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ARTICLE INFO ABSTRACT

We present BHM, a tool for restoring a smooth function from a sampled histogram using the bin hierarchy
method. It is particularly useful for the analysis of data from large-scale numerical simulations of
physical systems, such as diagrammatic Monte Carlo simulations of quantum many-body problems.
The theoretical background of the method is presented in Goulko et al., (2018). The code automatically
generates a smooth polynomial spline with the minimal acceptable number of knots from the input data. It
works universally for any sufficiently regular shaped distribution and any level of data quality (provided
that the data are uncorrelated or correlations have been accounted for), requiring almost no external
parameter specification. This paper explains the details of the implementation and the use of the program,
including a physical example of the restoration of the Fréhlich polaron Green’s function from data sampled
with diagrammatic Monte Carlo.
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Nature of problem: Restoring a smooth function from a sampled histogram.
Solution method: To make use of all information contained in the sampled data, the BHM algorithm
generates a hierarchy of overlapping bins of different sizes from the initially supplied fine histogram. The
bin hierarchy is fitted to a polynomial spline with the minimal acceptable number of knots, the positions
of which are determined automatically. The output is a smooth function with error band.
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1. Introduction list of sampled data points x;, in order to use, for instance, density

estimation protocols or methods based on the cumulative distri-

Numerical approaches to problems in condensed matter and
quantum many-body physics often involve generating data points
according to an unknown probability density f(x), which needs to
be restored from the sampled data. The amount of data generated
in large-scale quantum Monte Carlo simulations is usually so large
that it is impossible (or at least impractical) to store the complete
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bution function [1-6] to recover f(x).

Instead, data points are typically collected into a histogram, the
histogram bins representing integrals over the sampled distribu-
tion. This does not involve any significant loss of information, as
long as the bins are sufficiently small to resolve the features of
the distribution (which is always possible provided that f(x) is
sufficiently smooth). More sophisticated sampling methods exist,
which retain more information about the individual points, but
these are in general less efficient and require a case-dependent
implementation. We provide a universal and efficient program to
restore a smooth distribution, which uses the standard histogram
as input.
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BHM is an implementation of the bin hierarchy method, intro-
duced in [7]. 1t is

1. unbiased:

e utilizes all relevant information contained in the data;

e non-parametric fit automatically adjusts to data qual-
ity;

e provides maximally featureless solution (least accept-
able number of spline knots);

2. efficient:

e based on regular histogram, which is efficient to sam-
ple;
o fast analysis;

3. automatic:

o very little user input;

o no adjustment for different types of sampled functions;

¢ no adjustment with simulation time as more data is
collected.

The bin hierarchy method is applicable to sufficiently regular
shaped distributions, meaning that the distribution cannot con-
tain features such as kinks or §-function peaks, which cannot be
resolved by a smooth spline. Moreover, sufficient statistics must
be collected on the entire domain of the distribution. In particular,
this means that special care is required if the distribution changes
by many orders of magnitude over a small interval. In such cases,
one either requires a large overall statistics, or needs to apply an
appropriate reweighing procedure to ensure that the small scales
are sufficiently represented in the sampling.

The paper is organized as follows. The general problem setup
is presented in Section 2. In Section 3, we give an overview of the
algorithm. We explain how to use the program in Section 4, giving
a detailed explanation of the input and output formats, as well as
possible parameter specifications. Several examples are presented
in Section 5, including the physical example of the reconstruction
of the smooth Frohlich polaron Green’s function from data gener-
ated with diagrammatic Quantum Monte Carlo.

2. Problem setup

The central object in BHM is a smooth function f(x) defined
on a bounded domain D. Statistical sampling with a probability
density p(x) is performed to generate samples for f(x) according
to f(x;)/p(x;) with p-distributed x;. This means that for each value
x; generated from the probability density p(x), the value f(x;)/p(x;)
is sampled. In the simplest case, when f(x) itself is a normalized
probability distribution, p(x) = f(x) can be chosen, implying
f(x;)/p(x;) = 1. The samples are binned into a histogram with 2K
bins. We are interested in restoring a smooth function f (x) from
this histogram.

