HyperLoop: Group-Based NIC-Offloading to
Accelerate Replicated Transactions in Multi-Tenant
Storage Systems

Daehyeok Kim!*, Amirsaman Memaripourz*, Anirudh Badam?,
Yibo Zhu®, Honggiang Harry Liu3", Jitu Padhye®, Shachar Raindel?,
Steven Swanson?, Vyas Sekar!, Srinivasan Seshan!

ICarnegie Mellon University, 2UC San Diego, *Microsoft

ABSTRACT

Storage systems in data centers are an important component
of large-scale online services. They typically perform repli-
cated transactional operations for high data availability and
integrity. Today, however, such operations suffer from high
tail latency even with recent kernel bypass and storage op-
timizations, and thus affect the predictability of end-to-end
performance of these services. We observe that the root cause
of the problem is the involvement of the CPU, a precious
commodity in multi-tenant settings, in the critical path of
replicated transactions. In this paper, we present HyperLoop,
a new framework that removes CPU from the critical path
of replicated transactions in storage systems by offloading
them to commodity RDMA NICs, with non-volatile memory
as the storage medium. To achieve this, we develop new and
general NIC offloading primitives that can perform memory
operations on all nodes in a replication group while guar-
anteeing ACID properties without CPU involvement. We
demonstrate that popular storage applications can be easily
optimized using our primitives. Our evaluation results with
microbenchmarks and application benchmarks show that
HyperLoop can reduce 99" percentile latency ~ 800x with
close to 0% CPU consumption on replicas.

“The first two authors contributed equally to this work.
TThe author is now in Alibaba Group.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-5567-4/18/08...$15.00
https://doi.org/10.1145/3230543.3230572

297

CCS CONCEPTS

« Networks — Data center networks; « Information sys-
tems — Remote replication; - Computer systems orga-
nization — Cloud computing;

KEYWORDS

Distributed storage systems; Replicated transactions; RDMA;
NIC-offloading

ACM Reference Format:

Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo
Zhu, Honggiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven
Swanson, Vyas Sekar, Srinivasan Seshan. 2018. HyperLoop: Group-
Based NIC-Offloading to Accelerate Replicated Transactions in
Multi-Tenant Storage Systems. In SIGCOMM °18: ACM SIGCOMM
2018 Conference, August 20-25, 2018, Budapest, Hungary. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3230543.3230572

1 INTRODUCTION

Distributed storage systems are an important building block
for modern online services. To guarantee data availability
and integrity, these systems keep multiple replicas of each
data object on different servers [3, 4, 8, 9, 17, 18] and rely on
replicated transactional operations to ensure that updates are
consistently and atomically performed on all replicas.

Such replicated transactions can incur large and unpre-
dictable latencies, and thus impact the overall performance
of storage-intensive applications [52, 57, 58, 75, 86, 92]. Rec-
ognizing this problem, both networking and storage commu-
nities have proposed a number of solutions to reduce average
and tail latencies of such systems.

Networking proposals include kernel bypass techniques,
such as RDMA (Remote Direct Memory Access) [64], and
userspace networking technologies [26, 90]. Similarly, there
have been efforts to integrate non-volatile main memory
(NVM) [6, 11], and userspace solid state disks (SSDs) [7, 29,
98] to bypass the OS storage stack to reduce latency.

While optimizations such as kernel bypass do improve the
performance for standalone storage services and appliance-
like systems where there is only a single service running in

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

the entire cluster [60, 100, 101], they are unable to provide
low and predictable latency for multi-tenant storage systems.

The problem is two fold. First, many of the proposed tech-
niques for reducing average and tail latencies rely on using
CPU for I/O polling [7, 26]. In a multi-tenant cloud setting,
however, providers cannot afford to burn cores in this man-
ner to be economically viable. Second, even without polling,
the CPU is involved in too many steps in a replicated storage
transaction. Take a write operation as an example: i) It needs
CPU for logging, processing of log records, and truncation of
the log to ensure that all the modifications listed in a trans-
action happen atomically; ii) CPU also runs a consistency
protocol to ensure all the replicas reach identical states be-
fore sending an ACK to the client; iii) During transactions,
CPU must be involved to lock all replicas for the isolation
between different transactions for correctness; iv) Finally,
CPU ensures that the data from the network stack reaches a
durable storage medium before sending an ACK.

To guarantee these ACID properties, the whole transac-
tion has to stop and wait for a CPU to finish its tasks at each
of the four steps. Unfortunately, in multi-tenant storage sys-
tems, which co-locate 100s of database instances on a single
server [67, 92] to improve utilization, the CPU is likely to
incur frequent context switches and other scheduling issues.

Thus, we explore an alternative approach for predictable
replicated transaction performance in a multi-tenant envi-
ronment by completely removing the CPU from the critical
path. In this paper, we present HyperLoop, a design that
achieves this goal. Tasks that previously needed to run on
CPU are entirely offloaded to commodity RDMA NICs, with
Non-volatile Memory (NVM) as the storage medium, with-
out the need for CPU polling. Thus, HyperLoop achieves
predictable performance (up to 800x reduction of 99¢* per-
centile latency in microbenchmarks!) with nearly 0% CPU
usage. Our insight is driven by the observation that repli-
cated transactional operations are essentially a set of memory
operations and thus are viable candidates for offloading to
RDMA NICs, which can directly access or modify contents
in NVM.

In designing HyperLoop, we introduce new and general
group-based NIC offloading primitives for NVM access in
contrast to conventional RDMA operations that only of-
fload point-to-point communications via volatile memory.
HyperLoop has a necessary mechanism for accelerating repli-
cated transactions, which helps perform logically identical
and semantically powerful memory operations on a group
of servers’ durable data without remote CPUs’ involvement.

These group-based primitives are sufficient to offload op-
erations that are conventionally performed by CPUs in state-
of-the-art NVM and RDMA based replication systems. Such
operations include consistent and atomic processing and
truncating of log updates across all replicas, acquiring the

298

D. Kim and A. Memaripour et al.

same logical lock across all replicas, and durably flushing the
volatile data across all replicas. HyperLoop can help offload
these to the NIC.!

Realizing these primitives, however, is not straightforward
with existing systems. Our design entails two key technical
innovations to this end. First, we repurpose a less-studied yet
widely supported RDMA operation that lets a NIC wait for
certain events before executing RDMA operations in a special
queue. This enables us to pre-post RDMA operations which
are triggered only when the transactional requirements are
met. Second, we develop a remote RDMA operation posting
scheme that allows a NIC to enqueue RDMA operations on
other NICs in the network. This is realized by modifying
the NIC driver and registering the driver metadata region
itself to be RDMA-accessible (with safety checks) from other
NICs. By combining these two techniques, an RDMA-capable
NIC can precisely program a group of other NICs to perform
replicated transactions.

Our approach is quite general as it only uses commodity
RDMA NICs and as such applications can adopt our prim-
itives with ease. For example, we modified RocksDB (an
open source alternative to Google LevelDB) and MongoDB
(an open source alternative to Azure CosmosDB and Ama-
zon DynamoDB) to use HyperLoop with under 1000 lines
of code. We evaluate the performance of these systems us-
ing microbenchmarks as well as the Yahoo Cloud Storage
Benchmark (YCSB) workload. The results show that run-
ning MongoDB with HyperLoop decreases average latency
of insert/update operations by 79% and reduces the gap be-
tween average and 99'" percentile by 81%, while CPU usage
on backup nodes goes down from nearly 100% to almost
0%. Further, microbenchmarks show that HyperLoop-based
group memory operations can be performed more than 50%
and 800X faster than conventional RDMA-based operations
in average and tail cases, respectively.

2 BACKGROUND & MOTIVATION

In this section, we briefly define the key operations of repli-
cated storage systems. We also present benchmarks that
highlight the high tail latency incurred by these systems in a
multi-tenant setting, even with state-of-the-art optimizations
such as kernel bypass.

2.1 Storage Systems in Data Centers

Replicated storage systems maintain multiple copies of data
to deal with failures. For instance, large-scale block stores [20,
22,36, 53, 63], key-value stores [23, 43], and databases [19, 21,
24, 41] replicate data to increase availability and avoid data
loss in the presence of failures. Such systems use comprehen-
sive protocols [30, 33, 34] to ensure that every data update

IThe idea of HyperLoop, i.e., offloading replicated transactions to NICs in
addition to point-to-point read/write operations, can be extended to other
hardware combinations as long as the NIC can directly access the storage
medium, such as FPGA based-Ethernet NICs that can access SSDs [55].

