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ABSTRACT

There has been an accelerating interest in forecasting the weather and climate within the subseasonal time
range. The Madden—Julian oscillation (MJO), an organized envelope of tropical convection, is recognized as
one of the leading sources of subseasonal predictability. This review synthesizes the latest progress regarding
the MJO predictability and prediction. During the past decade, the MJO prediction skill in dynamical pre-
diction systems has exceeded the skill of empirical predictions. Such improvement has been mainly attributed
to more observations and computer resources, advances in theoretical understanding, and improved nu-
merical models aided in part by multinational efforts through field campaigns and multimodel experiments.
The state-of-the-art dynamical forecasts have shown MJO prediction skill up to 5 weeks. Prediction skill can
be extended by improving the ensemble generation approach tailored for MJO prediction and by averaging
multiensembles or multimodels. MJO prediction skill can be influenced by the tropical mean state and low-
frequency climate mode variations, as well as by the extratropical circulation. MJO prediction skill is proven
to be sensitive to model physics, ocean—atmosphere coupling, and quality of initial conditions, while the
impact of the model resolution seems to be marginal. Remaining challenges and recommendations on new
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research avenues to fully realize the predictability of the MJO are discussed.

1. Introduction

There has been a growing interest in forecasting the
weather and climate within the subseasonal range (i.e., 3—
4 weeks), which lies in between the medium-range weather
and seasonal forecasts. The subseasonal forecast is par-
ticularly important since many management decisions,
including those related to water, food, and hazard con-
siderations, fall into this range. Skillful predictions of
anomalous weather events, such as extreme precipitation
events, in the subseasonal time scale could provide policy
makers, emergency managers, and stakeholders with
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advance notice to prepare for mitgating actions (e.g.,
National Academies of Sciences, Engineering, and
Medicine 2016). Realizing the need for subseasonal
prediction, there have been ongoing efforts at opera-
tional centers in producing subseasonal forecasts and
expending these resources to application communities
(e.g., energy sector) who have become convinced of the
potential benefits of the subseasonal forecast regarding
its social and economic value.

The Madden—Julian oscillation (MJO; Madden and
Julian 1971, 1972) is recognized as one of the leading
sources of subseasonal predictability (e.g., Waliser 2011;
Zhang et al. 2013). The MJO is an organized envelope of
tropical convection with a life cycle of about 40-50 days,
fitting neatly within the subseasonal time scale (30-
90 days). It is characterized by a vast zonal scale
(wavenumber 1-3) and a dominant eastward propagation

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright

Policy (www.ametsoc.org/PUBSReuseLicenses).

9425


mailto:hyemi.kim@stonybrook.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

9426

over the tropical Indo-Pacific basin, particularly during
the boreal winter season. The MJO-associated convec-
tion and circulation anomalies affect global weather and
climate, acting as a primary source of subseasonal pre-
dictability for the global weather and climate system (e.g.,
Zhang 2005, 2013; Brunet et al. 2010; National Research
Council 2010; Lau and Waliser 2011; Zhang et al. 2013;
National Academies of Sciences, Engineering, and
Medicine 2016). Real-time MJO forecasts are now pro-
duced routinely by many centers, a big difference since the
community’s first attempts at cobbling together (experi-
mental) operational MJO forecasts (Waliser et al. 2006).
For example, NOAA/CPC! produces a weekly update of
MJO status and forecast, in addition to the dynamical
model MJO forecasts every day.

Until about a decade ago, MJO prediction with em-
pirical techniques often had higher skill than numeri-
cal models (Waliser 2006a,b). Then, several studies
demonstrated that MJO prediction in some numeri-
cal models has exceeded the skill of empirical models
(review by Waliser 2011; Lee et al. 2017). The im-
provement of MJO prediction by numerical models
has been mainly attributed to advances in theoretical
understanding and significant improvements of the
dynamical forecasting systems—including more obser-
vations and computer resources, better data assimila-
tion techniques, and improved numerical models (e.g.,
review by Kim and Maloney 2017) aided in part by
multinational efforts through field campaigns and
numerical model experiments (Petch et al. 2011;
Moncrieff et al. 2012; Waliser et al. 2012; Yoneyama
et al. 2013; Klingaman et al. 2015b). Nevertheless, es-
timates of the predictability of the MJO suggest that
there is still considerable room for improvement.

After the in-depth holistic review by Waliser (2011)
on MJO predictability and prediction, there have been
several review articles focusing on the MJO (Zhang
et al. 2013), subseasonal prediction (National Academies
of Sciences, Engineering, and Medicine 2016), and on-
going international activities on MJO and subseasonal
prediction (Robertson et al. 2015; Lee et al. 2017; Ling
et al. 2017; Vitart et al. 2017; Wheeler et al. 2017a).
These latter reviews provide broad views of the recent
activities on MJO research and applications but do not
focus on our recent gains in the science of MJO pre-
diction. This paper will review the advances that have
been made since Waliser (2011) regarding our MJO
prediction capabilities with dynamical prediction systems
and our scientific understanding of its predictability.

U http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/
mjo.shtml.
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Therefore, the articles cited here are mainly those pub-
lished after 2010. Although the northward-propagating
boreal summer intraseasonal oscillation is considered as a
dominant subseasonal mode during the summer, it is not
within the scope of the current review.

An overview of international activities that have pro-
moted the advancement of MJO prediction is introduced
in section 2. Review of the metrics/measures used in the
MJO prediction studies is provided in section 3, followed
by a review of MJO predictability and prediction skill in
the recent hindcasts in section 4. A detailed review of the
factors that influence the MJO prediction skill is provided
in section 5. Summary, remaining challenges, and sugges-
tions are discussed in section 6, followed by conclusions in
section 7. Acronyms are given in Table 1.

2. Multimodel experiments and field campaigns

There have been several internationally coordinated
efforts on multimodel hindcast experiments with the aim
of better understanding of the subseasonal predictability
and prediction (Zhang et al. 2013). The Intraseasonal
Variability Hindcast Experiment’ (ISVHE) launched
in 2009 was the first attempt to coordinate multimodel
long-term hindcast experiments focusing on intrasea-
sonal prediction, with a particular emphasis on multi-
model ensemble approach that has been proven to be
one of the most effective ways to improve the seasonal
prediction (e.g., Palmer et al. 2000, 2004; Shukla et al.
2000) and MJO prediction (Kang and Kim 2010; Fu et al.
2013). Eight ocean—atmosphere coupled models from
six centers participated in this experiment (Neena et al.
2014). Hindcasts of at least 45-day forecast lead time
were initialized on the 10th day of every month over
about 20 years. The intraseasonal predictability and
prediction skill from the ISVHE hindcasts have been
documented in a series of papers (Zhang et al. 2013;
Neena et al. 2014; Lee et al. 2015; Lee and Wang 2016).

