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ABSTRACT

There has been an accelerating interest in forecasting the weather and climate within the subseasonal time

range. The Madden–Julian oscillation (MJO), an organized envelope of tropical convection, is recognized as

one of the leading sources of subseasonal predictability. This review synthesizes the latest progress regarding

the MJO predictability and prediction. During the past decade, the MJO prediction skill in dynamical pre-

diction systems has exceeded the skill of empirical predictions. Such improvement has beenmainly attributed

to more observations and computer resources, advances in theoretical understanding, and improved nu-

merical models aided in part by multinational efforts through field campaigns and multimodel experiments.

The state-of-the-art dynamical forecasts have shown MJO prediction skill up to 5 weeks. Prediction skill can

be extended by improving the ensemble generation approach tailored for MJO prediction and by averaging

multiensembles or multimodels. MJO prediction skill can be influenced by the tropical mean state and low-

frequency climate mode variations, as well as by the extratropical circulation. MJO prediction skill is proven

to be sensitive to model physics, ocean–atmosphere coupling, and quality of initial conditions, while the

impact of the model resolution seems to be marginal. Remaining challenges and recommendations on new

research avenues to fully realize the predictability of the MJO are discussed.

1. Introduction

There has been a growing interest in forecasting the

weather and climate within the subseasonal range (i.e., 3–

4weeks), which lies in between themedium-rangeweather

and seasonal forecasts. The subseasonal forecast is par-

ticularly important since many management decisions,

including those related to water, food, and hazard con-

siderations, fall into this range. Skillful predictions of

anomalous weather events, such as extreme precipitation

events, in the subseasonal time scale could provide policy

makers, emergency managers, and stakeholders with

advance notice to prepare for mitgating actions (e.g.,

National Academies of Sciences, Engineering, and

Medicine 2016). Realizing the need for subseasonal

prediction, there have been ongoing efforts at opera-

tional centers in producing subseasonal forecasts and

expending these resources to application communities

(e.g., energy sector) who have become convinced of the

potential benefits of the subseasonal forecast regarding

its social and economic value.

The Madden–Julian oscillation (MJO; Madden and

Julian 1971, 1972) is recognized as one of the leading

sources of subseasonal predictability (e.g., Waliser 2011;

Zhang et al. 2013). TheMJO is an organized envelope of

tropical convection with a life cycle of about 40–50 days,

fitting neatly within the subseasonal time scale (30–

90 days). It is characterized by a vast zonal scale

(wavenumber 1–3) and a dominant eastward propagation
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over the tropical Indo-Pacific basin, particularly during

the boreal winter season. The MJO-associated convec-

tion and circulation anomalies affect global weather and

climate, acting as a primary source of subseasonal pre-

dictability for the global weather and climate system (e.g.,

Zhang 2005, 2013; Brunet et al. 2010; National Research

Council 2010; Lau and Waliser 2011; Zhang et al. 2013;

National Academies of Sciences, Engineering, and

Medicine 2016). Real-time MJO forecasts are now pro-

duced routinely bymany centers, a big difference since the

community’s first attempts at cobbling together (experi-

mental) operational MJO forecasts (Waliser et al. 2006).

For example, NOAA/CPC1 produces a weekly update of

MJO status and forecast, in addition to the dynamical

model MJO forecasts every day.

Until about a decade ago, MJO prediction with em-

pirical techniques often had higher skill than numeri-

cal models (Waliser 2006a,b). Then, several studies

demonstrated that MJO prediction in some numeri-

cal models has exceeded the skill of empirical models

(review by Waliser 2011; Lee et al. 2017). The im-

provement of MJO prediction by numerical models

has been mainly attributed to advances in theoretical

understanding and significant improvements of the

dynamical forecasting systems—including more obser-

vations and computer resources, better data assimila-

tion techniques, and improved numerical models (e.g.,

review by Kim and Maloney 2017) aided in part by

multinational efforts through field campaigns and

numerical model experiments (Petch et al. 2011;

Moncrieff et al. 2012; Waliser et al. 2012; Yoneyama

et al. 2013; Klingaman et al. 2015b). Nevertheless, es-

timates of the predictability of the MJO suggest that

there is still considerable room for improvement.

After the in-depth holistic review by Waliser (2011)

on MJO predictability and prediction, there have been

several review articles focusing on the MJO (Zhang

et al. 2013), subseasonal prediction (National Academies

of Sciences, Engineering, and Medicine 2016), and on-

going international activities on MJO and subseasonal

prediction (Robertson et al. 2015; Lee et al. 2017; Ling

et al. 2017; Vitart et al. 2017; Wheeler et al. 2017a).

These latter reviews provide broad views of the recent

activities on MJO research and applications but do not

focus on our recent gains in the science of MJO pre-

diction. This paper will review the advances that have

been made since Waliser (2011) regarding our MJO

prediction capabilities with dynamical prediction systems

and our scientific understanding of its predictability.

Therefore, the articles cited here are mainly those pub-

lished after 2010. Although the northward-propagating

boreal summer intraseasonal oscillation is considered as a

dominant subseasonal mode during the summer, it is not

within the scope of the current review.

An overview of international activities that have pro-

moted the advancement of MJO prediction is introduced

in section 2. Review of the metrics/measures used in the

MJO prediction studies is provided in section 3, followed

by a review of MJO predictability and prediction skill in

the recent hindcasts in section 4. A detailed review of the

factors that influence the MJO prediction skill is provided

in section 5. Summary, remaining challenges, and sugges-

tions are discussed in section 6, followed by conclusions in

section 7. Acronyms are given in Table 1.

2. Multimodel experiments and field campaigns

There have been several internationally coordinated

efforts onmultimodel hindcast experiments with the aim

of better understanding of the subseasonal predictability

and prediction (Zhang et al. 2013). The Intraseasonal

Variability Hindcast Experiment2 (ISVHE) launched

in 2009 was the first attempt to coordinate multimodel

long-term hindcast experiments focusing on intrasea-

sonal prediction, with a particular emphasis on multi-

model ensemble approach that has been proven to be

one of the most effective ways to improve the seasonal

prediction (e.g., Palmer et al. 2000, 2004; Shukla et al.

2000) andMJOprediction (Kang andKim 2010; Fu et al.

2013). Eight ocean–atmosphere coupled models from

six centers participated in this experiment (Neena et al.

2014). Hindcasts of at least 45-day forecast lead time

were initialized on the 10th day of every month over

about 20 years. The intraseasonal predictability and

prediction skill from the ISVHE hindcasts have been

documented in a series of papers (Zhang et al. 2013;

Neena et al. 2014; Lee et al. 2015; Lee and Wang 2016).

The WWRP/WCRP Subseasonal to Seasonal Pre-

diction Project3 (hereafter S2S Project) was launched in

2013, and the first phase will end in November 2018

(Zhang et al. 2013; Vitart et al. 2017), and the World

Meteorological Organization (WMO) has now ap-

proved the S2S Project for a second phase of five years.

Near-real-time forecasts and hindcasts from 11 opera-

tional centers have been delivered (Vitart et al. 2017)

and are accessible to the research community from the

ECMWF, CMA, or IRI data portals. By September

2017, 951 users from 92 countries have registered to the

1 http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/

mjo.shtml.