HyperLoop

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

~

(" (a) Typical Storage Server (b) Typical Replicated Transaction Protocol

Transaction? Server B

—————————— £

Clients Replica

Set

(c) Typical Replica (Primary/Backup) Software

Local Storage Stacl
5.Llock & Update X & Y

Transaction_[
Protocol/ 6
L‘ Oelg
o
C/)(£ v

V' Database

TCP

Primary
Replicas|

Backup

Stack

Phase 1 I
Tx?
ACK

1. Store
2. ACK

Replicas

~

Fommit? Ack! <]

A VAN

G L)]
\
Server(?‘l i\PhaseCommit’ /)ﬁ Server D
| TRACK! Y4

Phase 2
Commit?
ACK

3. OK?
4. ACK

AN

Figure 1: Servers in data center storage systems typically co-locate 100s of replicas of many tenants to improve utilization.
This increases latency due to frequent context switches when replica processes, network and storage stacks continually vie
for the CPU. Unfortunately, it is not economically viable for 100s of replica processes to be pinned on dedicated cores and poll.

is applied to enough (to sustain availability and durability)
copies before acknowledging the changes to the client. At
the heart of these protocols are mechanisms to make identi-
cal changes to multiple replicas before deeming the change
durable and making it available for readers.
Sub-operations for transactions: Changes to storage con-
tents are typically structured as an atomic transaction, con-
sisting of a set of reads and writes. For instance, a transac-
tion might modify objects X and Y as shown in Figure 1(c).
The entire set of changes made by each transaction must be
atomic, that is X and Y should both change to the values 1
and 2 simultaneously. Storage replicas perform a number of
sub-operations per client change and a slowdown in any of
these sub-operations can slow down the entire transaction.
Storage systems use logging (undo/redo/write-ahead) to
achieve atomicity. The new values are first written to a log
and later the objects are modified one by one. If the modifi-
cations are paused for any reason, then simply re-applying
them from the log will ensure atomicity. Further, while pro-
cessing the log, the replica needs to block other transactions
from the objects involved. This is typically implemented us-
ing locks. For instance, in the above example, the storage
system would lock objects X and Y while processing the log.
The storage system must further ensure that all or a suf-
ficient number of replicas execute a transaction before it is
considered committed. Typically, a consensus protocol called
two-phase commit [30, 33, 34, 44] over a primary-backup set-
ting is used to replicate transactions since it enables strong
consistency and simplifies application development. As Fig-
ure 1(b) shows, the replicas first respond whether they are
ready to commit the transaction, then actually commit it
after all or enough replicas respond that they are ready.

Chain replication: Chain replication is a widely used primary-

backup replication known for its simplicity [1, 10, 35, 46—
48, 53, 62, 63, 81, 85, 89, 93-95]. In chain replication, the
replicas are laid out in a linear chain. Writes begin at the
head of the chain and propagate down the chain in the first
phase. The head of the chain begins executing a transaction
and readies the transaction to commit by creating a local
log entry and grabbing the necessary locks, and only then
forwards the transaction to the next replica in the chain.

299

Each replica prepares the transaction for commit and for-
wards it down the chain similarly. When the tail of the chain
receives the request the second phase starts. The tail knows
that everyone upstream is ready to commit. It then sends an
ACK that propagates back to the head. Every replica gets the
ACK, knows everyone is ready, and commits the transaction.
Finally, the head gets the ACK and sends the transaction ACK
to the application. In this way, chain replication provides
high-throughput, high-availability, and linearizability in a
simple manner.

Given the wide popularity of chain replication, our imme-
diate goal in this work is to develop NIC offload primitives
for this mode of replication. However, we note that our prim-
itives are generic enough to be used by other replication
protocols, non-ACID systems, and a variety of consistency
models (see §7).

2.2 Multi-tenancy Causes High Latency

Busy CPU causes high latency: Busy CPU is a major
reason why replicas in such protocols may not be responsive
— chain or otherwise. A replica’s thread has to be scheduled
on a CPU for it to receive the log via the network stack, and
subsequently store the log via the storage stack. The thread
needs to participate in the two-phase commit protocol and
in the chain (or other) replication scheme. Finally, the thread
must process the log and update the actual data objects. Locks
are needed for many of these steps to ensure correctness and
consistency.

In multi-tenant systems, CPUs are shared across multiple
tenants each containing one or more processes. This can lead
to heavy CPU load, and unpredictable scheduling latency.
The delay for being scheduled to run on CPU causes inflated
latencies for writes that are waiting for ACKs or locks.

The problem is further exacerbated by data partitioning.
To increase server resource utilization, large-scale storage
systems divide the data into smaller partitions such that each
server stores partitions of multiple tenants. For instance, an
online database partition ranges between 5-50GB of space
while typical servers have 4-8 TB of storage space [66]. Thus,
each server hosts 100s of tenants translating to 100s of replica
processes since each tenant should be isolated in at least one
process. Such a large number of processes easily saturates
CPU, causing high latency.

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

D. Kim and A. Memaripour et al.

Latency (ms)

—&— Average 95th percentile —6— 99th percentile —@— Primary’s context-switches —— Backup’s context-switches -

(%]

120 ® 1 33
N =

= 2

60 05 g%
W g%

[2 2 c g

- 0 Zc

9 12 15 18 21 24 27 2 4 6 8 10 12 14 16 S

Number of MongoDB replica-sets

(a) Varying number of replica-sets

Number of CPU cores on each machine

(b) Varying number of CPU cores per machine

Figure 2: Analyzing the impact of CPU on MongoDB’s latency distribution using YCSB. Normalized context-switches is the
number of context-switches for each configuration divided by the maximum for all configurations in each chart.

To demonstrate this problem, we measured the latency
and CPU consumption of MongoDB [32] when running a
variable number of instances. We ran Yahoo Cloud Stor-
age Benchmark (YCSB) [56] against MongoDB. We used 6
machines (3 MongoDB servers and 3 YCSB clients) each
with two 8-core Xeon E5-2650v2 CPUs, 64 GB of memory,
and a Mellanox ConnectX-3 56 Gbps NIC. To avoid inter-
ference effects from storage medium, we use DRAM as the
storage medium. Note that this setup is also representative
for modern storage systems that use NVM as the storage
medium [60, 100, 101].

For the most part, CPU hits 100% utilization since all Mon-
goDB processes are fully active. The delay caused by CPU
can be observed by CPU context-switches. Figure 2(a) shows
how they impact the end-to-end MongoDB performance as
we increase the number of partitions per server. Each parti-
tion is served by a replica-set, which consists of one primary
replica process and two backup replica processes running
on the three different MongoDB servers. As the number of
partitions grow, there are more processes on each server,
thus more CPU context switches and higher latencies.

Next, we verify that this inflated latency is mainly due

to the heavy load and context switches on CPU, not net-
work congestion or contention on memory bus. We stick to
18 replica-sets but change the number of available cores on
each machine by disabling cores. Figure 2(b) shows that, even
though the network throughput remains the same, the trans-
action latency and number of context switches decreases
with more cores.
Existing solutions offer limited help: There are multi-
ple proposals that partly tackle this problem. For example,
user-level TCP such as mTCP [69] and RDMA-based de-
signs [60, 71] offload (part of) the network stack to NICs,
thus reducing the CPU overhead and context switching. How-
ever, the storage replication and transaction logic, which are
heavier operations relative to the network stack, remain on
CPUs.

Furthermore, these solutions rely on CPU core-pinning
to avoid being swapped out due to other busy processes to
achieve predictable latency. Some systems even employ busy
polling [60, 71], which wastes CPU further.

300

Unfortunately, core-pinning and busy polling is not a vi-
able option for multi-tenant systems. As explained above,
the number of partitions is typically an order or two magni-
tudes higher than the number of cores in data centers. These
partitions have to be isolated in different processes. Hence it
is not feasible to pin each partition to a dedicated core, nor
is busy polling per process feasible. Furthermore, it is not
feasible to get good latency even when only a few dedicated
threads at the user or kernel space poll on behalf of all the
tenants since the tenant processes still need to get a hold of
the CPU and wait for events from the polling threads.

In this paper, we aim to fundamentally address these issues
by offloading all CPU tasks, including the network stack and
storage replication and transaction logic to commodity NICs.

3 OVERVIEW

In this section, we present the design goals and architecture
of new primitives that can allow NICs to execute operations
needed for replicated NVM transactions at line rate without
CPU involvement in the critical path.

3.1 Design Goals

Motivated by our observations about storage system require-
ments (§2.1) and problems (§2.2), we design HyperLoop with
the following goals in mind.

No replica CPU involvement on the critical path: Since
the root cause of the latency problem is that replica server
CPUs are on the critical path, our solution is to offload those
software components in storage systems to commodity NICs.
The replica server CPUs should only spend very few cycles
that initialize the HyperLoop groups, and stay away from
the critical path after that.

This means that NICs by themselves should perform the
tasks that previously ran on CPUs, e.g., to modify data in
NVM. RDMA NICs (RNICs) provide a promising way to do
this while avoiding the CPU. However, it is still challenging
to use RNICs to perform some of these tasks such as log
processing without CPU. We will discuss this in §4.
Provide ACID operations for replicated transactional
storage systems: HyperLoop’s interfaces should be general
enough that most replicated transactional storage systems
can easily adopt HyperLoop without much modification to
applications. This means that HyperLoop aims to provide a

HyperLoop

Client

Storage frontend

Replica #1 Replica #2

Net primitive lib. (§4)

[RomANIC] [NvMM]—>[RDMANIC] [NvMM|<[RDMANIC
A ry A

i ACK
1 S/W components on the critical path (served by CPUs)

S/W components off the critical path (served by CPUs)
I H/W components on the critical path

Figure 3: Storage system architecture with HyperLoop.

new set of RDMA primitives instead of end-to-end RDMA-
and NVM-based storage system [59, 71].

These primitives should offload the operations most com-
monly required to ensure ACID properties. For example,
many storage systems, such as MongoDB [32], perform the
following steps for a transaction 1) replicate operation logs
to all replicas and make sure every replica is ready to commit,
2) acquire a lock on every replica, 3) execute the transactions
in operation logs, 4) flush all caches (if applicable) to make
the transactions durable, and 5) release the lock.

To support this representative process, HyperLoop pro-

vides new primitives that handle the steps separately. In §4.2,
we will explain the design of these primitives.
End-host only implementation based on commodity
hardware: HyperLoop is designed to be widely adoptable
by commodity data centers with little effort. Thus, HyperLoop
should not rely on any additional special hardware or switch
configurations. In addition, being implemented only on end-
hosts, HyperLoop can avoid putting state on switches, there-
fore is easy to manage and can scale well.