Each histogram bin i with bin boundaries X; min and X; max repre-
sents the stochastic integral

Xi, max
L= f F(odx (1)
Xi, min
through the following relations:
_N;
h=ﬁﬁ, 2)
-, Ni(N — N;
Ml = M) + 2 ) 3)
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where N; is the number of samples in bin i, N the total number of

samples, f; is the average over all samples in the bin i,
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and the “scaled variance” M,(f;) = (N; — 1)Var(f;) is the sum of
squares of differences from the mean,
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Note that in the simplest case p(x) = f(x) we have i = 1 and
M,(fi) = 0, so that all quantities in Eqs. (2)-(5) are determined
through N; and N alone. _

The goal is to find a function f(x) whose integrals over different
parts of the domain D agree with the sampled integrals. Working
with integrals rather than interpolated function values allows us to
include combinations of histogram bins into the fitting. Rebinning
datatolarger bin sizes leads to a reduction of statistical noise, while
retaining small bins results in a higher resolution due to smaller
discretization errors.

The resulting fit f(x) is a polynomial spline of order m, where m
is the highest power with non-zero coefficient. The spline function
and its derivatives up to order m — 1 are continuous, to account for
the smoothness of the original f(x).

3. Overview of the algorithm

In this section we give a brief overview of the algorithm. More
details on the theoretical background of the method can be found
in [7]. A flowchart of the algorithm is shown in Fig. 1.

e The algorithm starts from a list of 2X histogram bins supplied
in an input file (for a detailed format description, see Section
4). Typical values of K are 7-15. It should be noted that the
bins are not required to have the same size; however, in
practice there is no need to have variable size bins. The bins
must not overlap or leave gaps.

e From this input the code generates a hierarchy of histogram
bins of increasing size. Combining two neighboring bins of
the 2K initial bins leads to 2X~! larger bins with, on average,
twice as many entries. For example, combining initial bin 1
and initial bin 2 results in a new bin with N; +N, samples and
with the sample average (fiN1 + f2N2)/(N1 + N3). Successive
repetitions of this rebinning result in a hierarchy of levels
with 25=2, ..., 2,1 bins on each level, respectively, where
the final level consists of one bin over the entire domain
containing all sampled data, as illustrated in Fig. 2. Bins that
do not contain enough data for meaningful statistic, i.e. when
the bin counter N; is smaller than a user defined minimal
value, are excluded from the fitting process. Likewise, levels
that do not contain enough usable bins (the minimal fraction
can be defined by the user) are also excluded. This implies
that in general fitting starts with a level K’ < K so that
the original binning can be chosen to be very fine without
introducing noise into the final fit. For bins that will be used
for fitting, the bin integrals and their errors are computed via
Eqgs. (2)-(5).

e The code checks if the data is compatible with zero on the
whole domain. There is an option not to proceed with the fit
if this is the case. This feature is particularly useful for data
suffering from a severe sign problem.
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Fig. 1. Flowchart of the algorithm.

o The next step is fitting a spline of order m on the given spline } % level 0 1 bin
interval division. The starting point is one spline interval, A
which means that one polynomial P(x) = Y ., axx* is fitted d o )
on the whole domain. The fit minimizes } % ! level 1 2 bins
K ~ A p A -
on’ % % % % ! level 2 4 bins
n=0

where x? is defined for bins on hierarchy level n in the usual

way:
o HHHHHHHHHHHHHHHHH level K 2K bins
X,? = ‘ Z # s (9) Fig. 2. lllustration of the bin hierarchy.
bins i on level n
Xi. max . . .

where 7 = /).qj;m: P(x)dx is the integral of the spline over e Once an acceptable spline has been found, there is an op-

the bin i. tion to refit the data on the same interval division with an
o Afterwards the goodness of fit is evaluated on each hierarchy additional constraint that aims to minimize the jump in the

level individually. The criterion is highest derivative.

