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ABSTRACT
An intriguing property of deep neural networks (DNNs) is their

inherent vulnerability to adversarial inputs, which significantly hin-

der the application of DNNs in security-critical domains. Despite

the plethora of work on adversarial attacks and defenses, many im-

portant questions regarding the inference behaviors of adversarial

inputs remain mysterious. This work represents a solid step to-

wards answering those questions by investigating the information

flows of normal and adversarial inputs within various DNN models

and conducting in-depth comparative analysis of their discrimina-

tive patterns. Our work points to several promising directions for

designing more effective defense mechanisms.
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vacy architectures; •Computingmethodologies→Neural net-
works; • Mathematics of computing → Information theory;

KEYWORDS
adversarial sample; deep neural network; mutual information

ACM Reference Format:
Yujie Ji and Ting Wang. 2018. POSTER: Towards Understanding the Dynam-

ics of Adversarial Attacks. In 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3243734.3278528

1 INTRODUCTION
Recent years have witnessed the abrupt advances in deep learn-

ing [9], leading to breakthroughs in a number of long-standing

artificial intelligence tasks. However, designed to model highly non-

linear, non-convex functions, deep neural networks (DNNs) are

inherently vulnerable to adversarial inputs, which are maliciously

crafted samples to trigger target DNNs f to misbehave [18], such

as for a given benign input x , the attacker attempts to find the min-

imum perturbation r forcing f ’s misclassification of x̂ = x + r , i.e.,
minr f (x ) , f (x + r ). With the increasing use of DNN-powered

systems in security-critical domains, adversaries have strong incen-

tives to manipulate such systems via adversarial inputs.
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The phenomena of adversarial inputs have attracted intensive

research from the security communities. Despite the plethora of

existing work, we still lack sufficient understanding of the crucial

properties of adversarial inputs. A number of important questions

remain mysterious, such as: (i) How are adversarial inputs crafted to

force DNNs tomisclassify? (ii) How are adversarial inputs generated

by various attack models different in their underlying mechanisms?

(iii) How are existing defenses often vulnerable to adaptive attacks?

(iv) How are complicated DNNs more vulnerable to adversarial in-

put attacks than simple DNNs? (v) How are transferable adversarial

inputs different from non-transferable ones?

This work represents a solid step towards answering those key

questions. We take a route completely different from existing work:

instead of focusing on the static properties of adversarial inputs

from an input-centric perspective (i.e., whether a given adversarial

input canmislead the target DNN), we study the dynamic properties

of adversarial inputs from a DNN-centric perspective (i.e., how the

target DNN reacts to the given adversarial input).

2 INFORMATION FLOWMODEL
To understand the dynamic properties of adversarial inputs, we

measure their information flows within various DNNs and conduct

in-depth comparative studies of their patterns.

2.1 Mutual Information
Consider a DNN f comprising a sequence of K layers, where the

output of k-th layer consists of nk feature maps {m (k )
i }

nk
i=1. Let x be

a given input to f . As x is of multiple channels (e.g., RGB), we also

consider x as a set of ns feature maps {ms
i }

ns
i=1. To understand x ’s

dynamic properties, i.e., how f reacts to x , we quantify x ’s informa-

tion flow going through f , via measuring the mutual information

(MI) between each feature map and x .
Specifically, we treat each feature mapm as a discrete distribu-

tion: Letvmin andvmax respectively be the minimum and maximum

values inm. We divide the interval [vmin,vmax] evenly into B buck-

ets and replace each value v in m with its bucket ID: bid(v ) =
⌈B (v −vmin)/(vmax −vmin)⌉. We then populate an nk × ns matrix

S (k )
with the i, j-th element S (k )

i j being the MI ofm (k )
i andms

j . More-

over, to obtain a complete view of x ’s information flows, we also

measure the MI of each feature map at an intermediate layer and

the output of f ’s last conv layer (which consists of nt feature maps

{mt
(k ) }

nt
k=1). We populate an nk × nt matrix T (k )

, with its i, j-th ele-

ment T (k )
i j being the MI ofm (k )

i andmt
j . We refer to S (k )

and T (k )
as

the source and target MI matrices of the k-th layer.
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2.2 Information Paths
Armed with S (k )

and T (k )
, we depict the “information paths” (IPs)

from a given input x to its output y in a layer-wise manner, i.e.,

how the feature maps at each layer capture the information in x
and transform it towards y. Specifically, we construct a set of IPs:

• Input information path (IIP) quantifies the relevance of the feature

maps at each layer with the input, defined as the sequence of

{(k, µ (k )
s )}k , where µ

(k )
s is the mean of S (k )

.

• Output information path (OIP) quantifies the relevance of the fea-

ture maps at each layer with the output, defined as the sequence

of {(k, µ (k )
t )}k , where µ

(k )
t is the mean of T (k )

.

• Input-Output contrast (IOC) correlates the input and output infor-

mation paths at each layer, defined as a sequence of {(µ (k )
s , µ

(k )
t )}k .

Note that our approach is inspired by the theory of information

bottleneck methods [17, 19]. However, different from existing work,

which treats inputs as individual data points, we consider each

input as a discrete distribution, which allows us to investigate the

information flow at the level of individual inputs.

2.3 Aggregated Information Paths
Further, we devise the model of aggregated IPs to summarize the IPs

of a set of similar inputs (e.g., adversarial inputs generated by the

same attack). We consider each MI measure (e.g., µ (k )
s ) as a random

variable and assume that a collection of such random variables

indexed by k follow a multivariate normal distribution; each IP is

thus a random sample from a Gaussian process [16]. We use the

mean of the Gaussian process to represent their aggregated IP.

