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Strong randomness criticality in the scratched XY model
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We study the finite-temperature superfluid transition in a modified two-dimensional (2D) XY model with
power-law-distributed “scratch”-like bond disorder. As its exponent decreases, the disorder grows stronger
and the mechanism driving the superfluid transition changes from conventional vortex-pair unbinding to a
strong randomness criticality (termed scratched XY criticality) characterized by a nonuniversal jump of the
superfluid stiffness. The existence of the scratched XY criticality at finite temperature and its description by
an asymptotically exact semi-renormalization group theory, previously developed for the superfluid-insulator
transition in one-dimensional disordered quantum systems, is numerically proven by designing a model with
minimal finite-size effects. Possible experimental implementations are discussed.
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I. INTRODUCTION

It is well known that in spatial dimensions D � 2 long-
range order is destroyed by thermal fluctuations for systems
with continuous symmetry and short-range interactions [1].
However, the two-dimensional (2D) XY model describing the
superfluid to normal liquid transition at finite temperature
can still undergo a Berezinskii-Kosterlitz-Thouless (BKT)
transition driven by the proliferation of topological defects, in
particular, the unbinding of vortex and antivortex pairs [2–4].
This transition features a universal jump of the superfluid
stiffness � at the critical temperature Tc, i.e., �(Tc)/Tc = 2/π
at the transition.

The question of whether there exists an alternative mech-
anism for the destruction of superfluidity fundamentally dif-
ferent from the proliferation of topological defects has been a
contentious one for several decades—especially in the context
of the 1D superfluid–Bose-glass quantum phase transition
[5–7]. While in the weak disorder regime the transition is
driven by the proliferation of instanton–anti-instanton pairs
[“vertical” vortex–antivortex pairs in the (1 + 1)-dimensional
superfluid phase field] with a universal critical Luttinger liquid
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parameter Kc = 3/2 [8], the possibility of a different mecha-
nism in the strong disorder regime cannot be ruled out. Using
the strong disorder renormalization group (SDRG) method,
Altman et al. claimed that the Coulomb blockade physics of
weak links (strong potential barriers) can give rise to a new
criticality in the strong disorder regime [9–12]. However, in
this case the SDRG is uncontrolled as the fixed point solutions
violate the assumptions under which the approximate renor-
malization group (RG) equations have been derived. Based
on the Kane-Fisher physics of weak links [13,14], Pollet
et al. developed an asymptotically exact theory of the 1D
superfluid-insulator transition and showed that rare weak links
can destroy superfluidity and give rise to a new criticality,
the so-called scratched XY (sXY) criticality [15–17]. The
hallmark of the transition is the relation Kc = 1/ζ , where ζ is
a microscopic, irrenormalizable parameter characterizing the
scaling behavior of the bare strength of the typically weakest
links, J (L)0 ∼ 1/L1−ζ , in a system of size L. However, the
explicit relationship between ζ and the microscopic param-
eters is unknown, and extracting ζ numerically or experimen-
tally requires great effort. Strong finite-size effects in the 1D
Bose-Hubbard model with diagonal disorder have so far been
preventing a solid numerical proof for the validity of the sXY
scenario [17]—even to the extent that despite several large-
scale simulations, a consensus of the nature of the superfluid-
insulator transition in the strong disorder regime has not been
reached [12,18–20].

In this article, we study the superfluid transition in a
classical XY model with power-law distribution of parallel
“scratches”. Due to the simplicity of this model ζ can be

2469-9950/2019/99(10)/104514(5) 104514-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.104514&domain=pdf&date_stamp=2019-03-19
https://doi.org/10.1103/PhysRevB.99.104514
https://creativecommons.org/licenses/by/4.0/


TOBIAS PFEFFER, ZHIYUAN YAO, AND LODE POLLET PHYSICAL REVIEW B 99, 104514 (2019)

determined analytically. These properties enable us to unam-
biguously demonstrate the existence of the sXY university
class and verify the theory by Pollet et al. [15–17] for 1D
superfluid-insulator transitions. We also show that the theory
by Altman et al. [9–12] fails to describe the strong disorder
critical point. Moreover, thanks to the fact that in the scratched
XY model ζ is controlled by a microscopic parameter, an
experimental verification for this new criticality for a finite-
temperature phase transition is feasible.