3.2 HyperLoop Architecture

HyperLoop offloads all the tasks on the replicas to their NICs.
To achieve this, we must turn those tasks into a form that can
be processed by just the NICs, without the help of CPUs. Our
insight is that replication, log processing, and global lock-
ing are essentially a set of memory operations and network
commands, and therefore are viable candidates for offload
from CPUs to NICs that can access memory (e.g., RDMA).
Since NVM offers the convenience of durable memory, it is
a natural fit. However, as we show later, care must be taken
when bridging between volatile caches of RNICs and the
durable memory region.

Figure 3 illustrates the architecture of HyperLoop. A typ-
ical replication group in storage systems consists of multi-
ple replicas with only the first one interfacing with clients.
HyperLoop can support any number of replicas depending
on the application’s requirement. There are two software
layers: HyperLoop network primitive library and storage ap-
plications (e.g., MongoDB) that adopt the primitive library.
Note that HyperLoop itself is not a full end-to-end repli-
cated storage system. Its main goal is to provide key building
blocks to build replicated transaction systems or make exist-
ing systems more efficient.

301

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

The network primitive library implements four group-
based primitives, gFLUSH, gWRITE, gCAS, and gMEMCPY.
They address the missing memory operations needed by
general storage systems as explained in §3.1. Application
developers can leverage these primitives to implement or
modify their replication and transaction processing modules.
As described in §5, we have adapted a few applications to
use the HyperLoop library. Only small modifications were
needed based on their original code.

HyperLoop works in a chain-based manner. When the
storage application running on the client (also known as
transaction coordinator) writes (i.e., add or update) data, it
updates a write-ahead log and then performs the transaction
on the group. This is done by calling corresponding primitive
exposed by HyperLoop primitive library. RNICs on replicas
receive the operation from the client or previous replica,
execute the operation and forward the operation to the next
replica in the chain. Note that there is no CPU involved in
the critical path of executing this operation on replicas. The
NIC on the last replica sends back an ACK to the head of
the chain - the client. To keep the design simple HyperLoop
group failures are detected and repaired in an application
specific manner much like traditional network connections
in storage systems (see §5).

4 HYPERLOOP DESIGN

In this section, we describe the design of HyperLoop group-
based network primitives. We start by explaining the key
techniques that make HyperLoop possible.

4.1 Key Ideas

The challenge is how to control NICs without CPUs:
RDMA and NVM can turn storage operations into mem-
ory operations that bypass CPU. However, in traditional
RDMA programming, when and what memory operations
to be performed is controlled by CPU. This is because the
basic RDMA operations by themselves are only designed for
point-to-point communication. Therefore, CPUs on every
end-host must be involved on the critical path.

We elaborate this using a simple example, where a storage
system needs to replicate data from the client to two or more
replica nodes using chain replication [46, 47, 53, 81, 94]. Even
though the client can write data to a memory region of the
first (primary) replica without involving the replica’s CPU
using RDMA WRITE, the first replica still has to forward the
data to the second replica.

Thus, on the first replica, a traditional RDMA implementa-
tion will let CPU pre-post a receive request and keep polling
the completion queue (on the critical path). The client must
use SEND or WRITE_WITH_IMM operations, which trig-
gers the receive completion event on the first replica. Then
the replica performs the operations in the request meant for
it and posts a send request of the operations meant for the
rest of the chain to the next replica, right after the receive

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

) Operation | FRMANIC 2) Trigger
(1) Operation | RECY | 99e = WAIT _53) Activate

iz (4) Proceed.

[Work queues [__| Pre-posted work requests

Figure 4: Forwarding an operation to another node in a
group with RDMA WAIT.

completion event (on the critical path again). The CPU is
needed not only for executing the memory operations in
these requests but also for posting it to the next replica.

This means that the NIC on the replica does not know
when and what it should forward to the next node until
its CPU gets the receive completion event and generates a
corresponding send request. This causes the high tail latency
and the high CPU utilization problems shown in §2.2.

The general approach of HyperLoop is to design a set of
group-based memory operation primitives that completely
remove replica’s CPUs from the critical path. This means
that NICs on replicas should detect the receive events by
themselves, process them and automatically trigger sending
them to the next replica. In addition, the forwarded SEND
operation must be based on the memory address and length
of data received from upstream.

Leveraging WAIT for auto-triggering RDMA operations:
We find that commodity RNICs support an operation which
enables event-based work request triggering, called RDMA
WAIT, between two communication channels (or queue pair
(QP)) within a host.? In a nutshell, WAIT enables RNICs to
wait for a completion of one or more work requests (WRs)
posted on one WR queue, and trigger other WRs that are
pre-posted on another WR queue, without CPU involvement.
Although this feature has not been widely studied or used for
general applications, we find it promising for determining
when a remote NIC can proceed.

We leverage this feature to enable forwarding operations in
HyperLoop. Figure 4 illustrates the data path for forwarding
operations. The basic idea is that every replica pre-posts
RECV WR on the WR queue of the QP connected to the
previous node, and also WAIT and a two-sided operation
(e.g., SEND or WRITE_WITH_IMM) WR to the WR queue
of the QP connected to the next node in the group. Upon
completion of a RECV WR (Step 1 and 2), the WAIT WR is
triggered and it activates operation WR, which was posted
right next to it (Step 3 and 4). Thus, NICs on replicas forward
the memory operations received from the previous node to
the next node in the group, without involving the CPU.
Remote work request manipulation for replicating ar-
bitrary data: While WAIT addresses the “when” problem,
NICs also need to know what to do, whenever WAIT trig-
gers. In common RDMA programs, when posting an RDMA
WRITE or SEND work request, one must specify a memory

2Different manufacturers have different terms for the method, e.g., “CORE-
Direct” [25] by Mellanox.

302

D. Kim and A. Memaripour et al.

1) Write data| RNIC on a replica

WRITE)
SEND rf]i)t:(f;g RECV) T1dger P
RECV &) UDQ' :WRITE 5) Proceed
RNIC on RECV "l/ossafe »[_SEND >
the client

[IWork queues [_] Pre-posted work requests

Figure 5: Manipulating pre-posted remote work requests
from the client.

descriptor that contains a local source address, size of data
to be written, and a remote destination address (in case of
WRITE). Since WAIT can only trigger work request posted
in advance, NICs can only forward a fixed size buffer of data
at a pre-defined memory location, which we call fixed repli-
cation. This is clearly insufficient for general storage systems
that require flexibility in memory management.

To address this limitation, we propose a solution called
remote work request manipulation, which enables the client
to manipulate the work requests pre-posted on the replicas’
work queues. Our key insight is that we can register repli-
cas’ work queues as RDMA-writable memory regions and
allow the client to modify memory descriptors (stored in a
work queue entry (WQE) data structure) of pre-posted work
requests on replicas. Along with the operation forwarding
feature described above, the client can perform arbitrary
memory operations targeted to RDMA-registered memory
on a group of replicas without involving replicas’ CPUs.

Figure 5 illustrates the workflow. Since the work requests
are at a known memory location on replicas’ memory region,
NICs on replicas can post RECV requests that point the re-
ceived metadata to update the memory descriptor in existing
work requests. The metadata contains memory descriptors
for every replica and is pre-calculated by the client and repli-
cated to all replicas using fixed replication. Metadata can also
contain additional information depending on different types
of memory operation. Note that separate metadata memory
regions are allocated for each primitive and each region takes
(size of memory descriptor) X (group size) X (number of
metadata entries). The sizes of memory descriptor are differ-
ent by primitives and in our implementation, the maximum
size is 32 bytes, which is the case for gCAS.

The client first builds metadata for each group memory
operation. Then the client posts a WRITE and a SEND work
request, which are used to replicate data to the replicas’
memory region and send the metadata, respectively. Since
the SEND request is a two-sided operation, it consumes a
RECV work request posted by the replica. The RECV request
will trigger the WAIT request and updates metadata region,
the memory descriptors of WRITE and SEND work request,
and activate them (i.e., grant the ownership to the NIC). The
activated WRITE and SEND work request will do the same
procedure for the next node. While this mechanism uses
additional work requests for sending metadata of operations
and waiting a completion of a RECV work request, it does

HyperLoop

not incur much network overhead since the size of metadata
is small (at most 32 bytes X (group size)), and a WAIT does
not produce any network traffic.

Note that with current RDMA NIC driver implementa-
tions, when an application posts a work request, a NIC will
immediately get the ownership of that request and because
of this, the memory descriptor cannot be modified later. How-
ever, in HyperLoop, the client should be able to manipulate
the memory descriptor of pre-posted work requests. To en-
able this, we modify the userspace NIC driver library (e.g.,
libmlx4 for Mellanox NICs) to make it not yield ownership
to the NIC when the work request is posted. Instead, with
our modified driver, the client will grant the ownership of the
work request to NICs after it updates the memory descriptor
of pre-posted work requests with our primitive.
Integration with other RDMA operations to support
ACID: To support the demanding features by storage sys-
tems, like durable WRITE, transaction execution and group
locking, we further build on the two ideas above.

Specifically, we further leverage the WAIT mechanism to
let the last replica to send an ACK to the client as a group
operation ACK. We use a 0-byte READ immediately follow-
ing each WRITE to flush the data in NIC cache into memory
or NVM, so that each ACK means the operation finishes and
becomes durable. For two-phase transaction execution, after
logs are replicated, we let RNICs perform “local RDMA” to
move data from the log region to the actual data region. For
locking, we leverage the RDMA compare-and-swap (CAS)
atomic operation.