2 http://www.cgd.ucar.edu/projects/yotc/mjo/isvhe.html.
3 http://s2sprediction.net/.
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S2S database, and 225 TB (about 4 times the total vol-

ume of the S2S database) have been downloaded since

May 2015.4 The majority of models demonstrated sub-

seasonal skill improvement, compared to their earlier

versions (Vitart 2017). MJO indices and associated

forecast variables are produced in near real time (3-week

delay)5 from centers participating in the S2S Project

(Vitart et al. 2017).

Eleven models participated in the MJOTF/GASS

multimodel experiment, producing 20-day hindcasts of

two strong MJO events during the YOTC period in

boreal winter 2009/10 (Klingaman et al. 2015a,b). From

October 2011 to March 2012, international field cam-

paign CINDY/DYNAMO (hereafter DYNAMO) col-

lected in situ observations in the tropical Indian Ocean

to investigate the mechanisms responsible for the initi-

ation of the MJO (Yoneyama et al. 2013; Zhang et al.

2013). Three MJO events were captured by the radar,

ship/mooring, and sounding observational network during

theDYNAMOfield campaign. Based on the in situ data,

various aspects of the MJO have been documented.

Several studies conducted hindcast experiments for the

DYNAMO period to better understand the processes

associated with the MJO and to assess the MJO pre-

diction ability in global and regional models (e.g., Fu

et al. 2013; Kerns and Chen 2014; Ling et al. 2014;

Hannah et al. 2015; Xiang et al. 2015; Hagos et al. 2016;

Janiga and Zhang 2016), which will be discussed in

section 4.

3. Forecast and verification metrics

a. MJO index

The most popular index used for MJO prediction

studies is the Real-time Multivariate MJO (RMM) in-

dex developed by Wheeler and Hendon (2004). RMM1

and RMM2 are the first and second principal compo-

nents of the combined empirical orthogonal functions

(EOFs) of outgoing longwave radiation (OLR), zonal

wind at 200 and 850 hPa averaged between 158N and

158S. Figure 1 is an update of Wheeler and Hendon

(2004, their Fig. 8) using ERA-Interim (Dee et al. 2011)

and NOAA OLR (Liebmann and Smith 1996) from

1979 to 2017. It represents the observed MJO life cycle

in eight different phases (phases 1–8) by compositing

the OLR and 850-hPa horizontal wind anomalies from

December to February (DJF) without discrimination for

MJO amplitude. The predicted RMMs are obtained by

the projection of the predicted anomalies onto the ob-

served combined EOF eigenvectors. More details on the

procedure can be found in Gottschalck et al. (2010) and

Vitart (2017). NOAA/CPC and the S2S Project provide

TABLE 1. List of acronyms.

Acronyms

20CRv2C NOAA Twentieth Century Reanalysis v2C

BCC Beijing Climate Center

BoM Bureau of Meteorology (Australia)

CAM Community Atmosphere Model

CESM Community Earth System Model

CFS Climate Forecast System

CMA China Meteorological Administration

CPC Climate Prediction Center

CYNDY Cooperative Indian Ocean Experiment on

Intraseasonal Variability in Year 2011

DYNAMO Dynamics of the MJO

ECCC Environment and Climate Change Canada

ECMWF European Centre for Medium-Range

Weather Forecasts

ERA-Interim ECMWF interim reanalysis

FIM-iHYCOM Flow-following Icosahedral Model coupled

with an icosahedral-grid version of the

Hybrid Coordinate Ocean Model

GASS Global Energy and Water Exchanges

Atmospheric System Study

GEFS Global Ensemble Forecast System

GEOS-5 Goddard Earth Observing System Model

version 5

GFDL Geophysical Fluid Dynamics Laboratory

GFS Global Forecast System

GloSea5 Global Seasonal forecasting system

version 5

IRI International Research Institute for

Climate and Society

MAPP Modeling, Analysis, Predictions, and

Projections

MJOTF MJO Task Force

NASA National Aeronautics and Space

Administration

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental

Prediction

NICAM Nonhydrostatic Icosahedral Atmospheric

Model

NOAA National Oceanic and Atmospheric

Administration

POAMA Predictive Ocean–Atmosphere Model for

Australia

SCOAR Scripps Coupled Ocean–Atmosphere

Regional

SNU Seoul National University

SP-CAM Super Parameterized Community

Atmosphere Model

UH University of Hawaii at M�anoa

UKMO Met Office

WCRP World Climate Research Programme

WWRP World Weather Research Programme

YOTC Year of Tropical Convection

4 http://s2sprediction.net/file/documents_reports/Minutes_6th_

SGM.pdf.
5 http://gpvjma.ccs.hpcc.jp/S2S/S2S_MJO.html.
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RMM forecasts on the phase–space diagram (Wheeler

and Hendon 2004), which represents the location

(phase) and amplitude of the MJO as a function of

forecast lead times.

The majority of the studies on MJO simulation and

forecasts use the RMM index as a measure of the

MJO. Although the RMM index is relatively simple to

calculate and thus, easy to implement for real-time

monitoring and forecasting, interpretation of the re-

sults often requires careful consideration. A principal

weakness of the RMM index is that the fractional con-

tribution of zonal wind fields to the variance of RMMs

is considerably larger than the contribution of the con-

vective fields (e.g., Straub 2013). Therefore, RMM skill

mainly reflects the skill of the predicted wind anomalies

but not necessarily the predicted convective anomalies

(i.e., precipitation or OLR; Kim et al. 2014; Klingaman

et al. 2015a). In other words, although the models do

not predict the convective anomaly very well (e.g., the

eastward propagation of the MJO precipitation), the

prediction skill measured by the RMM could result in

fairly high skill, leading to a more optimistic conclusion

regarding our MJO prediction capabilities. Several al-

ternative methods have been introduced (e.g., Ventrice

et al. 2013; Kiladis et al. 2014; Ling et al. 2014; Kerns and

Chen 2016; Liu et al. 2016; Zhang and Ling 2017), al-

though the RMM index is being used in most MJO

prediction studies and operational forecasts.

b. Prediction and predictability metrics

Predictability is the theoretically achievable skill with

a perfect model, whereas prediction skill is an actual

achievable skill in a given prediction system that con-

tains initial condition and modeling errors. The differ-

ence between the predictability and prediction skill can

be interpreted as a deficiency in the forecast system and

provides an estimate of how much skill we might expect

to gain by reducing the model error and by improving

initial conditions. Common metrics that have been used

in recent studies to measure the prediction skill and pre-

dictability of the MJO are reviewed. When comparing

predictability and prediction skill in different models,

caution should be exercised, as the hindcast period and

season, ensemble size, verification dataset, and RMM

computation procedure are usually not the same.

1) PREDICTION SKILL

To represent an MJO prediction skill of a forecast

system, a common benchmark to measure the MJO

performance is scalar metrics, such as the bivariate

anomaly correlation coefficient (COR) or bivariate

root-mean-square error (RMSE), which represents the

skill as a function of forecast lead times (e.g., Lin et al.

