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ABSTRACT

In many signal processing tasks, one seeks to recover an r-

column matrix object X ∈ C
n×r from a set of nonnegative

quadratic measurements up to orthonormal transforms. Example

applications include coherence retrieval in optical imaging and co-

variance sketching for high-dimensional streaming data. To this

end, efficient nonconvex optimization methods are quite appealing,

due to their computational efficiency and scalability to large-scale

problems. There is a recent surge of activities in designing noncon-

vex methods for the special case r = 1, known as phase retrieval;

however, very little work has studied the general rank-r setting.

Motivated by the success of phase retrieval, in this paper we derive

several algorithms which utilize the quadratic loss function based

on amplitude measurements, including (stochastic) gradient descent

and alternating minimization. Numerical experiments demonstrate

their computational and statistical performances, highlighting the

superior performance of stochastic gradient descent with appropri-

ate mini-batch sizes.

Index Terms— Low-rank matrix recovery, quadratic measure-

ment, nonconvex optimization

1. INTRODUCTION

In this paper, we are interested in recovering an r-column matrix ob-

ject X ∈ C
n×r from a set of nonnegative quadratic measurements,

given as

yi = ‖aH
i X‖22, i = 1, . . . ,m, (1)

where ai ∈ C
n is the ith sensing vector, and m is the number of

measurements. In the Gaussian design, the sensing vectors are gen-

erated i.i.d. from a complex-valued Gaussian distribution, i.e. ai
i.i.d.∼

N (0, 1

2
In) + jN (0, 1

2
In). Equivalently, this problem amounts to

recovering a rank-r positive semidefinite matrix M = XXH ∈
C

n×n from a set of linear measurements

yi = a
H
i Mai = 〈M ,aia

H
i 〉, (2)

where the sensing matrix aia
H
i is rank-one. Since the measurements

y = {yi}mi=1 are nonnegative, they are dubbed phaseless measure-

ments. The goal is to recover M , or equivalently the factor X up

to orthonormal transforms from as few measurements m � n2 as

possible. This problem arises in many applications, ranging from

coherence retrieval in optical imaging [1], covariance sketching of

high-dimensional streaming data [2, 3] for the general rank-r case,
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to phase retrieval [4–7] for the rank-1 case. The measurements y

are quadratic in both ai’s and X , and we therefore also refer to this

sensing model as quadratic sensing.

There are two lines of approaches to solve this problem. The first

one is based on convex relaxations to solve for the low-rank matrix

M [5, 8]. These algorithms perfectly recover the underlying matrix

M at a near-optimal sample complexity under the Gaussian design.

However, the computational complexity of the resulting semidefi-

nite programs scale at least cubically with the dimension of M , and

therefore is prohibitive when the problem size is large.

This leads to the second line of approaches, which are iterative

algorithms based on nonconvex optimization that directly estimate

the factor X [9–12]. In [13,14], it is proposed to recover X directly

by minimizing the following loss function that is the squared error

of the intensity measurements yi:

`in(U) :=
1

m

m
∑

i=1

(

yi − ‖aH
i U‖22

)2

, (3)

where U ∈ C
n×r . The algorithm proposed in [13, 14] is gradient

descent with spectral initialization, and its efficiency is proved in

[14] for the Gaussian design.

1.1. Our contributions

This paper proposes to solve for X by minimizing the squared error

of the amplitude measurements, that is, zi =
√
yi for i = 1, ...,m.

The goal is to minimize the following loss function:

`(U) =
1

m

m
∑

i=1

(

zi − ‖aH
i U‖2

)2

, (4)

which is both nonconvex and nonsmooth. To the best of our knowl-

edge, this loss function has not been considered to solve the general

rank-r quadratic sensing problem considered here. Compared with

the intensity-based loss function (3), the amplitude-based loss func-

tion (4) is a lower-order polynomial with respect to aH
i U , and there-

fore is expected to have better curvatures around the global optimum,

and more amenable to fast computation. We developed three algo-

rithms to optimize (4): gradient descent (GD), mini-batch stochastic

gradient descent (SGD), and alternating minimization, which are ini-

tialized by the spectral method based on amplitude measurements.