The paper is organized as follows. In Sec. II, we introduce
the scratched XY model and perform a renormalization group
analysis along the line of that in Refs. [16,17]. In Sec. III,
we obtain the asymptotic solutions to the RG equations and
construct a scaling function to process finite-size data. Sec-
tion IV is devoted to the numerical study of the scratched XY
model. We first numerically justify the key assumption in our
renormalization group analysis and then move on to a detailed
analysis of our finite-size data. We summarize our results in
Sec. V.

II. THE SCRATCHED XY MODEL

The Hamiltonian of our scratched XY model reads

H = −
∑
r,μ̂

J0(r, μ̂) cos(θr − θr+μ̂), (1)

where r = (x, y) is the site index of the square lattice, μ̂ ∈
{x̂, ŷ} a unit vector along the bonds, and J0(r, μ̂) the cor-
responding coupling. Our units are J0(r, ŷ) = 1 and lattice
spacing a = 1. The probability distribution of J0(x, x̂) is taken
to be a power-law distribution,

p(J0)dJ0 = 1

�
J1/�−1
0 dJ0, J0 ∈ [0, 1], (2)

where � < 1 is the only parameter of the model. From the
following discussion it will become clear that Tc(� = 1) = 0
in analogy with the diluted Ising model [21]. The bare strength
of the typically deepest scratch J (L)0 in a square lattice with
linear size L can be estimated by imposing that finding at least
one such deep scratch has a probability of order 1,

L
∫ J (L)0

0
p(J0)dJ0 ∼ 1. (3)

Therefore, J (L)0 scales with L as a power law,

J (L)0 ∼ 1

L1−ζ
, where ζ = 1 − �. (4)

Another property of the distribution is that on every new
length scale the expectation value of the number of the
typically deepest scratches corresponding to the new scale
is just 1. This follows directly from Eq. (3). Because of
the presence of deep scratches with J0 � 1, starting from
mesoscopic scales, the system can be viewed as superfluid
regions joined by barriers formed by single or consecutive
scratches. Therefore, in addition to the topological defects, the
superfluid stiffness in the x direction will be renormalized by
the barriers connecting adjacent superfluid regions. Quantita-
tively, the action S that describes an otherwise homogeneous

superfluid system with a barrier at x = 0 is

S =
∑
i

K

2π

∫
dxdy (∇θi )

2 − t

T

∫
dy cos(θ+ − θ−). (5)

We have rescaled x and y and introduced a dimensionless
number K = π

√
�x�y/T , with �x and �y being the super-

fluid stiffness in the x and y directions, respectively. Here θi
(i = 1 or 2) is the phase field of the left and right superfluid,
θ− and θ+ are the values of the left and right phase field at
x = 0, and t is proportional to the bare strength of the barrier.
The renormalization of the strength of the barrier by harmonic
modes in the phase field is described by the Kane-Fisher flow
equation [13,14]

dt (�)

d�
= (1 − K−1)t (�), (6)

where t (�) is the renormalized strength of the barrier at
length scale � = ln L. Since the critical value Kc � 2 (vortex–
antivortex pairs will proliferate below K = 2), the bare
strength t will be renormalized towards strong couplings and
the RG flow (6) will stop at the clutch scale �∗, where
t (�∗)/T ∼ 1 [16,17]. When the clutch scale is reached, the
system size will have been rescaled by a factor 1/L∗, with
L∗ = exp(�∗). At scales much bigger than the clutch scale, the
effect of the barrier on renormalizing the superfluid stiffness is