2008; Rashid et al. 2011). COR and RMSE are calcu-

lated between the predicted and observed RMMs as

follows:

COR(t)5
�
t5N

t51

[a
1
(t)b

1
(t, t)1 a

2
(t)b

2
(t, t)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
t5N

t51

[a21(t)1 a22(t)]

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
t5N

t51

[b2
1(t, t)1 b2

2(t, t)]

s ,

RMSE(t)

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

t51

[ja
1
(t)2 b

1
(t, t)j2 1 ja

2
(t)2 b

2
(t, t)j2]

s
,

where a1(t) and a2(t) are the verification (observation or

reanalysis) RMM1 and RMM2 at time t, b1(t, t) and

b2(t, t) are the respective forecasts for time t with a lead

time of t days, andN is the number of predictions. COR

is equivalent to a spatial pattern correlation between

FIG. 1. DJF composite for OLR (Wm22; shading) and 850-hPa

wind vector anomalies and wind speed (m s21; shading) anomalies

calculated for eight MJO phases from 1979 to 2017. The number of

days falling within each phase is given.
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observation and forecast when they are reconstructed

from the two leading EOFs (Lin et al. 2008). COR 0.5 is

usually being used as a threshold of skill, approximately

corresponding to a standardized RMSE of
ffiffiffi
2

p
for the

bivariate RMM index (Rashid et al. 2011). Unless oth-

erwise stated explicitly, the RMM prediction skill refers

to the time at which the COR falls below 0.5. These

performance-basedmetrics have been applied to subsets

of forecasts, such as the forecasts initialized in various

MJO phases or with different amplitudes (e.g., Rashid

et al. 2011).

2) PREDICTABILITY

Prediction skill of a given forecasting system is limited

by errors emanating from the imperfect model as well as

the errors from the initial conditions. MJO predictability

is regarded as an intrinsic limit of MJO prediction by as-

suming that the system has no error emanating from the

model itself (and thus a perfect system), but only sensitive

to the errors from initial conditions. The perfect-model

approach provided a pathway to estimate predictability

using dynamical models, although such predictability

estimate is highly model dependent. The perfect-model

assumption was first introduced in theMJO research with

the twin ensemble experiment by Waliser et al. (2003),

followed by several studies with multiensemble fore-

casting systems (Kim andKang 2008; Pegion andKirtman

2008; Neena et al. 2014; Kim et al. 2014; Liu et al. 2017).

Predictability is estimated in terms of the model

ability of each ensemble member to forecast the events

from the control (or ensemble mean) simulation. There

have been two different approaches to evaluate the

MJO predictability: one is the anomaly correlation

metrics, and the other is the signal-to-noise metrics. The

anomaly correlation metric computes the correlation

between one ensemble member considered as the truth

and the rest of the ensemble members (Buizza 1997;

Pegion and Kirtman 2008; Kim et al. 2014; Xiang et al.

2015; Liu et al. 2017;Wheeler et al. 2017b). For example,

MJO predictability is computed in the same way as

the prediction skill (COR), but with correlating the

RMM index from the control (or ensemble mean) with

the selected ensemble member (Kim et al. 2014). In the

signal-to-noise approach, the signal is defined as the

variance of the ensembles within a certain temporal

window that is large enough to encompass an entire

MJO event (e.g., 50-day sliding window). Noise is esti-

mated as the mean-square error of ensembles relative to

the control experiment (single ensemble member or

ensemble mean). Then, the predictability is defined as

the forecast lead time when the noise exceeds the signal

(Waliser et al. 2003; Kim and Kang 2008; Pegion and

Kirtman 2008; Fu et al. 2013; Neena et al. 2014). Neena

et al. (2014) used the signal-to-noise approach to define

the MJO prediction skill by replacing the control simu-

lation with reanalysis.

3) AMPLITUDE AND PHASE

Basically, two factors can impact the MJO prediction

skill and predictability: the amplitude and phase of the

MJO. To identify the errors of the predicted amplitude

and phase, most of the studies follow the metrics by

Rashid et al. (2011). The MJO amplitude is defined as

AMP(t, t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMM1(t, t)2 1RMM2(t, t)2

q
.

The amplitude error measures how fast the forecast

system loses the amplitude of theMJO signal and can be

calculated simply by comparing the predicted with the

observed amplitude as a function of lead time as

ERR
amp

(t)5
1

N
�​

[AMP
prd

(t, t)2AMP
obs

(t)].

Negative (positive) ERRamp(t) indicates weaker (stron-

ger) amplitude in predictions, compared to the observa-

tion. The phase error measures the difference of the angle

between the predicted phase and observed phase in the

RMMphase–space diagram. The phase angle error can be

measured as a function of lead time as

ERR
phase

(t)5
1

N
� tan21

�
a
1
(t)b

2
(t, t)2 a

2
(t)b

1
(t, t)

a
1
(t)b

1
(t, t)1 a

2
(t)b

2
(t, t)

�
.

Negative (positive) ERRphase(t) indicates slower (faster)

propagation in predictions, compared to the observation.

4) PROBABILISTIC MJO FORECAST

Compared to the traditional metrics for MJO pre-

diction and verification, the probabilistic forecast

approach has received little attention to date. Very re-

cently, Marshall et al. (2016) proposed a new display of

ensemble predictions of the MJO for real-time forecast

that overcomes some of the shortcomings in the tradi-

tional display that have been difficult in interpreting

a dispersive ensemble plume. Also, forecast verification

using probability-based skill scores (instead of de-

terministic skill measures) is introduced to evaluate the

model performance (Marshall et al. 2016). Probabilistic

forecasts have been recently implemented for the real-

time forecast6 of the MJO at the Bureau of Meteorol-

ogy, Australia.

6 http://poama.bom.gov.au/researcher/agm/project/mjo_prob/

mjo_prob.html.
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4. MJO predictability, prediction skill, and
predicted characteristics

a. MJO predictability

With the perfect-model approach, the predictability

of theMJO has been known to be about 3–4 weeks when

measured by intraseasonally filtered upper-level circu-

lation field and about 2 weeks by filtered precipitation

(Waliser et al. 2003; Liess et al. 2005). Such level ofMJO

predictability was later supported by various numerical

model experiments (Reichler and Roads 2005; Kim and

Kang 2008; Pegion and Kirtman 2008). Studies argued

that MJO predictability can be extended for several

days when the ocean–atmosphere coupling process is

included (Fu et al. 2007; Pegion and Kirtman 2008), al-

though the negligible improvement was proven in others

(Kim and Kang 2008). The models used in these pre-

dictability studies, however, were only marginally suc-

cessful at simulating the MJO.

After those studies were published around 2008, MJO

predictability study reached a plateau until 2014. Two

papers published in 2014 have shown that with multi-

model state-of-the-art forecasting systems, the MJO

predictability can reach up to 6–7 weeks when defining

the MJO with the RMM indices (Kim et al. 2014; Neena

et al. 2014). Figure 2 shows the predictability and pre-

diction skill from multimodels that participated in the

ISVHE project (Neena et al. 2014). With the signal-to-

noise approach, the predictability of the ensemble-mean

RMM forecast in most of the models ranges from 35 to

45 days. ECMWF and ABOM2 exhibit a higher pre-

dictability of up to 45 days (Neena et al. 2014) and about

40 days in BCC (Wu et al. 2016).

With the anomaly correlation approach with RMMs,

MJO predictability in ECMWF, NCEP CFSv2, GFDL,

and POAMA remains above 40 days (Rashid et al. 2011;

Kim et al. 2014; Xiang et al. 2015; Marshall et al. 2017),

but is limited to 30 days in the BCC (Liu et al. 2017). The

consensus among the studies listed above is that the

initially stronger MJO events tend to be more predict-

able. The predictability for initially strong MJO events

ranges from 35 to 45 days, while for initially weakMJO it

is around 20–30 days (Neena et al. 2014; Wu et al. 2016).

