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Roots remain an underexplored frontier in plant genetics
despite their well-known influence on plant development,
agricultural performance and competition in the wild.
Visualizing and measuring root structures and their
growth is vastly more difficult than characterizing above-
ground parts of the plant and is often simply avoided. The
majority of research on maize root systems has focused on
their anatomy, physiology, development and soil inter-
action, but much less is known about the genetics that con-
trol quantitative traits. In maize, seven root development
genes have been cloned using mutagenesis, but no genes
underlying the many root-related quantitative trait loci
(QTLs) have been identified. In this review, we discuss
whether the maize mutants known to control root develop-
ment may also influence quantitative aspects of root archi-
tecture, including the extent to which they overlap with the
most recent maize root trait QTLs. We highlight specific
challenges and anticipate the impacts that emerging tech-
nologies, especially computational approaches, may have
toward the identification of genes controlling root quanti-
tative traits.

Keywords: Genotype to phenotype � Imaging and analysis �
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Abbreviations: DIRT, Digital Imaging of Root Traits; DRO1,
Deeper Rooting 1; G�E, genotype�environment; GWAS,
genome-wide association study; LDA, linear discriminant ana-
lysis; Lrp1, Lateral root primordia 1; lrt1, lateral rootless 1;
MANOVA, multivariate analysis of variance; ML, machine
learning; PCA, principal component analysis; PSTOL1,
Phosphorus-Starvation Tolerance 1; QTL, quantitative trait
locus; rth, roothairless; RSA, root system architecture; rtcl,
rtcs-like; rtcs, rootless concerning seminal and crown roots;
Rul1, Rum1-like; rum1, rootless with undetectable meristem 1;
slr, short lateral roots; TDA, topological data analysis; XRT,
X-ray computed tomography.

Introduction

Plant physiologists have spent many years thoughtfully char-
acterizing roots in fine detail, and creating an intricate vocabu-
lary to describe their observations. Common terminologies

have been proposed at various times by the International
Society of Root Research (ISRR), the Plant Ontology
Consortium and maize researchers (Feix et al. 2002, Ilic et al.
2007, Hochholdinger 2009, Zobel and Waisel 2010). Root traits
have generally been grouped based on developmental criteria
(tissue of origin), anatomy (internal structure at the tissue or
cellular level) and topology (branching order or connectedness,
i.e. primary, secondary, tertiary, etc.). These groupings have
been and continue to be broadly used; however, as technologies
advance, new ways to characterize roots arise.

Root system architecture (RSA) has been defined as the
growth pattern of roots within, and in response to, their envir-
onment, i.e. where, when and what type of roots grow (Fitter
1987). RSA integrates aspects of development and topology,
and more recently has been connected to anatomical features
(Burton et al. 2013, Lynch et al. 2014). Root architecture is
measured as a function of increasing root system complexity
through plant development, which has been facilitated by tech-
nologies that quantify many traits with high throughput. This
increased scope has allowed plant geneticists to begin identify-
ing the genetic basis of root traits across a wide spectrum of
descriptors.

Zea mays (L.) is one of the most highly produced grain crops
in the world and has been the focus of extensive breeding and
genetic research over the years. However, maize roots have
received far less attention compared with aboveground struc-
tures because they are hidden from view and grow in complex
patterns that are heavily influenced by the soil environment.
Indirect selection for root architecture in response to denser
planting is posited as a major factor for increased yield over the
past half century in the USA (Hammer et al. 2009), but no genes
have been identified or attributed to this phenomenon.