The WWRP/WCRP Subseasonal to Seasonal Pre-
diction Project® (hereafter S2S Project) was launched in
2013, and the first phase will end in November 2018
(Zhang et al. 2013; Vitart et al. 2017), and the World
Meteorological Organization (WMO) has now ap-
proved the S2S Project for a second phase of five years.
Near-real-time forecasts and hindcasts from 11 opera-
tional centers have been delivered (Vitart et al. 2017)
and are accessible to the research community from the
ECMWF, CMA, or IRI data portals. By September
2017, 951 users from 92 countries have registered to the

2 http://www.cgd.ucar.edu/projects/yotc/mjofisvhe.html.
3 http://s2sprediction.net/.
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S2S database, and 225 TB (about 4 times the total vol-
ume of the S2S database) have been downloaded since
May 2015.* The majority of models demonstrated sub-
seasonal skill improvement, compared to their earlier
versions (Vitart 2017). MJO indices and associated
forecast variables are produced in near real time (3-week
delay)’ from centers participating in the S2S Project
(Vitart et al. 2017).

Eleven models participated in the MJOTF/GASS
multimodel experiment, producing 20-day hindcasts of
two strong MJO events during the YOTC period in
boreal winter 2009/10 (Klingaman et al. 2015a,b). From
October 2011 to March 2012, international field cam-
paign CINDY/DYNAMO (hereafter DYNAMO) col-
lected in situ observations in the tropical Indian Ocean
to investigate the mechanisms responsible for the initi-
ation of the MJO (Yoneyama et al. 2013; Zhang et al.
2013). Three MJO events were captured by the radar,
ship/mooring, and sounding observational network during
the DYNAMO field campaign. Based on the in situ data,
various aspects of the MJO have been documented.
Several studies conducted hindcast experiments for the
DYNAMO period to better understand the processes
associated with the MJO and to assess the MJO pre-
diction ability in global and regional models (e.g., Fu
et al. 2013; Kerns and Chen 2014; Ling et al. 2014;
Hannah et al. 2015; Xiang et al. 2015; Hagos et al. 2016;
Janiga and Zhang 2016), which will be discussed in
section 4.

3. Forecast and verification metrics
a. MJO index

The most popular index used for MJO prediction
studies is the Real-time Multivariate MJO (RMM) in-
dex developed by Wheeler and Hendon (2004). RMM1
and RMM2 are the first and second principal compo-
nents of the combined empirical orthogonal functions
(EOFs) of outgoing longwave radiation (OLR), zonal
wind at 200 and 850hPa averaged between 15°N and
15°S. Figure 1 is an update of Wheeler and Hendon
(2004, their Fig. 8) using ERA-Interim (Dee et al. 2011)
and NOAA OLR (Liebmann and Smith 1996) from
1979 to 2017. It represents the observed MJO life cycle
in eight different phases (phases 1-8) by compositing
the OLR and 850-hPa horizontal wind anomalies from
December to February (DJF) without discrimination for
MJO amplitude. The predicted RMMs are obtained by

4 http://s2sprediction.net/file/documents_reports/Minutes_6th_
SGM.pdf.
> http://gpvjma.ccs.hpee.jp/S28/S2S_MJO html.
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TABLE 1. List of acronyms.

Acronyms

20CRv2C NOAA Twentieth Century Reanalysis v2C

BCC Beijing Climate Center

BoM Bureau of Meteorology (Australia)

CAM Community Atmosphere Model

CESM Community Earth System Model

CFS Climate Forecast System

CMA China Meteorological Administration

CPC Climate Prediction Center

CYNDY Cooperative Indian Ocean Experiment on
Intraseasonal Variability in Year 2011

DYNAMO Dynamics of the MJO

ECCC Environment and Climate Change Canada

ECMWF European Centre for Medium-Range
Weather Forecasts

ERA-Interim ECMWEF interim reanalysis

FIM-iHYCOM Flow-following Icosahedral Model coupled
with an icosahedral-grid version of the
Hybrid Coordinate Ocean Model

GASS Global Energy and Water Exchanges
Atmospheric System Study

GEFS Global Ensemble Forecast System

GEOS-5 Goddard Earth Observing System Model
version 5

GFDL Geophysical Fluid Dynamics Laboratory

GFS Global Forecast System

GloSea5 Global Seasonal forecasting system
version 5

IRI International Research Institute for
Climate and Society

MAPP Modeling, Analysis, Predictions, and
Projections

MJOTF MJO Task Force

NASA National Aeronautics and Space
Administration

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental
Prediction

NICAM Nonhydrostatic Icosahedral Atmospheric
Model

NOAA National Oceanic and Atmospheric
Administration

POAMA Predictive Ocean—Atmosphere Model for
Australia

SCOAR Scripps Coupled Ocean—Atmosphere
Regional

SNU Seoul National University

SP-CAM Super Parameterized Community
Atmosphere Model

UH University of Hawaii at Manoa

UKMO Met Office

WCRP World Climate Research Programme

WWRP World Weather Research Programme

YOTC Year of Tropical Convection

the projection of the predicted anomalies onto the ob-
served combined EOF eigenvectors. More details on the
procedure can be found in Gottschalck et al. (2010) and
Vitart (2017). NOAA/CPC and the S2S Project provide
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FIG. 1. DJF composite for OLR (W m™%; shading) and 850-hPa
wind vector anomalies and wind speed (m's~'; shading) anomalies
calculated for eight MJO phases from 1979 to 2017. The number of
days falling within each phase is given.

RMM forecasts on the phase-space diagram (Wheeler
and Hendon 2004), which represents the location
(phase) and amplitude of the MJO as a function of
forecast lead times.

The majority of the studies on MJO simulation and
forecasts use the RMM index as a measure of the
MIJO. Although the RMM index is relatively simple to
calculate and thus, easy to implement for real-time
monitoring and forecasting, interpretation of the re-
sults often requires careful consideration. A principal
weakness of the RMM index is that the fractional con-
tribution of zonal wind fields to the variance of RMMs
is considerably larger than the contribution of the con-
vective fields (e.g., Straub 2013). Therefore, RMM skill
mainly reflects the skill of the predicted wind anomalies
but not necessarily the predicted convective anomalies
(i.e., precipitation or OLR; Kim et al. 2014; Klingaman
et al. 2015a). In other words, although the models do
not predict the convective anomaly very well (e.g., the
eastward propagation of the MJO precipitation), the
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prediction skill measured by the RMM could result in
fairly high skill, leading to a more optimistic conclusion
regarding our MJO prediction capabilities. Several al-
ternative methods have been introduced (e.g., Ventrice
et al. 2013; Kiladis et al. 2014; Ling et al. 2014; Kerns and
Chen 2016; Liu et al. 2016; Zhang and Ling 2017), al-
though the RMM index is being used in most MJO
prediction studies and operational forecasts.

b. Prediction and predictability metrics

Predictability is the theoretically achievable skill with
a perfect model, whereas prediction skill is an actual
achievable skill in a given prediction system that con-
tains initial condition and modeling errors. The differ-
ence between the predictability and prediction skill can
be interpreted as a deficiency in the forecast system and
provides an estimate of how much skill we might expect
to gain by reducing the model error and by improving
initial conditions. Common metrics that have been used
in recent studies to measure the prediction skill and pre-
dictability of the MJO are reviewed. When comparing
predictability and prediction skill in different models,
caution should be exercised, as the hindcast period and
season, ensemble size, verification dataset, and RMM
computation procedure are usually not the same.

