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We study the phase diagram of the interacting spin-1/2 Haldane model with chiral phase ¢ = 7 /2 at
half-filling. Both on-site and long-range Coulomb repulsive interactions (Haldane-Hubbard-Coulomb model)
are considered. The problem with on-site interaction U alone was addressed in the past by a variety of
approximate and finite-size methods that produced results in disagreement with each other both quantitatively
and qualitatively. Here we employ the diagrammatic Monte Carlo technique to accurately locate phase transition
points to the topologically nontrivial phases in the (A, U) plane, where A is the inversion symmetry
breaking on-site energy, and establish that momentum dependence of self-energy cannot be neglected in the
proper treatment. We also find that even modest long-range interactions, typically discarded in theoretical
considerations, result in significant shifts of transition lines.
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Introduction. The Haldane model [1] was invented to intro-
duce the integer quantum Hall effect without Landau levels. It
describes noninteracting spinless electrons on the honeycomb
lattice with nearest-neighbor (NN) and next-nearest-neighbor
(NNN) hopping amplitudes and inversion symmetry breaking
on-site energy terms +A [see Fig. 1(a)]. The NN amplitude
t; is real and the NNN amplitude t,e*® is complex, with
chiral phase ¢. Complex t,e*'® opens a gap at the Dirac points
(the same effect is achieved by nonzero A) and breaks the
time-reversal symmetry. The resulting model features topo-
logically trivial and nontrivial phases in the (A, ¢) plane, and
constitutes the simplest example of a Chern insulator [2].

Its natural generalization to interacting spin-1/2 fermions,
the Haldane-Hubbard model (see, for instance, Ref. [3]), is
considered as one of the key models for studying topological
phases and transitions between them in condensed-matter
physics. In recent years it has been intensively studied by
various analytical and numerical methods that were either
approximate, such as mean-field (MF) and dynamic mean-
field theories (DMFT), or capable of solving only relatively
small system sizes (exact diagonalization) (see Ref. [4]).
Unfortunately, these calculations produce results that radically
disagree with each other quantitatively, and sometimes even
lead to qualitative discrepancies. For conventional quantum
Monte Carlo methods simulating finite-size systems, the com-
plex hopping amplitude 7, renders them inefficient due to the
notorious fermionic sign problem.

In general, similarly to the case of the ionic Hubbard model
[5] where , = 0, we expect topologically trivial band and
Mott insulator phases in the limit of large A and U, respec-
tively (here U is the strength of on-site repulsion). In between
the two limiting cases, a variety of topologically nontrivial and
exotic intermediate states were proposed [see, for instance,
Refs. [3,6-8]]. However, some of these states appear to be
“method specific”’; a notable exception is a topologically non-
trivial phase with spontaneously broken spin-rotation SU (2)
symmetry that is found in most mean-field studies [3,7,9]. The
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problem of identifying possible intermediate phases of the
Haldane-Hubbard model in the selected region of parameters,
including the one with spontaneously broken spin-rotational
symmetry, has been recently addressed in Ref. [4] by three
alternative methods: MF, exact diagonalization (ED), and
single-site DMFT. While all three methods agreed on the
identification of possible intermediate phases, they otherwise
demonstrated radical quantitative differences in positions of
the corresponding critical points and lines (see Fig. 2 in [4]).

In this Rapid Communication we employ the bold dia-
grammatic Monte Carlo technique (BDMC) developed for
graphene-type systems [10] to (i) study the phase diagram of
the Haldane-Hubbard model for the same values of hopping
amplitudes as in Ref. [4] and (ii) demonstrate the effect of
the often neglected Coulomb interaction (the corresponding
Hamiltonian can be referred to as the Haldane-Hubbard-
Coulomb model). The BDMC technique is not subject to
the conventional fermionic sign problem [11,12] and allows
one to deal with interaction potential of arbitrary shape in
an approximation-free manner [13]. The accuracy of final
results is controlled by convergence of results with increasing
the expansion order. This approach does work in the most
interesting part of the phase diagram away from the Mott
insulating phase.

