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Abstract

Network switches are an attractive vantage point to serve

various network applications and functions such as load bal-

ancing and virtual switching because of their in-network lo-

cation and high packet processing rate. Recent advances in

programmable switch ASICs open more opportunities for

offloading various functionality to switches. However, the

limited memory capacity on switches has been a major chal-

lenge that such applications struggle to deal with. In this paper,

we envision that by enabling network switches to access re-

mote memory purely from data planes, the performance of a

wide range of applications can be improved. We design three

remote memory primitives, leveraging RDMA operations,

and show the feasibility of accessing remote memory from

switches using our prototype implementation.

1 Introduction
Modern data center applications such as key-value stores and

network functions such as load balancing demand high I/O

rates or high packet processing rates. Traditionally, many of

these applications are implemented in software that runs on

general purpose CPUs. However, technology trends make this

solution less desirable – CPU performance improvements (i.e.,

Moore’s Law) have slowed and application demands continue

to increase at a staggering rate.

The research community has turned to specialized proces-

sors, specifically the high speed packet processing ASICs

at the core of modern Ethernet switches, to help meet the

processing demands of these applications [19, 23, 26, 29].

Given similar energy and monetary budget as a commodity

server, switches offer 1000× higher packet processing rates

and processing latency of sub-microseconds. Recent advances

in programmable P4 switches [3] enable more flexible appli-

cation logic on these processors.

While programmable switches provide some important

performance benefits, they also create unique challenges, one

of the most significant being limited memory space. Data

center switches require memory bandwidths of 32× 100Gbps
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(32 100 Gbps ports) or more. As a result, they rely on only

using relatively expensive but fast SRAM or TCAM. Because

these are located on the chip, they are limited to tens of MB,

which already contributes to a significant fraction of switch

hardware costs.

Unfortunately, all of the above on-switch applications have

trade-offs between performance and memory usage. For ex-

ample, memory size directly determines the cache hit rate

of in-network caches [19], and the accuracy of sketches [23].

Applications such as load balancing [26] and monitoring [29]

have to fall back to slower, CPU-based workarounds when

memory is exhausted. Last but not the least, even the most

basic function of switches – packet forwarding – can suffer

from limited memory space. These issues are further exac-

erbated when these applications run on the same switch and

must share memory with each other and basic forwarding.

One solution to this issue is designing a switching ASIC

that has internal custom logic and wires to access external

DRAM [4] on the switch. Unfortunately, this proves to be

very expensive for several reasons. To provide the bandwidth

needed for switching, a ASIC chip would need numerous

parallel DRAM modules. This combined with the necessary

DRAM controller and wiring within the chip adds significant

complexity and cost to the switch. This approach also leads to

an inflexible usage of the DRAM because the memory can be

used either for packet buffers or one or a few select look-up

tables depending on how the DRAM is physically connected

to the associated modules within the ASIC chip. Moreover,

the chip has a fixed amount of external-memory-capacity

that is determined at the chip design and manufacturing time,

resulting in limited scalability. The end result is that on-switch

external DRAM is not popularly used by vendors in today’s

single-chip switches.1

In this paper, we explore the possibility of repurposing the

affordable DRAM installed on data center servers to expand

the memory available to a switch’s data plane. To achieve

this goal, instead of building another switching ASIC that has

a custom external-DRAM-access capability, we simply reuse

an existing programmable switching ASIC built only with

on-chip memory. More specifically, we trade the data plane

bandwidth of such a chip for the bandwidth needed to access

the external DRAM. For example, a ToR switch may reserve

some DRAM space on the servers under it, and turn them

into a remote memory pool accessible from the ToR switch

directly through the Ethernet links connecting between the

servers and the ToR.

