(eΔk)t+1). ��

3.4 Proof of Theorem 3.1

The results in the previous subsection allow us to efficiently enumerate connected sub-insects.
To prove Theorem 3.1, it remains to reduce the sum over all (possibly disconnected) H in Eq.
(10) to a sum over connected H . We now show that the method of doing so using Newton’s
identities and the multiplicativity of the partition function developed by Patel and Regts [42]
for graphs extends to the case of insects. Let G be any insect of size n and consider the t th
power sum of the inverses of the roots ri , 1 ≤ i ≤ n, of ZG(λ) [extended to insects G as in
the paragraph following Eq. (10)]:

pt (G) =

n∑

i=1

1

r t
i

.

Now by Newton’s identities (which relate power sums to elementary symmetric polynomials),
we have

pt =

t−1∑

i=1

(−1)i−1 pt−i ei + (−1)t−1tet . (11)

Recall from Eq. (10) that ei is a weighted sub-insect count supported on insects of size ≤ i ,
and also from Corollary 3.6 that the product of two weighted sub-insect counts supported
on insects of size ≤ ti , t2 respectively is a weighted sub-insect count supported on insects of
size ≤ t1 + t2. Therefore, by Eq. (11) and induction, each pt is also a weighted sub-insect
count supported on insects of size ≤ t . Thus, for any insect G, we may write

pt (G) =
∑

H∈G
Δ,k
t

a
(t)
H · 1[H ↪→ G] (12)

for some coefficients a
(t)
H to be determined. (The superscript (t) reflects the fact that a given H

will in general have different coefficients for different pt .)
Recall now that if G is disconnected with G = G1 � G2 then ZG(λ) = ZG1(λ) · ZG2(λ).

Thus, the polynomials ZG(λ) are multiplicative over G, and hence sums of powers of their

123



302 J. Liu et al.

roots, such as pt (G) are additive: pt (G1 � G2) = pt (G1) + pt (G2). Hence by Lemma 3.3,
the coefficients of pt are supported on connected insects, and we may write Eq. (12) as

pt (G) =
∑

H∈C
Δ,k
t

a
(t)
H · 1[H ↪→ G] . (13)

Notice that by Corollary 3.8, there are at most n(eΔk)t non-zero terms in this sum.

Lemma 3.10 There is a poly(n/ε)-time algorithm to compute all the coefficients a
(t)
H in Eq.

(13), for t ≤ O(log(n/ε)).

Proof By Lemma 3.9, we compute Tt , consisting of all S ⊆ V (G) such that |S| ≤ t and
G+[S] is connected. As we have removed duplicates, this is exactly C

Δ,k
t . We then use

dynamic programming to compute the coefficients a
(t)
H .

By Eq. (11), for t = 1 we have p1 = e1, so by Eq. (10) we can read off the coefficients

a
(1)
H from e1(G). Next suppose we have computed a

(t ′)

H ′ for
∣∣H ′

∣∣ ≤ t ′ < t , and we want to

compute a
(t)
H for some fixed connected H ∈ C

Δ,k
t such that 1[H ↪→ G]. Again by Eq. (11),

it suffices to compute the coefficient corresponding to H in pt−i ei for each 1 ≤ i ≤ k − 1
(since the contribution of the last term in Eq. (11) is simply (−1)t−1tμH if |H | = t and 0
otherwise). By Eqs. (9) and (13), this coefficient is given by

∑

H1∈G
Δ,k
i , H2∈C

Δ,k
(t−i)

H1 compatible with H2
H1∪H2=H

a
(t−i)
H2

μ
(i)
H1

=
∑

(S1,S2)
S1∪S2=V (H)

H+[S1]∈G
Δ,k
i , H+[S2]∈C

Δ,k
(t−i)

a
(t−i)

H+[S2]
μH+[S1]. (14)

Since t ≤ O(log(n/ε)), the second sum involves at most 4t = poly(n/ε) terms. Moreover,

due to Corollary 3.8, there are at most nt(eΔk)t = poly(n/ε) previously computed a
(t ′)

H ′ ,

where H ′ is a connected sub-insect of G and
∣∣H ′

∣∣ ≤ t ′ < t . In order to look up a
(t−i)

H+[S]
, one

can do a linear scan, which also takes time poly(n/ε) for t ≤ O(log(n/ε)). The coefficients
μH+[S] can simply be read off from their definition in Eq. (10).

To conclude, because t ≤ O(log(n/ε)), Eq. (13) only contains poly(n/ε) terms. And for
each term, a

(t)
H can be computed using the above dynamic programming scheme in poly(n/ε)

time. ��

Finally, now that we can compute aH ,t efficiently, by Eq. (13) we can compute pk using the
sub-insect enumerator in Lemma 3.9, and we can then compute ek using Newton’s identities
as in Eq. (11), which completes the proof of Theorem 3.1.