As currently understood, developmentally defined maize
root types are controlled by single genes that regulate gross
phenotypic differences, often presence or absence
(Hochholdinger et al. 2018). Root architecture and anatomical
traits appear instead to be quantitative and controlled by many
genes (Price and Tomos 1997, Mano et al. 2007, Topp et al.
2013, Burton et al. 2015, Zurek et al. 2015). These traits also have
a well-documented capacity for phenotypic plasticity
(MacMillan et al. 2006, Rosas et al. 2013, Meijón et al. 2014)
that can contribute to crop yield stability across multiple en-
vironments (Sandhu et al. 2016). Quantitative variation for root
architecture has been proposed to facilitate trait optimization
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in different environments by concerted ‘fine-tuning’ of many
loci (Gifford et al. 2013, Rosas et al. 2013). However, this idea has
not been well tested in crop plants, largely because few genes
have been identified that control root architecture. Thus, fully
realizing the value of root architecture for crop improvement
(Lynch 1995, 2013, de Dorlodot et al. 2007, Hochholdinger and
Tuberosa 2009) will require a more thorough understanding of
the specific genetic loci involved in quantitative root variation.

Only a small number of genes that control strong develop-
mental phenotypes have been cloned in maize (Hochholdinger
et al. 2018). Additionally, many root quantitative trait locus
(QTL) mapping studies and meta-analyses spanning decades
of work have been conducted (Hund et al. 2011), but no
causal genes have been reported yet. Amid these data, import-
ant questions remain. (i) To what extent could the known
major genetic regulators also control quantitative variation,
and do they co-align with maize root QTLs? (ii) What are the
key experimental factors limiting our current ability to identify
the genetic basis of quantitative root traits? (iii) What tools can
be leveraged to help survey the diversity of root traits in maize
going forward?

Is There a Distinction Between Qualitative
and Quantitative Regulators of Root
Architecture?

Maize root system development can first be divided into an
embryonic root system derived from the seed and the post-
embryonic root system derived from the shoot, which eventu-
ally dominates the root architecture. The embryonic root
system is made up of a primary root and a variable number
of seminal roots depending on genotype and environment
(Kiesselbach 1949, Sass 1977, Feldman 1994). The post-embry-
onic root system is comprised of lateral roots and whorls of
nodal roots, which are called crown roots if below the soil and
brace or prop roots if above the soil. Nodal roots emerge at the
base of each node, and so comprise a temporal and develop-
mental axis that increases shootward. Lateral roots initiate
from the pericycle of both embryonic and post-embryonic
roots, and comprise the first and all subsequent topological
orders of branching (Bodner et al. 2013). Root hairs are
single-celled protrusions that initiate from the epidermis of
all root types and have been considered both anatomical and
developmental structures. The characterization of mutant
phenotypes in this way has led to the identification of 12
maize developmental root mutants, which are summarized in
Table 1.

Forward genetics approaches have been used to generate
mutant alleles of genes involved in maize root anatomy and
development. Of the 12 root mutants: two affect seminal root
development, three affect shoot-borne root development, four
affect lateral root development and five affect root hair devel-
opment. Only seven of these genes have been cloned (Table 1),
and they have been thoroughly reviewed elsewhere
(Hochholdinger 2009, Hochholdinger and Tuberosa 2009, Yu
et al. 2016, Hochholdinger et al. 2018). Mutants have

traditionally been screened by eye at the seedling stage (10–
14 d after germination) from plants grown in paper towel rolls
(Hochholdinger 2009). This screening method allows for rapid
scoring of many lines, but is biased toward identifying obvious
root phenotypes that affect qualitative aspects of external
morphology rather than subtle variation of quantitative pheno-
types. Not surprisingly, the genes controlling the most obvious
and severe mutants were cloned first. For example, the first
cloned mutant was rth1 which has no root hairs visible by
eye on the emerging primary root at 3 d after germination
(Wen et al. 2005; Andorf et al. 2016; images at https://mai-
zegdb.org/data_center/variation?id=61056 (June 29, 2018,
date last accessed)). The mutants rth2, slr1 and slr2 have
more subtle phenotypes and have not been cloned. Root
hairs of the rth2 mutant elongate but are shorter than those
of the wild type (Wen and Schnable 1994). Lateral root length of
both slr1 and slr2 mutants is reduced compared with the wild
type (Hochholdinger et al. 2001). The mutant lrt1 has a strong
effect on the embryonic root system, which has no laterals
(Hochholdinger and Feix 1998). However, the nodal root
system has apparently normal lateral roots yet is smaller than
the wild type, raising the possibility that the lrt1 phenotype may
be more quantitative when evaluated at a later growth stage.
More robust phenotyping of root mutants, especially through-
out development, may aid in gene identification and reveal
more quantitative aspects of their phenotype.