1Some high-end multi-chip switches have additional DRAM connected to

the data plane. Such switches are much more expensive and thus uncommon

in data centers [32].
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Current commodity hardware and network deployments

are well-suited for enabling this approach. First, since half

or more than half of the ToR ports are connected to servers,

and data center traffic is sparse [35], there is usually sufficient

amount of spare bandwidth between the ToR and this potential

memory pool. Second, RDMA-capable NICs (RNICs) can

expose the memory access at line rate using the RDMA over

Converged Ethernet (RoCE) [16, 17] protocol, without any

CPU involvement. Third, emerging programmable switches

can implement a subset of the RoCE protocol and maintain

the needed connection state to communicate with RNICs.

We particularly consider three use cases for remote switch

memory. First, we describe remote packet buffer that aims to

increase the switch buffer size from O(10 MB) to O(10 GB),

or by 1000×. With this, we may be able to largely reduce,

if not to eliminate, the microburst incast drops at last hop.

Second, we consider a remote lookup table that increases

the exact-matching table size by 1000× or more. This may

help applications that demand large tables avoid the CPU-

based slow path. Finally, we examine remote state stores

that improves the performance of data plane monitoring. We

will elaborate these example scenarios in §2 and preliminary

design in §4.

To verify the feasibility of using remote memory, we im-

plement and evaluate three basic primitives designed for the

above use cases on commodity RNICs and a P4 switch. In

§5, we show that the remote memory on a server offers up to

95.6% RNIC bandwidth with 1-2 µs extra latency, with abso-

lutely 0% CPU overhead. Multiple leading cloud providers

have widely deployed RNICs [28, 36] and are also gradually

on-boarding P4 switches. In such environments, there is no

additional infrastructure costs of deploying our design, except

for the reserved DRAM on servers.

Fundamentally, this paper introduces the notion of “mem-

ory hierarchy” to programmable switches, for which such

concept was absent. Current P4 switches just have an on-chip

memory. Once the switch faces workloads that need larger

memory than the cache, it cannot gracefully handle it with

low cost. This memory hierarchy we introduce draws parallels

to what DRAM did for CPU and CPU cache. We believe that

this work can inspire and ease the design of future in-network

applications that require large memory on the data plane. Fu-

ture steps include concretizing the systems described in §2,

and addressing the challenges explained in §7.

2 Motivating Examples
In this section, we examine three representative applications

that are limited by memory availability on switches. We use

these applications to motivate the need for remote memory

primitives. The below provides a high-level description of

how the primitives can benefit each use case and we leave the

design details to the later sections and future work.

2.1 Mitigating Packet Losses
The problem: Congestion drops due to bursty incasts are very

common in data center networks. For example, consider the

typical last-hop congestion in Figure 1a. Suppose all links are

40 Gbps, the ToR switch has 12 MB packet buffer, and 50 MB

traffic comes from eight uplinks at line rate and goes towards a

single receiving server. It will take at least 50MB/40 Gbps =

10 ms to receive all the traffic, however the 12 MB packet

buffer will be filled within 12MB/(8− 1)/40Gbps ≈ 0.34ms

and start dropping packets! This is well explained by past

literature [8, 35].

To avoid such packet drops, Priority Flow Control

(PFC) [15] has been proposed. Unfortunately, it leads to other

serious problems [36] such as occasional deadlocks. Also,

while packet detour [34] can reduce packet drops, it requires

switch and end host modifications. Another solution is to in-

crease packet buffer on switches, e.g., to more than 50 MB,

so that the whole burst can be absorbed. However, data center

operators and switch vendors are reluctant to do that as it

significantly increases costs and cannot scale to larger incast.
A potential solution: Imagine the ToR switch has a data-

plane channel that enables it to extend its packet buffers by

reading and writing DRAM placed in any servers under the

ToR (the dashed box in Figure 1a). When incast occurs and the

queue on switch starts to build up, the switch can start writing

all the following packets bound to the congested queue into

a remote buffer located in one or multiple servers (the red

dashed lines in the figure). Then, once the queue on the switch

is fully drained, the switch can start to read the packets back

from the remote buffer and continue forwarding them.