Although the predictability is shown to be dependent on

the initial amplitude of the MJO, it is not sensitive to

initial phases (Kim et al. 2014; Neena et al. 2014; Wu

et al. 2016; Liu et al. 2017).

b. MJO prediction skill

The ensemble-mean RMMprediction skill scores (mea-

sured by signal-to-noise metrics) in the ISVHE hindcasts

vary widely, between 1 and 4 weeks in the boreal winter,

with the majority of the models having skill of 2–3 weeks

(Fig. 2). It needs to be mentioned that these ISVHE

hindcasts were produced around 2009 (Neena et al. 2014).

During the past decade, some forecasting systems have

shown a substantial improvement in MJO prediction.

For example, MJO skill in CFSv2 (;3 weeks; Wang et al.

2014) has been significantly extended, compared to its

previous version, CFSv1 (;1.5 weeks; Seo et al. 2009).

Figure 3 shows the evolution of the RMM skill score in

ECMWF measured with the ensemble-mean hindcasts

and ERA-Interim. Since 2002, an average gain of skill is

about 1 day per year from 2002 to 2011 (Vitart 2014). The

flat correlation 0.5 curve between 2013 and 2015 is because

the forecast lead time was limited to 32 days until 2015,

but extended to 46 days since May 2015. Continuous

FIG. 2. The single-member prediction skill (black bar) and en-

semble-mean prediction skill (hatched bar) estimates (days) for

MJO for the eight models are shown along with their respective

single-member (tan-shaded area) and ensemble-mean (gray-

shaded area) estimates of MJO predictability [65-day range; Fig. 4

from Neena et al. (2014)].

FIG. 3. Evolution of the MJO skill scores (RMM bivariate cor-

relations) since 2002 in ECMWF hindcasts. The MJO skill scores

have been computed on the ensemble mean of the ECMWF

hindcasts produced during a complete year. The blue, red, and

brown lines indicate the day when the MJO bivariate correlation

reaches 0.5, 0.6, and 0.8, respectively [updated Fig. 1 from Vitart

(2014)].
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improvement of RMM skill in ECMWF has been attrib-

uted to the reduction of the amplitude and phase error

(Vitart 2014). POAMA and UKMO have also shown

MJO skill improvement (Rashid et al. 2011; Neena et al.

2014; Marshall et al. 2017; MacLachlan et al. 2015).

The recent S2S Project hindcasts have RMMprediction

skill scores varying widely between 10 and 38 days (Fig. 4),

with a similar range of skill in the recent SubX hindcasts

(K. Pegion 2018, meeting presentation7), which exhibit

an overall improvement over the ISVHE models. In ad-

dition to the ISVHE and S2S Project hindcasts (made

up of operational models), studies have shown the MJO

prediction skill in various models. About 4 weeks of

RMM skill have been demonstrated in the GFDL (Xiang

et al. 2015) and NICAM model (Miyakawa et al. 2014)

in boreal winter; about 3-week skill in BCC (Liu et al.

2017) andFIMiHYCOM(Green et al. 2017) in all seasons;

and about 2 weeks in the atmosphere-only models, such

as GEFS (Hamill and Kiladis 2014) and BCC (Wu

et al. 2016).

Besides the long-term hindcast simulations, forecast

experiments have been performed on individual MJO

events during a specific period. For the two strong MJO

events during the YOTC period (October 2009–January

2010), the majority of models have proven RMM skill

(correlation 0.7) of two weeks, with several models main-

taining skills beyond that (Klingaman et al. 2015a). For the

DYNAMO period (September 2011–March 2012), the

RMM skill (correlation 0.5) is about 13 days in GFS,

22 days in CFSv2, 27 days in BCC, 28 days in UH, and

29 days in the GFDL model (Fu et al. 2013; Xiang et al.

2015; Liu et al. 2017). With relatively short forecast ex-

periments for the DYNAMO period, the RMM skill

(correlation 0.9) is 9 days in SPCAM, 7 days in NCAR

CAM5 (Hannah and Maloney 2014; Hannah et al. 2015),

and 5 days in NICAM (Nasuno 2013).

c. MJO characteristics in hindcasts

1) MJO AMPLITUDE

MJO amplitude and phase are both important in the

assessment of MJO prediction skill. The majority of the

contemporary models exhibit faster decay of the MJO

signal than the observation. Even though the forecasts

are initialized with a strong MJO signal, the predicted

MJO signal does not persist as long as it does in obser-

vations. By comparing two operational forecasting sys-

tems, NCEP CFSv2 and ECMWF (version cy32r3), Kim

et al. (2014) showed that the amplitude of the initially

strong MJO events (RMM amplitude . 1.5) is kept

above a strong category (.1.5) until 10 days in both

observation and in NCEP CFSv2, while the ECMWF

drops to its threshold (1.5) in a week. Fast decay of the

MJO amplitude is also shown in the POAMA (Rashid

et al. 2011), GFDL (Xiang et al. 2015), and BCC (Wu

et al. 2016; Liu et al. 2017). The majority of the S2S

Project hindcasts tend to lose the MJO amplitude faster

than the observed within a week (Fig. 5a; Vitart 2017).

The change of amplitude varies among initial MJO pha-

ses, while there is no consensus of the amplitude de-

pendency on initial phases among models. For example,

the amplitude decreases faster than other phases when

themodel is initialized at phases 2–3 inNCEPCFSv2 and

ECMWF (Kim et al. 2014), at phases 3–4 in POAMA

(Rashid et al. 2011), and at phases 4–6 in BCC (Liu et al.

2017) and GFDL (Xiang et al. 2015).

2) MJO PHASE

In general, during boreal winter, the MJO convection

envelope tends to initiate in the Indian Ocean and propa-

gate across the Maritime Continent to the western Pacific.

Skill declines are attributed to phase errors (Lim et al.

2018) rather than to amplitude errors, meaning that the

propagation (or stagnation) of the MJO is not accurately

predicted (Rashid et al. 2011; Kim et al. 2014; Vitart 2014;

Wang et al. 2014; Xiang et al. 2015;Wu et al. 2016; Liu et al.

2017). A consensus among studies is that models present

slower propagation speed than the observed. There is

about a 2-day delay, on average, over a 30-day lead time

forecast in POAMA (Rashid et al. 2011). MJO propaga-

tion in the ECMWF and NCEP CFSv2 is about 158 lon-
gitude slower than observation over a 25-day forecast lead

FIG. 4. RMM bivariate correlation between the model ensemble

means and ERA-Interim for 10 S2S models [Fig. 1 from Vitart

(2017)].

7 https://ams.confex.com/ams/98Annual/meetingapp.cgi/Paper/

331093.
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time (Kim et al. 2014). Inmost of the S2S Project hindcasts,

the phase error changes to negative (slower propagation)

after about 2 weeks (Fig. 5b; Vitart 2017). On the contrary,

some models (GFDL and BCC) have shown rather faster

propagation (Xiang et al. 2015; Liu et al. 2017). Although

the phase error varies among initial phases, there is no

consensus of the phase error dependency on initial phases

among models.