Due to the enormous amount of structural, genetic and
transcriptional variation known in the maize pan-genome,
any mutagenesis study is limited to the variation present in
the targeted genotypes (Hirsch et al. 2014, Jiao et al. 2017).
For example, the ‘B73’ genome only captures an estimated
70% of non-transposon genes present in diverse maize inbreds
(Gore et al. 2009). Additionally, approximately 30% of genes in
both ‘B73’ and ‘PH207’ show genotype-specific expression
(Hirsch et al. 2016), suggesting that the genomic environment
could also have a significant effect on the phenotypic expres-
sion of a mutant allele. While not extensively studied, epistatic
modifiers have been observed for half of themutants when they
were crossed or mutated in multiple genetic backgrounds:
rum1, rtcs, slr1 and rth2 (Table 1). The epistatic modifiers of
rtcs and rum1 are paralogs, known as Rtcl and Rul1, respectively
(Taramino et al. 2007, von Behrens et al. 2011, Xu et al. 2015,
Zhang et al. 2016). No mutants have been identified for Rul1
but, interestingly, the rtcl mutant has a less severe phenotype
than rtcs, resulting in normal seminal roots and reduced length
of crown roots. This observation supports the finding from
Schnable and Freeling (2011) that genes from the maize1 sub-
genome are over-represented in the historic identification of
visible mutant phenotypes because of their increased severity.
Given that the ancestral duplication of the maize genome led to
widespread gene differentiation (Schnable et al. 2011), it is
tantalizing to wonder if the maize2 subgenome paralogs of
root developmental genes may generally be more quantitative
in nature, and thus more likely to control root system architec-
ture tunability. It will be important to screen diverse maize
lines—including inbreds, landrace, and wild teosinte ances-
tors—if we are to obtain a complete picture of the phenotypic
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context of a given mutation and any potentially adaptive alleles
(Schmidt et al. 2016, Topp et al. 2016).

To date, only eight of the 12 known root mutants have been
introgressed into at least two genetic backgrounds (Table 1).
There has been little further work on quantitative aspects of
these phenotypes, with one notable exception: Abdel-Ghani
et al. (2015) directly compared quantitative phenotypic vari-
ation across different maize lines to identify associations with
functional alleles of root development genes. They queried an
association panel of 74 maize inbreds, and reported that allele
variants for Rtcl, Rth3, Rum1 and Rul1 contributed to quanti-
tative variation of seedling root traits. However, the lack of
genome-wide markers in this experiment made it difficult to
understand how these targeted developmental gene associ-
ations compare with genome-wide associations with root
traits. When Pace et al. (2015) conducted a genome-wide asso-
ciation study of a different but overlapping set of inbred lines
for seedling RSA traits, Rum1 was the only known root gene
with significant marker associations nearby. Several other maize
root QTLs overlap with or have been found in proximity to
known root mutant genes, yet no causal relationship has been
identified between genes and the large QTL regions. QTLs for
seminal root number, crown root length, brace root whorl
number and crown root number overlap with Rul1 (Pestsova
et al. 2016, Salvi et al. 2016, Gu et al. 2017, Liu et al. 2017, Zhang
et al. 2018). Rum1 was under QTLs for seminal root number,
lateral root density, lateral root length and crown root number
per whorl (Pestsova et al. 2016, Salvi et al. 2016, Liu et al. 2017,
Zhang et al. 2018). Rtcl was under QTLs for lateral root density
and brace root number (Pestsova et al. 2016, Zhang et al. 2018),
and Rtcs was found under a QTL for seminal root number (Salvi
et al. 2016). In total, the evidence suggests that known root
mutant genes may plausibly control quantitative variation for
maize RSA; however, as most QTL regions contain hundreds of
genes, more research is needed to identify bona fide causal
relationships.