In traditional systems, all these tasks can only be done on
a single host with the help of CPU. However, in HyperLoop,
we turn all these into group-based primitives and removes
replicas’ CPUs from the critical path. Whenever the client of
a replication group performs memory operations (e.g., repli-
cation, transaction execution, or locking) in its own memory
region, RNICs (not CPUs!) on replicas also perform the same
operations against their memory regions. The result is sig-
nificantly better tail latency and lower CPU consumption
than traditional RDMA implementations.

Based on these techniques, we develop four group-based
primitives summarized in Table 1. We describe each of them
in detail next.

4.2 Detailed Primitives Design

Group write (SWRITE): In a replicated storage, when the
client updates the transaction log, it needs to replicate the
updated log to all replicas in a replication group. We abstract
this process into the group memory write (SWRITE) prim-
itive, which enables remote NICs to write any data to the
specified memory location of their host memory region.
gWRITE allows the caller (e.g., client) to write a data to
memory regions of a group of remote nodes without involv-
ing their CPUs. The primitive takes a group ID, a memory

303

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

RNIC on the| RNIC on a replica
client
1) Send [[F===-(3) Trigger[T el
SEND RECV WAIT 0 WAIT
[SEND Hirctagara(LRECV] ' ! &'l | 4) Proceed
o7 CAS or SEND hf——>
Wi NOP.
~
2] Update WR

[Work queues [Pre-posted work requests

Figure 6: Datapath of gCAS primitive.

offset of data which will be written to remote nodes’ memory
regions, and a size of data as input arguments. For the given
offset and size, it builds metadata and initializes the com-
mand and follows the data path shown in Figure 5. gWRITE
is used to implement replicated transaction log management
described in Section 5.
Group compare-and-swap (gCAS): To ensure data in-
tegrity during concurrent read-write, replicated storage sys-
tems often use some locking mechanism, which also involves
the replicas’ CPUs. We provide the group compare-and-swap
(gCAS) primitive to offload such lock management schemes.
This enables remote NICs to perform compare-and-swap
against a specified memory location on their host memory
region and update the value of the location based on the
result of comparison. The client can acquire a logical group
lock via this primitive without involving the replicas’ CPUs.
gCAS extends the original RDMA single host compare-
and-swap (CAS) operation to a group of nodes. It takes a
group ID, an offset of memory location whose value to be
compared, an old and new value, an execute map, and a result
map as input arguments. The execute and result map are
additional parameters different from the original CAS. It has
a field for each node in the group. The client can specify
whether each remote node has to execute the CAS operation
on the execute bitmap (i.e., marking the corresponding field).
This capability of selective execution is necessary especially
for a client which needs to undo a gCAS operation when the
operation failed to be executed on some remote nodes due
to mismatch between the expected and actual value of the
target memory location. To undo the operation, the client
issues another gCAS operation by marking a set of execute
fields corresponding to the nodes on which the previous CAS
operation was successfully executed and swapping the old
and new values. Each replica updates the result of locally
performed CAS to the result map and the client will receive
the final result map as an ACK of performing gCAS.

Figure 6 shows how gCAS works. On each replica, HyperLoop

creates an additional QP for performing CAS operation lo-
cally. When a RECV work request is consumed by the SEND
work request initiated by the previous node, it updates the
memory descriptor of CAS and SEND work requests.

It is important to note that depending on a value in the ex-
ecute map, each replica has to determine whether it performs
CAS without involving its CPU. We found that when granting
an ownership of work request to the NIC, we can change the
type of pre-posted work request. Using this observation, the

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

D. Kim and A. Memaripour et al.

Table 1: Group-based network primitives for transactions supported by HyperLoop

Primitives

Semantics

gFLUSH(data_addr, dest_addr, size)

Writing data at data_addr to dest_addr by flushing
a volatile cache on the NIC to a durable medium.

gWRITE(gid, offset, size)

Replicating the caller’s data located at offset
to remote nodes’ memory region at offset.

gCAS(gid, offset, old_val, new_val, execute_map, result_map)

On each node, if the corresponding bit in the execute map is set,
(1) compare the value of data at offset with old_value.

(2) if they are the same, replace the value with new_value.

(3) update the corresponding result field

with the original value of offset.

gMEMCPY (gid, src_offset, dest_offset, size)

Copying the data size of size from src_offset to
dest_offset for all nodes.

RNIC on the RNIC on a replica
client
SEND g)tsgntd TREcy HeLTgger P L) 1600 WAIT
etadata|[L—=— Ura P_— (4) Proceed
W late M WRITEH SEI\ID
(2) Update WR
Work queues Pre-posted work requests

Figure 7: Datapath of gMEMCPY primitive.

caller makes the CAS be NOP operation if the corresponding
remote node is chosen not to perform the CAS operation.

If the replica performs CAS, it will update the correspond-

ing field in the result map. The completion of CAS work re-
quest triggers the WAIT and SEND requests for the next node.
If the replica is the last one in a group, it will forward the re-
sult map to the client as an ACK using WRITE_WITH_IMM.
gCAS is used to implement a group locking scheme in stor-
age systems, as described in §5.
Group memory copy (SMEMCPY): In many replicated
storage systems, replica CPUs execute (commit) a transaction
by copying the data corresponding to the transaction from
a log region to a persistent data region. We abstract this
process into the remote memory copy (SMEMCPY) primitive,
which lets remote NICs perform a memory copy on their
host memory for given parameters, i.e., data source address,
destination address, and size.

When the client executes transactions via this primitive,
on all replicas, the NICs will copy the data from the log
region to the persistent data region without involving the
CPUs. gMEMCPY takes a group ID, a memory offset of source
region and destination region, and a size of data being copied.
When this primitive is called, the NICs on replicas perform
memory copy for given source and destination offset against
their host memory without involving their CPUs.

Figure 7 shows how gMEMCPY works. Similar to the dat-
apath of gCAS primitive, HyperLoop creates an additional
QP for performing memory copy operation locally on each
replica. Upon receiving the command from the previous node,
the receive work request updates the memory descriptors of
write and send work requests and triggers the wait request.
Then the NIC performs local memory copy with the write
work request. When the local memory copy is successfully

304

completed, the NIC will trigger the wait and forwards the
operation to the next node using SEND. If the next node is
the client, it will send an ACK using WRITE_WITH_IMM.
gMEMCPY is used to implement remote log processing de-
scribed in §5.

Group RDMA flush (gFLUSH): To support the durability
of transactions, data written with RDMA writes should be
durable even in the case of system failure (e.g., power outage).
However, the current RDMA protocol implemented on NICs
does not guarantee the durability. The destination NIC sends
an ACK in response to RDMA WRITE as soon as the data is
stored in the NIC’s volatile cache. This means that the data
can be lost on power outage before the data is flushed into
NVM. Thus, we need a new RDMA FLUSH primitive that
supports the durability at the “NIC-level”.

To address this, we design Non-volatile RDMA FLUSH
(gFLUSH) primitive which enables durable RDMA WRITE
based on the existing RDMA operations. We leverage a fea-
ture supported by the NIC firmware that flushes a mem-
ory region in the cache when it becomes dirty. In our im-
plementation, when an RDMA FLUSH is issued, the NIC
immediately (without for waiting for an ACK) issues a 0-
byte RDMA READ to the same address. Then the destina-
tion’s NIC flushes the cache for the READ and the source’s
NIC gives the application ACK after the 0-byte READ is
acknowledged. This will ensure that each RDMA FLUSH
will flush volatile caches to host memory hierarchy which is
non-volatile with battery support [73]. Similar to gWRITE,
gFLUSH operations are also propagated down the chain for
durability across the replicas.

There is an important distinction between gFLUSH and
other primitives. gFLUSH can either be issued by itself or as
an interleaved operation with gWRITE, gCAS or gMEMCPY.
For instance, an interleaved gWRITE and gFLUSH on a replica
would first flush the cache and only then forward the opera-
tions down the chain. This helps ensure that durable updates
are propagated in the order needed by the chain or between
the primary and backups in other protocols.

To the best of our knowledge, HyperLoop is the first sys-
tem to describe the design and implementation of an RDMA

HyperLoop

NIC that can guarantee durability with NVM. Existing sys-
tems [59, 72] assume this ability but do not provide details
of the design and implementation.

Summary: We implement the primitives with 3,417 lines
of C library. We also modify 58 lines of code in 1ibmlx4
and libibverbs® to implement gFLUSH and remote work
request manipulation described in §3. In the next section, we
will describe a couple of case study storage systems whose
performance can be improved by using HyperLoop.

5 HYPERLOOP CASE STUDIES

HyperLoop helps NVM- and RDMA-based replicated databases
to offload transactions to NICs. Based on HyperLoop primi-
tives, different consistency models required by applications
can be implemented as we will show in this section and
discuss in §7. To demonstrate the benefits of HyperLoop,
we modify and optimize two widely used databases to an
NVM- and RDMA-based chain replication using state-of-
the-art CPU-polled kernel bypass approach. We then offload
the work done by the CPUs to the RDMA NICs by using
HyperLoop. We choose RocksDB (open source alternative to
Google’s LevelDB), and MongoDB (open source alternative
to Azure DocumentDB and AWS DynamoDB) because these
databases have in-memory (RAMCloud [85] like) implemen-
tations for volatile DRAM. Such implementations makes it
easier to adapt them to NVM.