All of these algorithms converge to a critical point of `(U), and em-

pirically achieve stronger statistical and computational performances

than optimizing the intensity-based loss function (3) via gradient de-

scent [14].
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1.2. Related Work

This work is motivated by the successful adoption of the amplitude-

based loss function in phase retrieval [15–17], where it achieves

near-optimal computational and statistical complexities without

requiring sophisticated truncation or regularization procedures as

using the intensity-based loss function [10]. Besides [13, 14], an

exponential-type gradient descent algorithm is proposed in [18] to

minimize (3), which is similar to the truncation rule in [10] to sup-

press samples that heavily influence the search direction. A few

papers proposed other algorithms to solve the quadratic sensing

problem, including but not limited to [19, 20], but they are applied

to either the lifted formulation (2) or the intensity-based based loss

function (3).

1.3. Paper Organization and Notations

The rest of this paper is organized as follows. Section 2 presents

the proposed algorithms using the amplitude-based loss function, in-

cluding (stochastic) gradient descent and alternating minimization.

Section 3 examines and provides numerical comparisons of the pro-

posed algorithms with existing approaches. Finally, we conclude in

Section 4.

We use boldfaced symbols to represent vectors and matrices. For

any vector v, we let ‖v‖2 denote the `2 norm. For any matrix M ,

we let ‖M‖F denote the Frobenius norm. In addition, we use MH

and M† to indicate the conjugate transpose and the pseudo-inverse

of M , respectively. The diagonal matrix with the diagonal entries

given by the vector v is denoted as diag(v).

2. AMPLITUDE-BASED NONCONVEX OPTIMIZATION

We start by providing the intuition behind using the amplitude-based

loss function (4) and then introduce three different algorithms to

minimize it: gradient descent, stochastic gradient descent which also

utilizes mini-batches, and alternating minimization. Finally, we pro-

pose a spectral initialization based on the amplitude measurements.

2.1. Making Sense of the Amplitude-Based Loss Function

We start by defining a generalized “phase” vector

b
H
i =

aH
i X

‖aH
i X‖2

∈ C
r

(5)

corresponding to each phaseless measurement. Then with the am-

plitude measurements zi = ‖aH
i X‖2, we can write a set of linear

measurements of X as

a
H
i X = b

H
i zi, i = 1, ...,m.

Furthermore, define

A =











aH
1

aH
2

...

aH
m











, B =











bH1
bH2

...

bHm











, z =











z1
z2
...

zm











. (6)

Then we can compactly write

AX = diag(z)B. (7)

Indeed if the matrix B is known, then X can be solved via standard

least-squares. The challenge is that the phase term B is unknown

Algorithm 1 Gradient Descent with Amplitude Loss

Input: {zi}mi=1, {ai}mi=1, step size µk

Initialization:

Obtain U0 from Spectral Initialization (Algorithm 4)

Gradient Updates:

for k = 0, 1, 2, ...,K − 1 do

Wk = diag
([

‖aH

1
Uk‖2−z1

‖aH
1

Uk‖2
, ...,

‖aH

m
Uk‖2−zm

‖aH
m

Uk‖2

])

Uk+1 = Uk − 2µk

m
AHWkAUk,

end for

return UK

and we cannot apply least-squares directly. To this end, we aim to

find the phase matrix B and X that minimize the loss function:

min
U ,‖pi‖2=1

`(U ,P ) =
1

m
‖AU − diag(z)P ‖2F , (8)

under the constraint that the rows of P are unit-norm. Interestingly,

when fixing U (the estimate of X), the phase vector that minimizes

the right-hand side of (8) can be found in a closed-form as

p
H
i = a

H
i U/‖aH

i U‖2. (9)

Plugging (9) into `(U ,P ) lead to the amplitude-based loss function

in (4):

`(U) = min
‖pi‖2=1

`(U ,P ).

In words, the amplitude-based loss function can be regarded as an

attempt to approximate the least-squares loss in the absence of the

phase information.

2.2. Gradient Descent

A first approach is to apply gradient descent to minimize (4), which

may proceed at each iteration k ≥ 0 as

Uk+1 = Uk − µk∇`(Uk) (10)

for some step size µk, and U0 is a properly chosen initialization

that will be discussed later. Due to the nonsmoothness of the loss

function, the generalized gradient [21] of `(U) with respect to U is

used:

∇`(U) =
2

m

m
∑

i=1

(

‖aH
i U‖2 − zi

)

aia
H
i U

‖aH
i U‖2

The details of gradient descent with the amplitude loss function is

given in Algorithm 1. Comparing with the least-squares case when

the generalized phase matrix B is known, here at each iteration, the

phase vector is estimated via the current iterate.