3.5 Proofs of Main Theorems

Our first main result in the introduction, the FPTAS for the Ising model on graphs throughout
the ferromagnetic regime with non-zero field stated in Theorem 1.1, now follows by combin-
ing Theorem 3.1 with Lemma 2.1 and the Lee–Yang theorem [30] (also stated as Theorem 4.2
in the next section). Recall from the introduction that the Lee–Yang theorem ensures that the
partition function has no zeros inside the unit disk.

Similarly, Theorem 1.4, the FPTAS for two-spin systems on hypergraphs, follows by
combining Theorem 3.1 with Lemma 2.1 and the Suzuki–Fisher theorem [54] (also stated
as Theorem 4.3 in the next section). Again, the Suzuki–Fisher theorem ensures that there
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are no zeros inside the unit disk, under the condition on the hyperedge activities stated in
Theorem 1.4.

To establish our final main algorithmic result, Theorem 1.3, we first need to prove a
new Lee–Yang theorem for the hypergraph Ising model as stated in Theorem 1.2 in the
introduction. This will be the content of the next and final section of our paper. Once we have
that, Theorem 1.3 follows immediately by the same route as above.

4 A Lee–Yang Theorem for Hypergraphs

In this section we prove a tight Lee–Yang theorem for the hypergraph Ising model (Theo-
rem 1.2 in the introduction). We start by extending the definition of the hypergraph Ising
model to the multivariate setting, where each vertex and each hyperedge is allowed to have
a different activity. As before, we have an underlying hypergraph G = (V , E) with |V | = n

vertices. Given vertex activities λ1, λ2, . . . , λn and hyperedge activities β = (βe), we define

Z
β
G(λ1, . . . , λn) =

∑

S⊆V

∏

e∈E
(
S,S

)
βe

∏

i∈S

λi ,

where for a subset S ⊆ V , E(S, S) is the set of hyperedges with at least one vertex in each
of S and S. Note that

Z
β
G(λ1, . . . , λn) =

n∏

i=1

λi · Z
β
G

(
1

λ1
, · · · ,

1

λn

)
. (15)

We use the following definition of the Lee–Yang property. This definition is based on the
results of Asano [3] and Suzuki and Fisher [54], and somewhat stricter than the definition
used by Ruelle [44].

Definition 4.1 (Lee–Yang property). Let P(z1, z2, . . . , zn) be a multilinear polynomial. P

is said to have the Lee–Yang property (sometimes written as “P is LY”) if for any complex
numbers λ1, · · · , λn such that |λ1| ≥ 1, · · · , |λn | ≥ 1, and |λi | > 1 for some i , it holds that
P(λ1, · · · , λn) �= 0.

Then the seminal Lee–Yang theorem [30] can be stated as follows:

Theorem 4.2 Let G be a connected undirected graph, and suppose 0 < β < 1. Then the

Ising partition function Z
β

G(λ1, · · · , λn) has the Lee–Yang property.

The following extension of the Lee–Yang theorem to general symmetric two-spin systems
on hypergraphs is due to Suzuki and Fisher [54]. Again the theorem is stated in the multi-
variate setting, where in the two-spin partition function in Eq. (7) each vertex i has a distinct
activity λi .

Theorem 4.3 Consider any symmetric hypergraph two-spin system, with a connected hyper-

graph G and edge activities {ϕe}. Then the partition function Z
ϕ
G(λ1, · · · , λn) has the

Lee–Yang property if |ϕe(+, · · · ,+)| ≥ 1
4

∑
σ∈{+,−}V |ϕe(σ )| for every hyperedge e.

Theorem 4.3 is not tight for the important special case of the Ising model on hypergraphs.
Our goal in this section is to prove a tight analog of the original Lee–Yang theorem for this
case. Specifically, we will prove the following:
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Theorem 4.4 Let G = (V , E) be a connected hypergraph, and β = (βe)e∈E be a vector of

real valued hyperedge activities so that the activity of edge e ∈ E is βe. Then Z
β
G has the

Lee–Yang property if the following condition holds for every hyperedge e, where k ≥ 2 is the

size of e:

– if k = 2, then −1 < βe < 1;

– if k ≥ 3, then − 1
2k−1−1

< βe < 1

2k−1 cosk−1
(

π
k−1

)
+1

.

Further, if the above condition is not satisfied for a given real edge activity β and integer

k ≥ 2, then there exists a k-uniform hypergraph H with edge activity β such that Z
β

H does

not have the Lee–Yang property.

Note that the case k = 2 is just the original Lee–Yang theorem (Theorem 4.2).
The following corollary for the univariate polynomial Z

β
G(λ) follows immediately via Eq.

(15) and the fact that, by Hurwitz’s theorem, the zeros of Z
β
G(λ) are continuous functions of

β and thus remain on the unit circle after taking the limit in the range of each βe.

Corollary 4.5 Let G = (V , E) be a connected hypergraph, and β = (βe)e∈E be the vector

of real valued hyperedge activities so that the activity of edge e ∈ E is βe. Then, all complex

zeros of the univariate partition function Z
β
G(λ) lie on the unit circle if the following condition

holds for every hyperedge e, where k ≥ 2 is the size of e:

– if k = 2, then −1 ≤ βe ≤ 1;

– if k ≥ 3, then − 1
2k−1−1

≤ βe ≤ 1

2k−1 cosk−1
(

π
k−1

)
+1

.