For such systems, requirements for maintaining a database

typically translate to initializing NVM to contain a database
and a write-ahead log, appending transactions to the log,
processing the log and applying the transactions to the data-
base, and obtaining locks to facilitate concurrent accesses to
the database.
Database Initialization: The Initialize function uses
values specified in a configuration object to set up HyperLoop
and create required connections between the replica and it’s
upstream and downstream replicas in the chain. Additionally,
it creates/opens a handle to the NVM for the replica. This
NVM area contains space enough to hold a write-ahead log
as well as the database as defined in the configuration object.
Log Replication: Each log record is a redo-log and struc-
tured as a list of modifications to the database [83]. Each
entry in the list contains a 3-tuple of (data, len, offset)
representing that data oflength lenis to be copied at of fset
in the database. Every log record sent by a client is appended
to the replicas’ write-ahead logs in the chain by calling
Append(log record), which is implemented using gWRITE
and gFLUSH operations.

A client in our case study is a single multi-threaded process
that waits for requests from applications and issues them into
the chain concurrently. Multiple clients can be supported in

31ibibverbs and 1ibmlx4 are userspace libraries/drivers that allow
userspace processes to use InfiniBand/RDMA Verbs on Mellanox hardware.

305

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

the future using shared receive queues on the first replica in
the chain.
Log Processing: The remote log processing interface en-
ables the client to copy data from the write-ahead log of
replicas to their database regions without involving replica
CPUs. For each log record and starting from the head of the
write-ahead log, ExecuteAndAdvance processes its entries
one by one. To process each entry, it issues a gMEMCPY
to copy len bytes of data from data to offset on all replicas
followed by a gFLUSH to ensure durability. Once all oper-
ations for a log record are processed, ExecuteAndAdvance
updates the head of the write-ahead log using a gWRITE and
gFLUSH.
Locking and Isolation: ExecuteAndAdvance allows up-
dating the application data on replicas without involving
replica CPUs. However, if clients are allowed to read from all
replica nodes, they might observe inconsistent updates since
ExecuteAndAdvance does not offer isolation. To address this
issue, we offer group locking which is a single writer multi-
ple reader locking mechanism. The client calls wrLock and
wrUnlock to acquire and release exclusive write locks so that
other transactions working on the same data are blocked.

HyperLoop allows lock-free one-sided reads from exactly
one replica (head or tail of the chain) similar to existing
systems that use integrity checks to detect incorrect or in-
consistent values. However, we also implement read locks
for systems that need them and note that HyperLoop design
does not hinder systems from performing lock-free one-sided
reads when it is possible to detect inconsistent reads and
reject their values (e.g., FaRM [60]). However, such systems
can have low read throughput since only replica can serve
the reads. In HyperLoop, we additionally provide read locks
that work concurrently with the write locks to help all repli-
cas simultaneously serve consistent reads for higher read
throughput. Unlike write locks, read locks are not group
based and only the replica being read from needs to partici-
pate in the read lock.

We use these APIs to modify two existing popular trans-
actional storage systems (RocksDB [39] and MongoDB [32])
to show the efficacy of HyperLoop.

5.1 RocksDB

In this case study, we show how all the critical path oper-
ations in a write transaction can be offloaded to the NICs
of replicas. This helps the system require the CPU only for
coarse-grained off-the-critical path operations. Note that
even these operations can be offloaded to the NIC, which we
show in the next section.

RocksDB is an persistent key-value store library that can
be integrated into application logic. It serves all requests
using an in-memory data structure and uses a durable write-
ahead log to provide persistence. It periodically dumps the

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

in-memory data to persistent storage and truncates the write-
ahead log. We replace the persistent storage in RocksDB with
NVM. Further, we modify the interface between RocksDB’s
write-ahead log and NVM to use HyperLoop APIs instead of
native NVM APIs. We modify/add only 120 lines of code.

Our version of RocksDB uses Append to replicate log records

to replicas’ NVM instead of using the native unreplicated
append implementation. Replicas need to wake up periodi-
cally off the critical path to bring the in-memory snapshot
in sync with NVM. Only one replica in the chain updates
its in-memory copy of the data structure in the critical path.
Therefore, reads from other replicas in our RocksDB imple-
mentation are eventually consistent [94]. Thus, HyperLoop
helps us convert an unreplicated system into a replicated
one with accelerated transactions with only a few modifica-
tions. Section 6.2 shows the performance of our replicated
RocksDB.
RocksDB Recovery: Our recovery protocol for RocksDB is
fairly straightforward. A new member in the chain copies the
log and the database from either downstream or an upstream
node; writes are paused for a short duration of catch-up
phase. Only then does it formally join the chain. While this
reduces write availability, we note that the focus of this paper
is not to optimize the control path but rather to facilitate
developers to build faster data paths. Complementary efforts
in chain replication research have outlined various ways to
speed up recovery.

Our primitives are low-level enough not to interfere with
the recovery protocols that deal with temporary and perma-
nent replica failures. Such a design is crucial for ensuring that
the control path of replication protocols remains unchanged
while only the data path is accelerated with the new primi-
tives. Therefore, in the absence of failures, HyperLoop accel-
erates the transactions and as soon as a failure is detected, the
recovery protocol takes over to bring back a stable data path
as soon as possible. A configurable number of consecutive
missing heartbeats is considered a data path failure [45].

5.2 MongoDB

MongoDB is a NoSQL database server (i.e., document store),
which offers both in-memory and persistent storage. It also
provides replication by copying operation logs to replicas and
asynchronously executing them against the replica version of
the application data [38]. Here, we use MongoDB’s memory
storage engine, which accesses persistent data through issu-
ing loads/stores against memory-mapped files [31] — a model
conducive for NVM and RDMA. We split the MongoDB code
base into a front end and a back end. The front end is inte-
grated with the client while the backend is HyperLoop-based
replicas with NVM.

We achieve this with modifying only 866 lines of code.
We use Append to replicate MongoDB’s write-ahead log (i.e.,
journal) entries to replicas. Then, we execute transactions on

306

D. Kim and A. Memaripour et al.

replicas using ExecuteAndAdvance and the replicated write-
ahead log data. Additionally, to allow clients to read from
replicas, we surround each ExecuteAndAdvance on the pri-
mary with wrLock and wrUnlock. Additional replicas only
wake up to serve read requests when the chain is overloaded,
when they must acquire and release a shared lock using
rdLock and rdUnlock. Such an implementation completely
offloads both critical and off-the-critical path operations for
write transactions to the NIC while providing strong consis-
tency across the replicas. We note that there are techniques
(e.g., FaRM [60]) to perform lock free one-sided reads that
can be performed in HyperLoop as well if reads are restricted
only to one replica. The advantage of HyperLoop is that it
reduces the cost of keeping replicas strongly consistent and
therefore, reads can be served from more than one replica to
meet demand.

MongoDB Recovery: The goal of our recovery protocol
here was to bring the chain to a state where vanilla Mon-
goDB recovery can take over. To achieve this, whenever
the membership changes (heartbeat is lost), the entire chain
flushes the log of all valid entries, rejects invalid entries,
block reads temporarily and hand-off control to MongoDB
recovery protocol which helps the new empty replica catch
up and join a newly established HyperLoop data path. Rather
than focusing on control path optimizations that are out of
the scope of this paper, we focus on correctness and feasi-
bility of adopting the accelerated data path of HyperLoop.

6 EVALUATION

In this section, we evaluate HyperLoop by answering the

following questions:

1. How do HyperLoop primitives help improve the perfor-
mance of group memory access (§6.1)?

2. How does HyperLoop help improve the performance of
real-world storage systems (§6.2)?

Testbed setup: Our experimental testbed consists of 20
machines each equipped with two 8-core Xeon E5-2650v2
CPUs, 64 GB DRAM, and a Mellanox ConnectX-3 56 Gbps
RDMA-capable NIC. The operating system running on the
machines is Ubuntu Linux 14.04 with kernel version 3.13.0-
137-generic. In our evaluation, we assume storage nodes are
equipped with battery-backed DRAM [60] which is a form of
NVM available today. We emulate battery-backed DRAM by
mounting a tmpf's file system to DRAM and run applications
on it. We expect to observe similar benefits, i.e., no CPU
overhead on replicas while exhausting the bandwidth of
the network and/or NVM, when replacing battery-backed
DRAM with emerging technologies such as 3D XPoint [6].

Baseline RDMA implementation: To evaluate the perfor-
mance benefit of offloading the primitives to the NIC, we de-
velop a naive version of primitives using RDMA operations
as a comparison point for HyperLoop. It can perform the

HyperLoop

—B— Naive-RDMA-99%" percentile —— Naive-RDMA-Average

—6— HyperLoop—99th percentile HyperLoop-Average

10! ——0—4 ——0—+4
128 256 512 1K 2K 4K 8K 128 256 512 1K 2K 4K 8K

Latency (us)

Message size (bytes) Message size (bytes)
(a) gWRITE (b) sMEMCPY
Figure 8: Latency of gWRITE and gMEMCPY compared to
Naive-RDMA.

same set of operations (i.e., gWRITE, gMEMCPY, gCAS) as
HyperLoop and provides the same APIs, but involves backup
CPUs to handle receiving, parsing, and forwarding RDMA
messages in contrast to HyperLoop. In the rest of this section,
we call this implementation Naive-RDMA.