1) PREDICTION SKILL

To represent an MJO prediction skill of a forecast
system, a common benchmark to measure the MJO
performance is scalar metrics, such as the bivariate
anomaly correlation coefficient (COR) or bivariate
root-mean-square error (RMSE), which represents the
skill as a function of forecast lead times (e.g., Lin et al.
2008; Rashid et al. 2011). COR and RMSE are calcu-
lated between the predicted and observed RMMs as
follows:

:Z [a, ()b, (t,7) + a,(t)b,(t,7)]
COR(7) = =

Il
4

1

;

- % Z{ [la, (1) = b, (t, 7)‘2 +lay(1) = b,(t, T)|2]’

t=N
[at (D) + a3(0)] \/ ; [bi(r,7) + B3(1,7)]

RMSE(r)

where a,(t) and a,(t) are the verification (observation or
reanalysis) RMM1 and RMM?2 at time ¢, b;(¢, 7) and
by(t, 7) are the respective forecasts for time ¢ with a lead
time of 7 days, and N is the number of predictions. COR
is equivalent to a spatial pattern correlation between
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observation and forecast when they are reconstructed
from the two leading EOFs (Lin et al. 2008). COR 0.5 is
usually being used as a threshold of skill, approximately
corresponding to a standardized RMSE of /2 for the
bivariate RMM index (Rashid et al. 2011). Unless oth-
erwise stated explicitly, the RMM prediction skill refers
to the time at which the COR falls below 0.5. These
performance-based metrics have been applied to subsets
of forecasts, such as the forecasts initialized in various
MJO phases or with different amplitudes (e.g., Rashid
et al. 2011).

2) PREDICTABILITY

Prediction skill of a given forecasting system is limited
by errors emanating from the imperfect model as well as
the errors from the initial conditions. MJO predictability
is regarded as an intrinsic limit of MJO prediction by as-
suming that the system has no error emanating from the
model itself (and thus a perfect system), but only sensitive
to the errors from initial conditions. The perfect-model
approach provided a pathway to estimate predictability
using dynamical models, although such predictability
estimate is highly model dependent. The perfect-model
assumption was first introduced in the MJO research with
the twin ensemble experiment by Waliser et al. (2003),
followed by several studies with multiensemble fore-
casting systems (Kim and Kang 2008; Pegion and Kirtman
2008; Neena et al. 2014; Kim et al. 2014; Liu et al. 2017).

Predictability is estimated in terms of the model
ability of each ensemble member to forecast the events
from the control (or ensemble mean) simulation. There
have been two different approaches to evaluate the
MIJO predictability: one is the anomaly correlation
metrics, and the other is the signal-to-noise metrics. The
anomaly correlation metric computes the correlation
between one ensemble member considered as the truth
and the rest of the ensemble members (Buizza 1997,
Pegion and Kirtman 2008; Kim et al. 2014; Xiang et al.
2015; Liu et al. 2017; Wheeler et al. 2017b). For example,
MIJO predictability is computed in the same way as
the prediction skill (COR), but with correlating the
RMM index from the control (or ensemble mean) with
the selected ensemble member (Kim et al. 2014). In the
signal-to-noise approach, the signal is defined as the
variance of the ensembles within a certain temporal
window that is large enough to encompass an entire
MJO event (e.g., 50-day sliding window). Noise is esti-
mated as the mean-square error of ensembles relative to
the control experiment (single ensemble member or
ensemble mean). Then, the predictability is defined as
the forecast lead time when the noise exceeds the signal
(Waliser et al. 2003; Kim and Kang 2008; Pegion and
Kirtman 2008; Fu et al. 2013; Neena et al. 2014). Neena
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et al. (2014) used the signal-to-noise approach to define
the MJO prediction skill by replacing the control simu-
lation with reanalysis.

3) AMPLITUDE AND PHASE

Basically, two factors can impact the MJO prediction
skill and predictability: the amplitude and phase of the
MJO. To identify the errors of the predicted amplitude
and phase, most of the studies follow the metrics by
Rashid et al. (2011). The MJO amplitude is defined as

AMP(1,7) = \/ RMMI(t, 7)* + RMM2(t, 7)°.

The amplitude error measures how fast the forecast
system loses the amplitude of the MJO signal and can be
calculated simply by comparing the predicted with the
observed amplitude as a function of lead time as

ERR, (1) = %Z [AMP_(t,7) — AMP_ (1)].

prd
Negative (positive) ERR,mp(7) indicates weaker (stron-
ger) amplitude in predictions, compared to the observa-
tion. The phase error measures the difference of the angle
between the predicted phase and observed phase in the
RMM phase-space diagram. The phase angle error can be
measured as a function of lead time as

a,(O)b,(t,7) — a,()b,(t,7)
a, ()b, (t,7) + a, ()b, (t,7)|

1 -
ERR,..() =% D tan™

Negative (positive) ERRphas(7) indicates slower (faster)
propagation in predictions, compared to the observation.

4) PROBABILISTIC MJO FORECAST

Compared to the traditional metrics for MJO pre-
diction and verification, the probabilistic forecast
approach has received little attention to date. Very re-
cently, Marshall et al. (2016) proposed a new display of
ensemble predictions of the MJO for real-time forecast
that overcomes some of the shortcomings in the tradi-
tional display that have been difficult in interpreting
a dispersive ensemble plume. Also, forecast verification
using probability-based skill scores (instead of de-
terministic skill measures) is introduced to evaluate the
model performance (Marshall et al. 2016). Probabilistic
forecasts have been recently implemented for the real-
time forecast® of the MJO at the Bureau of Meteorol-
ogy, Australia.

S http://poama.bom.gov.au/researcher/agm/project/mjo_prob/
mjo_prob.html.
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FIG. 2. The single-member prediction skill (black bar) and en-
semble-mean prediction skill (hatched bar) estimates (days) for
MJO for the eight models are shown along with their respective
single-member (tan-shaded area) and ensemble-mean (gray-
shaded area) estimates of MJO predictability [=5-day range; Fig. 4
from Neena et al. (2014)].

4. MJO predictability, prediction skill, and
predicted characteristics

a. MJO predictability

With the perfect-model approach, the predictability
of the MJO has been known to be about 3—4 weeks when
measured by intraseasonally filtered upper-level circu-
lation field and about 2 weeks by filtered precipitation
(Waliser et al. 2003; Liess et al. 2005). Such level of MJO
predictability was later supported by various numerical
model experiments (Reichler and Roads 2005; Kim and
Kang 2008; Pegion and Kirtman 2008). Studies argued
that MJO predictability can be extended for several
days when the ocean—-atmosphere coupling process is
included (Fu et al. 2007; Pegion and Kirtman 2008), al-
though the negligible improvement was proven in others
(Kim and Kang 2008). The models used in these pre-
dictability studies, however, were only marginally suc-
cessful at simulating the MJO.

After those studies were published around 2008, MJO
predictability study reached a plateau until 2014. Two
papers published in 2014 have shown that with multi-
model state-of-the-art forecasting systems, the MJO
predictability can reach up to 6-7 weeks when defining
the MJO with the RMM indices (Kim et al. 2014; Neena
et al. 2014). Figure 2 shows the predictability and pre-
diction skill from multimodels that participated in the
ISVHE project (Neena et al. 2014). With the signal-to-
noise approach, the predictability of the ensemble-mean
RMM forecast in most of the models ranges from 35 to
45 days. ECMWEF and ABOM?2 exhibit a higher pre-
dictability of up to 45 days (Neena et al. 2014) and about
40 days in BCC (Wu et al. 2016).