5 o The resulting BHM spline is output (spline coefficients and
Xn <14T \/Z , (10) error coefficients). In addition, the spline values can be output
il

evaluated on a grid.

where T is the fit acceptance threshold (input parameter) and

i1 the number of bins on level n that were used for fitting. The

expression /2/f corresponds to one standard deviation of
the x2-distribution.

o If at least one level fails the global goodness-of-fit check,

the goodness-of-fit is then evaluated on each spline interval Instructions for compiling the program and executing unit tests
separately (again level by level). Spline intervals on which the can be found in the README file.

fit was acceptable remain unchanged, while the others are The program executable requires 1 argument, the name of the
splitinto two parts, by introducing a spline knot in the middle parameter file, e.g.:
(“number of bins"-wise).

o If any of the resulting intervals is too small, meaning that
there is not enough data to fit on that interval, the code exits In particular, the parameter file determines the name of the input
without having produced an acceptable spline. Otherwise the file with the histogram data and the name of the output file for the
BHM fit is repeated on the new interval division. BHM spline (see below).

4. Input and output

4.1. Running the program

$ ./bhm in.param
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Parameter File in.param

DataPointsMin=100
SplineOrder=3
MinLevel=2
Threshold=2.0
ThresholdMax=4.0
ThresholdSteps=4
UsableBinFraction=0.25
JumpSuppression=false
Verbose=true
PrintFitInfo=true
FailOnBadFit=true
FailOnZeroFit=true
Data="histogram.dat"
OutputName="spline.dat"

GridOutput="spline_plot.dat" #location of the spline-on-a-grid output

GridPoints=1024

#minimal number of data points per bin 1
#spline order 2
#minimal number of levels per interval 3
#minimal goodness of fit threshold 4
#mazxzimal goodness of fit threshold 5
#number of steps to take from Threshold to ThresholdMaz 6
#minimal proportion of good bins for a level to be used 7
#suppress highest order derivative (the error is unreliable) 8
#verbose output 9
#print the fit info 10
#do not proceed if the fit is bad 11
#do not proceed if the data ts consistent with zero 12
#location of histogram input data 13
#location of the output file 14

15
#number of points for spline-on-a-grid output 16

Fig. 3. Sample parameter file.

As a special case, if the parameter file name is an empty string,
the default parameters will be used which are suitable for most
applications:

$ ./bhm ™ <histogram.dat >spline.dat

In this case, the histogram data input is expected to be provided at
the standard input, and the results will be printed to the standard
output. In the example above, the standard input is redirected from
file histogram.dat, and the standard output is redirected to file
spline.dat. Note that in this particular case the fit information
is printed to standard error rather than to standard output.

Without an argument, the program prints a short help message
and exits.

4.2. Histogram input format

The input histogram data is text-based, line-oriented, and has
the following format:

A NEXC _
X1min N1 fi Ma(fy)
Xaomn N2 o Ma(f2)

Ximin Ni fi Ma(fi)

N O oA W N =

Xmax

where the first line specifies an overall normalization factor A and
the number Ngy of samples outside of the histogram bounds. The
normalization step is omitted if either A = 1 or A = 0. Otherwise,
all values f; and M,(f;) are divided by A and A?, respectively, before
constructing the BHM fit. The value Ny is used to calculate the
total number of samples N = Neyc + ZiN,-, which is needed for
Egs. (2)-(5). Nexc can be zero.

Starting from the second line, each line, except the last one, con-
tains 2 or 4 blank-separated values, specifying the left bin bound-
ary, the number of samples in the bin, and, optionally, mean value
and scaled variance. For example, line 5 of the listing corresponds
to a bin i with the left boundary x; min, number of samples N;, mean
value f; and scaled variance M,(f;). The latter two quantities are
defined inEgs. (6) and (7). If the mean value and the scaled variance
are both omitted, they are assumed to be f; = 1 and M,(f;) = 0,
which corresponds to only ever adding 1 to bin counters, or in other

words p(x) = f(x), as detailed in Section 2. The last line of the file
(line 7 of the listing) must contain a single entry xm.x, the right
boundary of the last bin.