�−1
x (�) − �−1

x (�0) ∝ 1

t (�∗)L/L∗ ∝ L∗

L
, (7)

where �0 is some mesoscopic scale.
In the following we assume that the barriers are formed by

single scratches and consecutive scratches play a subdominant
role (numerically justified later). In the scratched XY model
with well-separated typical deepest scratches [cf. Eq. (3)], it
is possible to write down a flow equation which accounts for
the renormalization effect of the scratches on different length
scales successively. Moreover, the theorem of self-averaging
[15] allows us to write the RG equation in terms of the median
of �−1

x instead of the full distribution. This theorem guaran-
tees that the distribution of the superfluid stiffness (along the
x direction in our case) flows towards a δ-like distribution in
the superfluid phase including the critical point [15]. The flow
of �−1

x (in the median sense) due to the scratches is given by

d�−1
x (�)

d�
∝ L∗

L
. (8)

Rewriting Eq. (8) in terms of the parameter K and introducing
w(�) = L∗/L leads to

dK (�)

d�
= −wK3, (9)

where we have rescaled w to absorb unimportant coefficients.
The clutch scale implicitly depends on the system size through
the typical deepest scratch [cf. Eq. (4)]. Together with Eq. (6),
the RG equation for w(�) reads [16,17]

dw(�)

d�
= 1 − ζK

K − 1
w. (10)

Therefore, for 1/ζc > 2, a new strong randomness criticality
emerges where the superfluid transition is driven by scratches
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and the vortex–antivortex pairs play a subdominant role. Con-
sequently, we can neglect the vortex–antivortex pairs in study-
ing this new criticality, and the critical condition is given by

Kc = 1/ζc. (11)

III. RENORMALIZATION GROUP FLOW

Near the strong randomness critical point, it is convenient
to introduce x(�) = K (�) − ζ−1

c and linearize the RG equa-
tions (9) and (10):

dx̃

d�
= −w̃, (12a)

dw̃

d�
= −2x̃w̃, (12b)

where x̃ = x ζ 2
c (1 − ζc)−1/2 and w̃ = w/ [2 ζc(1 − ζc)] are

rescaled x and w, respectively. The RG invariant A = x̃2 − w̃

is an analytic function of the microscopic parameters ζ and T ,
and A = 0 corresponds to the critical flow. At fixed tempera-
ture and near the critical point (T, ζc), A ≈ B(ζc − ζ ), where
B is a constant and ζ = 1 − � acts as the tuning parameter.
The solution x̃(l ) away from the critical point is given by

x̃(�) =
√|A|

f (
√|A|(� +C))

, (13)

where A > 0, f (z) = tanh z on the superfluid side, A < 0,
f (z) = tan z on the disordered side, and C is another RG
invariant. The flow at the critical point (A = 0) is given by

x̃(�) = 1

� +C
. (14)

The solutions of the RG equations (12) are used to extrapolate
finite-size data to infinite system size. To this end, we define
the universal scaling function F (z) as

F (z) ≡ (ln L +C)
[
K (ζ , ln L) − ζ−1

c

]
, (15)

where z = (ζc − ζ )(ln L +C)2. From Eqs. (13) and (14) it is
easy to derive the explicit form of the scaling function:

F (z) = 2(1 − ζc)

ζ 2
c

⎧⎪⎨
⎪⎩

(Bz)1/2

tanh (Bz)1/2 , z > 0,
1, z = 0,
(−Bz)1/2

tan (−Bz)1/2 , z < 0.
(16)

The scaling function F (z) is used in the data collapse analysis
to determine ζc, and it has the property F (0) = 2(1 − ζc)/ζ 2

c .
Therefore, finite-size data should be collapsed onto a single
curve with the proper choice of ζc and C.