Model. The spin-1/2 Haldane model on the honeycomb
lattice is based on the tight-binding approximation:

Hy=—1; ) (af by, + Hec)
(ij)o

-t Z e"”"f‘b(a;ajg + b;abj’g +H.c.)
((ijho

FAD E@D Mg — Y honio. ¢h)

The geometry, lattice vectors, and sublattice A — B nota-
tions are explained in Fig. 1(a). Here £(i € A) = +1, £(i €
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FIG. 1. (a) Decomposition of the honeycomb lattice into two
shifted triangular sublattices A and B. Lattice spacing |a;| = |a,| = a
is used as a unit of length. The NN hopping, 7, is real, and the
NNN hopping e, is complex, with phase 4+¢ corresponding to
counterclockwise winding within the hexagon. The staggered on-site
energy +A has opposite sign on sublattices A and B. (b) Typical
third-order skeleton diagram for free energy with r and t standing
for the unit-cell index and imaginary time, respectively.

B) = —1, and p, is the chemical potential for spin compo-
nent o =1, |. The sign of the phase of the NNN hopping
amplitude, n;; = %, depends on the winding direction [see
Fig. 1(a)]. We employ standard second-quantization notations
for creation, annihilation, and density operators in the site
representation for sublattices A and B.

In what follows we consider an interacting problem, H =
H() + Hnt’ with

1
Hine = 5 3 Voo (It = 151 i o . )

ijoo’

The on-site Hubbard repulsion term V4 (0) = Udy, 5 €X-
plicitly depends on spin indices, while V,q (|r; — rj| > 0) =
Uclb|/|r; — rj| [see Fig. 1(a)] describes the spin-independent
Coulomb tail. Depending on the value of U, zerovs nonzero,
Egs. (1) and (2) describe the spin-1/2 Haldane-Hubbard or
Haldane-Hubbard-Coulomb models.

Formalism. The BDMC technique employed here is based
on stochastic sampling of skeleton diagrams based on fully
dressed Green’s functions, G, and screened interactions, W,
or the so-called G>W skeleton expansion [14] [see Fig. 1(b)].
At any order of expansion, N, self-consistency is reached by
solving Dyson equations that take an algebraic form in the
Matsubara frequency-momentum space:

G'=G,'-x, w'l=v'-nq, 3)
where X is the self-energy and IT is the polarization function
(both are matrices in the spin and sublattice space). Final
results with controlled accuracy are obtained by computing
vertex corrections from higher-order diagrams until conver-
gence is reached. We omit here further technical details as
they are fully documented in Refs. [13,15], and, in application
to graphene systems, in Ref. [10]. The BDMC technique used
in this work was carefully benchmarked against hybrid Monte
Carlo results for graphene-type systems [16] (see Fig. 2 in
Ref. [10]), and we established that even in the most difficult
parameter regime near the semimetal-insulator transition our

data were converging to known answers at the level of the
third skeleton order.

To obtain the phase diagram in the (A,U) plane we
compute the Chern numbers C° and renormalized electronic
dispersions for both spin projections; transitions between
topologically trivial and nontrivial phases manifest them-
selves by both changing the integer value of C° and by
closing the bulk gap at Dirac points. These quantities can be
computed by knowing the fully dressed Green’s functions that
are the direct outcome of the BDMC simulations. Following
Refs. [17,18], Chern numbers for an interacting system can be
extracted from properties of the so-called topological Hamil-
tonian, Hr = —G(iw — 0,k)7!, assuming that transitions in
question are of the “band-structure” type. The zero-frequency
limit is obtained by extrapolating finite-temperature data for
the set of smallest fermionic Matsubara frequencies, w, =
2xT (n + 1/2), with integer n and temperature 7' (see Fig. 1
in the Supplemental Material [19]). Eigenstates of Hy then
allow one to compute C? by using the gauge-invariant method
developed in Ref. [20].

In the Haldane model C? can take values O and 1. In what
follows we consider the total Chern number, C = Ct + CV,
as a topological order parameter whose allowed values 0, 1,
and 2 distinguish phases. Our calculations are performed at
half-filling for system sizes L?> = 16> and 32? (the number
of sites is 2L?) with periodic boundary conditions and at
temperatures 7' /t; = 0.1 and 0.05, to quantify finite-size and
finite-temperature effects. Chern numbers calculated for our
system parameters using the method of Ref. [20] are integers
with accuracy better than 1078, We take #; = 1 as the unit
of energy and fix ©, = 0.2 and ¢ = 7 /2, as in Ref. [4]. We
had to limit our analysis to on-site repulsion U < 7; obtaining
converged answers at larger values of U requires reformula-
tion of the diagrammatic expansion and goes beyond the scope
of present work.