The numbers Ximin... < Ximin.-. < Xmax Must form a
strictly monotonically increasing sequence, corresponding to non-
overlapping, finite-size bins with no gaps. In the current imple-
mentation, the number of bins must be a power of 2 (in the later
versions we may remove this limitation).

It is important to note that all supplied variances are assumed
to be uncorrelated. If correlations are present in the sampled data,
they have to be removed prior to the BHM fit, for example through
appropriate blocking analysis or by scaling the variances with the
estimated correlation factor.

4.3. Input parameter format

The input parameter file is a text-based, line-oriented file that
has a key = value format. An example input is shown in Fig. 3.
The keys are case-insensitive; the string values may be enclosed
in quotes; the # symbol starts a comment which is ignored until
the end of the line. The meaning of each parameter is indicated in
the figure in the corresponding comment. Below we provide more
detailed explanations for some of the parameters.

DataPointsMin in line 1 specifies the minimal number of
data points that a bin must contain in order to be used for fit-
ting. Bins that contain fewer sampled points are ignored (but still
contribute in combination with other bins at higher hierarchy
levels). DataPointsMin must be at least 10, in order to ensure that
meaningful statistics can be made from the data. The default value
is 100. If a hierarchy level does not contain enough usable bins (the
minimal number is given by the parameter UsableBinFraction
inline 7, times the total number of bins on that level) then this level
and all subsequent levels are completely omitted from the fitting.

Whenever a spline interval fails the goodness-of-fit test, it is
divided in half by placing an additional spline knot in the middle
(“number of bins"-wise). Such a division is no longer allowed when
there are too few bins left that are fully inside the spline interval.
Since the algorithm is designed in such a way that the spline
knots always coincide with a boundary between two bins on some
hierarchy level, this can be quantified by specifying the maximal
such level allowed. This is achieved via the parameter MinLevel
in line 3. For example, if there are 2X elementary bins, MinLevel=2
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means that the smallest possible spline intervals coincide with the
bins on hierarchy level K — 2. This means that there is one bin on
level K — 2 which is fully inside such an interval (its boundaries
are identical with the interval boundaries), two bins on level K — 1
and four bins on the base level K, corresponding to a total of seven
bins fully inside the smallest possible interval. MinLevel must be
at least 2; moreover, MinLevel must be large enough to ensure
that the fit is underdetermined for each interval, in other words
that there are more bins fully inside the smallest possible interval
than there are spline parameters.

The fit acceptance threshold T (lines 4-6) can be either set to
a fixed value, or to a range of values between Threshold and
ThresholdMax. In the latter case, a BHM fit is first attempted
with the smallest value Threshold. If no acceptable fit is found,
the threshold value is successively increased in ThresholdSteps
equidistant steps, until either an acceptable fit is produced or
ThresholdMax is reached. Setting ThresholdMax to be smaller
or equal to Threshold and/or setting ThresholdSteps=0 cor-
responds to only using one fixed value of T. Note that threshold
values that are too low can result in overfitting (too many spline
pieces) or the failure to produce an acceptable fit. Values that are
too high can result in underfitting (too few spline pieces and a poor
fit with underestimated error bars). These issues are illustrated in
Example 5.2. The value T = 2.0is good generic choice. Specifying a
range of threshold values reduces the statistical chance that there
is no acceptable BHM fit with a given threshold, even though the
data quality is adequate. The default range between T = 2.0 and
T = 4.0 is suitable for most data sets.

Generally, the default parameter values in the example file are
suitable for all types of sampled functions, and hence there is no
need to change any of the parameters unless specifically desired.