The corollary establishes the first part of Theorem 1.2 in the introduction, and hence also
Theorem 1.3 as explained at the end of the previous section. The second part of Theorem 1.2,
which asserts that the range of edge activities under which the theorem holds is optimal,
is proven in Sect. 4.1. (Note that the optimality for the univariate case claimed in Theo-
rem 1.2 does not directly follow from the optimality for the multivariate case guaranteed by
Theorem 4.4 above.)

Remark As a comparison, the result of Suzuki and Fisher, which we restated in Theorem
4.3, implies that a sufficient condition for the Lee–Yang property of Z

β
G(λ) is

−
1

2k−1 − 1
≤ βe ≤

1

2k−1 − 1
.

Note that while the lower bound on βe is the same as ours, our (tight) upper bound is always
better, and significantly so for the more interesting case of small k. For example, for k = 3
our result gives the optimal range − 1

3 ≤ βe ≤ 1, while the Suzuki–Fisher theorem gives
− 1

3 ≤ βe ≤ 1
3 . Similarly, for k = 4 the respective ranges are [−1/7, 1/2] (for ours) and

[−1/7, 1/7] (for Suzuki–Fisher). We note here that there is a combinatorial explanation for
the fact that for positive β one gets the same range for k = 3 as that for the case of graphs
(k = 2): a hyperedge of size three with activity β2 is equivalent to a clique on three vertices
in which each edge has activity β. Such constructions however do not work for k ≥ 4: the
special nature of k = 3 comes from the fact that in any configuration of a hyperedge on three
vertices, at least two vertices have the same spin.

We turn now to the proof of Theorem 4.4. The main technical step in our proof is to derive
conditions under which the Ising partition function of a hypergraph consisting of a single
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hyperedge has the Lee–Yang property. This “base case” turns out to be more difficult than
in the case of the original Lee–Yang theorem for graphs. However, as in the graph case, it
will turn out that the base case still determines the range of β in which the theorem can be
claimed to be valid; we show this latter claim, which implies the second part of Theorem 4.4
in Sect. 4.1.

We begin with the following two lemmas which, taken together, give a partial character-
ization of the Lee–Yang property. While similar in spirit to the results of Ruelle [44], these
lemmas do not follow directly from those results since, as noted above, the version of the
Lee–Yang property used here imposes a stricter condition on the polynomial than does the
definition used in [44].

Lemma 4.6 Given a multilinear polynomial P(z1, z2, . . . , zn) with real coefficients define,

for each 1 ≤ j ≤ n, multilinear polynomials A j and B j in the variables z1, . . . , z j−1, z j+1,

. . . , zn such that

P = A j z j + B j .

If P has the Lee–Yang property then, for every j such that the variable z j has positive degree

in P, it holds that A j (z1, . . . , z j−1, z j+1, . . . , zn) �= 0 when |zi | ≥ 1 for all i �= j . In

particular, A j itself is LY.

Proof Without loss of generality, we assume that j = 1. Note that since z1 has positive degree
in P , A1 is a non-zero polynomial. Suppose that, in contradiction to the claim of the lemma,
there exist complex numbers λ2, . . . , λn satisfying |λi | ≥ 1 such that A1(λ2, . . . , λn) = 0.
Since P is LY, it follows that B1(λ2, . . . , λn) �= 0 (for otherwise, we get a contradiction to
the Lee–Yang property by choosing z1 to be an arbitrary value outside the closed unit disk).

By continuity, this implies that |B1| is positive in any small enough neighborhood of
(λ2, . . . , λn) in C

n−1. In particular, let Sε be the open set

Sε:={(y2, . . . , yn) | |yi − λi | < ε and |yi | > 1 for 2 ≤ i ≤ n} .

Then there exist positive δ0 and ε0 such that |B1| is at least δ0 in the open set Sε when ε < ε0.
Now, since A1 is a non-zero multilinear polynomial, it cannot vanish identically on any

open set. In particular, it cannot vanish identically in Sε for any ε > 0. On the other hand,
since A1 vanishes at (λ2, . . . , λn) it follows from continuity that for ε < ε0 small enough,
|A1| ≤ δ0/2 in Sε. Since A1 does not vanish identically on Sε , there must exist a point
(y2, . . . , yn) in Sε such that 0 < |A1(y2, . . . , yn)| < δ0/2. Since |B1(y2, . . . , yn)| ≥ δ0 by
the choice of ε0, it follows that if we define y1 = −B1(y2, . . . , yn)/A1(y2, . . . , yn) then
2 < |y1| < ∞. However, we then have P(y1, y2, . . . , yn) = 0 even though |y1| > 1 and
|yi | ≥ 1 for all i . This contradicts the Lee–Yang property of P . ��

By iterating the above lemma, we get the following corollary.