With the anomaly correlation approach with RMMs,
MJO predictability in ECMWEF, NCEP CFSv2, GFDL,
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YEAR

FIG. 3. Evolution of the MJO skill scores (RMM bivariate cor-
relations) since 2002 in ECMWF hindcasts. The MJO skill scores
have been computed on the ensemble mean of the ECMWF
hindcasts produced during a complete year. The blue, red, and
brown lines indicate the day when the MJO bivariate correlation
reaches 0.5, 0.6, and 0.8, respectively [updated Fig. 1 from Vitart
(2014)].

and POAMA remains above 40 days (Rashid et al. 2011,
Kim et al. 2014; Xiang et al. 2015; Marshall et al. 2017),
but is limited to 30 days in the BCC (Liu et al. 2017). The
consensus among the studies listed above is that the
initially stronger MJO events tend to be more predict-
able. The predictability for initially strong MJO events
ranges from 35 to 45 days, while for initially weak MJO it
is around 20-30 days (Neena et al. 2014; Wu et al. 2016).
Although the predictability is shown to be dependent on
the initial amplitude of the MJO, it is not sensitive to
initial phases (Kim et al. 2014; Neena et al. 2014; Wu
et al. 2016; Liu et al. 2017).

b. MJO prediction skill

The ensemble-mean RMM prediction skill scores (mea-
sured by signal-to-noise metrics) in the ISVHE hindcasts
vary widely, between 1 and 4 weeks in the boreal winter,
with the majority of the models having skill of 2-3 weeks
(Fig. 2). It needs to be mentioned that these ISVHE
hindcasts were produced around 2009 (Neena et al. 2014).
During the past decade, some forecasting systems have
shown a substantial improvement in MJO prediction.
For example, MJO skill in CFSv2 (~3 weeks; Wang et al.
2014) has been significantly extended, compared to its
previous version, CFSvl (~1.5 weeks; Seo et al. 2009).
Figure 3 shows the evolution of the RMM skill score in
ECMWF measured with the ensemble-mean hindcasts
and ERA-Interim. Since 2002, an average gain of skill is
about 1 day per year from 2002 to 2011 (Vitart 2014). The
flat correlation 0.5 curve between 2013 and 2015 is because
the forecast lead time was limited to 32 days until 2015,
but extended to 46 days since May 2015. Continuous
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improvement of RMM skill in ECMWF has been attrib-
uted to the reduction of the amplitude and phase error
(Vitart 2014). POAMA and UKMO have also shown
MIJO skill improvement (Rashid et al. 2011; Neena et al.
2014; Marshall et al. 2017; MacLachlan et al. 2015).

The recent S2S Project hindcasts have RMM prediction
skill scores varying widely between 10 and 38 days (Fig. 4),
with a similar range of skill in the recent SubX hindcasts
(K. Pegion 2018, meeting presentation’), which exhibit
an overall improvement over the ISVHE models. In ad-
dition to the ISVHE and S2S Project hindcasts (made
up of operational models), studies have shown the MJO
prediction skill in various models. About 4 weeks of
RMM skill have been demonstrated in the GFDL (Xiang
et al. 2015) and NICAM model (Miyakawa et al. 2014)
in boreal winter; about 3-week skill in BCC (Liu et al.
2017) and FIMiHYCOM (Green et al. 2017) in all seasons;
and about 2 weeks in the atmosphere-only models, such
as GEFS (Hamill and Kiladis 2014) and BCC (Wu
et al. 2016).

Besides the long-term hindcast simulations, forecast
experiments have been performed on individual MJO
events during a specific period. For the two strong MJO
events during the YOTC period (October 2009-January
2010), the majority of models have proven RMM skill
(correlation 0.7) of two weeks, with several models main-
taining skills beyond that (Klingaman et al. 2015a). For the
DYNAMO period (September 2011-March 2012), the
RMM skill (correlation 0.5) is about 13 days in GFS,
22 days in CFSv2, 27 days in BCC, 28 days in UH, and
29 days in the GFDL model (Fu et al. 2013; Xiang et al.
2015; Liu et al. 2017). With relatively short forecast ex-
periments for the DYNAMO period, the RMM skill
(correlation 0.9) is 9 days in SPCAM, 7 days in NCAR
CAMS (Hannah and Maloney 2014; Hannah et al. 2015),
and 5 days in NICAM (Nasuno 2013).

c. MJO characteristics in hindcasts

1) MJO AMPLITUDE

MIJO amplitude and phase are both important in the
assessment of MJO prediction skill. The majority of the
contemporary models exhibit faster decay of the MJO
signal than the observation. Even though the forecasts
are initialized with a strong MJO signal, the predicted
MJO signal does not persist as long as it does in obser-
vations. By comparing two operational forecasting sys-
tems, NCEP CFSv2 and ECMWEF (version cy32r3), Kim
et al. (2014) showed that the amplitude of the initially

7 https://ams.confex.com/ams/98 Annual/meetingapp.cgi/Paper/
331093.
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FIG. 4. RMM bivariate correlation between the model ensemble

means and ERA-Interim for 10 S2S models [Fig. 1 from Vitart
(2017)].

strong MJO events (RMM amplitude > 1.5) is kept
above a strong category (>1.5) until 10 days in both
observation and in NCEP CFSv2, while the ECMWF
drops to its threshold (1.5) in a week. Fast decay of the
MJO amplitude is also shown in the POAMA (Rashid
et al. 2011), GFDL (Xiang et al. 2015), and BCC (Wu
et al. 2016; Liu et al. 2017). The majority of the S2S
Project hindcasts tend to lose the MJO amplitude faster
than the observed within a week (Fig. Sa; Vitart 2017).
The change of amplitude varies among initial MJO pha-
ses, while there is no consensus of the amplitude de-
pendency on initial phases among models. For example,
the amplitude decreases faster than other phases when
the model is initialized at phases 2-3 in NCEP CFSv2 and
ECMWF (Kim et al. 2014), at phases 34 in POAMA
(Rashid et al. 2011), and at phases 4-6 in BCC (Liu et al.
2017) and GFDL (Xiang et al. 2015).

2) MJO PHASE

In general, during boreal winter, the MJO convection
envelope tends to initiate in the Indian Ocean and propa-
gate across the Maritime Continent to the western Pacific.
Skill declines are attributed to phase errors (Lim et al.
2018) rather than to amplitude errors, meaning that the
propagation (or stagnation) of the MJO is not accurately
predicted (Rashid et al. 2011; Kim et al. 2014; Vitart 2014;
Wang et al. 2014; Xiang et al. 2015; Wu et al. 2016; Liu et al.
2017). A consensus among studies is that models present
slower propagation speed than the observed. There is
about a 2-day delay, on average, over a 30-day lead time
forecast in POAMA (Rashid et al. 2011). MJO propaga-
tion in the ECMWF and NCEP CFSv2 is about 15° lon-
gitude slower than observation over a 25-day forecast lead
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(b), a positive (negative) value indicates a too fast (slow) MJO
propagation [Fig. 3 from Vitart (2017)].

time (Kim et al. 2014). In most of the S2S Project hindcasts,
the phase error changes to negative (slower propagation)
after about 2 weeks (Fig. 5b; Vitart 2017). On the contrary,
some models (GFDL and BCC) have shown rather faster
propagation (Xiang et al. 2015; Liu et al. 2017). Although
the phase error varies among initial phases, there is no
consensus of the phase error dependency on initial phases
among models.