This packet buffer extension would significantly reduce, if

not eliminate, last-hop congestion drops, because in a com-

mon Clos topology, the total uplink bandwidth is equal to or

smaller than the downlink bandwidth. Since DRAM is much

more affordable than on-chip buffer memory, operators can

reserve O(1 GB) memory on each server for absorbing the

bursts. Before that >10 GB remote memory is all filled, any

bursty incast conditions should have passed, or (in the case of

persistent congestion) end-to-end congestion control based on

ECN [36] or delay [28] should have slowed traffic. In short,

this solution enables a “lossless” last-hop ToR switch, without

the caveats of PFC.

2.2 Extending Lookup Tables
The problem: Some applications and network functions re-

quire large lookup tables for handling different flows. We

use a concrete example in Microsoft Azure to illustrate this.

Azure offers a bare-metal hosting service, where customers

provide their “blackbox” servers, usually specialized database

systems, or security-related middleboxes. The cloud provider

hosts them in data centers, and must provide connectivity

to the VMs of the same customer, as shown in Figure 1b.

This means that the virtual IPs of bare-metal boxes and VMs

should be translated to physical IPs that can be forwarded in

the physical network.

Since the cloud provider cannot easily install specialized

hardware (e.g., smartNICs [14]) or software (e.g., virtual

switch [30]) on these blackboxes, such translation has to be

done outside the blackboxes. One option is pairing each of

the blackboxes with a dedicated server that runs smartNIC
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(RNICs) that are directly connected to the switches.2 We do

not require any hardware modifications on commodity RNICs

and switches. We design the primitives to be generic and mod-

ular, so that any data plane programs can use the primitives

to utilize remote memory while processing packets.
Goal #2 – No CPU involvement: Except for initialization,

the primitives do not require any involvement of CPUs, nei-

ther remote servers’ or switches’, while switches access the

remote memory. All memory access requests and responses

are processed entirely by the RNICs on the servers (the red

solid line in Figure 2). The CPUs are used only when initial-

izing and registering memory regions that will be accessed

by switches, and establishing an RDMA channel between the

RNIC and switches (the blue dashed line in the figure). This

property makes the server-side memory-extension architec-

ture low cost (no CPU overhead) and energy efficient.
The key design idea: Our key idea is to create an RDMA

channel between switches and remote servers so that the

switches can access remote memory via the channel even

without having RNICs on the switches and without involving

CPUs on the servers.

We realize this idea based on three insights. First, on Eth-

ernet networks with RoCE, RDMA requests and responses

are merely regular Ethernet packets with additional headers

supporting RDMA operations. This means that we can gen-

erate and process RDMA packets via any devices connected

to the networks. Second, emerging programmable switch-

ing ASICs [3] can manipulate, adding, or removing packet

headers at line rate. This enables us to design data plane ac-

tions to generate and process RDMA request/response packets

with low latency. Third, one-sided RDMA operations such as

RDMA WRITE, READ, and atomic Fetch-and-Add are pro-

cessed entirely by RNICs without the involvement of remote

servers’ CPUs. By leveraging such operations, we can make

the primitives simple and scalable since it does not require

any complex server-side components to control the memory

access from switches.

As mentioned earlier, we design the primitives as data

plane actions so that switch data plane programs can easily

adopt the primitives to utilize remote memory. The primitive

actions generate corresponding RDMA requests by adding

or manipulating RDMA headers on top of original or cloned

packets. An RDMA channel controller running on the switch

control plane and a server is responsible to allocate memory

regions on the server, set up an RDMA channel, and pass the

channel information including a remote queue pair number

(QPN), a base address of the registered memory region, and a

remote access key (Rkey) for the region to the data plane via

the switch control plane APIs.