Haldane-Hubbard model. We first study the phase dia-
gram of the Haldane-Hubbard model (1)-(2) when U, = 0,
and concentrate on the topologically nontrivial intermediate
Chern insulator states away from the Mott insulator. To obtain
transition lines separating the band and Chern insulators we
fix U and find where the total Chern number changes its
integer value along the A axis. If we only account for the
first-order diagrams, equivalent to the so-called fully self-
consistent GW approximation, then we do not see the topo-
logically nontrivial phase C = 1 with spontaneously broken
spin-rotational symmetry. Next-order vertex corrections do
not change this outcome either; i.e., at the level of two lowest
orders the skeleton diagram results are consistent with the
DMEFT calculations, but plainly contradict the MF and ED
predictions [4]. This is a clear sign that precise location of
the point where all three phases meet cannot be determined
reliably by approximate methods.

To locate the C = 1 phase and eliminate the first-order
transition scenarios we employ the following strategy. In one
set of simulations we break the spin-rotational symmetry
explicitly by making the hopping amplitudes spin dependent:

ta(D—=t12(N)/8Y2, ta(W)—t2(1)8",

In this case, the C = 1 phase exists even at U = 0, but for
U > 4 converged answers are obtained only by accounting for

with § > 1.
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FIG. 2. Chern insulator phases (C =2,1) of the Haldane-
Hubbard model with explicitly broken spin-rotational symmetry (§ =
1.1; see text) in different skeleton orders (C = 0 corresponds to the
topologically trivial band insulator phase). In the inset we show how
the size of the C = 1 phase for U = 2 shrinks with the value of
spin-imbalance parameter §. Statistical and systematic errors in this
and other figures are smaller than symbol sizes.

high-order diagrams (up to fifth order), since the behavior at
N =2 and N = 3 is different (see Fig. 2). We then use the so-
lutions for G, X, and IT to initialize calculations with smaller
spin imbalance all the way to § = 1 (no spin imbalance) to see
if the C = 1 phase survives. We follow this protocol for all
values of U < 5.5. In the second set of simulations we start
with § = 1 and monitor how results change with increasing
N, in particular, how the C = 1 state appears in some region of
parameters and remains stable. The second protocol is applied
atU > 4.

Following the first protocol, we determine that the C = 1
phase goes away as 6 — 1 for all values of U < 5; see a
typical data set for U = 2 in the inset of Fig. 2. This rules
out the phase diagram topology predicted by the ED studies of
small clusters [4] (apparently, the momentum space resolution
was too sparse to conclusively eliminate the C = 1 state in this
parameter regime). In the second (§ = 1) protocol, the C = 1
phase opens up only in simulations performed at U > 5 with
N 2 3.

Results obtained within both protocols are summarized in
Fig. 3. The transition line, separating the band and Chern
insulators, is rather close to the one obtained in Ref. [4] within
the single-sitt DMFT. The C = 1 phase does exist, but the
critical on-site repulsion, U,,, where this phase first emerges
and the two transition lines meet is found to be close to U,, ~
5. This value is nearly three times smaller than the single-site
DMEFT result for U, indicating that momentum dependence
of self-energy plays an important role in the quantitative
analysis. The MF prediction U,, ~ 4 happens to be closer to
the correct answer, but the slope of the (C = 2)-(C = 1) line
has an opposite sign.

Haldane-Hubbard
model

<O [=32 -&L=16
P S S I S S S S |
0.5 1 1/N

FIG. 3. Phase diagram of the SU(2)-symmetric Haldane-
Hubbard model. Solid red line with diamonds separates the topo-
logically trivial band (C = 0) from Chern insulator phases. Dashed
red line with circles separates Chern insulators with preserved (C =
2) and spontaneously broken (C = 1) spin-rotational symmetries.
Dashed line is extrapolated toward the first-order transition between
the C = 1 and Mott insulator phases shown by the green dashed
line, as established in Refs. [4,22] by the DMFT (for A # 0) and
dynamic cluster approximation (for A = 0) methods. In the inset we
show how the position of the critical line at U = 6.5 depends on the
inverse skeleton expansion order 1/N. Within the chosen accuracy of
0.1 we see no difference in converged answers for linear system sizes
L = 32 and 16 (as well as for temperatures 7 = 0.1 and 0.05).