3 ANALYSIS
Equipped with the aforementioned measurement tools, we conduct

an empirical study on the dynamic properties of adversarial inputs.

Our study is designed to provide a new perspective on a set of key

questions about adversarial inputs.

3.1 Experimental Setting
We mainly use the Cifar10 dataset [7] and the DNN model in [12]

which attains the accuracy of 90.24% on Cifar10.

We focus on untargeted attacks. For targeted attack models (e.g.,

Jsma), we select the class ŷ (different from x ’s ground-truth class

y) that requires the minimum perturbation as its targeted class.

Meanwhile, we require different attack models to have similar per-

turbation magnitude for fair comparison.

In our study, given a DNN model f and an input x , we collect x ’s
feature maps, measure its source and target MI matrices {S (k ),T (k ) }k ,

and compute x ’s IPs (IIP, OIP, and IOC) within f .

3.2 Experimental Results
We present our empirical study results and report our findings.

Q1: How are adversarial inputs crafted to trigger DNNs to
misbehave? Figure 1 shows the process of Jsma attack on a ran-

domly selected input, by visualizing each intermediate adversarial

input xi ’s information flows. We observe that the information flows

of adversarial inputs deviate from that of benign ones, while the

attack process essentially corresponds to shifting the information

flows away from benign inputs towards adversarial ones.

attack_iteration_num attack_iteration_num

Figure 1: Top: IPs of a randomly selected input. The black line rep-
resents the benign input x̂0; lighter colors indicate larger i ; the line
of the lightest color represents the adversarial input x̂n . Bottom: the
overall difference between IPs of x̂i and x̂0.

Figure 2: Aggregated IPs of benign and adversarial inputs gener-
ated by (left) Fgsm, Igsm, DeepFool, and C&W attacks (right) by regu-
lar and adaptive Jsma attacks.

Q2: How are adversarial inputs generated by various attacks
different in their underlyingmechanisms? Figure 2 (left) com-

pares the aggregated IIPs, OIPs, and IOCs of benign inputs and

adversarial inputs generated by different attacks including Fgsm

[5], Igsm [8], DeepFool [13], and C&W [4], where adversarial

inputs generated by varied attack models lead to drastically differ-

ent information flows, implying that multiple defense or detection

methods might be necessary to mitigate different attacks.

Q3: How are existing defense mechanisms often vulnerable
to adaptive attacks? We compute the aggregated IPs of adver-

sarial inputs (including successful and failed ones) generated by

regular and adaptive Jsma [2] on the defensively distilled DNN

model [15]. Figure 2 (right) shows that from the IP perspective, ad-

versarial inputs generated by adaptive Jsma deviate much further

from benign inputs than those by regular Jsma, which explains why

defensive distillation fails to defend against adaptive attacks.

Q4: How are complicated DNN models more vulnerable to
adversarial inputs? Figure 3 shows the aggregated IPs of benign

inputs and adversarial inputs generated by Jsma. For comparison,

with respect to a given DNN f (original or compressed by [6]),

besides the IPs of adversarial inputs targeting f , we also compute

the IPs of adversarial inputs targeting the other DNN (compressed

or original). We observe that it is easier to cause information flows

to shift from benign inputs on more complicated DNN, indicating

that adversarial inputs demonstrate higher transferability on the

original model (i.e., more complicated models tend to be more

vulnerable to adversarial inputs).

Q5: How are transferable adversarial inputs different from
non-transferable ones? Figure 4 shows the aggregated IPs of ad-

versarial inputs targeting threeDNNs, “good_init” [12], “deep_conv”,
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Figure 3: Aggregated IPs of benign and adversarial inputs by Jsma.
The solid and dashed blue lines respectively represent adversarial
inputs targeting the inference model and the other model.

and “vgg_like”, by Jsma. Observe that the OIPs of adversarial inputs

targeting the inference model deviate further away from benign

inputs, compared with that of adversarial inputs targeting a model

different from this inference model. Moreover, the OIPs of transfer-

able adversarial inputs [18] deviate much further compared with

non-transferable ones. Therefore, in order to create transferable

adversarial inputs, it is sensible to attack ensemble models [10] (i.e.,

training on the three DNNs simultaneously).

Figure 4: Aggregated IPs of adversarial inputs targeting three DNN
models by Jsma. Note that Jsma fails to generate transferable adver-
sarial samples targeting “deep_conv”.

4 ADDITIONAL RELATED WORK
Adversarial Deep Learning. The phenomena of adversarial inputs

have attracted intensive research. One line of work focuses on

developing new attacks [2, 4, 5, 8, 13, 14]. Another line of work

attempts to defend against such attacks [5, 11, 15, 18]. However, the

defense-enhanced models, once deployed, can often be fooled by

adaptively engineered inputs or by new attack variants [1–3].

Information Flow Theory. Recently the information flow theory

has been used to study the underlying mechanisms of DNN mod-

els. Tishby and Zaslavsky [20] suggested the use of Information

Bottleneck (IB) [19] to study the representation learning process.

Shwartz-Ziv and Tishby [17] then applied the IB theory to evalu-

ate the DNN training process. Different from the previous studies,

this work focuses on measuring and comparing the information

flows caused by benign and adversarial inputs, and extracting their

discriminative patterns.

5 CONCLUSION
In this paper, we present an empirical study on the dynamic prop-

erties of adversarial input attacks against DNN models. Using a

data-driven approach, we measure the information flows of ad-

versarial inputs within various DNN models and conduct the in-

depth comparative study on their discriminative patterns. Our study

sheds light on a set of key questions surrounding adversarial inputs,

points to several promising directions for designing more effective

defense mechanisms. We hope that our visualization tool can help

researchers learn more about adversarial samples behavior during

DNN model classification.
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