IV. NUMERICAL SIMULATION

To numerically establish the strong randomness criticality,
we study the superfluid response of the scratched XY model
at fixed temperature, T = 0.2, by tuning �. For a square
lattice with linear size L, we first draw L random scratches J0
according to the power-law distribution (2). We then perform
simulations by using the classical Worm algorithm [22]. In
writing down Eq. (8), we assumed that the barriers joining
adjacent superfluid regions are formed by the single deepest

FIG. 1. The log-log plot of the distribution of renormalized
strengths t (�) at � = 0.7 for L = 8, 16, and 32 from 8 × 105, 1.2 ×
106, and 2.0 × 106 disorder realizations (in contrast to a few thou-
sands in Ref. [20]). The slope of the tail keeps changing until small
enough t (�) (requiring a sufficient number of disorder realizations)
is reached. The tail part on the log-log scale is perfectly fitted by a
linear line with a slope of 0.43(2) which agrees with the exponent
1/� − 1 within error bars. The fitted values extracted from the last
four points of the tail part are 0.414 for L = 8, 0.448 for L = 16, and
0.441 for L = 32. Therefore, the dominant barriers joining adjacent
superfluid regions are formed by the individual deepest scratches.

scratches; i.e., the distribution of the bare strength of the
barriers p(t ) at large length scales is given by Eq. (2). We
justify this assumption by studying the distribution of the
renormalized barrier strengths, p[t (�)], from a large number
of disorder realizations in systems with mesoscopic system
sizes L. Since strong barriers act as Josephson junctions, the
supercurrent response j under a phase twist ϕ is given by

j = ∂F

∂ϕ
= t (�) exp(−TL/2�) sin ϕ, (17)

where F is the free energy of the system under a phase
twist in the x direction, � is the superfluid stiffness of the
left and right superfluids, t (�) is the renormalized strength
of the barrier, and exp(−TL/2�) accounts for the effect of
supercurrent states at finite temperature [23]. The renormal-
ized strength t (�) can then be readily related to the winding
number fluctuations in the x direction by taking a second-
order derivative of F with respect to ϕ. In this way, t (�) is
determined irrespective of the microscopic origins. Since the
clutch scales of anomalously strong barriers will be much
bigger than L, they will pick up a common factor due to the
Kane-Fisher renormalization (6). Consequently, the tail of the
distribution of the renormalized barrier strengths p[t (�)] will
be the same as the distribution of the bare barrier strengths.
As can be seen from Fig. 1, the tail part of the distribution
of p[t (�)] is described by the same power-law distribution
as Eq. (2). Therefore, the barriers joining adjacent superfluid
regions are formed by the single deepest scratches. Moreover,
the power-law exponent of the tail of p[t (�)] does not flow
with system size. This is in sharp contrast to the theory of
Altman et al. [9–12] which predicts a flow of the power-
law exponent governing the tail of the distribution of the
renormalized strength of the barriers; i.e., strong barriers are
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FIG. 2. A plot of the disorder averaged K (ln L) for L =
16, 32, . . . , 512. The brown dashed line is a plot of the critical 1/ζ
line. We find a critical value of �c = 0.764(2) (vertical grid line) with
a nonuniversal value of Kc = 4.24(4) (upper horizontal grid line) at
the transition (cf. Sec. IV). The nonuniversal value of Kc is larger
than that in the BKT case where Kc = 2 (lower horizontal grid line).

joined to form even stronger barriers. The value of t (�) at
which this power-law behavior sets in decreases for increasing
system sizes. Therefore, a large number (>106) of disorder
realizations are needed to resolve the genuine tail behavior.