Most forecast systems have some deficiencies in pre-
dicting the MJO propagation through the Maritime
Continent, a problem referred to as the Maritime Con-
tinent MJO prediction barrier (Vitart et al. 2007; Seo
et al. 2009; Seo and Wang 2010; Vitart and Molteni 2010;
Wang et al. 2014; Kim 2017; Vitart 2017). This barrier is
likely not an inherent predictability issue but rather a
modeling issue due to poor representation of the MJO
propagation (Kim et al. 2014; Neena et al. 2014). This
will be discussed in section 6.
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5. Sensitivity of MJO prediction skill to various
factors

It is obvious that MJO prediction skill has significantly
extended during the last decade. However, a significant
gap between our demonstrated prediction skill mea-
sures and our estimates of predictability still remains. In
this section, various factors that are shown to impact
MJO prediction skill are reviewed.

a. MJO amplitude and phase

MIJO prediction skill is sensitive to the initial ampli-
tude and phase of the MJO. When the model is initial-
ized with a strong MJO signal, the prediction skill
(correlation coefficient) tends to be higher than when
initialized with weak or with no MJO signal (e.g., Kim
et al. 2014; Lim et al. 2018). Skill is higher in boreal
winter when the MJO is generally more active (e.g.,
Rashid et al. 2011; Wang et al. 2014; Liu et al. 2017; Lim
et al. 2018). In the S2S Project hindcasts, the average
skill of the initially moderate MJO events lies in be-
tween the strong and weak events (Fig. 6). Although
recent studies have agreed on the MJO skill-amplitude
relationship, skill does not seem to improve gradually as
the MJO amplitude becomes stronger. For example, Kim
et al. (2016) found that not all initially weak MJO events
have low skill, and not all strong MJO events result in
high skill. The predictions starting with moderate MJO
amplitude especially could either end up with high or low
skill depending on the environmental condition, which
eventually induces favorable (or unfavorable) conditions
for MJO development.

MIJO prediction skill largely depends on the phase of
the MJO. When a forecast is initialized in a specific
phase of the MJO, the skill can be higher than other
phases. However, among recent studies, there is no
consensus about the MJO skill-phase relationship. For
example, ECMWF (Fig. 7) and GFDL hindcasts show
relatively high skill when the model is initialized with an
MJO signal in the Indian Ocean (phases 2-3; Xiang et al.
2015; Kim 2017), but in phases 3-4 in POAMA (Rashid
et al. 2011) and phases 4-5 and phases 8-1 in CFSv2
(Wang et al. 2014). The sensitivity of prediction skill
to the initial MJO phases is highly model dependent.
In the most recent S2S Project hindcasts, there is no
consensus found for MJO skill-phase dependency (Lim
et al. 2018).

b. Impact of the mean state and extratropics

MIJO predictability and prediction skill varies with
changes in the low-frequency background and/or mean
state (e.g., Waliser et al. 2001). With 30-yr hindcasts
from the POAMA, a substantial extension of the MJO
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corner [Fig. 2 from Lim et al. (2018)].

predictability and prediction skill is found during the
easterly phase of the quasi-biennial oscillation (QBO;
Marshall et al. 2017). The RMM prediction skill is
31 days in the easterly QBO years, but only 23 days in
the westerly QBO years. The extended prediction skill
and predictability during the easterly QBO are not only
due to more initially stronger MJO events (Yoo and Son
2016; Son et al. 2017), but also to a more coherent MJO
event (Nishimoto and Yoden 2017). Besides the QBO,
MJO prediction skill is sensitive to the Indian Ocean
dipole (IOD). In the 20-yr hindcasts from BCC, RMM
prediction skill is about 15 days during negative 10D
years but extends to 20 days during positive IOD years
(Liu et al. 2017). However, this RMM skill-IOD re-
lationship is not rooted in the observed physical pro-
cesses between the MJO and IOD, but is mainly due to
the mean state bias. Besides the studies by Waliser et al.
(2001), Marshall et al. (2017), and Liu et al. (2017), the
interannual change of MJO prediction has received
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little attention, mainly due to the lack of hindcasts
over a sufficiently long period. A better understanding
of the large-scale basic state forcing on MJO predict-
ability could potentially enhance the MJO prediction
skill.

In addition to the tropical mean state, the extratropical
circulation influences MJO prediction. Using a series
of relaxation hindcast experiments with the ECMWF
model, Vitart and Jung (2010; cf. Ferranti et al. 1990)
showed that the RMM skill drops significantly from 28
to 22 days when the extratropical influence on tropics
is artificially suppressed. This is mainly due to a slower
propagation speed and weaker MJO amplitude, consis-
tent with Ray and Li (2013). In contrast, RMM skill in-
creases from 28 to 40 days when the extratropics are
relaxed toward the ERA-Interim. More work is needed
to better understand the extratropical influence on MJO
prediction as a source of predictability.

c. Ensemble generation

In weather and climate prediction, there has been an
increasing use of ensembles to obtain better forecasts.
One advantage of using ensembles is that the forecast
uncertainty can be estimated via ensemble spread (en-
semble standard deviation). For a perfectly reliable
system, the ensemble spread equals the RMSE between
the ensemble mean and observation (e.g., Leutbecher
and Palmer 2008). Ensemble predictions for MJO have
been shown to be underdispersive (or overconfident),
indicating lack of ensemble spread (Rashid et al. 2011;
Kim et al. 2014; Neena et al. 2014; Xiang et al. 2015;
Green et al. 2017; Liu et al. 2017; Lim et al. 2018).
Figure 8 shows the relationship between the ensemble
spread and the ensemble-mean RMSE for the MJO in
ISVHE hindcasts (Neena et al. 2014). In all models,
the spread is smaller than the RMSE, and models with
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relatively better-dispersed ensembles exhibit higher
ensemble-mean skill (Fig. 8b).