2.3. Mini-Batch Stochastic Gradient Descent

Next, we implement a stochastic version of gradient descent using

mini-batches, which is found in practice to be compelling both sta-

tistically and computationally. By utilizing a stochastic method with

an appropriate mini-batch size, we significantly decrease the compu-

tation cost per iteration while still converging at a moderate number

of iterations. The details of the mini-batch stochastic gradient de-

scent (SGD) is given in Algorithm 2.
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Algorithm 2 Mini-Batch SGD with Amplitude Loss

Input: {zi}mi=1, {ai}mi=1, mini-batch size B, step size µk

Initialization:

Obtain U0 from Spectral Initialization (Algorithm 4)

Gradient Updates:

for k = 0, 1, 2, ...,K − 1 do

Choose Γk uniformly at random from {1, 2, ...,m} with cardi-

nality B and update

WΓk
= diag

({

‖aH

i
Uk‖2−zi

‖aH

i
Uk‖2

∣

∣

∣
i ∈ Γk

})

Uk+1 = Uk − 2µk

m
AH

Γk
WΓk

AΓk
Uk,

where AΓk
is a matrix stacking of aH

i for i ∈ Γk as its rows.

end for

return UK

Algorithm 3 Alternating Minimization

Input: {zi}mi=1, and {ai}mi=1

Initialization:

Obtain U0 from Spectral Initialization (Algorithm 4)

Alternating Updates:

for k = 0, 1, 2, ...,K − 1 do

Uk+1 = A†diag
([

z1
‖aH

1
Uk‖2

, ..., zm
‖aH

m
Uk‖2

])

AUk

end for

return UK

2.4. Alternating Minimization

Last but not least, we propose alternating minimization (AltMin)

to update the phase matrix and the signal sequentially to minimize

`(U ,P ) in (8), which leads to a direct generalization of the well-

known Gerchberg-Saxton algorithm for phase retrieval [22] to the

general quadratic sensing problem. In words, at each iteration k ≥ 0,

we update each row of the phase matrix Pk = [pk
1 , . . . ,p

k
m]H as

(pk
i )

H = a
H
i Uk/‖aH

i Uk‖2, i = 1, . . . ,m, (11)

Then, we update Uk+1 by fixing Pk and solving a least-squares

problem:

Uk+1 = argminU∈Cn×r ‖AU − diag(z)Pk‖22 (12)

= A
† diag(z)Pk

= A
† diag

([

z1
‖aH

1 Uk‖2
, ...,

zm
‖aH

mUk‖2

])

AUk.

The details of the alternating minimization algorithm is shown

in Algorithm 3. It is easy to check that this update rule is guaranteed

to not increase the amplitude loss function at every iteration:

`(Uk+1) = min
‖pi‖=1

1

m

m
∑

i=1

‖aH
i Uk+1 − yipi‖22

≤ 1

m
‖AUk+1 − diag(y)Pk‖22

≤ 1

m
‖AUk − diag(y)Pk‖22

= `(Uk),

where the second inequality follows from (12).

2.5. Spectral Initialization

So far, all of the algorithms require an initialization U0, which hope-

fully is close to the ground truth X that we wish to recover. The

spectral method is a popular method to provide a high-quality initial

guess in nonconvex optimization, where we construct a data matrix

based on the measurements and sensing vectors and use its principal

subspace to provide an initial guess. In this paper, we advocate the

use of amplitude measurements to construct the data matrix, as de-

tailed in Algorithm 4. The method is inspired by [14], except for the

use of amplitude measurements. Numerical experiments in the later

section will verify the advantage of this approach.

Algorithm 4 Spectral Initialization with Amplitude Measurements

Input: {zi}mi=1, and {ai}mi=1

Define the data matrix D = 1

2m

∑m
i=1

ziaia
H
i .

Obtain the r normalized eigenvectors Z0 ∈ C
n×r corresponding

to the r largest eigenvalues of D.

Obtain the diagonal matrix Λ0 ∈ C
r×r , with entries on the diag-

onal given by

[Λ0]i = λi(D)− λ, i = 1, ..., r

where λ = 1

m

∑m
i=1

zi and λi(D) is the ith largest eigenvalue of

D.

return U0 = Z0Λ
1/2
0 .