Current Knowledge and Challenges Towards
Gene Identification of Maize Root
Architecture QTLs

While the list of QTLs controlling maize root system traits is
long, no causative genes underlying any of these QTLs have
been reported. In Table 2 we summarize the 19 maize root
QTL mapping and genome-wide association studies (GWAS)
that have been published since or were not included in the last
summary (Hund et al. 2011). These works were based on 12
biparental populations (19 inbreds and 2 teosintes) and three
association populations (396 and 384 inbreds, and 66 landrace
F1 doubled haploids).

Currently, the only genes reported to control a root archi-
tecture QTL in a crop species were found in rice: deeper rooting
1 (DRO1) (Uga et al. 2013) and phosphorus starvation tolerance
1 (PSTOL1) (Gamuyao et al. 2012). Both of these genes underlie
stress tolerance traits and were identified in landrace germ-
plasm rather than elite breeding lines, underscoring the

importance of querying genetic diversity for root traits. A func-
tional DRO1 gene was found in a drought-tolerant cultivar
‘Kinandang Patong’ from the Philippines, whereas a 1 bp dele-
tion caused a premature stop codon in the widely planted,
drought-sensitive rice cultivar ‘IR64’. PSTOL1 was found in the
low phosphorus-tolerant aus-type ‘Kasalath’ in a 90 kb indel
that is completely absent in the low phosphorus-intolerant
‘Nipponbare’ reference genome. The DRO1 gene enhances
root gravitropism, thus generating deeper roots, and PSTOL1
is a protein kinase involved in regulation of early crown root
development that promotes root growth under both high and
low phosphorus conditions. Both genes have been reported to
enhance yield under their respective stress environments, with
DRO1 showing no yield penalty under well-watered conditions
in some environments (Gamuyao et al. 2012, Uga et al. 2013). A
study of PSTOL1 orthologs in a sorghum diversity panel has
shown a similar role for superior alleles of the gene in grain
yield under low phosphorus conditions (Hufnagel et al. 2014).
DRO1 and PSTOL1 are powerful yet isolated examples of the
potential for root architecture-based improvement of crops.
Decades of work was needed for the identification of these
genes in rice. Even though researchers have been studying
maize root QTLs for over two decades (Lebreton et al. 1995),
similar success has not been achieved.

Gene identification is hampered by the combination of low
root trait heritability and the size of mapping populations that
can be adequately measured. Since phenotyping is laborious,
practical considerations result in sparse or incomplete meas-
urements of the root system. The strong environmental condi-
tioning of root growth contributes to low heritabilities,
especially in the field. Thus, few if any studies have had suffi-
cient power to overcome the Beavis effect (Beavis 1994, Xu
2003), which states that the power to detect QTLs is directly
proportional to the size of the mapping population and the
heritability of the trait. The numbers of QTLs identified in these
studies range from 1 to 268, using on average 227 lines and
marker densities of about 10 cM (Table 2). Given these popu-
lation sizes and root trait heritabilities of �50%, at best each
would only have the power to detect half the real number of
QTLs. As a consequence, the effect size of each QTL is likely to
be overestimated, resulting in QTLs that cannot easily be fine-
mapped without enormous effort. These are major impedi-
ments to identification of genes underlying root quantitative
traits in maize.