4.4. Output format

The default verbose output is printed to standard output and
contains auxiliary information such as values of the input param-
eters, a brief description of the input histogram, and the log of the
fitting process. The fitting log is described in detail in Example 5.1.
If requested by the PrintFitInfo input parameter, information
about the final fit is also printed to the standard output.

The output of the program is both human and machine-
readable, and has the following text-based, line-oriented, blank-
separated format:

# Arbitrary comments 1
# ... 2
ms 3
X1 X2 ... Xs 4
# spline piece 1 5
g a1 4y ... Qny 6
&0 €1 &2... Emm 7
ce 8
# spline piece i 9
ap a1 az ... Qy 10
€0 €1 &2 ... Eum 11
# spline piece (i+1) 12
e 13

Any lines at the beginning of the file that start with # are
considered comments and are ignored. The first significant line of
the file (line 3 of the listing) specifies the spline polynomial order
m and the number of splines pieces s; the next line (line 4 of the
listing) lists all (s + 1) spline piece boundaries x, ..., Xs;1. The
following lines form s sections describing each spline piece f;, for
i=1...s.Each section (lines 5-7, 9-11 of the listing) consists of 3
lines:

1. Header (starts with #) specifying the spline piece number (i),

2. (m + 1) numbers specifying the spline piece coefficients
Ao . .. am (fi(x) = Y jp @exb),

3. (2m + 1) numbers &y . . . &2, specifying the error bar Ej(x) =

Zizo Ska.
4.5. Plotting the resulting spline

The simplest way to plot the resulting spline is to use the
provided Python3 script bhm_spline. py, as follows:

$ python3 bhm_spline.py spline.dat

On the other hand, it may be convenient to customize the plot
and/or compare it with a known function, or plot it interactively
(e.g., from a Jupyter notebook). For this purpose the script can
be imported as a module that provides a BHM Spline class. The
following listing demonstrates a possible way of using the module.

numpy as np
matplotlib.pyplot as plt
bhm_spline BHMSpline

spline=BHMSpline("spline.dat")
x=np.linspace(*spline.domain())
# reference function:
fn(x): (x**4-0.8%x*x)/0.171964
# plot the spline and the reference:
plt.plot(x,spline(x), x,fn(x))
# plot the errorbar:
plt.plot(x,spline.errorbar(x))
# plot the spline with errorbars:
spline.plot()
# plot the spline and a reference:
spline.plot(fn)
# plot difference between spline and reference
with error bar:
spline.plot_difference(fn) 18

O 00 N U W N =

—om o e
N o o W N = O

In line 3 the class BHMSpline is imported; line 5 creates the
object representing the spline. In line 6 an interval of x-values is
created corresponding to the domain of the spline. Line 8 defines a
reference function to compare with the spline. In line 10 the spline
and the reference function are plotted using the Matplotlib
plotting library; in line 12 the error bar E(x) is plotted. The class
also provides a convenience plotting method: when called without
arguments (as on line 14), the spline is plotted along with the error
bars; when a function is passed as an argument (line 16), its graph
is plotted also. It is also possible to plot the difference between the
spline and the reference function with error bar (line 18).

4.6. Grid output

If the GridOutput parameter in the parameter file is set to a
non-empty filename, the program also outputs to the specified file
the values and the error bars of the spline computed on a one-
dimensional grid of points. A plotting program, such as gnuplot,
can then be used to plot the generated function and the error bars
and to compare them with a reference function; for example:

$ gnuplot

gnuplot> quartic(x)=(x**4-0.8*x*x)/0.171964
gnuplot> plot "spline_plot.dat" with errors
gnuplot> replot quartic(x)

AW N =

In this example, line 1 of the listing starts the gnuplot program;
line 2 defines a reference function (quartic polynomial); line 3 plots
the grid output file generated by BHM; and line 4 plots the reference
function on the same graph.
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Parameter File generator.param

SampleSize=10000
Function=exponential
PowerBins=10
RandomSeed=956475
Output="histogram.dat"
GridOutput="function.dat"
GridPoints=1024

#total number of points sampled

#name of test function

#generates uniform histogram with 2 PowerBins bins

#specify random seed (0 means random initialization)
#histogram output file (missing means "standard output")
#output test function on a grid into this file (if provided)
#number of grid points for test function output

N O Ot ke W N

Fig. 4. Sample parameter file to generate example input.