4 Proof-of-Concept Design
We now explain in detail the current design of the primitives.
Packet buffer primitive: Using the packet buffer primitive,

the switch can store a packet to the remote packet buffer or

2In future work, it is possible to use any remote servers in the same RoCE

network after some technical challenges are addressed (§7).

load it back. Storing can be triggered by certain states in

the data plane (e.g., the egress queue length exceeds some

threshold or drains). The switch generates a RDMA WRITE

request containing the original packet to the remote RNIC.

To create such RDMA operation requests, the primitive adds

RoCE headers on top of a original packet and fills the header

fields with necessary information, such as an operation type

(i.e., WRITE or READ), a remote memory address, a QPN,

an Rkey to access remote packet buffer. We design the remote

packet buffer as a ring buffer and make the primitive maintain

the write and read offset pointer to the buffer so that it can

store and load packets from the right position of the buffer. In

the current prototype, we allocate the buffer to store full-sized

Ethernet frame in each entry.

Similar to storing, packet loading starts when a pre-defined

event (e.g., the egress queue length becomes some threshold)

occurs in the data plane. Specifically, the switch generates a

READ request and the RNIC immediately replies a READ

response. The switch must parse the READ response, decap-

sulate the RoCE headers, and passes the original packet to the

egress pipeline. In the current prototype, each load operation

fetches a single entire entry regardless of the original packet

size. The received READ response packet is also used as a

trigger for generating another READ request to fetch the next

packet in the remote buffer if exists. Also, to avoid packet

reordering, the primitive makes sure that until all packets in

remote buffer are read, the following new packets must also

be written to the remote buffer and read out in order.

As mentioned above, packet storing and loading starts or

ends based on a pre-defined condition (e.g., the current egress

queue length). Depending on the condition, end-to-end perfor-

mance may be affected (e.g., latency increases due to a packet

loaded too late). Finding a right condition to start loading

packets from remote buffer is our ongoing work.
Lookup table primitive: This primitive enables the switch to

look up the match-action table on remote memory for a given

packet. For example, the primitive action can be triggered

when a look-up miss happens on a local match-action table

on the switch. In the current design, the action generates

corresponding RDMA requests (1) to store the original packet

to the table on remote memory and (2) to load an ⟨action,

packet⟩ pair from the table. By bouncing the original packet to

and from the remote buffer, the switch does not need to store

the packet when waiting for the table entry. Upon receiving

the response from the RNIC, the switch parses the action and

applies it to the packet.

We design the lookup table primitive again using RDMA

WRITE and READ. Once the primitive is triggered, it first

calculates the target entry index in the remote table, based

on a user-defined hash function (e.g., hashing based on the

packet’s 5-tuple). Combined with entry size and base memory

address, which is initialized when setting up the RDMA con-

nection, it gets the target memory address. Then, it creates a

RDMA WRITE request based on the address and the packet

length and issues it to store the packet to the packet buffer
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measure the end-to-end latency with different packet sizes (64-

1 KB). Figure 3a shows the median end-to-end latency when

packets traverse the baseline and our prototype. Compared

to the baseline, a simple P4 implementation of L2 switch

without doing anything special, it only adds 1-2 µs latency on

average.
State-store primitive: To evaluate the state-store primitive,

we wrote a P4 program that counts the number of packets

transmitted between two end hosts using a counter in the

remote memory. We measure a link bandwidth consumed

by RDMA atomic Fetch-and-Add requests/responses to up-

date the remote counter as well as verify the accuracy of the

value in the counter. We ran raw_ethernet_bw to gener-

ate traffic with different packet sizes. Figure 3b shows that on

average, memory access requests generated by the primitive

consume 2.1 Gbps of link bandwidth between the switch and

the RNIC to update the remote counter while the updated

value is 100% accurate. This overhead is capped by RNIC

Fetch-and-Add throughput. As explained in §4, the switch

keeps track of RNIC progress, and it aggregates the counts lo-

cally until it finds that the RNIC can catch up. We also verify

that there is no end-to-end throughput degradation compared

with the baseline, a simple L2 switch.

All the primitives have zero CPU overhead.