Meta-QTL analyses have attempted to leverage the many
available maize root QTL studies to home in on key loci that are
in common across populations and environments (Tuberosa
et al. 2003, Hund et al. 2011). Hund et al. (2011) performed a
meta-QTL analysis on traits relating to root length in maize
from 15 QTL studies that used eight bi-parental mapping popu-
lations (15 inbreds) and one association mapping population
(74 inbreds). A total of 161 single QTLs from the different
studies were condensed into 24 meta-QTLs, with only 16 indi-
vidual QTLs remaining. Root length traits were grouped based
on axile and lateral root type and branching order, and available
yield QTLs were overlaid. Seminal root meta-QTLs co-localized
with yield QTLs more than any other trait. Six meta-QTLs in
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bins 1.07, 2.04, 2.08, 3.06, 6.05 and 7.04 were suggested as good
candidates for further research and gene identification due to
the number of single QTLs combined from different mapping
populations and the number of different traits co-localized. For
example, a meta-QTL in bin 2.04, located 15 cM from Root-
ABA1 (Giuliani et al. 2005, Landi et al. 2007), had 10 co-localized
QTLs from three populations for length and number of seminal
roots, root capacitance, lateral root number and elongation
rate, and root pulling force. Notably, the meta-analysis included
studies from different developmental times (first/second leaf
stage, silking and physiological maturity), in different environ-
ments (paper roll, hydroponics, greenhouse and field) and using
different measurement techniques (manual measurements,
root pulling force, root capacitance and root volume). These
sources of variability are likely to limit the genetic signal that
could be discerned from the meta-analysis. While comparative
approaches have helped refine some of the most promising
regions, they have not delivered on gene identification thus far.

When leveraging diverse germplasm for root genetic ana-
lysis, controlling for phenology, the timing of developmental
events, is a key challenge, yet often ignored. The highest herit-
ability of root crown traits and the greatest number of QTLs
were observed after a longer period of growth (at silking), com-
pared with the six leaf stage when phenological differences are
not as great (Cai et al. 2012). Both genotype and environment
can lead to differences in the rates of leaf emergence and flow-
ering times, which uncouples calendar time from developmen-
tal time in a relative sense. For example, since crown root whorl
number is tied directly to leaf formation, a plant with more
leaves is likely to have more crown roots if evaluated at the
same time. It is then perhaps not surprising that when compar-
ing root traits from tropical teosintes vs. the temperate maize
inbred line ‘W22’, many of the QTLs controlling crown root
number coincided with flowering time genes (Zhang et al.
2018). The key flowering time locus vgt1 is linked to a major
seminal root number QTL on chromosome 8 (Salvi et al. 2016),
suggesting that phenological effects may control seminal root
number. While these results could indicate that flowering time
directly regulates root traits, especially in terms of size (lengths,
surface areas, volumes and biomass) and numbers (of axile and
primary branches), controlling for flowering time, either experi-
mentally or statistically, could reveal important traits that scale
proportionally or allometrically. Trait values may be higher in
magnitude for larger root systems, but relatively greater for
smaller root systems if phenology is included in the calculation.
Given that ‘bigger’ is not always ‘better,’ especially in terms of
crop cultivation at high plant density (Duvick 2005, Hammer et
al. 2009, York et al. 2015), and trade-offs in root vs. shoot re-
source allocation (Lynch et al. 2005, Saengwilai et al. 2014), it
will be important to learn the extent to which there is genetic
variation for root allometry. Both the size and relative values of
traits should be considered when studying root architecture,
especially in diverse germplasm from different latitudes.