Having justified the key assumption in deriving the strong
randomness RG equations, we continue to perform measure-
ments for different system sizes to verify the sXY criticality.
The superfluid stiffness is related to the winding number
statistics by the Pollock-Ceperley formula [24],

�μ = T 〈W 2
μ 〉, (18)

where μ ∈ {x, y} is the label of spatial direction, Wμ is the
winding number in that direction, and 〈· · · 〉 refers to statistical
averaging. Because �x is bounded from above (that of a pure
system), the scale-dependent K (�) in Eqs. (9) and (10) can
also be understood in the mean sense. In our simulation, we
average over a big number of disorder realizations (typically
5000 or more) to extract the disorder-averaged mean value
of K (ζ , ln L) as shown in Fig. 2. To determine the strong
randomness critical point, we need to extract Kc(∞) from
our finite-size data. This is accomplished by the previously
discussed data collapse technique. As shown in Fig. 3, with
the choice of ζc = 0.236(4) and C = 3.86(5), all the finite-
size data fall onto a single line within error bars (cf. Fig. 3).
From Eq. (11), the critical value of K is Kc = 1/ζc = 4.24(7),
consistent with the condition of the strong random criticality
Kc > 2. That the numerically obtained flow of K is described
by the sXY scenario is further supported by performing a
single-parameter Weber-Minnhagen fit of our finite-size data
to the critical RG flow for different values of �. For the flow
at the critical point, the root-mean-square error σ is expected
to show a sharp minimum [25]. As shown in Fig. 4, σ indeed
exhibits a sharp minimum at a point, i.e., the critical point. For
completeness, we also demonstrate that σ does not display a
sharp minimum for a fit to the critical BKT flow in a broad
region where the phase transition, if any, should occur. The

FIG. 3. Shown is the data collapse of (K (�) − ζ−1
c )(ln(L) +C)

over (ζc − ζ )(ln L +C)2. With ζc = 0.236(4) and C = 3.86(5), all
the finite-size data collapse onto a single line satisfying the con-
straint F (0) = 2(1 − ζc )/ζ 2

c . The critical Kc is given by Kc = 1/ζc =
4.24(7) > 2 as predicted by the strong randomness criticality.

BKT critical flow is given by

K (�) = 2 + 1

� +C
, (19)

whereKc = 2 from the Nelson-Kosterlitz relation [26]. As can
be seen from Fig. 2, at � = 1.35, K (ln 128) is already smaller
than the universal value of 2. Therefore, �c,BKT < 1.35 as
K (ln L) decreases monotonically along the RG flow. However,
no minimum for σ can be found (cf. Fig. 4), implying that the
RG flow cannot be captured by the BKT criticality.

V. CONCLUSION AND OUTLOOK

In summary, we have established that superfluidity in a 2D
XY model with disordered scratches can be destroyed by a
mechanism fundamentally different than the proliferation of
vortex–antivortex pairs. The Kane-Fisher physics of scale-
dependent scratches provides an alternative mechanism for

FIG. 4. The Weber-Minnhagen [25] root-mean-square-error σ

by fitting the flow of K (ln L) for L = 16, 32, 64, 128, 256, and 512 to
the critical flow of the sXY criticality (red dots, lower and left axis)
and to the BKT criticality (blue squares, upper and right axis). While
σ displays a sharp minimum at �c = 0.764(2) for the sXY RG, there
is no such minimum for the BKT RG.
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destroying superfluidity in the strong disorder regime. A key
feature of the RG equations describing this new criticality
is that a microscopic, irrenormalizable parameter ζ enters
the equations and determines the nonuniversal jump of the
superfluid stiffness at the transition point. We introduced a
minimal model in which ζ was readily related to the power-
law exponent � characterizing the disorder distribution of the
scratches. At T = 0.2, we have determined �c = 0.764(2)
and Kc = 4.24(4), consistent with the strong disorder scenario
Kc > 2. Our analysis and simulations rule out all the other
scenarios presented for the superfluid transition in the strong
disorder regime. The scratched XY model can be realized
in 2D Josephson junction arrays where the individual phase
fields of the superconducting islands can establish global
phase coherence due to the tunneling of Cooper pairs between
the islands [27]. Existing techniques make it possible to study
the BKT transition in 2D Josephson junction arrays [28]. To
introduce disorder in this system such that the power-law

exponent of its distribution can be determined, the strength of
the tunneling barriers have to be controlled to high accuracy.

The open data for this project can be found at [29].
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