Several efforts are underway to improve the repre-
sentation of uncertainties from initial conditions and
the models. To generate initial perturbations suitable to
MJO prediction, the breeding method (Liess et al. 2005;
Chikamoto et al. 2007) and singular vectors (Molteni
and Palmer 1993; Ham et al. 2012) have been explored/
adopted. With 10-yr hindcasts using NASA GEOS-5,
Ham et al. (2012) showed 2-3-day extended RMM skill
with an empirical singular vector approach than ran-
dom perturbations. With the SNU GCM hindcast,
RMM skill does not substantially differ among three
different perturbation methods (Kang et al. 2014).
There have also been efforts toward improving the
representation of uncertainty in the model physics
schemes. For example, in the ECMWF Ensemble Pre-
diction System, the stochastic perturbation schemes
improved the frequency and amplitude of the MJO
(Weisheimer et al. 2014) and the spread—error rela-
tionship (Palmer et al. 2009; Leutbecher et al. 2017;
Subramanian and Palmer 2017). In addition to improving
the models, devising ensemble generation approaches
tailored for the MJO might have a considerable impact
on MJO prediction.
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d. Multimodel ensemble forecasting

Recent studies have clearly shown that averaging
multiensembles or multimodels can extend the MJO
prediction skill (e.g., Fu et al. 2013; Kim et al. 2014;
Neena et al. 2014; Ren et al. 2017). In all models,
ensemble-mean skill exceeds single ensemble member
skillin MJO prediction (e.g., Fig. 2 and Neena et al. 2014).
The size of the ensemble also impacts the ensemble-mean
skill. Vitart (2017) showed that in ECMWF hindcasts,
RMM skill (correlation 0.6) can be reached at 28 days
instead of 25 days when using 11 ensemble members in-
stead of five members. The S2S models with relatively
larger ensemble size show greater improvements of
RMM skill in ensemble mean, compared to their control
forecasts (Vitart 2017).

With an equally weighted multimodel ensembles
(MME) of CFSv2 and UH hindcasts, a significant ex-
tension of RMM skill (36 days) was found, compared to
their individual skills (22 and 28 days, respectively; Fu
et al. 2013). By averaging two GCMs and one statistical
model with different weightings, RMM skill can be
sustained about 4-5 days longer than the best dynamical
model (Kang and Kim 2010). When two dynamical
models with similar prediction skill and sufficient model
diversity are combined, the MME shows improvements
in RMM skill, although including a low-performance
model in the MME can degrade the skill (Green et al.
2017). Combining all available hindcasts with an equal
weighting for an MME does not exceed the skill of av-
eraging a few good models (Zhang et al. 2013). To ex-
tend the MJO skill, therefore, the individual model
needs to be improved in tandem with developing an
optimal strategy for MME.

e. Ocean—atmosphere coupling

The ocean—atmosphere interaction affects the MJO
simulation and prediction. Many observational diag-
noses have shown coherent variations in sea surface
temperature (SST), surface fluxes, and convection as-
sociated with the MJO [review by DeMott et al. (2015)
and references therein]. Particularly in the Indo-Pacific
Ocean, warm SST east of the MJO convection supports
the MJO propagation by affecting SST-modulated heat
fluxes and enhancing the boundary layer moisture con-
vergence, which maintains the convective anomalies
and fuels the eastward propagation (e.g., Lindzen and
Nigam 1987; Waliser et al. 1999; Maloney and Sobel
2004; Back and Bretherton 2009; Hsu and Li 2012;
Hirata et al. 2013).

The importance of such ocean feedback to MJO fore-
cast has been demonstrated in several studies. In hind-
casts over short periods during major field campaigns,
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about a 3-5-day improved MJO skill was found in the
coupled configuration, compared to the uncoupled fore-
casts in the NCEP CFSvl1 (Seo et al. 2009), CFSv2 and
ECHAM (Fu et al. 2013), and Met Office Unified model
(Shelly et al. 2014). With hindcasts over a longer period
(>10 years), turning off the coupled feedback resulted
in a loss of 8 days of RMM skill in FIM-iHY COM hind-
casts (Green et al. 2017). When the model is initialized
over the Indian Ocean, a 2-3-day extended RMM skill
was found in the SNU coupled model due to the realistic
simulation of the SST—convection quadrature relation-
ship (Kim et al. 2010). With 20-yr ECMWF hindcasts,
Kim et al. (2016) showed that the MJO event that results
in high RMM skill has more realistic ocean—atmosphere
feedback during its prediction than the low RMM skill
event.

Using ECMWF hindcast experiments covering the
TOGA COARE period, Woolnough et al. (2007) and
Vitart et al. (2007) detected a 5-day improvement in
RMM skill when the atmosphere is coupled to an ocean
model, primarily from high vertical resolution (1 m) in
the near surface and high coupling frequency (hourly). It
is demonstrated that the vertical mixing processes play
an important role in determining the intraseasonal and
diurnal variation of the SST, which develop in response to
the surface fluxes driven by the MJO convection. With
hindcast experiments for the DYNAMO period using the
high-resolution SCOAR model, Seo et al. (2014) also
demonstrated the critical role of diurnal SST variability in
the buildup of preconvection warming and moistening,
indicating the diurnally varying SST as a source of the
MJO predictability. A coarse vertical resolution (~10m)
for the upper ocean is probably not sufficient to resolve
the intraseasonal to diurnal SST variability.

Although most studies show improvement in MJO
prediction by including the ocean-atmosphere inter-
action, Hendon (2000) demonstrated that the coupling
could degrade the MJO skill due to the error in the
basic state. Moreover, the role of coupling is case de-
pendent. Among five MJO events that occurred during
DYNAMO, only two observed MJO events were strongly
coupled with the ocean, while some of them are largely
controlled by the atmospheric internal dynamics (Fu et al.
2015). The atmospheric response to the ocean also varies
with the model physics (convective parameterization;
Wang et al. 2015). Various aspects of the model config-
urations, such as model physics and resolution, could also
affect the response of the MJO to ocean—atmosphere
coupling (Seo and Wang 2010; Crueger et al. 2013).

f- Model physics and resolution

Due to the huge computational costs for a long re-
cord of extended range hindcasts experiment, only a

REVIEW

9435

handful of studies have performed sensitivity tests of
the MJO skill to model physics or resolution. Most of
the studies are based on case studies. Using the oper-
ational GFS for the DYNAMO period, Wang et al.
(2015) found the MJO forecasts to be sensitive to the
cumulus convection scheme. In particular, the simplified
Arakawa—Schubert version 2 (SAS2) convection scheme
(Han and Pan 2011), which has been used in the NCEP
operational GFS since 2011, leads to a much weaker MJO
amplitude and lower forecasting skill than the relaxed
Arakawa—Schubert (RAS; Moorthi and Suarez 1992,
1999) and SAS (used in the NCEP CFSv2) schemes.
This is mainly due to the drier lower troposphere
caused by a persistent weak shallow convective moist-
ening and stronger drying associated with the deep con-
vection in SAS2, which leads to less intense convective
activity.

The significant increase of the MJO prediction skill
in the ECMWF model (Fig. 3) was mainly due to the
improved model physics (Vitart 2014), although
the improvement cannot be tied to a single change of
the forecast system. Some of the improvements can be
attributed to the introduction of a parameterization of
ice supersaturation in 2006, new radiation parameter-
ization in 2007, and modified convective parameteri-
zation in 2008 (Vitart 2014). The enhancement of skill
in 2008 (model version cy32r3; Bechtold et al. 2008) is
mainly attributed to the convective parameterization
modified in a way that the deep convection became
more sensitive to environmental moisture instead of
being controlled by the large-scale moisture conver-
gence (Bechtold et al. 2008; Hirons et al. 2013a,b). In
particular, significant improvement is found for the
MJO events initialized in the Indian Ocean (Vitart
2014). With CAMS, which is the atmospheric compo-
nent of the NCAR CESMI, sensitivity experiments
were performed for two MJO events during the
DYNAMO period (Hannah and Maloney 2014). They
showed that the RMM skill increases from 12 to
20 days via an enhancement to the entrainment rate for
deep convection, which tends to strengthen the MJO
amplitude (Bechtold et al. 2008). Similar MJO skill
improvement by increasing entrainment is found in
the hindcast for the YOTC period (Klingaman and
Woolnough 2014).