Corollary 4.7 Let P(z1, z2, . . . , zn) be a multilinear polynomial with non-zero real coeffi-

cients, i.e.,

P(z1, . . . , zn) =
∑

S⊆[n]

pS

∏

i∈S

zi ,

where pS ∈ R are non-zero for all S ⊆ [n], and assume that P is LY. Then, for every subset

S of [n], the polynomial AS defined by the equation

P(z1, . . . , zn) = AS((zi )i /∈S)
∏

i∈S

zi +
∑

T : S�T

pT

∏

i∈T

zi
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has the property that AS((zi )i /∈S) �= 0 when |zi | ≥ 1 for all i /∈ S. In particular, AS is LY.

We next show that Lemma 4.6 has a partial converse for symmetric multilinear functions.

Lemma 4.8 Let P(z1, z2, . . . , zn) be a symmetric multilinear polynomial with non-zero real

coefficients, i.e.,

P(z1, . . . , zn) =
∑

S⊆[n]

pS

∏

i∈S

zi ,

where pS �= 0 for all S ⊆ [n] and pS = pS .

Assume further that the polynomials A j as defined in Lemma 4.6 all have the property

that they are non-zero when all their arguments zi satisfy |zi | ≥ 1. Then P is LY.

Proof We first show that, under our assumptions, if all but one of the z j lie on the unit circle,
then P can only vanish if the remaining z j is also on the unit circle. Without loss of generality
we set j = 1, that is, we will show that if |zi | = 1 for i ≥ 2, then any root z1 = ζ1 of the
equation A1z1 + B1 = 0 satisfies |ζ1| = 1. (Here A1 and B1 are in the notation of Lemma
4.6.)

Since by assumption A1 =
∑

S⊆[2,n] pS∪{1}
∏

i∈S zi does not vanish with this setting of
the zi , we have

|ζ1| =

∣∣∣∣
B1

A1

∣∣∣∣ =

∣∣∣∣∣

∑
S⊆[2,n] pS

∏
i∈S zi∑

S⊆[2,n] pS∪{1}

∏
i∈S zi

∣∣∣∣∣ =

∣∣∣∣∣∣

⎛
⎝ ∏

i∈[2,n]

zi

⎞
⎠

∑
S⊆[2,n] pS

∏
i /∈S
i �=1

(1/zi )

∑
S⊆[2,n] pS∪{1}

∏
i∈S zi

∣∣∣∣∣∣

(�)
=

∣∣∣∣∣∣

∑
S⊆[2,n] pS

∏
i /∈S
i �=1

zi

∑
S⊆[2,n] pS∪{1}

∏
i∈S zi

∣∣∣∣∣∣
(†)
=

∣∣∣∣∣

∑
S⊆[2,n] pS∪{1}

∏
i∈S zi∑

S⊆[2,n] pS∪{1}

∏
i∈S zi

∣∣∣∣∣ = 1. (16)

Here (�) uses the fact that |zi | = 1 for i ≥ 2 and (†) uses the symmetry of P . We have thus
shown that if (z1, z2, . . . , zn) is a zero of P such that |zi | ≥ 1 for all i then it is impossible
for only one zi to lie outside the closed unit disk.

We now show that if there are k ≥ 2 values of i for which zi lies outside the closed unit
disk, then we can find another zero (ζ1, ζ2, ζ3, . . . , ζn) of P such that |ζi | ≥ 1 for all i , and
exactly k − 1 of the ζi lie outside the closed unit disk. We can then iterate this process to
reduce k to 1, in which case the observation in the previous paragraph leads to a contradiction.

By re-numbering the indices if needed, we can assume that |z1| , |z2| > 1 and |zi | ≥ 1 for
i ≥ 3. We can then write

P(z1, . . . , zn) = α12z1z2 + α1z1 + α2z2 + α∅,

where α12, α1, α2 and α∅ are non-zero polynomials in z3, . . . , zn . Further, the hypotheses
of the lemma imply that A1 = α12z2 + α1 and A2 = α12z1 + α2 both have the Lee–Yang
property. Thus, by Lemma 4.6, α12(z3, . . . , zn) �= 0 when |zi | ≥ 1 for i ≥ 3. Now, again
by hypothesis, A2 �= 0 when |z1| and |z3| , . . . , |zn | are at least 1, while z1 = − α2(z3,...,zn)

α12(z3,...,zn)

gives A2 = 0. Thus, we must have that

|α2(z3, . . . , zn)|

|α12(z3, . . . , zn)|
< 1 when |zi | ≥ 1 for i ≥ 3. (17)

We now set ζi = zi for i ≥ 3, and consider z1 as a function of z2. The equality
P(z1, z2, ζ3, . . . , ζn) = 0 is then equivalent to

z1 = −
α2z2 + α∅

α12z2 + α1
, (18)
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where the hypotheses of the lemma imply that the denominator (which is equal to
A1(z2, ζ3, . . . , ζn)) is non-zero when |z2| ≥ 1. We thus see that

lim
z2→∞

|z1| =
|α2|

|α12|
< 1. (19)

Initially, both z1 and z2 lie outside the closed unit disk. Thus, by Eq. (19) and continuity, we
can take z2 large enough in absolute value such that z1 as defined in Eq. (18) lies on the unit
circle. We now choose ζ1 and ζ2 to be these values of z1 and z2, respectively, so that we have
P(ζ1, . . . , ζn) = 0 and the number of the ζi lying on the unit circle is exactly one less than
the number of the zi lying on the unit circle, as required. ��

Along with the above general facts about LY polynomials, we also need the following
technical lemma.