5. Examples

In this section we present three detailed examples of the fea-
tures of BHM illustrated on different distributions f(x). We provide
a program to generate the input data for these examples (as well as
for several additional test functions). Calling the program without
arguments:

$ ./generator

prints a brief help message, which includes a list of the functions
supported by the program.
Calling the program with a single file argument:

$ ./generator generator.param

generates the histogram data for a given analytical function ac-
cording to the parameters listed in the generator.paran file.
For all examples discussed below, the parameters are the same as
shown in the example generator parameter file shown in Fig. 4 (in-
cluding the random number generator seed), except when stated
otherwise.

Calling the program as:

$ ./generator -python name

(where name is the name of the function, possibly abbreviated)
prints the Python code that corresponds to the function, which is
convenient for plotting the analytical function against the approx-
imating spline in an interactive Python environment (as has been
discussed in Section 4.5).

If the GridOutput parameter in the parameter file is set to a
non-empty filename, the program also outputs the values of the
function computed on a one-dimensional grid to the specified file;
a plotting program, such as gnuplot, can then be used to plot the
generated function; for example:

$ gnuplot 1
gnuplot> plot "function.dat" with lines 2
gnuplot> replot "spline_plot.dat" with errors 3

In this example, line 1 of the listing starts the gnuplot program;
line 2 plots the generated function; and line 3 plots the content of
the spline_plot.dat generated by BHM as discussed in Section
4.6.

5.1. Example 1

This example demonstrates BHM fits for different choices of
spline order m.

The original function is a quartic polynomial (Function=
quartic_polynomial):

f(x) = a(x* — 0.8x). (11)

Because f(x) changes sign, sampling on the interval [—1, 1] is
performed with the probability density p(x) = |f(x)] and @« =
0.171964 is chosen to ensure normalization of p(x) on this interval.

The histogram data is fitted with BHM using the default param-
eters, with the exception of SplineOrder which is set to 3, 4, and
5 respectively. The fit results are shown in Fig. 5. From the output
files "spline.dat" it can be seen that the cubic spline has four
spline pieces; the quartic spline has one spline piece, as expected;
the quintic spline also has one spline piece, its coefficients up to
quartic order are similar to the ones obtained via quartic fit, and its
highest spline coefficient is small.

We explain in detail the verbose output for the cubic fit m = 3.
At the beginning of the output, the fit parameters are listed, as well
as general information about the input histogram. Then follows in-
formation about the goodness-of-fit at the different fitting stages:

N 1

BHM fit: 2

Begin BHM fitting with threshold T = 2 3

Checking separate chi_n"2/n in spline fit 4

level n chi_n"2/n max chi_n"2/n 5

0 1 9.7585 3.8284 6

1 2 2.7736 3.0000 7

2 4 1.7636 2.4142 8

3 8 832.1519 2.0000 9

4 14 539.3412 1.7559 10
5 24 210.2518 1.5774 11
6 41 118.5452 1.4417 12
7 54 67.7739 1.3849 13
Checking interval O (order: O, number: 0) 14
0 1 9.7585 3.8284 15
This interval fit is not good 16
Checking separate chi_n"2/n in spline fit 17
level n chi_n"2/n max chi_n"2/n 18
0 1 0.0020 3.8284 19
1 2 0.0006 3.0000 20
2 4 1.6409 2.4142 21
3 8 7.0923 2.0000 22
4 14 7.8734 1.7559 23
5 24 5.2920 1.5774 24
6 41 3.3034 1.4417 25
7 54 2.0987 1.3849 26
Checking interval O (order: 1, number: 0) 27
1 1 0.0005 3.8284 28
2 2 1.7172 3.0000 29
3 4 6.3727 2.4142 30
This interval fit is not good 31
Checking interval 1 (order: 1, number: 1) 32
1 1 0.0006 3.8284 33
2 2 1.5645 3.0000 34
3 4 7.8119 2.4142 35
This interval fit is not good 36
Checking separate chi_n"2/n in spline fit 37
level n chi_n"2/n max chi_n"2/n 38
0 1 0.0001 3.8284 39
1 2 0.0002 3.0000 40
2 4 0.0055 2.4142 41
3 8 0.0519 2.0000 42
4 14 0.3837 1.7559 43
5 24 0.8437 1.5774 44
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Fig. 5. Quartic polynomial test function f(x) and BHM fits f(x) with different spline orders m. The left panel shows the function and the fits; the right panel shows the

difference between them.

6 41 0.8378 1.4417 45
7 54 0.8693 1.3849 46
Good spline found with threshold T = 2 47
. 48

First a fit is attempted with one spline piece on the whole domain
(lines 4-13). This fit is not acceptable because x2/fi (third column
in the output) exceeds the maximally allowed value 1 + T,/2/n
(fourth column in the output) for most of the levels. The second
column lists 71, the number of available bins at each level. This
number is in general smaller than 2", because some bins do not
contain enough data to be used for fitting. Also, hierarchy levels
below n = 7 were omitted because the fraction of usable bins on
these levels was below the set UsableBinFraction value.

Since the first fit was unsuccessful, x? is evaluated on each
spline interval separately (lines 14-16). In this case, this yields no
new information, since only one interval is present. As soon as a
level is found where the fit is unacceptable (level 0 in this case),
this check stops without proceeding to lower levels, since this is
enough to identify a bad interval.

After the interval is divided, another BHM fit is attempted on
two intervals (lines 17-26). This fit already has smaller X,f/ﬁ values
than the previous one, but still fails the threshold on several levels.
Both spline intervals are then again checked separately (lines 27-
31 and 32-36, respectively) and both fail the goodness-of-fit check
on level 3. Note that level 0 is not present in the individual interval
checks, because the bin on this level is larger than each of the spline
intervals.

The intervals are numbered consecutively, but additional infor-
mation is provided so that their location can be recovered (see e.g.
lines 27 and 32). The boundaries of an interval always coincide with
the boundaries of a bin on a certain hierarchy level (denoted by
“order”) and “number” denotes the number of this bin.

After the intervals are again divided, the resulting BHM fit
(lines 38-47) is acceptable. No separate interval checks need to be
performed and the code exits with the fit result. f PrintFitInfo
is requested, the goodness-of-fit information of the final result is
output again at the end. This includes the 2/t values on each
level n, the unit standard deviation /2 /7 of the corresponding x -
distribution, as well as the number of standard deviations by which
x2 /7 exceeds 1 on each level (last column). If x2/fi < 1 the latter
value is 0.

5.2. Example 2

This example demonstrates BHM fits for different choices of the
threshold T. The sampled distribution is a decaying exponential

(Function=exponential),

f(x) = arexp(—3x), (12)

normalized on the interval [1, 3], which implies @ = 3e°/(e® — 1).
The function is sampled on the interval [1, 2.8], so that there is
a finite number of values Neyx. sampled outside of the histogram
bounds. The total number of sampled points in this example is
SampleSize=100000.

The histogram data is fitted with BHM using the default pa-
rameters, with the exception of the parameters defining the fit
acceptance threshold, which is set to be fixed at T = 0, 2, and
8, respectively. This can be achieved by either setting the value of
ThresholdMax to be equal or less than the value of Threshold, or
by setting ThresholdSteps=0. The fit results are shown in Fig. 6.