Another attempt to improve the MJO prediction
is the use of a model with superparameterization.
In this approach, in place of using a conventional cu-
mulus parameterization, a 2D cloud-resolving model
is embedded in a GCM grid box. By comparing the
DYNAMO hindcast of CAMS with superparameter-
ized CAM (SP-CAM), Hannah et al. (2015) showed
that the SP-CAM hindcasts have a more robust
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representation of the MJO convection, compared
to CAMS. The RMM correlation skill is higher in
SP-CAM, but with larger RMSE than the CAMS, due
to the strong systematic drift in the SP-CAM.
Miyakawa et al. (2014) performed hindcasts during
2003-12 with the NICAM global system-resolving
model (14-km mesh) and showed that the RMM skill
(correlation 0.6) is about 27 days, which outperforms
the majority of operational forecasts. However, the
physical reason for why the resolving cloud system
improves the MJO prediction remains elusive.

Similarly, because of the computational cost, only a
few studies have investigated the sensitivity of MJO
prediction skill to changes in model resolution. By
comparing the MJO skill in ECMWF with four different
atmospheric model horizontal resolutions (about 300,
200, 120, and 80km), Vitart et al. (2007) showed some
extended skill in the higher-resolution versions, but
not a gradual improvement as the resolution becomes
higher. Further, by comparing the model with 60- and
30-km horizontal resolution and 62 and 137 vertical
levels in the ECMWF model, no sensitivity of MJO
prediction skill was found.® At present, the impact of the
atmospheric model resolution on MJO skill seems to be
marginal, compared to the impact of physical param-
eterization or ocean-atmosphere coupling (Vitart
et al. 2007).

g. Initial condition and verification dataset

Only a few studies have tested the MJO prediction
sensitivity to initialization. In BCC hindcasts (Ren et al.
2017), the MJO prediction skill becomes slightly better
when moisture is included in the initialization. Ling et al.
(2014) examined the sensitivity of MJO prediction skill
to observations assimilated in the analysis with the
ECMWF model for the DYNAMO period. Although
the sounding data or atmospheric motion vector winds
over the Indian Ocean were excluded in the data as-
similation system, no significant change in RMM pre-
diction skill was found.

When the atmospheric initial conditions are derived
from a system using a similar atmospheric model (e.g.,
ERA-Interim and ECMWEF hindcast), the initial shock
is smaller than when using initial conditions derived
from different models (Wheeler et al. 2017b). Similarly,
in some models, the MJO skill is sensitive to the choice
of the verifying analysis. For example, when the
ECMWEF hindcast is verified against 20CRv2C instead
of ERA-Interim, RMM skill (correlation 0.6) drops
from 28 to 25 days (Vitart 2017). In addition, the MJO

8 ftp://cola.gmu.edu/pub/stan/MIOWorkshop/Vitart_MJO.pdf.
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prediction skill is sensitive to the quality of initial con-
ditions, especially the atmospheric initial conditions.
The RMM prediction skill (correlation 0.5) in ECMWF
increases from 14 to 16 to 18 days when the forecast
system uses atmospheric initial conditions taken from
ERA-15, ERA-40, and ERA-Interim, respectively, due
to a better representation of the MJO in the ERA-
Interim (Vitart et al. 2007; Dee et al. 2011). A similar
conclusion has been made with the UH hindcasts (Fu
et al. 2011). With BCC hindcasts, Liu et al. (2017)
showed that the RMM skill increases from 16 to 18 days
with more accurate atmospheric initial conditions and
further increases to 22 days with better ocean initial
conditions. These studies suggest that the improvements
of quality of atmospheric and ocean analyses/reanalyses
are conducive to extending MJO prediction skill.

6. Summary and recommendations

The review synthesizes the key advances in MJO
prediction studies during the past decade. Theoretical
studies, multimodel experiments, and field campaigns
have led to a better understanding of the processes,
which are critical to simulating the MJO in numerical
models. This has guided improvements to numerical
weather prediction models, particularly boundary
layer, cumulus convection, and microphysics parame-
terizations, leading to significant advances in MJO
prediction.

The recent models have shown MJO prediction skill
scores (based on RMM correlation coefficient 0.5)
varying widely between 2 and 5 weeks, depending on
the model, as well as the initial MJO phases and am-
plitudes. When a model is initialized with stronger
MIJO signal, prediction skill tends to be higher than
when initialized with a weaker signal. Although the
ensemble predictions have been shown to be under-
dispersive (or overconfident), prediction skill can be
extended by improving ensemble generation approach
tailored for MJO prediction and by averaging mul-
tiensembles or multimodels. MJO prediction skill can
be influenced by the tropical mean state and low-
frequency climate mode variations (QBO and 10D),
as well as by the extratropical circulation. MJO pre-
diction skill is proven to be sensitive to model physics,
ocean—atmosphere coupling, and quality of initial condi-
tions, while the impact of the model resolution seems to
be marginal.

With the perfect-model approach, the estimate of
the MJO predictability is 6-7 weeks, suggesting that
many challenges remain to improve the dynamical
forecasting systems and to fully realize the predictability
of the MJO. Along with forecast system improvement
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highlighted in previous sections, some additional spe-
cific issues and recommendations are discussed below.

a. Maritime Continent prediction barrier

The Maritime Continent is the largest archipelago on
the planet, with complex land-sea distribution and
orography and multiscale ocean—atmospheric interac-
tions. When the MJO propagates from the Indian Ocean
to the western Pacific, it often weakens or completely
breaks down when it reaches the Maritime Continent
(e.g., Rui and Wang 1990; Hendon and Salby 1994)
due to orography, strong diurnal convection, disrupted
atmosphere—ocean feedbacks, and many other factors.
Compared to nature, this Maritime Continent barrier
effect is exaggerated in climate models. In the earlier
version of the ECMWEF hindcast, Vitart et al. (2007)
showed that the system does not accurately predict the
MIJO propagation through the Maritime Continent.
Similar results were found in more recent versions of the
ECMWEF (Kim et al. 2014, 2016; Kim 2017; Vitart 2017),
NCEP CFSvl (Seo and Wang 2010; Fu et al. 2011),
NCEP CFSv2 (Kim et al. 2014; Wang et al. 2014), GFDL
(Xiang et al. 2015), and BCC (Liu et al. 2017) hindcasts.
As mentioned before, studies have suggested that the
Maritime Continent prediction skill barrier is a model-
ing problem, rather than a predictability issue (Kim et al.
2014; Neena et al. 2014).