Lemma 4.9 Let m be any integer, and k a positive integer such that 2 |m| ≤ k. Consider the

maximization problem

max
k∏

i=1

cos θi

subject to −
π

2
≤ θi ≤

π

2
,

k∑

i=1

θi = mπ.

The maximum is cosk
(

mπ
k

)
, and is attained when θi = mπ

k
for all i .

Proof We may assume without loss of generality that θi ∈ (−π/2, π/2) at any maximum
(for otherwise the objective value is 0). Now, consider the function f (x) = log cos x defined
on the interval (−π/2, π/2). Since f ′(x) = − tan x is a decreasing function, f (x) is concave
for x ∈ (−π

2 , π
2 ). Thus by Jensen’s inequality,

log
k∏

i=1

cos θi =

k∑

i=1

f (θi ) ≤ k f

(∑k
i=1 θi

k

)
≤ k log cos

(mπ

k

)
,

and equality holds when θi = mπ
k

for all i . Note that these θi are in (−π/2, π/2) since
2 |m| ≤ k. ��

We are now ready to tackle the case of a single hyperedge.

Lemma 4.10 Fix an integer k ≥ 2 and a hyperedge activity β ∈ R. Let G = (V =

{v1, v2, . . . , vk} , E = {{v1, v2, . . . , vk}}) be a hypergraph consisting of a single hyperedge

of size k and activity β. If k = 2 and β ∈ (−1, 1), or k ≥ 3 and β satisfies

−
1

2k−1 − 1
< β <

1

2k−1 cosk−1
(

π
k−1

)
+ 1

,

then the partition function Z
β

G has the Lee–Yang property.

Remark Note that the condition on β imposed above is monotone in k: i.e., if β is such that
the partition function of a hyperedge of size k ≥ 2 is LY, then for the same β the partition
function of a hyperedge of size k′ < k is also LY.
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Proof For k = 2, the lemma is a special case of the Lee–Yang theorem [30] (although it also
follows by specializing the argument below). We therefore assume k ≥ 3.

Since the Ising partition function is symmetric and all terms in the polynomial appear with
positive coefficients, Lemma 4.8 applies and it suffices to verify that the polynomials A j do
not vanish when |zi | ≥ 1 for i �= j . Without loss of generality we fix j = 1. We then have

A1 = β

k∏

i=2

(1 + zi ) + (1 − β)

k∏

i=2

zi .

Thus A1 = 0 is equivalent to

1

β
= 1 −

k∏

i=2

(
1 +

1

zi

)
. (20)

To establish the lemma, we therefore only need to show that for the claimed values of β,
Eq. (20) has no solutions when |zi | ≥ 1 for all i ≥ 2. We now proceed to establish this by
analyzing the product on the right hand side of Eq. (20).

The map z �→ 1 + 1/z is a bijection from the complement of the open unit disk to
the closed disk D of radius 1 centered at 1. Any y ∈ D can be written as y = r exp(ιθ)

for θ ∈ [−π/2, π/2] and 0 ≤ r ≤ 2 cos θ . Consider now the set R ∩
{∏k

i=2 yi | yi ∈

D for 2 ≤ i ≤ k
}
. We show that, for k ≥ 3, this set is exactly the interval [−τ0, τ1] where

τ0 = 2k−1 cosk−1(π/(k − 1)) and τ1 = 2k−1. The claim of the lemma then follows since for
the given values of β, 1 − 1/β lies outside [−τ0, τ1] and hence Eq. (20) cannot hold.

Recalling that each y ∈ D can be written in the form r exp(ιθ) where θ ∈ [−π/2, π/2] and
0 ≤ r ≤ 2 cos θ , we find that the values τ0 and τ1 are defined by the following optimization
problems (both of which are feasible since k ≥ 3):

τ0 = 2k−1 max
k∏

i=2

cos θi

subject to −
π

2
≤ θi ≤

π

2
,

k∑

i=2

θi = (2n + 1)π

for some n ∈ Z

s.t. |2n + 1| ≤ (k − 1)/2.

τ1 = 2k−1 max
k∏

i=2

cos θi

subject to −
π

2
≤ θi ≤

π

2
,

k∑

i=2

θi = 2nπ

for some n ∈ Z

s.t. |n| ≤ (k − 1)/4.

Using Lemma 4.9, we then see that τ0 = 2k−1 cosk−1(π/(k − 1)) and τ1 = 2k−1, as
required. ��

We now proceed to an inductive proof of Theorem 4.4, using Lemma 4.10 as the base
case.

Proof of Theorem 4.4 The case k = 2 is a special case of the Lee–Yang theorem [30] (though,
as with the proof of Lemma 4.10, the argument below can again be specialized to directly
establish this). We assume therefore that k ≥ 3.