6.1 Microbenchmark

We evaluate the performance of HyperLoop primitives in
terms of latency, throughput and CPU consumption com-
pared to Naive-RDMA. We also evaluate the scalability of
HyperLoop under different replication group sizes.
Benchmark tools: We build custom latency and through-
put measurement tools for the microbenchmark. Our latency
benchmark generates 10,000 operations for each primitive
with customized message sizes and measures the comple-
tion time of each operation. The throughput benchmark for
gWRITE writes 1GB of data in total with customized message
sizes to backup nodes and we measure the total transmission
time to calculate the throughput. Also, we emulate back-
ground workloads by introducing CPU-intensive tasks using
stress-ng [42] in the testbed for HyperLoop and observe the
impacts on latency and throughput. The Naive-RDMA how-
ever uses a pinned core for best case performance.
HyperLoop significantly reduces both average and tail
latency compared to Naive-RDMA: Figure 8 shows the
average and tail latency of gWRITE and gMEMCPY primi-
tives with different message sizes, fixing replication group
size (number of member nodes) to 3. For both of gWRITE
and gMEMCPY, Naive-RDMA shows much higher 99*" per-
centile latency than HyperLoop. Particularly, for gWRITE,
we can see that with HyperLoop, 99" percentile latency can
be reduced by up to 801.8x with HyperLoop. gMEMCPY
shows a similar result; HyperLoop reduces the 99" per-
centile latency by up to 848X compared to Naive-RDMA. Ta-
ble 2 shows the latency statistics of gCAS, in which HyperLoop
shortens the average latency by 53.9x and 95" and 99*" la-
tencies by 302.2x and 849X, respectively.

HyperLoop achieves high throughput with almost zero
CPU usage: Figure 9 presents the operation throughput and
CPU utilization under different message sizes, fixing repli-
cation group size to 3. While HyperLoop provides a similar
throughput compared to Naive-RDMA, almost no CPUs are

307

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

Table 2: Latency of gCAS compared to Naive-RDMA.

Average 95'" percentile 99'" percentile
Naive-RDMA 539us 3928us 11886us
HyperLoop 10us 13us 14us

—&— Naive-RDMA-Throughput —6— HyperLoop-Throughput

— & Naive-RDMA-CPU HyperLoop-CPU ®

e
£ 1,000 100 §
2] i
s 500 150 =5
& ‘ ‘ ‘ ‘ : : E
M 0 9 o
1K 2K 4K 8K 16K 32K 64K =
O

Message size (bytes)
Figure 9: Throughput and critical path CPU consumption of
gWRITE compared to Naive-RDMA.

—=— Group size: 3 —— Group size: 5 —e— Group size: 7

@ s

10
S s :
S 10° [1 1
: e e o
=5 10 N N RS R = &
— 128 256 512 1K 2K 4K 8K128 256 512 1K 2K 4K 8K

Message size (bytes)
(b) HyperLoop

Message size (bytes)
(a) Naive-RDMA
Figure 10: 99° h percentile latency of gWRITE with different
group sizes compared to Naive-RDMA.

consumed in the critical path of operations in contrast to
Naive-RDMA which utilizes a whole CPU core. This is be-
cause CPUs are involved in polling NICs, receiving, parsing
and forwarding messages in Naive-RDMA while HyperLoop
offloads all these processes to the NICs.

HyperLoop is scalable with increasing group size: We
evaluate the latency with different replication group sizes.
The latency is measured from a client that sends a ping into
the chain. Figure 10 illustrates the 99" percentile latency of
gWRITE when group size is 3, 5, and 7. As shown previously,
Naive-RDMA incurs much higher tail latency in all group
sizes. With HyperLoop, there is no significant performance
degradation as the group size increases (Fig. 10(a)), while
with Naive-RDMA, 99¢% percentile latency increases by up to
2.97% (Fig. 10(b)). We also observed that HyperLoop shows a
smaller variance of average latency between the group sizes
compared to Naive-RDMA. This means that by offloading
operations to NICs, HyperLoop can significantly reduce the
latency and make it predictable regardless of the group size.

6.2 Performance in Real Applications

We measure the latency and CPU utilization of two real
applications (RocksDB and MongoDB), with YCSB [56], an
industry standard storage benchmark. In these experiments,
we use the 3 physical machines and set the replication group
size to 3. Table 3 shows properties of each workload within
YCSB. For MongoDB and RocksDB experiments, we initialize

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

Table 3: The percentage of read, update, insert, modify (read
and update) and scan operations in each YCSB workload.

Workload Read Update Insert Modify Scan
YCSB-A 50 50 - - -
YCSB-B 95 5 - - -
YCSB-D 95 - 5 - -
YCSB-E - - 5 - 95
YCSB-F 50 - - 50 -

7 10°

3

c:f 10

I

= 10! ! ! -
Naive-Event Naive-Polling HyperLoop

I8 Average [1 95th percentile I1 99" percentile
Figure 11: Latency distribution of replicated RocksDB using
Naive-RDMA (event-based and polling) and HyperLoop.

a data-store with 100 K and 1 M key-value pairs (32-byte
keys and 1024-byte values) prior to running 100 K and 16 M
operations against the data-store, respectively.

RocksDB: We compare three versions of replicated RocksDB
(three replicas): (i) Naive-Event version which uses event-
based Naive-RDMA for replication; (ii) Naive-Polling which
uses polling-based Naive-RDMA and uses CPU polling in
backup nodes to reduce latency; (iii) HyperLoop-based ver-
sion. To perform experiments in settings representative of
multi-tenant data centers, we co-located replicated RocksDB
processes with multiple instances of I/O intensive back-
ground tasks (our own MongoDB instances described next)
on the same CPU socket, each serving a YCSB client running
on the remote socket of the same server. The number of
application threads on each socket is 10X the number of its
CPU cores.

We use traces from YCSB (workload A) to compare the
three versions in average and tail latencies of update opera-
tions. As shown in Figure 11, HyperLoop offers significantly
lower tail latency in contrast to Naive-Event (5.7x lower)
and Naive-Polling (24.2x lower). Furthermore, HyperLoop
reduces the CPU overhead on backup nodes since it does not
involve backup CPUs in the critical path of replication. In
contrast, Naive-Polling version burns two cores on backup
nodes to poll incoming messages. Interestingly, however,
Naive-Event has lower average and tail latency compared
to Naive-Polling as multiple tenants polling simultaneously
increases the contention enough that context switches start
increasing the average and tail latencies.

MongoDB: We compare two versions of MongoDB with
polling-based and HyperLoop-enabled replication. We run
YCSB workloads against a chain with three replicas. We
co-locate multiple instances (10:1 processes to cores ratio)
to emulate multi-tenant behavior from multi-tenant data
centers and then measure the latency. Figure 12 shows the

308

D. Kim and A. Memaripour et al.

Iu Average [1 95th percentile 11997 percentile
= 8
E 6} - 1
& 4| - 8
2 1 DA *
5 ol Bl Wb BB b e wd wn
A B D E F A B D E F

Workload

(a) Native replication

Workload
(b) HyperLoop
Figure 12: Latency distribution of MongoDB with native and
HyperLoop-enabled replication.

performance comparison of the two versions. HyperLoop
reduces replication latency by up to 79% by reducing the
reliance on overburdened CPUs, and the remainder of the
latency is mostly due to the high overhead inherent to Mon-
goDB’s software stack in the client that requires query pars-
ing and other checks and translations before a query is ex-
ecuted. For MongoDB, HyperLoop also reduces the gap be-
tween average and 99'" percentile latency by up to 81%.
Furthermore, HyperLoop completely obviates involvement
of backup CPUs in the process of replication by offloading
transaction replication and execution to the RDMA NIC. In
contrast, MongoDB’s native replicas saturate the cores while
running YCSB workloads.

7 DISCUSSION

Supporting other storage systems: In designing our prim-
itives and APIs, we were motivated by state-of-the-art trans-
actional programming frameworks for NVM [12, 13], and
the messages in the data path of replicated transactional
systems [60]. Such a design allows us not only to move
applications modified with existing APIs [14-16] easily to
HyperLoop but also give higher confidence to developers to
use these APIs for faster adoption of NVM-aware systems.
HyperLoop is also useful for non-ACID systems and/or
weaker consistency systems. In designing low-level prim-
itives for fully-ACID and strongly consistent systems, we
enable other weaker models as well. For instance, by ignor-
ing the durability primitive, systems can get acceleration for
RAMCloud [85] like semantics. By not using the log process-
ing primitive inside the transaction critical path, systems
can get eventually consistent reads at higher throughput.
Further, by not using the log processing and durability in
the critical path, systems can get replicated Memcache [27]
or Redis [37] like semantics.
Supporting other replication protocols: We explored
chain replication for its simplicity, popularity and inherent
load-balancing of network resources. It is well known that
the scalability of the RDMA NICs decreases with the number
of active write-QPs [71]. Chain replication has a good load
balancing property where there is at most one active write-
QP per active partition as opposed to several per partition
such as in fan-out protocols.

HyperLoop

While HyperLoop is optimized for chain replication pro-
tocol, HyperLoop’s primitives can be used for any general
replication protocol. For example, if a storage application has
to rely on a fan-out replication (a single primary coordinates
with multiple backups) such as in FaRM [60], HyperLoop can
be used to help the client offload the coordination between
the primary and backups from the primary’s CPU to the
primary’s NIC.

For instance, in FaRM, the primaries poll for lock requests

which it forwards to the backups that are also polling for
meeting those requests. Similarly, primaries and backups
poll for log record processing, making them durable, and log
truncation. Techniques described in §4.1 can be used so that
the client can offload these operations to the primary’s NIC
and manage the locks and logs in backups via the primary’s
NIC without the need for polling in the primary and the
backups, and ensuring the required ordering of operations
between between them.
Security analysis of HyperLoop: In designing HyperLoop,
we assume that servers running storage front and back-
ends are protected from attackers who can compromise the
servers. We did not consider a comprehensive threat model
since attackers can easily control the entire storage clus-
ter once gaining access to a single server and even without
exploiting a replication channel through HyperLoop. On
the other hand, in HyperLoop, applications have access to
RDMA queues on remote NICs. To ensure security and pri-
vacy, we use the same set of best practices when managing
local queues to manage remote queues. The queues are reg-
istered to have access to only a restricted set of registered
memory regions that belong to the same tenant, each re-
motely accessible queue is separately registered with a token
known only to the tenant, and finally, managed languages
are used to encapsulate the QPs from the application code
with stricter safety checking (e.g., type check) in the client.
In the future, as RDMA virtualization improves, we wish to
leverage even more hardware virtualization techniques to
secure the remote queues.