Most forecast systems have some deficiencies in pre-

dicting the MJO propagation through the Maritime

Continent, a problem referred to as the Maritime Con-

tinent MJO prediction barrier (Vitart et al. 2007; Seo

et al. 2009; Seo andWang 2010; Vitart andMolteni 2010;

Wang et al. 2014; Kim 2017; Vitart 2017). This barrier is

likely not an inherent predictability issue but rather a

modeling issue due to poor representation of the MJO

propagation (Kim et al. 2014; Neena et al. 2014). This

will be discussed in section 6.

5. Sensitivity of MJO prediction skill to various
factors

It is obvious thatMJO prediction skill has significantly

extended during the last decade. However, a significant

gap between our demonstrated prediction skill mea-

sures and our estimates of predictability still remains. In

this section, various factors that are shown to impact

MJO prediction skill are reviewed.

a. MJO amplitude and phase

MJO prediction skill is sensitive to the initial ampli-

tude and phase of the MJO. When the model is initial-

ized with a strong MJO signal, the prediction skill

(correlation coefficient) tends to be higher than when

initialized with weak or with no MJO signal (e.g., Kim

et al. 2014; Lim et al. 2018). Skill is higher in boreal

winter when the MJO is generally more active (e.g.,

Rashid et al. 2011; Wang et al. 2014; Liu et al. 2017; Lim

et al. 2018). In the S2S Project hindcasts, the average

skill of the initially moderate MJO events lies in be-

tween the strong and weak events (Fig. 6). Although

recent studies have agreed on the MJO skill–amplitude

relationship, skill does not seem to improve gradually as

theMJO amplitude becomes stronger. For example, Kim

et al. (2016) found that not all initially weak MJO events

have low skill, and not all strong MJO events result in

high skill. The predictions starting with moderate MJO

amplitude especially could either end up with high or low

skill depending on the environmental condition, which

eventually induces favorable (or unfavorable) conditions

for MJO development.

MJO prediction skill largely depends on the phase of

the MJO. When a forecast is initialized in a specific

phase of the MJO, the skill can be higher than other

phases. However, among recent studies, there is no

consensus about the MJO skill–phase relationship. For

example, ECMWF (Fig. 7) and GFDL hindcasts show

relatively high skill when the model is initialized with an

MJO signal in the IndianOcean (phases 2–3; Xiang et al.

2015; Kim 2017), but in phases 3–4 in POAMA (Rashid

et al. 2011) and phases 4–5 and phases 8–1 in CFSv2

(Wang et al. 2014). The sensitivity of prediction skill

to the initial MJO phases is highly model dependent.

In the most recent S2S Project hindcasts, there is no

consensus found for MJO skill–phase dependency (Lim

et al. 2018).

b. Impact of the mean state and extratropics

MJO predictability and prediction skill varies with

changes in the low-frequency background and/or mean

state (e.g., Waliser et al. 2001). With 30-yr hindcasts

from the POAMA, a substantial extension of the MJO

FIG. 5. Evolution of the MJO (a) amplitude error and (b) phase

error relative to ERA-Interim as a function of lead time. In (a),

a positive (negative) value indicates a too strong (weak) MJO. In

(b), a positive (negative) value indicates a too fast (slow) MJO

propagation [Fig. 3 from Vitart (2017)].
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predictability and prediction skill is found during the

easterly phase of the quasi-biennial oscillation (QBO;

Marshall et al. 2017). The RMM prediction skill is

31 days in the easterly QBO years, but only 23 days in

the westerly QBO years. The extended prediction skill

and predictability during the easterly QBO are not only

due to more initially strongerMJO events (Yoo and Son

2016; Son et al. 2017), but also to a more coherent MJO

event (Nishimoto and Yoden 2017). Besides the QBO,

MJO prediction skill is sensitive to the Indian Ocean

dipole (IOD). In the 20-yr hindcasts from BCC, RMM

prediction skill is about 15 days during negative IOD

years but extends to 20 days during positive IOD years

(Liu et al. 2017). However, this RMM skill–IOD re-

lationship is not rooted in the observed physical pro-

cesses between the MJO and IOD, but is mainly due to

the mean state bias. Besides the studies by Waliser et al.

(2001), Marshall et al. (2017), and Liu et al. (2017), the

interannual change of MJO prediction has received

little attention, mainly due to the lack of hindcasts

over a sufficiently long period. A better understanding

of the large-scale basic state forcing on MJO predict-

ability could potentially enhance the MJO prediction

skill.

In addition to the tropical mean state, the extratropical

circulation influences MJO prediction. Using a series

of relaxation hindcast experiments with the ECMWF

model, Vitart and Jung (2010; cf. Ferranti et al. 1990)

showed that the RMM skill drops significantly from 28

to 22 days when the extratropical influence on tropics

is artificially suppressed. This is mainly due to a slower

propagation speed and weaker MJO amplitude, consis-

tent with Ray and Li (2013). In contrast, RMM skill in-

creases from 28 to 40 days when the extratropics are

relaxed toward the ERA-Interim. More work is needed

to better understand the extratropical influence on MJO

prediction as a source of predictability.

c. Ensemble generation

In weather and climate prediction, there has been an

increasing use of ensembles to obtain better forecasts.

One advantage of using ensembles is that the forecast

uncertainty can be estimated via ensemble spread (en-

semble standard deviation). For a perfectly reliable

system, the ensemble spread equals the RMSE between

the ensemble mean and observation (e.g., Leutbecher

and Palmer 2008). Ensemble predictions for MJO have

been shown to be underdispersive (or overconfident),

indicating lack of ensemble spread (Rashid et al. 2011;

Kim et al. 2014; Neena et al. 2014; Xiang et al. 2015;

Green et al. 2017; Liu et al. 2017; Lim et al. 2018).

Figure 8 shows the relationship between the ensemble

spread and the ensemble-mean RMSE for the MJO in

ISVHE hindcasts (Neena et al. 2014). In all models,

the spread is smaller than the RMSE, and models with

FIG. 6. RMM bivariate correlation of each S2S model as a func-

tion of forecast lead times for all reforecasts (A; black), and those

initialized during strong (S; red), medium (M; orange), and weak

MJO events (W; green). The number of reforecasts used in each

category and their prediction skill are indicated at the bottom-left

corner [Fig. 2 from Lim et al. (2018)].

FIG. 7. RMM bivariate correlation for ensemble mean by initial

phases for strongMJO cases in the ECMWFhindcasts. Correlation

coefficients are multiplied by 100 [Fig. 1b from Kim (2017)].

1 DECEMBER 2018 REV IEW 9433



relatively better-dispersed ensembles exhibit higher

ensemble-mean skill (Fig. 8b).

Several efforts are underway to improve the repre-

sentation of uncertainties from initial conditions and

the models. To generate initial perturbations suitable to

MJO prediction, the breeding method (Liess et al. 2005;

Chikamoto et al. 2007) and singular vectors (Molteni

and Palmer 1993; Ham et al. 2012) have been explored/

adopted. With 10-yr hindcasts using NASA GEOS-5,

Ham et al. (2012) showed 2–3-day extended RMM skill

with an empirical singular vector approach than ran-

dom perturbations. With the SNU GCM hindcast,

RMM skill does not substantially differ among three

different perturbation methods (Kang et al. 2014).