Figure 9 shows the percentage of MJO events not
crossing the Maritime Continent in the ERA-Interim
and in 10 S2S Project hindcasts when the forecasts are
initialized with strong MJO convection over the Indian
Ocean (phase 2 or 3; Vitart 2017). The percentage is only
about 10% in the ER A-Interim, but significantly higher
in all the S2S Project hindcasts, with a proportion
ranging from 19% to 46%. This indicates that simulating
the MJO propagation across the Maritime Continent is
one of the major hurdles to overcome to improve the
MJO prediction skill. Because of the existence of this
barrier in dynamical models, there has been a growing
interest in understanding the critical processes involved
in the MJO propagation, such as the Years of the Mar-
itime Continent” (YMC) international project.

b. Process-based hindcast evaluation

Many GCMs still exhibit shortcomings in simulating
realistic MJO characteristics, including its amplitude,
propagation, and horizontal and vertical structures (e.g.,
Jiang et al. 2015, 2018; Ahn et al. 2017). During recent
years, great efforts have been made to understand
the critical processes for better MJO simulation by

o http://www.bmkg.go.id/ymc/.
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FIG. 9. Percentage of MJO events that are located in phases 2 or 3
(active phase over the Indian Ocean) in the initial condition with an
amplitude larger than 1, which never propagate into the western
Pacific (phases 6 or 7), even as a weak MJO during the following 30
days [modified from Table 1 of Vitart (2017)].

developing a so-called ‘“‘process-based diagnosis” of
GCMs [review by Jiang and Kim (2017)]. Several
process-based metrics have been developed and applied
to multiyear climate runs (e.g., Jiang et al. 2015; Ahn
et al. 2017) and MJO hindcasts with case studies (Ling
et al. 2014; Hannabh et al. 2015; Klingaman et al. 2015a).

Up until now, however, evaluations of MJO fidelity
in subseasonal forecasts have focused mostly on per-
formance-based skill (e.g., correlation, RMSE) rather
than on process-based metrics (e.g., moisture—convection
process, convection—radiation feedback, ocean—atmosphere
interaction). The lack of robust process-based studies
in MJO prediction research was partly due to the
lack of multiple variables output required for process
study from frequently initialized hindcasts over a long
period of time (>10 years). A newly launched multi-
model subseasonal forecast effort is the Subseasonal
Experiment'® (SubX),a NOAA Climate Test Bed project
that combines multimodels from NOAA, NASA, the
U.S. Navy, and ECCC to produce real-time forecasts
as well as hindcasts, with a focus on subseasonal fore-
casts. In addition to the S2S Project, hindcast/forecast
output from the SubX project, which will make available
numerous fields from the current generation predic-
tion systems, presents an unprecedented opportunity
to relate MJO performance to process-based metrics.
Such analysis will shed light on which physical processes
in the atmosphere-ocean system need to be better rep-
resented in numerical models to produce better MJO
predictions.

¢. Mean state and MJO simulation fidelity

There is a growing interest in understanding the role
of the mean state bias on MJO prediction. Biases in
hindcasts/forecasts over the tropics develop quickly and
become saturated within 5 days (e.g., Agudelo et al.
2009). Mean biases can distort the MJO skill scores by

19 http://cola.gmu.edu/kpegion/subx/.
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influencing further development of the MJO (Hannah
et al. 2015; Kim 2017). From the moisture mode theory
view (e.g., Raymond and Fuchs 2009; Sobel and
Maloney 2012, 2013; Adames and Kim 2016), it has been
argued that the horizontal moisture advection tends to
play a dominant role in the eastward propagation of the
MJO through the Maritime Continent. The advection
of the seasonal mean moisture by the MJO-associated
wind anomalies plays a particularly important role
(Jiang et al. 2015, 2018; Adames and Kim 2016; Jiang
2017). Using model output from the MJOTF/GASS
multimodel comparison project, Gonzalez and Jiang
(2017) showed that the model fidelity in representing
the mean moisture distribution over the tropical Indo-
Pacific is strongly related to the MJO propagation
fidelity. In other words, models with dry bias in the Indo-
Pacific weaken the mean horizontal moisture gradient,
thus dampening horizontal moisture advection associ-
ated with the MJO propagation. Similarly, by comparing
individual moist static energy budget terms in the 20-yr
ECMWEF hindcast, Kim (2017) showed that the dry bias
in the seasonal mean moisture field is a key factor that
deteriorates the propagation and thus the prediction
skill of MJO. The majority of S2S Project hindcasts
have mean dry bias in the Indo-Pacific region, especially
near the Maritime Continent (Lim et al. 2018). Under-
standing the role of mean state bias on MJO prediction
and improving the mean state is crucial to extending the
MIJO prediction skill.

However, although a few studies argued that the
systematic mean bias plays a role in MJO prediction,
how the MJO-mean state tradeoff issue can be rec-
onciled in the prediction point of view is unclear. A
major issue that has plagued the modeling community
for decades is the MJO and mean state tradeoff issue
(Kim et al. 2011; Kim and Maloney 2017). Changes in
convection scheme can improve the MJO simulation,
but often also lead to the degradation of the mean
state. By comparing 10 AGCM simulations, Kim et al.
(2011) showed that the seasonal mean precipitation is
degraded when the MJO is better simulated, and vice
versa. It indicates that in some cases, the MJO may
have been improved for the wrong reasons. Because
better simulation of mean state and interannual vari-
ability (e.g., ENSO) has often had higher priority than
the intraseasonal variability in model development,
and because of the complexity and diversity of mech-
anisms associated with MJO, the improvement of the
MJO simulation has been delayed (Kim and Maloney
2017). More focus on the relationship between the mean
state and representation of MJO processes warrants fur-
ther studies to improve the MJO prediction toward its
theoretical predictability.

JOURNAL OF CLIMATE

VOLUME 31

In addition to the MJO-mean state tradeoff issue,
the link between model performance in simulating
MIJO and that in forecasting MJO needs to be con-
sidered. MJO simulation performance does not nec-
essarily translate into prediction performance, which
is partially shown in a series of studies (Jiang et al.
2015; Klingaman et al. 2015a; Xavier et al. 2015). For
example, Klingaman et al. (2015a) compared the MJO
prediction skill in multimodels with 20-day hindcast
simulation for two MJO events. Among 27 model
MJOTF/GASS hindcasts, two CAMS5 models have
shown the best MJO prediction skill, while they dis-
played very weak MJO activity and thus, weak MJO
fidelity in the 20-yr climate simulations (Klingaman
et al. 2015a). Such contradicting results between sim-
ulation and prediction may be attributed to a nonlinear
interaction between model error and initial value error,
which could make the prediction uncertain. Thus, un-
derstanding the relationship between simulation fidelity
and prediction skill of the MJO and further obtaining a
reliable description on the uncertainty of forecast error
is a highly challenging task.

7. Conclusions

Subseasonal forecasts are particularly important since
many management decisions, including those related to
water, food, and hazard considerations, fall into this
range. Skillful predictions of anomalous weather events,
such as extreme precipitation and heat waves, in the
subseasonal time scale could provide policy makers,
emergency managers, and stakeholders with advanced
warning to prepare mitigating actions. Since the MJO is
regarded as a major source of subseasonal predictability,
the continuous improvement of MJO prediction during
the past decades warrants an optimistic view on fore-
warning for MJO-related extreme and hazardous, as well
as fair weather, events. In particular, the recent collabo-
rative efforts on subseasonal prediction (e.g., S2S Project,
NOAA SubX, and NOAA S2S Task Force) provide an
unprecedented opportunity to facilitate addressing the
challenges with process-level understanding for MJO and
associated weather and climate events.
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