3. NUMERICAL EXPERIMENTS

In this section, we provide the empirical performance of various

amplitude-based algorithms that we consider, with comparisons to

gradient descent based on the intensity-based loss function [14]. We

will first compare their statistical performance in terms of sample

complexities, and then compare their computational performance in

terms of wall-clock time taken to achieve a desired accuracy. Ex-

tensive experiments are conducted over a wide range of settings of

problem dimensions; here we report the most representative results

that we find are consistent over different problem instances.

For each run, the entries of the sensing vectors ai are gener-

ated i.i.d. using complex-valued Gaussian variables N (0, 1

2
In) +

jN (0, 1

2
In). The performance is measured using the Normalized

Mean Squared Error (NMSE), defined as

NMSE =
‖UUH −XXH‖F

‖XXH‖F
, (13)

where U is the estimate of an algorithm. For GD and mini-batch

SGD with the amplitude loss function, we use a constant step size of

µ = 0.8, whereas for GD with the intensity loss function, we use a

constant step size of µ = 0.13, which are optimized for convergence

consistency. Additionally, we pick a mini-batch size of B = dn
3
e for

SGD, which performs the best in terms of convergence time.

3.1. Comparisons of Spectral Initialization Methods

We start by comparing the performance of spectral initializations us-

ing amplitude and intensity measurements. In order to justify the

used of amplitude measurements with spectral initialization, we ran

an experiment of 10, 000 trials to compare the empirical distribution

of NMSE using the amplitude-based and intensity-based spectral ini-

tialization, as shown in Fig. 1. The amplitude-based spectral initial-

ization provides a lower NMSE and has a much lower variance than
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the intensity-based spectral initialization. For the rest of the simula-

tions, we will use the amplitude-based spectral initialization.

Fig. 1. The empirical distribution of NMSE for spectral initialization

constructed using amplitude and intensity measurements.

3.2. Comparisons of Statistical Performance

An important metric for the proposed algorithms is the minimum

number of measurements required in order to recover the ground

truth. Fix n = 50 and r = 4. We vary the number of measure-

ments and measure the empirical success rate of each algorithm over

50 Monte Carlo simulations. A trial is labeled as a success when

NMSE ≤ 10−5. Fig. 2 shows the empirical success rate with respect

to the sampling ratio m/(nr) using the same spectral initialization,

for GD using the amplitude-based loss, GD using the intensity-based

loss, mini-batch SGD using the amplitude-based loss, and alternat-

ing minimization. All the algorithms achieve perfect recovery as

long as the sampling ratio is large enough; moreover, all of three pro-

posed algorithms experience a phase transition using fewer measure-

ments than GD using the intensity-based loss, indicating the benefit

of the amplitude-based loss. Finally, the mini-batch SGD outper-

forms the rest of the algorithms, which is consistent with the obser-

vation in the phase retrieval case [15].

3.3. Comparisons of Computational Performance

We next compare the computational performance of each algorithm,

by demonstrating the decrease in NMSE as time passes. We track the

convergence in terms of wall-clock time as opposed to the number

of iterations to avoid the confounding variable of time-per-iteration.

All of experiments were run on a MacBook Air with a 2.2 GHz Intel

Core i7 and 8 GB of 1600 MHz DDR3 RAM.

Fig. 3 shows the NMSE with respect to the wall-clock time when

n = 50, r = 4, and m = 800 using the same spectral initialization

for the same set of algorithms as in Fig. 2. Again, to achieve the

same accuracy in terms of NMSE, GD using the intensity-based loss

requires more time than all three algorithms using the amplitude-

based loss. In particular, the mini-batch SGD requires significantly

less time than GD or alternating minimization, due to its much faster

execution per iteration.
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Fig. 2. The empirical success rate with respect to the sampling ratio

m/(nr) for various algorithms, when n = 50 and r = 4.
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Fig. 3. The NMSE with respect to wall-clock time for various algo-

rithms, when n = 50, r = 4 and m = 800.

4. CONCLUSIONS

In this paper, we propose three new nonconvex approaches for solv-

ing quadratic sensing, or equivalently, low-rank matrix recovery

from rank-one measurements, which all utilize an amplitude-based

loss function as opposed to an intensity-based loss function. Nu-

merical experiments are provided to demonstrate their advantages

over using the intensity-based loss function in terms of both sample

complexity and computational complexity.

In the future, we would like to provide theoretical analysis to

guarantee the convergence of each of these algorithms to the global

optimum solution as long as the sample size is sufficiently large.

Another interesting venue of research would be to demonstrate the

stability of these algorithms to noise and/or the presence of outliers

in the measurements [23] using random initialization [24].
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