There have also been efforts toward improving the

representation of uncertainty in the model physics

schemes. For example, in the ECMWF Ensemble Pre-

diction System, the stochastic perturbation schemes

improved the frequency and amplitude of the MJO

(Weisheimer et al. 2014) and the spread–error rela-

tionship (Palmer et al. 2009; Leutbecher et al. 2017;

Subramanian and Palmer 2017). In addition to improving

the models, devising ensemble generation approaches

tailored for the MJO might have a considerable impact

on MJO prediction.

d. Multimodel ensemble forecasting

Recent studies have clearly shown that averaging

multiensembles or multimodels can extend the MJO

prediction skill (e.g., Fu et al. 2013; Kim et al. 2014;

Neena et al. 2014; Ren et al. 2017). In all models,

ensemble-mean skill exceeds single ensemble member

skill inMJOprediction (e.g., Fig. 2 andNeena et al. 2014).

The size of the ensemble also impacts the ensemble-mean

skill. Vitart (2017) showed that in ECMWF hindcasts,

RMM skill (correlation 0.6) can be reached at 28 days

instead of 25 days when using 11 ensemble members in-

stead of five members. The S2S models with relatively

larger ensemble size show greater improvements of

RMM skill in ensemble mean, compared to their control

forecasts (Vitart 2017).

With an equally weighted multimodel ensembles

(MME) of CFSv2 and UH hindcasts, a significant ex-

tension of RMM skill (36 days) was found, compared to

their individual skills (22 and 28 days, respectively; Fu

et al. 2013). By averaging two GCMs and one statistical

model with different weightings, RMM skill can be

sustained about 4–5 days longer than the best dynamical

model (Kang and Kim 2010). When two dynamical

models with similar prediction skill and sufficient model

diversity are combined, the MME shows improvements

in RMM skill, although including a low-performance

model in the MME can degrade the skill (Green et al.

2017). Combining all available hindcasts with an equal

weighting for an MME does not exceed the skill of av-

eraging a few good models (Zhang et al. 2013). To ex-

tend the MJO skill, therefore, the individual model

needs to be improved in tandem with developing an

optimal strategy for MME.

e. Ocean–atmosphere coupling

The ocean–atmosphere interaction affects the MJO

simulation and prediction. Many observational diag-

noses have shown coherent variations in sea surface

temperature (SST), surface fluxes, and convection as-

sociated with the MJO [review by DeMott et al. (2015)

and references therein]. Particularly in the Indo-Pacific

Ocean, warm SST east of the MJO convection supports

the MJO propagation by affecting SST-modulated heat

fluxes and enhancing the boundary layer moisture con-

vergence, which maintains the convective anomalies

and fuels the eastward propagation (e.g., Lindzen and

Nigam 1987; Waliser et al. 1999; Maloney and Sobel

2004; Back and Bretherton 2009; Hsu and Li 2012;

Hirata et al. 2013).

The importance of such ocean feedback to MJO fore-

cast has been demonstrated in several studies. In hind-

casts over short periods during major field campaigns,

FIG. 8. (a) Bivariate measure of ensemble spread (solid lines)

and ensemble-mean RMSE (dashed lines) for the MJO in the

different ensemble prediction systems. (b) The 25-day forecast lead

average of the spread minus RMSE values [set of solid and dashed

curves in (a)] for each model, plotted against the corresponding

values of skill improvement (day) in ensemble means over single-

member forecasts [Fig. 5 from Neena et al. (2014)].
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about a 3–5-day improved MJO skill was found in the

coupled configuration, compared to the uncoupled fore-

casts in the NCEP CFSv1 (Seo et al. 2009), CFSv2 and

ECHAM (Fu et al. 2013), and Met Office Unified model

(Shelly et al. 2014). With hindcasts over a longer period

(.10 years), turning off the coupled feedback resulted

in a loss of 8 days of RMM skill in FIM-iHYCOM hind-

casts (Green et al. 2017). When the model is initialized

over the Indian Ocean, a 2–3-day extended RMM skill

was found in the SNU coupled model due to the realistic

simulation of the SST–convection quadrature relation-

ship (Kim et al. 2010). With 20-yr ECMWF hindcasts,

Kim et al. (2016) showed that the MJO event that results

in high RMM skill has more realistic ocean–atmosphere

feedback during its prediction than the low RMM skill

event.

Using ECMWF hindcast experiments covering the

TOGA COARE period, Woolnough et al. (2007) and

Vitart et al. (2007) detected a 5-day improvement in

RMM skill when the atmosphere is coupled to an ocean

model, primarily from high vertical resolution (1m) in

the near surface and high coupling frequency (hourly). It

is demonstrated that the vertical mixing processes play

an important role in determining the intraseasonal and

diurnal variation of the SST, which develop in response to

the surface fluxes driven by the MJO convection. With

hindcast experiments for the DYNAMOperiod using the

high-resolution SCOAR model, Seo et al. (2014) also

demonstrated the critical role of diurnal SST variability in

the buildup of preconvection warming and moistening,

indicating the diurnally varying SST as a source of the

MJO predictability. A coarse vertical resolution (;10m)

for the upper ocean is probably not sufficient to resolve

the intraseasonal to diurnal SST variability.

Although most studies show improvement in MJO

prediction by including the ocean–atmosphere inter-

action, Hendon (2000) demonstrated that the coupling

could degrade the MJO skill due to the error in the

basic state. Moreover, the role of coupling is case de-

pendent. Among five MJO events that occurred during

DYNAMO, only twoobservedMJOevents were strongly

coupled with the ocean, while some of them are largely

controlled by the atmospheric internal dynamics (Fu et al.

2015). The atmospheric response to the ocean also varies

with the model physics (convective parameterization;

Wang et al. 2015). Various aspects of the model config-

urations, such as model physics and resolution, could also

affect the response of the MJO to ocean–atmosphere

coupling (Seo and Wang 2010; Crueger et al. 2013).

f. Model physics and resolution

Due to the huge computational costs for a long re-

cord of extended range hindcasts experiment, only a

handful of studies have performed sensitivity tests of

the MJO skill to model physics or resolution. Most of

the studies are based on case studies. Using the oper-

ational GFS for the DYNAMO period, Wang et al.

(2015) found the MJO forecasts to be sensitive to the

cumulus convection scheme. In particular, the simplified

Arakawa–Schubert version 2 (SAS2) convection scheme

(Han and Pan 2011), which has been used in the NCEP

operationalGFS since 2011, leads to amuchweakerMJO

amplitude and lower forecasting skill than the relaxed

Arakawa–Schubert (RAS; Moorthi and Suarez 1992,

1999) and SAS (used in the NCEP CFSv2) schemes.

This is mainly due to the drier lower troposphere

caused by a persistent weak shallow convective moist-

ening and stronger drying associated with the deep con-

vection in SAS2, which leads to less intense convective

activity.

The significant increase of the MJO prediction skill

in the ECMWF model (Fig. 3) was mainly due to the

improved model physics (Vitart 2014), although

the improvement cannot be tied to a single change of

the forecast system. Some of the improvements can be

attributed to the introduction of a parameterization of

ice supersaturation in 2006, new radiation parameter-

ization in 2007, and modified convective parameteri-

zation in 2008 (Vitart 2014). The enhancement of skill

in 2008 (model version cy32r3; Bechtold et al. 2008) is

mainly attributed to the convective parameterization

modified in a way that the deep convection became

more sensitive to environmental moisture instead of

being controlled by the large-scale moisture conver-

gence (Bechtold et al. 2008; Hirons et al. 2013a,b). In

particular, significant improvement is found for the

MJO events initialized in the Indian Ocean (Vitart

2014). With CAM5, which is the atmospheric compo-

nent of the NCAR CESM1, sensitivity experiments

were performed for two MJO events during the

DYNAMO period (Hannah and Maloney 2014). They

showed that the RMM skill increases from 12 to

20 days via an enhancement to the entrainment rate for

deep convection, which tends to strengthen the MJO

amplitude (Bechtold et al. 2008). Similar MJO skill

improvement by increasing entrainment is found in

the hindcast for the YOTC period (Klingaman and

Woolnough 2014).