The proof uses the inductive method of Asano [3]. When the hypergraph consists of a
single hyperedge of size k′ ≤ k, it follows from Lemma 4.10 and the remark immediately
after it that the partition function is LY for the claimed values of the edge activity β. For the
induction, we use the fact that the Lee–Yang property of the partition function is preserved
under the following two operations:
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1. Adding a hyperedge In this operation, a new hyperedge e of size k′ ≤ k and activity
βe as claimed in the statement of the theorem, is added to a connected hypergraph in
such a way that exactly one of its k′ vertices already exists in the starting hypergraph,
while the other k′ − 1 vertices are new. Note that this operation keeps the hypergraph
connected. We assume that the partition functions of both the original hypergraph as well
as the newly added edge separately have the Lee–Yang property: this follows from the
induction hypothesis (for the hypergraph) and Lemma 4.10 (for the new hyperedge).

2. Asano contraction In this operation, two vertices u′, u′′ in a connected hypergraph that
are not both included in any one hyperedge are merged so that the new merged vertex
u is incident on all the hyperedges incident on u′ or u′′ in the original graph. Note that
this operation keeps the hypergraph connected and does not change the size of any of the
hyperedges.

Any connected non-empty hypergraph G can be constructed by starting with any arbitrary
hyperedge present in G and performing a finite sequence of the above two operations: to add
a new hyperedge e with activity βe, one first uses operation 1 to add a hyperedge which has
the same activity βe and has new copies of all but one of the incident vertices of e, and then
uses operation 2 to merge these new copies with their counterparts, if any, in the previous
hypergraph. Note that in this process, a hyperedge e can be added only when at least one of
its vertices is already included in the current hypergraph. However, since G is assumed to be
connected, its hyperedges can be ordered so that all of them are added by the above process.
Thus, assuming that the above two operations preserve the Lee–Yang property, it follows by
induction that the partition functions of all connected hypergraphs of hyperedge size at most
k, and edge activities βe as claimed in the theorem, have the Lee–Yang property.

Given Corollary 4.7, it can be proved, by adapting an argument first developed by
Asano [3], that these two operations preserve the Lee–Yang property. Asano’s method has
by now become standard (see, e.g., [54, Propositions 1, 2]), but we include the details here
for completeness.

Consider first operation 1. Let G be the original hypergraph and H the new hyperedge (with
k′ ≤ k vertices) being added, and assume, by renumbering vertices if required, that the single
shared vertex is v1 in G and u1 in H , respectively. Let P(z1, z2, . . . , zn) = A(z2, . . . , zn)z1+

B(z2, . . . , zn) and Q(y1, y2, . . . , yk′) = C(y2, . . . , yk′)y1 + D(y2, . . . , yk′) be the Ising
partition functions of G and H , respectively, where z1 and y1 are the variables corresponding
to v1 and u1, respectively. Both P and Q are LY by the hypothesis of the operation. The
partition function R of the new graph can be written as

R(z, z2, . . . , zn, y2, . . . , yk′)

= A(z2, . . . , zn)C(y2, . . . , yk′)z + B(z2, . . . , zn)D(y2, . . . , yk′),

where z is a new variable corresponding to the new vertex created by the merger of u1 and
v1. Let λ2, . . . , λn, and μ2, . . . , μk′ be complex numbers lying outside the open unit disk.
In order to prove that R is LY, we need to show that (i) R(z, λ2, . . . , λn, μ2, . . . , μk′) = 0
implies that |z| ≤ 1; and (ii) when at least one of these complex numbers lies strictly outside
the closed unit disk then R(z, λ2, . . . , λn, μ2, . . . , μk′) = 0 implies that |z| < 1. Now,
since P and Q are assumed to be LY, Lemma 4.6 implies that A = A(λ2, . . . , λn) and
C = C(μ2, . . . , μk′) are both non-zero. Thus, R = 0 implies that

|z| = |B/A| · |D/C | , (21)

where B = B(λ2, . . . λn) and D = D(μ2, . . . , μk′). Since all the λi and μi lie outside the
open unit disk and P and Q are LY, |B/A| , |D/C | ≤ 1, so that from Eq. (21), |z| ≤ 1. This
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establishes condition (i). Further, when at least one of the λi lies strictly outside the closed
unit disk, then again, since P is LY, |B/A| < 1. Similarly,|D/C | < 1 when one of the μi

lies outside the closed unit disk. Thus, when at least one of the λi and the μi lies outside the
closed unit disk, it follows from Eq. (21) that |z| < 1, thus establishing condition (ii) and
concluding the argument that R is LY.