6 Related Work
Accessing remote memory with RDMA: As RDMA en-

ables ultra low-latency remote memory access with mini-

mal CPU consumption, previous works have proposed var-

ious applications that utilize remote memory in a network.

These include key-value stores [12, 20, 27], distributed shared-

memory [12], transactional systems [10, 13, 21], and dis-

tributed NVM systems [24, 31]. While all these applications

adopt RDMA to let a server access remote memory on another

server, our work demonstrates a novel use of RDMA, which

allows network switches to leverage remote memory.
Applications on programmable switch data planes: With

recent advances in programmable switch data plane [3, 5],

studies have shown that various network functions such as

load balancers [26] and network telemetry [1, 29], and dis-

tributed applications such as key-value stores [18, 19] and

sequencers [22] can be implemented on a switch to improve

application performance and network efficiency. However,

such systems can have limited scalability due to scarce mem-

ory resource on the switch. Our primitives can potentially

benefit those applications by providing a memory hierarchy

with remote memory pool.
Lookup table updates via the control plane: Previous stud-

ies on software-defined networking have proposed ways of

updating flow-based rules to switches, either proactively or

reactively, via the control plane [25]. Some approaches [33]

attempt to scale the controller by distributing rules to multiple

authority switches. However, all these past approaches still

require control plane resources for moving the rules, mak-

ing them less applicable to data plane programs. We propose

more general remote memory access primitives. They can

be used for not only extending tables, but also packet buffer

and state-store, run purely in data plane and does not require

control plane involvement.

7 Discussion and Future Work
We conclude by highlighting a subset of open challenges and

future research directions.
Co-design of remote memory data structure and switch

data plane: The current design based on commodity switch

and RNICs can only support address-based memory access.

They do not natively support ternary or exact matching. Thus,

we design our prototypes using the most basic data structure

like FIFO queues and fixed-size array. It would be interest-

ing to co-design the data structure and switch data plane for

supporting ternary matching and other more complicated data

layouts in remote memory.
Further improving the telemetry system: We only show a

preliminary prototype – per-packet counting in remote mem-

ory – as an example telemetry system using the store-state

primitive. There is much room to improve. For example, to

reduce the bandwidth overhead of Fetch-and-Add packets, we

may further combine multiple counter updates into a single

operation, at the cost of some delay in updates. Also, design-

ing a general streaming packet trace analysis system with our

primitives is another interesting direction.
RDMA packet drops: The RDMA packets between the

switch and remote memory servers may get dropped due

to congestion or packet corruption. Such packet drops may

or may not affect the end-to-end performance and the ac-

curacy of primitive operations. For example, in the packet

buffer primitive case, an RDMA packet drop would lead to

dropping the original packet. Since Ethernet itself is best-

effort, applications and end-to-end protocol should tolerate

the packet drops. On the other hand, in the store-state primi-

tive, an RDMA packet drop would affect the accuracy of the

state on the remote store.

Future work has a few options to minimize the RDMA

packet drops. For example, one could enable PFC, just like

today’s RoCE deployment, to avoid congestion drops. Alter-

native, one may prioritize these RDMA packets so that they

are less likely to be dropped, and use a bandwidth cap to

prevent RDMA packets taking too much bandwidth. Finally,

on the switch side, one can implement parsing and handling

of RDMA ACKs/NACKs to make certain remote memory

reliable, e.g., in the remote counter case.
Other open problems: This paper aims to propose an ambi-

tious vision, thus leaving many possibilities and problems as

future work. These include: 1) to design a programming in-

terface for the primitives that general data-plane applications

can easily use; 2) to concretize the systems described in §2; 3)

to explore alternative system designs, e.g., for the switch table

extension, one may recirculate the original packet locally and

wait for the pulled entry, instead of depositing the original

packet. This can save the bandwidth overhead to the remote

memory; and 4) to improve the robustness of the architecture

by handling switch and server failures.
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