Allometric relationships are also important when consider-
ing root phenotypic plasticity to the environment. Growth
simulations of maize roots computed different optimal lateral
root densities in response to varying nitrogen and phosphorus

availability, which were corroborated by analysis of excavated
root crowns (Postma et al. 2014). Still, the genetic basis of plas-
ticity remains notably elusive despite the fact that it has been
exploited for many investigations of stress tolerance and geno-
type�environment (G�E) interactions (Trachsel et al. 2013,
Gao and Lynch 2016). In more cases than not, environmental
and G�E factors interfere with our ability to understand root
genetics. For example, when Li et al. (2015) repeated their seed-
ling hydroponics experiment three times and mapped QTLs for
each repeated experiment, they found only 21 of 114 QTLs in
common across repeated experiments. In a much simpler set of
controlled environment experiments, Spalding and colleagues
showed a profound effect of external environment, develop-
mental time and seed size/composition on Arabidopsis seedling
root gravitropism dynamics and their quantitative genetic basis
(Durham Brooks et al. 2010, Moore et al. 2013). The temporal
and subtle environmental dependencies of QTLs identified in
these works are striking results that provide context to the
current inability to replicate, co-align and move beyond initial
root QTL results in maize. Clearly, future work will need to focus
on capturing the dynamism of root growth (Kwak et al. 2014)
and environmental interactions, as a function of both real and
developmental time.

Acquiring Superior Phenotypes with Higher
Throughput for the Investigation of the
Genetic Control of Maize Root Architecture

The acquisition of root phenotype data is becoming cheaper,
faster and better, largely due to rapid advances in digital ima-
ging and automated analysis (Galkovskyi et al. 2012, Pierret
et al. 2013, Pace et al. 2014, Das et al. 2015, Rellán-Álvarez
et al. 2015, Symonova et al. 2015). These exciting technological
innovations have been reviewed extensively (Fiorani and Schurr
2013, Paez-Garcia et al. 2015, Topp et al. 2016, Morris et al.
2017), but how can we best exploit this richness of information
to understand the genetics of root architecture? The first maize
root QTL study was limited to seminal and nodal root number,
as well as root pulling force of plants grown in a soil glasshouse
(Lebreton et al. 1995). The first field study of maize root QTLs
focused on nodal root numbers, angles and estimated mean
diameters of excavated samples (Guingo et al. 1998). While
these measurements are intuitive and (relatively) easily quanti-
fied, they are only small samples of an entire maize root system,
which can only sufficiently be described considering three di-
mensions and time. More traits are measured now than ever
before; whereas only 2.7 traits per study were averaged prior to
2011, 8.3 traits were averaged since (Table 2), (Hund et al.
2011). A parallel can be drawn in this progression with the
effects that high-throughput genotyping and other ‘omics’
technologies had on our understanding of gene function.
Many pathways previously defined as linear by classical muta-
tional analysis are now considered as part of large and complex
gene/protein networks governed at a genome-wide scale by
systems-level rules (Westerhoff and Palsson 2004). Given that
the phenome is vastly more complex than the genome (Houle
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2010, Chitwood and Topp 2015), we can now move beyond
only historically driven, a priori thinking about what traits are
important to measure, and let the wealth of new data define
the trait through statistical modeling in our quest to unravel
genotype to phenotype relationships in roots (Bodner et al.
2013, Topp et al. 2016).

Multivariate statistics, applied mathematics and machine
learning (ML) approaches can be particularly powerful when
applied to root architecture analysis because they can extract
the key relationships among multivariate and multidimensional
data (Balduzzi et al. 2017). There is currently no viable way to
capture the 3D/4D shape of a maize root as it grows in the field.
Therefore, important trade-offs must be made: minirhizotrons
can be used to measure temporal dynamics, but only capture a
small fraction of the root system and the topology is lost. Roots
can be excavated to varying extents manually or mechanically,
but the process is destructive and typically only coarse meas-
urements are taken. Entire growing root systems can be imaged
at high resolution using X-ray computed tomography (XRT) or
other methods, but these approaches are constrained by the
size and resolution of the imaging system, which limits plant
and pot sizes as well as growthmedia. The spectra of phenotype

vary in their dimensionality, units, scale, throughput, accuracy
and precision, and thus require capable analysis frameworks.