We now consider operation 2. By renumbering vertices if necessary, let v1 and v2 be the
vertices to be merged. The partition function P of the original graph (where v1 and v2 are
not merged) can be written as

P(z1, z2, z3, . . . , zn) = A(z3, . . . , zn)z1z2 + B(z3, . . . , zn)z1 + C(z3, . . . , zn)z2 + D,

and is LY by the hypothesis of the operation. The partition function R after the merger is
then given by

R(z, z3, . . . , zn) = A(z3, . . . , zn)z + D,

where z is a new variable corresponding to the vertex created by the merger of v1 and v2.
Now, let λ3, . . . , λn be complex numbers lying outside the open unit disk. Corollary 4.7
implies that A = A(λ3, . . . , λn) �= 0. Thus, R(z, λ3, . . . , λn) = 0 implies that

|z| = |D(λ3, . . . , λn)/A(λ3, . . . , λn)| = |D/A| . (22)

Now, since P is LY, both zeros of the quadratic equation P(x, x, λ3, . . . , λn) = 0 satisfy
|x | ≤ 1, and indeed, |x | < 1 when at least one of the λi lies strictly outside the closed unit
disk. Thus, the product D/A of its zeros also satisfies |D/A| ≤ 1, and further satisfies the
stronger inequality |D/A| < 1 in case at least one of the λi lies strictly outside the closed
unit disk. Equation (22) then implies that |z| ≤ 1 in the first case and |z| < 1 in the second
case, which establishes that R is LY.

This concludes the proof of the first part of Theorem 4.4. We now prove the optimality of
the conditions imposed on the edge parameters. In the case k = 2, this follows by considering
the partition function z1z2 + βz1 + βz2 + 1 of a single edge. When β > 1 (respectively,
when β < −1), z1 = z2 = −β −

√
β2 − 1 (respectively, z1 = z2 = −β +

√
β2 − 1) is a

zero of the partition function satisfying |z1| , |z2| > 1 and hence contradicting the Lee–Yang
property. Similarly z1 = −1, z2 = 2 when β = 1, and z1 = 1, z2 = 2 when β = −1, are
zeros which contradict the Lee–Yang property.

We now consider the case k ≥ 3. In this case, we take our example to be the single
hyperedge of size k and consider its partition function

P(z1, z2, . . . , zk):=β

k∏

i=1

(1 + zi ) + (1 − β)

(
1 +

k∏

i=1

zi

)
. (23)

Our strategy is to show that when

β /∈

(
−

1

2−k−1 − 1
,

1

2k−1 cosk−1
(

π
k−1

)
+ 1

)
, (24)

the polynomial A1(z2, z2, . . . , zk), which is the coefficient of z1 in P as defined in Lemma 4.6,
vanishes at a point with |zi | ≥ 1 for i ≥ 2. It then follows from Lemma 4.6 that P cannot
have the Lee–Yang property.

To carry out the strategy, we reuse some of the notation and calculations from the proof
of Lemma 4.10. Let D be the closed disk of radius 1 centered at 1, as defined in the proof
of that lemma. Equation (20), taken together with the discussion following it, implies that
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finding a zero of A1(z2, . . . , zk) with |zi | ≥ 1, 2 ≤ i ≤ k, is equivalent to finding yi ∈ D,
yi �= 1 such that 1 − 1

β
=

∏k
i=2 yi . We can in fact choose all the yi to be equal, so that using

the same representation of D as in the proof of Lemma 4.10, our task reduces to finding an
angle θ ∈ [−π/2, π/2] and 0 ≤ r ≤ 2 cos θ such that yi = reιθ , 2 ≤ i ≤ k, and

1 −
1

β
=

(
reιθ

)k−1
. (25)

Let γ :=1 − 1
β

. We now partition the condition on β in (24) into three different cases.

Suppose first that β ≤ − 1
2k−1−1

. This is equivalent to 1 < γ ≤ 2k−1. In this case θ = 0,

r = γ
1

k−1 ∈ (1, 2] gives a desired solution to (25) (note that we have yi ∈ (1, 2] in this
case). The same solution for θ and r also works when β > 1 (in which case 0 < γ < 1 and
yi ∈ (0, 1)) . The remaining case is 1 ≥ β ≥ 1

2k−1 cosk−1
(

π
k−1

)
+1

, which in turn is equivalent

to −2k−1 cosk−1( π
k−1 ) ≤ γ ≤ 0, and θ = π

k−1 , r = |γ |
π

k−1 ≤ 2 cos θ gives a solution in this
case. ��

4.1 Optimality of the Univariate Hypergraph Lee–Yang Theorem

We now prove the second part of the univariate hypergraph Lee–Yang theorem, Theorem 1.2,
i.e., that the range of edge activities under which the first part of that theorem holds is optimal.
The tight example for the case k = 2 is a single edge, and as observed above, the roots of the
univariate partition function of the edge when |β| > 1 are −β ±

√
β2 − 1, which do not lie

on the unit circle.
We now consider the case k ≥ 3. The tight example is again a hyperedge of size k′ ≤ k.

The partition function Pk′(z) of this graph is

Pk′(z):=β(1 + z)k′
+ (1 − β)(1 + zk′

),

and we will show that it has at least one root outside the unit circle when β �= 1 satisfies

β /∈

[
−

1

2−k−1 − 1
,

1

2k−1 cosk−1
(

π
k−1

)
+ 1

]
. (26)

We consider three exhaustive cases under which (26) holds.