8 RELATED WORK

Optimized storage and networking stacks: As storage
and networking hardware technology have evolved, tradi-
tional OS storage and networking stacks became a perfor-
mance bottleneck in applications, especially in distributed
storage systems as shown in previous works [54, 68, 88].
MegaPipe [65], Affinity-Accept [87], TCP port reuse [2]
and Fastsocket [77] optimize the Linux kernel TCP stack
to support better scalability for multi-core systems and high-
speed NICs. Likewise file system and other storage optimiza-
tions [51, 66, 76, 99] propose making existing OSes friendly
to SSDs. However, even with the optimizations, there are still
remaining overheads including kernel-user space context

309

SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

switching, data copying, bounds and access control checks
can cause high and unpredictable latency in storage systems.
New storage and network hardware: To avoid the OS
overheads, storage and networking techniques for kernel
bypass have been proposed [7, 26, 80, 90] to poll for I/O
completions from NIC or storage medium (e.g., SSD). Addi-
tionally, based on those techniques, user-space networking
stacks [28, 40, 49, 69, 79] and storage stacks [29, 54, 61, 84,
97, 98] have been developed. While these techniques help
reduce the latency of standalone storage services and appli-
ances [60, 71, 72, 78, 82, 91, 100], they do not work effectively
in multi-tenant environments where polling is expensive and
CPU still needs to coordinate between network and storage
stacks. In contrast, since HyperLoop does not rely on polling
and offloads the datapath of replicated NVM transactions to
RDMA NICs, it does not require CPU usage.

Existing remote SSD access systems offer only point to

point read/writes and often use CPU based polling for I/O
completions [55, 74, 84]. In contrast, HyperLoop provides
group-based primitives for replicated transactions with pre-
dictable performance without polling.
Multicast support in data centers: Reliable multicast [50]
is a seemingly effective network primitive for replication-
based distributed systems. Traditionally, since IP multicast
is unreliable [5, 96], it has not been widely adopted. Recent
developments in NIC technologies promote a revisiting of
reliable multicast at the network level. Derecho [70] proposes
an RDMA-based multicast protocol, which involves CPUs in
the critical path of operations and relies on polling. Thus, it
possibly incurs high tail latency especially in multi-tenant
settings.

9 CONCLUSIONS

Predictable low latency for both average and tail cases is crit-
ically lacking in modern replicated storage systems. Based
on the observation that CPU involvement is the root cause
of this behavior in multi-tenant deployments, we designed
HyperLoop, a new framework that completely eliminates
CPUs from the critical path of replicated transactions in
multi-tenant storage systems. HyperLoop entirely offloads
replicated transactions to commodity RDMA NICs, with
NVM as a storage medium. We realize this by designing
new group-based networking primitives that support ACID
transactions and demonstrate that existing storage systems
can be easily extended and optimized using HyperLoop. Our
evaluation with two popular storage systems shows that
HyperLoop can produce substantial reductions in both av-
erage and tail latency and CPU consumption on replicas.
Looking forward, even though our specific focus in this pa-
per was on storage systems, we believe that the design and
insights underlying HyperLoop can be more broadly appli-
cable to other data center workloads.

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

ACKNOWLEDGMENTS

We would like to thank the anonymous SIGCOMM review-
ers and our shepherd, Marco Canini for their helpful com-
ments. This work was supported in part by NSF awards
CNS-1565343 and CNS-1513764.

REFERENCES

[1] 2008. MongoDB Managed Chain Replication. https://docs.mongodb.
com/manual/tutorial/manage-chained-replication/. Accessed on
2018-01-25.

[2] 2013. The SO REUSEPORT socket option. https://lwn.net/Articles/
542629/. Accessed on 2018-01-25.

[3] 2013. Transactions for AWS Dynamo DB. https://aws.amazon.com/
blogs/aws/dynamodb-transaction-library/. Accessed on 2018-01-25.

[4] 2014. Replication in AWS Dynamo DB. https://aws.amazon.com/
dynamodb/fags/#scale_anchor. Accessed on 2018-01-25.

[5] 2015. InfiniBand Architecture Volume 1, Release 1.3.
http://www.infinibandta.org/content/pages.php?pg=technology_
public_specification. Accessed on 2018-01-25.

[6] 2015. Intel/Micron 3D-Xpoint Non-Volatile Main Memory. https://
www.intel.com/content/www/us/en/architecture-and-technology/
intel-micron-3d-xpoint-webcast.html. Accessed on 2018-01-25.

[7] 2016. Intel ~ Storage Performance Development
Kit. https://software.intel.com/en-us/articles/
introduction-to-the-storage-performance-development-kit-spdk.
Accessed on 2018-01-25.

[8] 2016. Replication in Google Cloud Datastore. https://cloud.google.
com/datastore/docs/concepts/overview. Accessed on 2018-01-25.

[9] 2016. Transactions in Google Cloud Datastore. https://cloud.google.
com/appengine/docs/standard/java/datastore/transactions. Accessed
on 2018-01-25.

[10] 2017. Chain Replication in SAP HANA. https://www.sap.com/
documents/2013/10/26c02b58-5a7¢c-0010-82c7-eda71af511fa.html.
Accessed on 2018-01-25.

[11] 2017. HP Enterprise Non-Volatile DRAM. https://www.hpe.com/us/
en/servers/persistent-memory.html. Accessed on 2018-01-25.

[12] 2017. Intel Persistent Memory Development Kit. http://pmem.io/
pmdk/. Accessed on 2018-01-25.

[13] 2017. Oracle NVM Programming APIs. https://github.com/oracle/
nvm-direct. Accessed on 2018-01-25.

[14] 2017. Persistent Memory KV Java Embedding. https://github.com/
pmem/pmemkv-java. Accessed on 2018-01-25.

[15] 2017. Persistent Memory Optimizations for MySQL. http://pmem.io/
2015/06/02/0bj-mysql.html. Accessed on 2018-01-25.

[16] 2017. Persistent Memory Optimizations for Redis. https://libraries.
io/github/pmem/redis. Accessed on 2018-01-25.

[17] 2017. Replication in Azure Cosmod DB. https://azure.microsoft.com/
en-us/support/legal/sla/cosmos-db/v1_0/. Accessed on 2018-01-25.

[18] 2017. Transactions in Azure Cosmos DB. https:
//docs.microsoft.com/en-us/azure/cosmos-db/programming#
database-program-transactions. Accessed on 2018-01-25.

[19] 2018. Amazon Relational Database Service (RDS) - AWS. https:
//aws.amazon.com/rds/. Accessed on 2018-01-25.

[20] 2018. Amazon Simple Storage Service (S3) - Cloud Storage - AWS.
https://aws.amazon.com/s3/. Accessed on 2018-01-25.

[21] 2018. Azure Cosmos DB. https://azure.microsoft.com/en-us/services/
cosmos-db. Accessed on 2018-01-25.

[22] 2018. Azure Storage - Secure cloud storage | Microsoft Azure. https:
//azure.microsoft.com/en-us/services/storage/. Accessed on 2018-01-
25.

[

—

=

—

=

D. Kim and A. Memaripour et al.

[23] 2018. Bigtable - Scalable NoSQL Database Service | Google Cloud

Platform. https://cloud.google.com/bigtable/. Accessed on 2018-01-
25.

2018. Cloud SQL - Google Cloud Platform. https://cloud.google.com/
sql/. Accessed on 2018-01-25.

2018. CORE-Direct The Most Advanced Technology for MPI/SHMEM
Collectives Offloads. http://www.mellanox.com/related-docs/
whitepapers/TB_CORE-Direct.pdf. Accessed on 2018-01-25.

2018. Intel Data Plane Development Kit. http://dpdk.org/. Accessed
on 2018-01-25.

2018. Memcache: A Distributed Memory Object Caching System.
https://memcached.org/. Accessed on 2018-01-2015.

2018. Messaging Accelerator (VMA). http://www.mellanox.com/
page/software_vma?mtag=vma. Accessed on 2018-01-25.

2018. Micron Userspace NVMe/SSD Library. https://github.com/
MicronSSD/unvme. Accessed on 2018-01-25.

2018. Microsoft SQL Server Two-Phase Commit. https://msdn.
microsoft.com/en-us/library/aa754091(v=bts.10).aspx. Accessed on
2018-01-25.

2018. MMAPv1 Storage Engine - MongoDB Manual. https://docs.
mongodb.com/manual/core/mmapv1/. Accessed on 2018-01-12.
2018. MongoDB. https://www.mongodb.com/. Accessed on 2018-01-
25.

2018. MongoDB Two-Phase Commits. https://docs.mongodb.com/
manual/tutorial/perform-two-phase-commits/. Accessed on 2018-
01-25.

2018. Oracle Database Two-Phase Commit Mechanism.
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_
txns003.htm#ADMIN12222. Accessed on 2018-01-25.

2018. Oracle MySQL/MariaDB Chain Replication Option. https://dev.
mysql.com/doc/refman/5.7/en/replication-options-slave.html. Ac-
cessed on 2018-01-25.