For example, principal component analysis (PCA) and linear
discriminant analysis (LDA) are effective statistical methods
that can be used to reduce the dimensional space of data to
reveal the underlying axes of variation. In Fig. 1 we show an
example of how LDA can discriminate the shapes of field-exca-
vated root crowns among three maize inbred lines. The upper
left panel shows 2D photographs of each genotype, which were
the inputs to the open-access Digital Imaging of Root Traits
(DIRT; http://dirt.iplantcollaborative.org/ (July 29, 2018, date
last accessed)) software. DIRT calculates dozens of features
that describe shape variations in these root images. We applied
PCA to reduce the number of traits, and took the first three
PCs, which explained >90% of the variation, for LDA. Despite
obvious differences in their root structures, LD1 and LD2 do not
clearly group each genotype. DIRT has enabled at least an order
of magnitude increase in the number of field-grown roots that
can be evaluated, along with improved accuracy and precision
(Bucksch et al. 2014, Das et al. 2015); however, information is
lost by representing a complex 3D object into two dimensions.
The lower left panel of Fig. 1 shows a 3D reconstruction

Fig. 1 Comparison of 2D images (top) and 3D X-ray computed tomography (XRT) scans (bottom) of maize root crowns excavated from the
field at tasseling. Differences between ‘B73,’ ‘Mo17’ and ‘Ky21’ from the images are visually apparent, showing the narrower, denser habit of ‘B73’
and ‘Ky21’ compared with ‘Mo17’; however, LDA of 2D DIRT traits does not entirely discriminate these genotypes (top right). Additional
information gathered from 3D XRT scans and 3D GiaRoot traits group these genotypes in LDA (bottom right). These data are a subset of three
excavated root crowns from three maize inbred lines collected at tasseling from a larger experiment conducted at our field site at University of
Missouri Genetics Farm, Columbia, MO.
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generated from scanning the same root crowns via XRT. We
measured the shapes in 3D using the RSA Gia pipeline (Topp
et al. 2013) and conducted a PCA and LDA. In this analysis, the
first two linear discriminants clearly discriminate all three geno-
types from one another. This result highlights how multivariate
analysis coupled with enhanced phenotypes can improve our
ability to make genotype to phenotype associations.

While multivariate approaches are powerful to discern
subtle or pleiotropic phenotypes, their biological interpretation
is sometimes called into question because the trait space is no
longer easily described along a univariate axis. Instead, multi-
variate models often provide a new descriptor without an in-
tuitive connection to more common traits (Topp et al. 2013,
Kenobi et al. 2017). However, we argue that data-defined trait
descriptors will play a key role in finally realizing the potential of
root imaging technologies to identify genes. A 3D QTL analysis
of seedling root systems in rice leveraged multivariate analysis
of variance (MANOVA) to identify several large effect QTLs
that were not identified by the univariate traits alone, and ex-
plained more phenotypic variation in the data (Topp et al.
2013). Composite traits were computed from the relative con-
tributions of each univariate trait to the multivariate, and used
to verify the MANOVA-based QTLs. Thus, the very concept of
genetic architecture for a complex trait such as root shape is
strongly influenced by how we quantify it in the trait space. The
impacts of ML on plant science will also be felt in this area.
Classification-focused ML methods such as support vector ma-
chines and logistic regression have been used recently as multi-
variate discriminators for root phenotypes (Iyer-Pascuzzi et al.
2010, Zurek et al. 2015), and deep learning approaches such as
convolutional neural networks are poised to learn salient fea-
tures of the data that can lead to automated quantification of
statistical descriptors (Pound et al. 2017).