If we extrapolate the upper part of the transition line
between the C =2 and C = 1 phases toward larger values
of U, we hit the first-order transition to the Mott insulator
state as determined in Refs. [21,22], in overall agreement with
the ED picture. Unfortunately, the G?W skeleton expansion
implemented here does not work in the vicinity of the Mott
state, and we can only rely on extrapolation from a limited
set of data. The breakdown of the self-consistent expansion
at A <2 and U > 5.5 is established by detecting that the
series generated at the largest simulation order reach its con-
vergence radius (see Ref. [23]). For the upper part of the phase
diagram the skeleton expansion converges exponentially fast
(see the inset in Fig. 3). We attribute this behavior to the
band-structure-type origin of the topological transitions in
the corresponding parameter range, which also justifies the
protocol of evaluating the Chern number within the effective
Hamiltonian approach [17,18,20]. (Typical behavior of the
proper self-energy as a function of frequency in the vicinity of
the Dirac point momentum is shown in Fig. 1 of the Supple-
mental Material [19]; when extrapolated to zero frequency it
produces a Hermitian matrix in the spin and sublattice spaces.)

Haldane-Hubbard-Coulomb model. We now proceed with
the study of long-range interaction effects and consider
nonzero values of Uc in (2). To ensure that the repulsive
potential is monotonously decreasing with distance we take
Uc < U (by definition, Uc is the strength of the NN inter-
action). The most obvious effect of the Coulomb potential
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FIG. 4. Effect of the long-range Coulomb potential, V,, (r >
0), on the phase diagram. Solid lines with symbols separate the
topologically trivial band and nontrivial Chern insulators for different
values of the Coulomb coupling Uc. Black circles with crosses mark
positions of critical points U, (Uc), separating the Chern phases with
C = 2and C = 1. Dotted lines show upper parts of the transition lines
between the C = 2 and C = 1 phases for corresponding values of Uc.

can be understood as follows. Imagine that we add a con-
stant interaction term V at all distances |r; —r;| > 0 (i.e.,
an infinite-range potential) to the Haldane-Hubbard model.
This would be equivalent to simply shifting the chemical
potential of the model by V¢ and reducing the value of
the on-site repulsion to U — V. Correspondingly, under this
transformation the entire solid line is translated horizontally,
AU, Ve) = AU — V¢, 0), and thus appears shifted down-
ward in the (A, U) plane, as in Fig. 4. However, this thinking
is only valid qualitatively; the horizontal-shift transformation
strongly overestimates the downward shift and fails to explain
the correct locations of special points U,,(Uc) (squares with
crosses do not form a horizontal line).

Overall, Coulomb interactions suppress the C = 1 phase
and push it to higher values of U and lower values of A. Given
that in realistic materials the ratio between the U and Uc¢
parameters is not small, Coulomb effects cannot be neglected
or easily (as in the above example with constant shift at 7 > 0)
accounted for in quantitatively accurate predictions.

Conclusions. We investigated the phase diagram of the
spin-1/2 Haldane model on honeycomb lattice with on-site
and long-range Coulomb interactions by the bold diagram-
matic Monte Carlo method to obtain results with controlled
accuracy for convergent skeleton sequences. We confirmed
the existence of topologically nontrivial intermediate phase
with spontaneously broken spin-rotation SU(2) symmetry,
where the Chern numbers for two spin components are 0
and 1, resulting in the total Chern number C = 1. This
phase emerges only after we account for vertex correc-
tions beyond the second G?W skeleton expansion, indicating
that any approximate theoretical scheme would be prone to
large quantitative errors. Indeed, for the Haldane-Hubbard
model we found that the transition between the band in-
sulator, C =0, and C = 1 phases takes place at U = U,, ~
5, nearly a factor 3 smaller than the U, value predicted
by the single-site dynamic mean-field theory [4], which ne-
glects the momentum dependence of the self-energy. The
coarse-grained structure of the obtained phase diagram is
close to that revealed by exact diagonalization [4] except
for artifacts of momentum quantization in small clusters
that prevent one from observing a direct C =0 «— C =2
transition.

In the case of the Haldane-Hubbard-Coulomb model we
quantified effects of typically neglected long-range Coulomb
interactions. Both topologically nontrivial phases survive, but
the 1/r potential tends to suppress topological phases in
favor of the band insulator one and shifts the C = 1 phase
toward larger values of on-site repulsion. While remaining
quantitative, Coulomb effects cannot be neglected if one aims
at accurate predicting for real materials.

This is the first application of the BDMC technique to
properties of interacting topological insulators. Given that it is
applicable to both doped and undoped systems with arbitrary
dispersion relation and shape of interaction potential, in future
work it would be interesting to study the Haldane-Hubbard-
Coulomb model at other filling factors and values of ¢, and
explore cases with “flat band” dispersion relevant to the search
for fractional Chern insulator states (fractional quantum Hall
effect without Landau levels) [24]. Our technique is directly
applicable to these type of problems [15].
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