Another attempt to improve the MJO prediction

is the use of a model with superparameterization.

In this approach, in place of using a conventional cu-

mulus parameterization, a 2D cloud-resolving model

is embedded in a GCM grid box. By comparing the

DYNAMO hindcast of CAM5 with superparameter-

ized CAM (SP-CAM), Hannah et al. (2015) showed

that the SP-CAM hindcasts have a more robust
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representation of the MJO convection, compared

to CAM5. The RMM correlation skill is higher in

SP-CAM, but with larger RMSE than the CAM5, due

to the strong systematic drift in the SP-CAM.

Miyakawa et al. (2014) performed hindcasts during

2003–12 with the NICAM global system-resolving

model (14-km mesh) and showed that the RMM skill

(correlation 0.6) is about 27 days, which outperforms

the majority of operational forecasts. However, the

physical reason for why the resolving cloud system

improves the MJO prediction remains elusive.

Similarly, because of the computational cost, only a

few studies have investigated the sensitivity of MJO

prediction skill to changes in model resolution. By

comparing theMJO skill in ECMWFwith four different

atmospheric model horizontal resolutions (about 300,

200, 120, and 80km), Vitart et al. (2007) showed some

extended skill in the higher-resolution versions, but

not a gradual improvement as the resolution becomes

higher. Further, by comparing the model with 60- and

30-km horizontal resolution and 62 and 137 vertical

levels in the ECMWF model, no sensitivity of MJO

prediction skill was found.8 At present, the impact of the

atmospheric model resolution on MJO skill seems to be

marginal, compared to the impact of physical param-

eterization or ocean–atmosphere coupling (Vitart

et al. 2007).

g. Initial condition and verification dataset

Only a few studies have tested the MJO prediction

sensitivity to initialization. In BCC hindcasts (Ren et al.

2017), the MJO prediction skill becomes slightly better

whenmoisture is included in the initialization. Ling et al.

(2014) examined the sensitivity of MJO prediction skill

to observations assimilated in the analysis with the

ECMWF model for the DYNAMO period. Although

the sounding data or atmospheric motion vector winds

over the Indian Ocean were excluded in the data as-

similation system, no significant change in RMM pre-

diction skill was found.

When the atmospheric initial conditions are derived

from a system using a similar atmospheric model (e.g.,

ERA-Interim and ECMWF hindcast), the initial shock

is smaller than when using initial conditions derived

from different models (Wheeler et al. 2017b). Similarly,

in some models, the MJO skill is sensitive to the choice

of the verifying analysis. For example, when the

ECMWF hindcast is verified against 20CRv2C instead

of ERA-Interim, RMM skill (correlation 0.6) drops

from 28 to 25 days (Vitart 2017). In addition, the MJO

prediction skill is sensitive to the quality of initial con-

ditions, especially the atmospheric initial conditions.

The RMM prediction skill (correlation 0.5) in ECMWF

increases from 14 to 16 to 18 days when the forecast

system uses atmospheric initial conditions taken from

ERA-15, ERA-40, and ERA-Interim, respectively, due

to a better representation of the MJO in the ERA-

Interim (Vitart et al. 2007; Dee et al. 2011). A similar

conclusion has been made with the UH hindcasts (Fu

et al. 2011). With BCC hindcasts, Liu et al. (2017)

showed that the RMM skill increases from 16 to 18 days

with more accurate atmospheric initial conditions and

further increases to 22 days with better ocean initial

conditions. These studies suggest that the improvements

of quality of atmospheric and ocean analyses/reanalyses

are conducive to extending MJO prediction skill.

6. Summary and recommendations

The review synthesizes the key advances in MJO

prediction studies during the past decade. Theoretical

studies, multimodel experiments, and field campaigns

have led to a better understanding of the processes,

which are critical to simulating the MJO in numerical

models. This has guided improvements to numerical

weather prediction models, particularly boundary

layer, cumulus convection, and microphysics parame-

terizations, leading to significant advances in MJO

prediction.

The recent models have shown MJO prediction skill

scores (based on RMM correlation coefficient 0.5)

varying widely between 2 and 5 weeks, depending on

the model, as well as the initial MJO phases and am-

plitudes. When a model is initialized with stronger

MJO signal, prediction skill tends to be higher than

when initialized with a weaker signal. Although the

ensemble predictions have been shown to be under-

dispersive (or overconfident), prediction skill can be

extended by improving ensemble generation approach

tailored for MJO prediction and by averaging mul-

tiensembles or multimodels. MJO prediction skill can

be influenced by the tropical mean state and low-

frequency climate mode variations (QBO and IOD),

as well as by the extratropical circulation. MJO pre-

diction skill is proven to be sensitive to model physics,

ocean–atmosphere coupling, and quality of initial condi-

tions, while the impact of the model resolution seems to

be marginal.

With the perfect-model approach, the estimate of

the MJO predictability is 6–7 weeks, suggesting that

many challenges remain to improve the dynamical

forecasting systems and to fully realize the predictability

of the MJO. Along with forecast system improvement8 ftp://cola.gmu.edu/pub/stan/MJOWorkshop/Vitart_MJO.pdf.
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highlighted in previous sections, some additional spe-

cific issues and recommendations are discussed below.

a. Maritime Continent prediction barrier

The Maritime Continent is the largest archipelago on

the planet, with complex land–sea distribution and

orography and multiscale ocean–atmospheric interac-

tions.When theMJO propagates from the IndianOcean

to the western Pacific, it often weakens or completely

breaks down when it reaches the Maritime Continent

(e.g., Rui and Wang 1990; Hendon and Salby 1994)

due to orography, strong diurnal convection, disrupted

atmosphere–ocean feedbacks, and many other factors.

Compared to nature, this Maritime Continent barrier

effect is exaggerated in climate models. In the earlier

version of the ECMWF hindcast, Vitart et al. (2007)

showed that the system does not accurately predict the

MJO propagation through the Maritime Continent.

Similar results were found in more recent versions of the

ECMWF (Kim et al. 2014, 2016; Kim 2017; Vitart 2017),

NCEP CFSv1 (Seo and Wang 2010; Fu et al. 2011),

NCEPCFSv2 (Kim et al. 2014;Wang et al. 2014), GFDL

(Xiang et al. 2015), and BCC (Liu et al. 2017) hindcasts.

As mentioned before, studies have suggested that the

Maritime Continent prediction skill barrier is a model-

ing problem, rather than a predictability issue (Kim et al.

2014; Neena et al. 2014).