For all threshold values an acceptable fit exists, but with differ-
ent interval divisions. The extremely low threshold value T = 0
(which means that only fits with x2/i < 1 are accepted) yields
an overfitted spline with 12 spline pieces. The value T = 2
produces a suitable fit with 3 spline pieces that captures the shape
of the test function well. The very high value T = 8 yields an
underfitted spline with only 2 pieces. This spline deviates strongly
from the true function and the error on the spline is severely
underestimated.

5.3. Example 3

This example demonstrates that BHM works for both uniform
and non-uniform input histograms. The sampled distribution,

f(x) =0.2G(0, 0.2) 4+ 0.4[G(2, 1) + G(—2, 1)], (13)

is a linear combination of three Gaussians G(u, o) with mean
and standard deviation o (Function=triple_gaussian). It has
several distinct features and resembles a physically relevant case.

We sample SampleSize=1000000 data points on the interval
[—5, 5] into a uniform and a non-uniform histogram, both with
28 bins. Note that the non-uniform histogram binning is prede-
fined and cannot be adjusted by changing the PowerBins entry.
The non-uniform histogram bins are smaller in the center of the
domain (where the sampled function has a sharp feature) and
increase exponentially in size towards the domain boundaries. The
smallest bin size is equal to the domain length divided by 2'2. The
non-uniform histogram is always collected in addition to the cus-
tomizable uniform histogram if Function=triple_gaussianis
chosen and is output into the file nonuniform_histogram.dat.

The fit results are shown in Fig. 7. Both histogram divisions pro-
duce fits of similar quality that reproduce the tested distribution
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Fig. 6. Decaying exponential test function f(x) and BHM fits f(x) of the test function with different goodness-of-fit thresholds T. The left panel shows the function and the

fits; the right panel shows the difference between them.
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Fig. 7. Triple Gaussian test function f(x) and BHM fits f(x) of the test function based on a uniform histogram and a histogram with bins of different sizes. The left panel
shows the function and the fits; the right panel shows the difference between them.
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Fig. 8. Frohlich polaron Green'’s function. Reference calculation G(t) and BHM fit f;(r) using default parameters (left panel) and the difference between BHM fit and reference

(right panel).

well. Since BHM automatically considers combinations of elemen- 5.4. Example 4
tary bins, there is no need for a case-specific implementation of a
non-uniform histogram grid. Note that sampling the same data in
a uniform histogram with 2'2 bins produces nearly the same fit as
when using 28 uniform bins in this example.

We now demonstrate the effectiveness of BHM on a real physical
example: the restoration of the Fréhlich polaron [8] Green'’s func-
tion from data sampled with diagrammatic Monte Carlo [9]. In this



0. Goulko, A. Gaenko, E. Gull et al. / Computer Physics Communications 236 (2019) 205-213 213

example, we consider the zero momentum imaginary time Green’s
function of the Frohlich Hamiltonian,

H = H, + th + Hephs (14)

He = Z Eakak’ (15)
Kk

th = Za)obabq, (16)
q

iv232am

Hoph = ) T(bIl — b_q)aj_qak, (17)
k.q

with the dimensionless coupling constant « = 2 and chemical

potential 4 = —2.07wg, Where wy is the phonon frequency.

This Hamiltonian describes an electron (with annihilation op-
erator ax) coupled to a bath of phonons (with annihilation
operator bq).

The Green'’s function is a fundamental quantity for diagram-
matic Monte Carlo, since it gives the most complete information
about the system, from which other observables of interest can
be extracted. We sample approximately 2 - 10° data points on the
interval [0, 2], divided into 21° elementary bins.

The full Green’s function cannot be computed analytically, so
we use a very long Monte Carlo run as the reference. The errors
on the reference run are several orders of magnitude smaller than
the errors on the data used for BHM. Fig. 8 shows the reference
function and the BHM fit result of the sampled data using default

parameters. It can be clearly seen the fit is in excellent agreement
with the reference function.
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