Multivariate methods are a powerful complement to uni-
variate traits, but are still limited to input features that were
developed a priori to capture specific aspects of root shape. A
much more general statistical approach was used to quantify
shoot architectures by their spatial density functions, revealing
fundamental similarities in 3D Gaussian density functions
across several species and stages of development that were
otherwise hidden (Conn et al. 2017a). The work followed on
an evaluation of architectural trade-offs between biomass in-
vestment and resource distribution in the same samples using
graph theory (Conn et al. 2017b), which also seems fitting for
root architecture studies. Topological data analysis (TDA)
methods are another way to provide more comprehensive
quantifications of whole plant and root shapes without pre-
supposing any specific trait (Li et al. 2017, Delory et al. 2018). A
study evaluating the genetic determinants of tomato root
architecture showed that a TDA approach known as persistent
homology can be used for QTL analysis. Persistent homology
captured nearly all of the loci that the most heritable DIRT
traits did, plus nearly two dozen additional QTLs (Li et al.
2018). These studies demonstrate that the traditional univari-
ate trait methods of quantifying root architecture are simply
not adequate to describe all of the phenotypic variation, and
therefore have probably limited our ability to discern the

underlying genetic relationships in maize and many other
species.

Conclusions and Outlooks

Only a small handful of genes are currently known to control
maize root development, and none has been shown specifically
to influence quantitative traits useful for breeding or under-
standing plant�environment interactions. While the genotype
to phenotype gap is generally a major challenge of current
biological research, it is especially wide for root biology because
of limitations in phenotyping tools and analysis approaches.
Nonetheless, the pace of advances has been increasing so
that now higher quality, higher throughput studies can be con-
ducted in many laboratories throughout the world, and excel-
lent open-source platforms for quantifying, describing and
modeling root phenotypes are in place (Lobet et al. 2013,
Lobet et al. 2015, Postma et al. 2017, Delory et al. 2018,
Schnepf et al. 2018).

The re-evaluation of maize mutant phenotypes with current
tools may be particularly informative to understand how
known genes may impact quantitative aspects of root architec-
ture, and to identify the genetic polymorphisms underlying
mutants that have not yet been cloned (Table 1). High-
throughput phenotyping methods coupled to the current
wealth of genotype information across hundreds of maize ac-
cessions (Gore et al. 2009, Hirsch et al. 2014, Bukowski et al.
2018) can also be used to scan for common polymorphisms in
these genes that may modify their phenotypic expression in
more subtle ways than could be previously measured.
Similarly, the evaluation of known mutants in many different
genetic backgrounds could reveal modifying genes that will
help connect root development and architecture at a molecular
systems level. It is likely to be this quantitative variation that
allows us to advance our understanding of the genetic basis of
complex root phenotypes. Dynamic imaging of root growth
and the function-valued phenotypes derived from these data
will be a key part of increasing the information content of the
phenotypes we collect, which is being enabled in 3D and in-
creasingly environmentally realistic scenarios (Fig. 1) (Clark
et al. 2011, Metzner et al. 2015, Symonova et al. 2015, Ahmed
et al. 2016, van Dusschoten et al. 2016, Morris et al. 2017).
However, these tools are still nascent, not widespread, and
thus only on the cusp of realizing their potential. It will be
important to continue to establish sound and transparent
methods for data acquisition and post-processing in order to
lower the ‘barriers to entry’ for the many root biologists who
wish to incorporate advanced phenotyping into their studies.

Given the crop improvement potential for root traits, a
major emphasis will continue to be field studies.
Belowground phenotyping capacity will always be less than
aboveground (Pauli et al. 2016), but it is now possible to harvest
and evaluate hundreds or thousands of superficial root crown
samples for root architecture using computer vision (Fig. 1;
Table 2) (Bucksch et al. 2014, Das et al. 2015). Minirhizotron
and soil coring data provide additional (but sparse) information
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of roots at depth that can be combined with root crown exca-
vations in high throughput to provide a more complete picture
of the true root structure. Such integrated phenotyping
approaches could move beyond simple trait comparisons,
and directly evaluate QTLs in common from complementary
data types, which will be more robust than using only one
approach. All things considered, it seems only a matter of
time until the combined efforts of laboratory and field work,
bolstered by technological and computational advances, will
begin to yield a more thorough understanding of the genetics
controlling the hidden half of maize.
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