Case 1: β > 1. In this case our tight example is a hyperedge of size k′ = 2 ≤ k, and the
result follows from that of the case k = 2.

Case 2: β < − 1
2k−1−1

. In this case, our example is a hyperedge of size k. We note then that

Pk(0) = 1 and Pk(1) = 2β(2k−1 − 1)+ 2 < 0. Thus, there exists a z in the interval (0, 1)

for which Pk(z) = 0, and hence Pk has a zero that is not on the unit circle.
Case 3: 1

2k−1 cosk−1
(

π
k−1

)
+1

< β < 1. Our tight example is again a hyperedge of size k. We

will show that the degree k polynomial Pk has at most k − 3 zeros (counting with multi-
plicities) on the unit circle C , and hence must have at least one zero outside it.

We first consider the point z = −1. Note that since β �= 1, Pk(−1) = 0 if and only if k is
odd, and in this case P ′

k(−1) = k(1 − β) �= 0. Therefore, −1 is a zero of multiplicity 1 of
Pk when k is odd, and is not a zero of Pk when k is even.

We now consider zeros of Pk in C\{−1}. Let τ :=2k−1 β
β−1 and g(z):= 1+zk

(1+z)k . Note that
any z ∈ C\{−1} is a zero of multiplicity l of Pk if and only if it is a zero of the same
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multiplicity l of the meromorphic function g(z)− τ/2k−1. In particular, at such a z, the order
of the first non-zero derivative of Pk is the same as the order of the first non-zero derivative
of g, and this number is the multiplicity of z as a zero of P (or equivalently, as a root of
g(z) = τ/2k−1). Note also that g(z) maps C\{−1} into the real line: in fact, for z = e2ιθ ,
θ ∈ (−π/2, π/2), we have

2k−1g(z) = 2k−1 ·
1 + cos 2kθ + ι sin 2kθ

(1 + cos 2θ + ι sin 2θ)k
=

2k cos kθ

(2 cos θ)k
·

eιkθ

eιkθ
=

cos kθ

cosk θ
=: h(θ),

and further h′(θ) = 2k ιzg′(z), so that h′(θ) = 0 if and only if g′(z) = 0. Indeed, by
computing further derivatives, one sees that the multiplicity of any root of h(θ) = τ in
(−π/2, π/2) (i.e., the order of the first non-zero derivative of h at the root) is the same as
the multiplicity of the corresponding root z = e2ιθ of g(z) = τ/2k−1.

Thus, in order to establish our claim that Pk(z) has at most k − 3 zeros (counting with
multiplicities and also accounting for the possible zero at −1 considered above) on the unit
circle C , we only need to show that the number of roots of the equation h(θ) = τ on
(−π/2, π/2) (counted with multiplicities) is at most k − 4. We now proceed to establish this
property of h. Note that for the range of β being considered, we have τ < − seck−1

(
π

k−1

)
.

Since h(θ) = h(−θ), we consider its behavior only in the interval I = [0,−π/2). We
have h′(θ) = − k sin(k−1)θ

cosk+1 θ
, so that the zeros of h′ in I are given by ρi = iπ/(k − 1), where

0 ≤ i < �k/2� is an integer. Note that all these zeros of h′ are in fact simple: h′′(ρi ) �= 0.
Thus, any root of h(θ) = τ is of multiplicity at most 2. Now, define ρ�k/2� = π/2, and let Ii

be the interval [ρi , ρi+1) for 0 ≤ i ≤ �k/2� − 1. We note the following facts (see Fig. 1 for
an example):

1. In the interval Ii , h is strictly decreasing when i is even and strictly increasing when i is
odd.

2. For i < �k/2�, h(ρi ) = (−1)i seck−1
(

iπ
k−1

)
, so that h(ρi ) is strictly positive when i is

even and strictly negative when i is odd. Further, h(ρ1) = − seck−1
(

π
k−1

)
> τ .
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From these observations we can now deduce that when − seck−1
(

π
k−1

)
> τ , h(θ) = τ has

1. no roots in I0 and I1,
2. at most two roots in Ii ∪ Ii+1, counting multiplicities, when i is a positive even integer

strictly less than �k/2�−1. The two roots can arise in only the following two ways: there
can be one root each, with multiplicity 1, in each of the two intervals Ii and Ii+1, or else
there can be a root of multiplicity 2 at ρi+1.

3. at most one additional root in I�k/2�−1, and this additional root can arise only when
�k/2� − 1 is even.

Together, the above three items imply that when τ < − seck−1
(

π
k−1

)
, the number of roots of

h(θ) = τ in I = [0,−π/2), counted with their multiplicities, is at most �k/2�−2. Using the
symmetry of h around 0 pointed out above, we thus see that the number of roots of h(θ) − τ

in (−π/2, π/2) is at most k − 4, so that Pk has at most k − 3 zeros (accounting for the
possible simple zero at −1 when k is odd) on the unit circle for such β. This implies that at
least one zero of the degree k polynomial Pk must lie outside the unit circle, as required.
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