2018. Persistent Disk - Persistent Local Storage | Google Cloud Plat-
form. https://cloud.google.com/persistent-disk/. Accessed on 2018-
01-25.

2018. redis. https://redis.io/. Accessed on 2018-01-25.

2018. Replication - MongoDB Manual. https://docs.mongodb.com/
manual/replication/. Accessed on 2018-01-12.

2018. RocksDB. http://rocksdb.org/. Accessed on 2018-01-25.

2018. Seastar. http://www.seastar-project.org/. Accessed on 2018-01-
25.

2018. SQL Database - Cloud Database as a Service | Microsoft Azure.
https://azure.microsoft.com/en-us/services/sql-database/. Accessed
on 2018-01-25.

2018. Stress-ng. http://kernel.ubuntu.com/~cking/stress-ng/. Ac-
cessed on 2018-01-25.

2018. Table storage. https://azure.microsoft.com/en-us/services/
storage/tables/. Accessed on 2018-01-25.

2018. Two-Phase Commit Protocol. https://en.wikipedia.org/wiki/
Two-phase_commit_protocol. Accessed on 2018-01-25.

Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. 1997. Heart-
beat: A timeout-free failure detector for quiescent reliable communi-
cation. In International Workshop on Distributed Algorithms. Springer,
126-140.

Sérgio Almeida, Jodo Leitao, and Luis Rodrigues. 2013. ChainReaction:
A Causal+ Consistent Datastore Based on Chain Replication. In ACM
EuroSys (2013).

David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast
Array of Wimpy Nodes. In ACM SOSP (2009).

Mabhesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-
ber, Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log
Design for Flash Clusters. In USENIX NSDI (2012).

HyperLoop

[49] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In USENIX
OSDI (2014).

[50] K. Birman and T. Joseph. 1987. Exploiting Virtual Synchrony in
Distributed Systems. ACM SIGOPS Oper. Syst. Rev. 21, 5 (1987).

[51] Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. Light-
NVM: The Linux Open-Channel SSD Subsystem. In USENLX FAST
(2017).

[52] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Pe-

ter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,

Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,

and Venkat Venkataramani. 2013. TAO: Facebook’s Distributed Data

Store for the Social Graph. In USENIX ATC (2013).

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild

Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng

Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal

Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-

basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Hagq,

Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin

McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas.

2011. Windows Azure Storage: A Highly Available Cloud Storage

Service with Strong Consistency. In ACM SOSP (2011).

[54] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De,
Joel Coburn, and Steven Swanson. 2012. Providing Safe, User Space
Access to Fast, Solid State Disks. In ACM ASPLOS (2012).

[55] Adrian M. Caulfield and Steven Swanson. 2013. QuickSAN: A Storage

Area Network for Fast, Distributed, Solid State Disks. In ACM/IEEE

ISCA (2013).

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking Cloud Serving Systems with

YCSB. In ACM SoCC (2010).

[57] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,

Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev,

Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kan-

thak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,

David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay

Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth

Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Dis-

tributed Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug.

2013).

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Siva-

subramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:

Amazon’s Highly Available Key-value Store. In ACM SOSP (2007).

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and

Orion Hodson. 2014. FaRM: Fast Remote Memory. In USENIX NSDI

(2014).

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B. Nightin-

gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel

Castro. 2015. No Compromises: Distributed Transactions with Con-

sistency, Availability, and Performance. In ACM SOSP (2015).

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System

Software for Persistent Memory. In ACM EuroSys (2014).

[62] Robert Escriva, Bernard Wong, and Emin GAijn Sirer. 2012. HyperDex:
A Distributed, Searchable Key-value Store. In ACM SIGCOMM (2012).

[63] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google File System. In ACM SOSP (2003).

[64] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. 2016. RDMA over Commodity
Ethernet at Scale. In ACM SIGCOMM (2016).

(53]

[56]

(58]

[59]

[60]

[61]

311

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

[65] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
2012. MegaPipe: A New Programming Interface for Scalable Network
1/O. In USENIX OSDI (2012).

[66] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017. Flash-
Blox: Achieving Both Performance Isolation and Uniform Lifetime
for Virtualized SSDs. In USENIX FAST (2017).

[67] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017. Flash-
Box: Achieving Both Performance Isolation and Uniform Lifetime for
Virtualized SSDs. In USENIX FAST (2017).

[68] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten

Schwan. 2015. Unified Address Translation for Memory-mapped

SSDs with FlashMap. In ACM/IEEE ISCA (2015).

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,

Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP:

a Highly Scalable User-level TCP Stack for Multicore Systems. In

USENIX NSDI (2014).

Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano,

Weijia Song, Edward Tremel, Sydney Zink, Ken Birman, and Robbert

Van Renesse. 2017. Building Smart Memories and Cloud Services

with Derecho. In Technical Report (2017).

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using

RDMA Efficiently for Key-value Services. In ACM SIGCOMM (2014).

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:

Fast, Scalable and Simple Distributed Transactions with Two-Sided

(RDMA) Datagram RPCs. In USENIX OSDI (2016).

Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and

Greg Ganger. 2017. Viyojit: Decoupling Battery and DRAM Capacities

for Battery-Backed DRAM. In ACM/IEEE ISCA (2017).

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex:

Remote Flash ~ Local Flash. In ACM ASPLOS (2017).

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decen-

tralized Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2

(April 2010).

Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.

2015. F2FS: A New File System for Flash Storage. In USENIX FAST

(2015).

Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu,

and Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implemen-

tation for Short-Lived Connections. In ACM ASPLOS (2016).

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus:

an RDMA-enabled Distributed Persistent Memory File System. In

USENIX ATC (2017)

Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network

Stack Specialization for Performance. In ACM SIGCOMM (2014).

Mellanox. 2018. RDMA Aware Networks Programming User Manual.

http://www.mellanox.com/. Accessed on 2018-01-25.

Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi

Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.

2017. Atomic In-place Upyears for Non-volatile Main Memories with

Kamino-Tx. In ACM EuroSys (2017).

Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-

Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. In

USENIX ATC (2013).

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter

Schwarz. 1992. ARIES: A Transaction Recovery Method Supporting

Fine-granularity Locking and Partial Rollbacks Using Write-ahead

Logging. ACM Trans. Database Syst. 17, 1 (March 1992).

Mihir Nanavati, Jake Wires, and Andrew Warfield. 2017. Decibel:

Isolation and Sharing in Disaggregated Rack-Scale Storage. In USENIX

NSDI (2017).

[69]

[70

[t

(71

—

(72

—

(73

=

(74]

(75

=

(76]

(77

—

(78

=

[79]

(80

=

(81]

(82

—

(83]

(84]

SIGCOMM 18, August 20-25, 2018, Budapest, Hungary

(85]

(86]

(87]

(88]

(89]

[90]
[91]

[92]

(93]

Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. 2011. Fast Crash Recovery in RAMCloud. In
ACM SOSP (2011).

Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Pro-
cessing Using Distributed Transactions and Notifications. In USENIX
OSDI (2010).

Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T.
Morris. 2012. Improving Network Connection Locality on Multicore
Systems. In ACM EuroSys (2012).

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014.
Arrakis: The Operating System is the Control Plane. In USENLX OSDI
(2014).

Amar Phanishayee, David G. Andersen, Himabindu Pucha, Anna
Povzner, and Wendy Belluomini. 2012. Flex-KV: Enabling High-
performance and Flexible KV Systems. In ACM MBDS (2012).

Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O.
In USENIX ATC (2012).

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed
Shared Persistent Memory. In ACM SoCC (2017).

Dharma Shukla, Shireesh Thota, Karthik Raman, Madhan Gajendran,
Ankur Shah, Sergii Ziuzin, Krishnan Sundaram, Miguel Gonzalez
Guajardo, Anna Wawrzyniak, Samer Boshra, Renato Ferreira, Mo-
hamed Nassar, Michael Koltachev, Ji Huang, Sudipta Sengupta, Justin
Levandoski, and David Lomet. 2015. Schema-agnostic Indexing with
Azure DocumentDB. Proc. VLDB Endow. 8, 12 (Aug. 2015).

Amy Tai, Michael Wei, Michael J. Freedman, Ittai Abraham, and
Dahlia Malkhi. 2016. Replex: A Scalable, Highly Available Multi-
index Data Store. In USENIX ATC (2016).

312

[94]

[95]

[96]

[97]

(98]

[99]

[100

=

[101]

D. Kim and A. Memaripour et al.

Jeff Terrace and Michael J. Freedman. 2009. Object Storage on CRAQ:
High-throughput Chain Replication for Read-mostly Workloads. In
USENIX ATC (2009).

Robbert van Renesse and Fred B. Schneider. 2004. Chain Replication
for Supporting High Throughput and Availability. In USENIX OSDI
(2004).

Ymir Vigfusson, Hussam Abu-Libdeh, Mahesh Balakrishnan, Ken Bir-
man, Robert Burgess, Gregory Chockler, Haoyuan Li, and Yoav Tock.
2010. Dr. Multicast: Rx for Data Center Communication Scalability.
In ACM EuroSys (2010).

Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memories. In USENIX
FAST (2016).

Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When Poll is
Better Than Interrupt. In USENIX FAST (2012).

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2012. De-indirection for Flash-based SSDs
with Nameless Writes. In USENIX FAST (2012).

Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A reliable and highly-available non-volatile mem-
ory system. In ACM ASPLOS (2015).

Yanqi Zhou, Ramnatthan Alagappan, Amirsaman Memaripour,
Anirudh Badam, and David Wentzlaff. 2017. HNVM: Hybrid NVM
Enabled Datacenter Design and Optimization. In Microsoft Research
TR (2017).