Figure 9 shows the percentage of MJO events not

crossing the Maritime Continent in the ERA-Interim

and in 10 S2S Project hindcasts when the forecasts are

initialized with strong MJO convection over the Indian

Ocean (phase 2 or 3; Vitart 2017). The percentage is only

about 10% in the ERA-Interim, but significantly higher

in all the S2S Project hindcasts, with a proportion

ranging from 19% to 46%. This indicates that simulating

the MJO propagation across the Maritime Continent is

one of the major hurdles to overcome to improve the

MJO prediction skill. Because of the existence of this

barrier in dynamical models, there has been a growing

interest in understanding the critical processes involved

in the MJO propagation, such as the Years of the Mar-

itime Continent9 (YMC) international project.

b. Process-based hindcast evaluation

Many GCMs still exhibit shortcomings in simulating

realistic MJO characteristics, including its amplitude,

propagation, and horizontal and vertical structures (e.g.,

Jiang et al. 2015, 2018; Ahn et al. 2017). During recent

years, great efforts have been made to understand

the critical processes for better MJO simulation by

developing a so-called ‘‘process-based diagnosis’’ of

GCMs [review by Jiang and Kim (2017)]. Several

process-based metrics have been developed and applied

to multiyear climate runs (e.g., Jiang et al. 2015; Ahn

et al. 2017) and MJO hindcasts with case studies (Ling

et al. 2014; Hannah et al. 2015; Klingaman et al. 2015a).

Up until now, however, evaluations of MJO fidelity

in subseasonal forecasts have focused mostly on per-

formance-based skill (e.g., correlation, RMSE) rather

than on process-based metrics (e.g., moisture–convection

process, convection–radiation feedback, ocean–atmosphere

interaction). The lack of robust process-based studies

in MJO prediction research was partly due to the

lack of multiple variables output required for process

study from frequently initialized hindcasts over a long

period of time (.10 years). A newly launched multi-

model subseasonal forecast effort is the Subseasonal

Experiment10 (SubX), aNOAAClimate Test Bed project

that combines multimodels from NOAA, NASA, the

U.S. Navy, and ECCC to produce real-time forecasts

as well as hindcasts, with a focus on subseasonal fore-

casts. In addition to the S2S Project, hindcast/forecast

output from the SubX project, which will make available

numerous fields from the current generation predic-

tion systems, presents an unprecedented opportunity

to relate MJO performance to process-based metrics.

Such analysis will shed light on which physical processes

in the atmosphere–ocean system need to be better rep-

resented in numerical models to produce better MJO

predictions.

c. Mean state and MJO simulation fidelity

There is a growing interest in understanding the role

of the mean state bias on MJO prediction. Biases in

hindcasts/forecasts over the tropics develop quickly and

become saturated within 5 days (e.g., Agudelo et al.

2009). Mean biases can distort the MJO skill scores by

FIG. 9. Percentage ofMJOevents that are located in phases 2 or 3

(active phase over the IndianOcean) in the initial conditionwith an

amplitude larger than 1, which never propagate into the western

Pacific (phases 6 or 7), even as a weakMJO during the following 30

days [modified from Table 1 of Vitart (2017)].

9 http://www.bmkg.go.id/ymc/. 10 http://cola.gmu.edu/kpegion/subx/.
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influencing further development of the MJO (Hannah

et al. 2015; Kim 2017). From the moisture mode theory

view (e.g., Raymond and Fuchs 2009; Sobel and

Maloney 2012, 2013; Adames and Kim 2016), it has been

argued that the horizontal moisture advection tends to

play a dominant role in the eastward propagation of the

MJO through the Maritime Continent. The advection

of the seasonal mean moisture by the MJO-associated

wind anomalies plays a particularly important role

(Jiang et al. 2015, 2018; Adames and Kim 2016; Jiang

2017). Using model output from the MJOTF/GASS

multimodel comparison project, Gonzalez and Jiang

(2017) showed that the model fidelity in representing

the mean moisture distribution over the tropical Indo-

Pacific is strongly related to the MJO propagation

fidelity. In other words, models with dry bias in the Indo-

Pacific weaken the mean horizontal moisture gradient,

thus dampening horizontal moisture advection associ-

ated with theMJOpropagation. Similarly, by comparing

individual moist static energy budget terms in the 20-yr

ECMWF hindcast, Kim (2017) showed that the dry bias

in the seasonal mean moisture field is a key factor that

deteriorates the propagation and thus the prediction

skill of MJO. The majority of S2S Project hindcasts

have mean dry bias in the Indo-Pacific region, especially

near the Maritime Continent (Lim et al. 2018). Under-

standing the role of mean state bias on MJO prediction

and improving the mean state is crucial to extending the

MJO prediction skill.

However, although a few studies argued that the

systematic mean bias plays a role in MJO prediction,

how the MJO–mean state tradeoff issue can be rec-

onciled in the prediction point of view is unclear. A

major issue that has plagued the modeling community

for decades is the MJO and mean state tradeoff issue

(Kim et al. 2011; Kim and Maloney 2017). Changes in

convection scheme can improve the MJO simulation,

but often also lead to the degradation of the mean

state. By comparing 10 AGCM simulations, Kim et al.

(2011) showed that the seasonal mean precipitation is

degraded when the MJO is better simulated, and vice

versa. It indicates that in some cases, the MJO may

have been improved for the wrong reasons. Because

better simulation of mean state and interannual vari-

ability (e.g., ENSO) has often had higher priority than

the intraseasonal variability in model development,

and because of the complexity and diversity of mech-

anisms associated with MJO, the improvement of the

MJO simulation has been delayed (Kim and Maloney

2017). More focus on the relationship between the mean

state and representation of MJO processes warrants fur-

ther studies to improve the MJO prediction toward its

theoretical predictability.

In addition to the MJO–mean state tradeoff issue,

the link between model performance in simulating

MJO and that in forecasting MJO needs to be con-

sidered. MJO simulation performance does not nec-

essarily translate into prediction performance, which

is partially shown in a series of studies (Jiang et al.

2015; Klingaman et al. 2015a; Xavier et al. 2015). For

example, Klingaman et al. (2015a) compared the MJO

prediction skill in multimodels with 20-day hindcast

simulation for two MJO events. Among 27 model

MJOTF/GASS hindcasts, two CAM5 models have

shown the best MJO prediction skill, while they dis-

played very weak MJO activity and thus, weak MJO

fidelity in the 20-yr climate simulations (Klingaman

et al. 2015a). Such contradicting results between sim-

ulation and prediction may be attributed to a nonlinear

interaction between model error and initial value error,

which could make the prediction uncertain. Thus, un-

derstanding the relationship between simulation fidelity

and prediction skill of the MJO and further obtaining a

reliable description on the uncertainty of forecast error

is a highly challenging task.

7. Conclusions

Subseasonal forecasts are particularly important since

many management decisions, including those related to

water, food, and hazard considerations, fall into this

range. Skillful predictions of anomalous weather events,

such as extreme precipitation and heat waves, in the

subseasonal time scale could provide policy makers,

emergency managers, and stakeholders with advanced

warning to prepare mitigating actions. Since the MJO is

regarded as amajor source of subseasonal predictability,

the continuous improvement of MJO prediction during

the past decades warrants an optimistic view on fore-

warning for MJO-related extreme and hazardous, as well

as fair weather, events. In particular, the recent collabo-

rative efforts on subseasonal prediction (e.g., S2S Project,

NOAA SubX, and NOAA S2S Task Force) provide an

unprecedented opportunity to facilitate addressing the

challenges with process-level understanding forMJO and

associated weather and climate events.
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