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a b s t r a c t

We present BHM, a tool for restoring a smooth function from a sampled histogram using the bin hierarchy
method. It is particularly useful for the analysis of data from large-scale numerical simulations of
physical systems, such as diagrammatic Monte Carlo simulations of quantum many-body problems.
The theoretical background of the method is presented in Goulko et al., (2018). The code automatically
generates a smoothpolynomial splinewith theminimal acceptable number of knots from the input data. It
works universally for any sufficiently regular shaped distribution and any level of data quality (provided
that the data are uncorrelated or correlations have been accounted for), requiring almost no external
parameter specification. This paper explains the details of the implementation and the use of the program,
including a physical example of the restoration of the Fröhlich polaronGreen’s function fromdata sampled
with diagrammatic Monte Carlo.
Program summary
Program Title: BHM
Program Files doi: http://dx.doi.org/10.17632/dvj8gxsxpk.1
Licensing provisions: GPLv3
Programming language: C++
External routines/libraries: CMake, GSL
Nature of problem: Restoring a smooth function from a sampled histogram.
Solution method: To make use of all information contained in the sampled data, the BHM algorithm
generates a hierarchy of overlapping bins of different sizes from the initially supplied fine histogram. The
bin hierarchy is fitted to a polynomial spline with the minimal acceptable number of knots, the positions
of which are determined automatically. The output is a smooth function with error band.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Numerical approaches to problems in condensed matter and
quantummany-body physics often involve generating data points
according to an unknown probability density f (x), which needs to
be restored from the sampled data. The amount of data generated
in large-scale quantumMonte Carlo simulations is usually so large
that it is impossible (or at least impractical) to store the complete

✩ This paper and its associated computer programare available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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list of sampled data points xi, in order to use, for instance, density
estimation protocols or methods based on the cumulative distri-
bution function [1–6] to recover f (x).

Instead, data points are typically collected into a histogram, the
histogram bins representing integrals over the sampled distribu-
tion. This does not involve any significant loss of information, as
long as the bins are sufficiently small to resolve the features of
the distribution (which is always possible provided that f (x) is
sufficiently smooth). More sophisticated sampling methods exist,
which retain more information about the individual points, but
these are in general less efficient and require a case-dependent
implementation. We provide a universal and efficient program to
restore a smooth distribution, which uses the standard histogram
as input.
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BHM is an implementation of the bin hierarchy method, intro-
duced in [7]. It is

1. unbiased:

• utilizes all relevant information contained in the data;
• non-parametric fit automatically adjusts to data qual-
ity;

• provides maximally featureless solution (least accept-
able number of spline knots);

2. efficient:

• based on regular histogram, which is efficient to sam-
ple;

• fast analysis;

3. automatic:

• very little user input;
• no adjustment for different types of sampled functions;
• no adjustment with simulation time as more data is
collected.

The bin hierarchy method is applicable to sufficiently regular
shaped distributions, meaning that the distribution cannot con-
tain features such as kinks or δ-function peaks, which cannot be
resolved by a smooth spline. Moreover, sufficient statistics must
be collected on the entire domain of the distribution. In particular,
this means that special care is required if the distribution changes
by many orders of magnitude over a small interval. In such cases,
one either requires a large overall statistics, or needs to apply an
appropriate reweighing procedure to ensure that the small scales
are sufficiently represented in the sampling.

The paper is organized as follows. The general problem setup
is presented in Section 2. In Section 3, we give an overview of the
algorithm. We explain how to use the program in Section 4, giving
a detailed explanation of the input and output formats, as well as
possible parameter specifications. Several examples are presented
in Section 5, including the physical example of the reconstruction
of the smooth Fröhlich polaron Green’s function from data gener-
ated with diagrammatic QuantumMonte Carlo.

2. Problem setup

The central object in BHM is a smooth function f (x) defined
on a bounded domain D. Statistical sampling with a probability
density p(x) is performed to generate samples for f (x) according
to f (xj)/p(xj) with p-distributed xj. This means that for each value
xj generated from the probability density p(x), the value f (xj)/p(xj)
is sampled. In the simplest case, when f (x) itself is a normalized
probability distribution, p(x) = f (x) can be chosen, implying
f (xj)/p(xj) = 1. The samples are binned into a histogram with 2K

bins. We are interested in restoring a smooth function f̃ (x) from
this histogram.

Each histogram bin iwith bin boundaries xi,min and xi,max repre-
sents the stochastic integral

Ii =

∫ xi,max

xi,min

f (x)dx (1)

through the following relations:

Ii = f̄i
Ni

N
, (2)

M2(Ii) = M2(fi) + f̄ 2i
Ni(N − Ni)

N
, (3)

Var(Ii) =
M2(Ii)
N − 1

, (4)

δIi =

√
Var(Ii)

N
, (5)

where Ni is the number of samples in bin i, N the total number of
samples, f̄i is the average over all samples in the bin i,

f̄i =
1
Ni

∑
xj∈bin i

f (xj)
p(xj)

, (6)

and the ‘‘scaled variance’’ M2(fi) = (Ni − 1)Var(fi) is the sum of
squares of differences from the mean,

M2(fi) =

∑
xj∈bin i

(
f (xj)
p(xj)

− f̄i

)2

. (7)

Note that in the simplest case p(x) = f (x) we have f̄i = 1 and
M2(fi) = 0, so that all quantities in Eqs. (2)–(5) are determined
through Ni and N alone.

The goal is to find a function f̃ (x) whose integrals over different
parts of the domain D agree with the sampled integrals. Working
with integrals rather than interpolated function values allows us to
include combinations of histogram bins into the fitting. Rebinning
data to larger bin sizes leads to a reduction of statistical noise,while
retaining small bins results in a higher resolution due to smaller
discretization errors.

The resulting fit f̃ (x) is a polynomial spline of orderm, wherem
is the highest power with non-zero coefficient. The spline function
and its derivatives up to orderm−1 are continuous, to account for
the smoothness of the original f (x).

3. Overview of the algorithm

In this section we give a brief overview of the algorithm. More
details on the theoretical background of the method can be found
in [7]. A flowchart of the algorithm is shown in Fig. 1.

• The algorithm starts from a list of 2K histogram bins supplied
in an input file (for a detailed format description, see Section
4). Typical values of K are 7–15. It should be noted that the
bins are not required to have the same size; however, in
practice there is no need to have variable size bins. The bins
must not overlap or leave gaps.

• From this input the code generates a hierarchy of histogram
bins of increasing size. Combining two neighboring bins of
the 2K initial bins leads to 2K−1 larger bins with, on average,
twice as many entries. For example, combining initial bin 1
and initial bin 2 results in a new binwithN1+N2 samples and
with the sample average (f̄1N1 + f̄2N2)/(N1 + N2). Successive
repetitions of this rebinning result in a hierarchy of levels
with 2K−2, . . . , 2, 1 bins on each level, respectively, where
the final level consists of one bin over the entire domain
containing all sampled data, as illustrated in Fig. 2. Bins that
do not contain enough data for meaningful statistic, i.e. when
the bin counter Ni is smaller than a user defined minimal
value, are excluded from the fitting process. Likewise, levels
that do not contain enough usable bins (the minimal fraction
can be defined by the user) are also excluded. This implies
that in general fitting starts with a level K ′ < K so that
the original binning can be chosen to be very fine without
introducing noise into the final fit. For bins that will be used
for fitting, the bin integrals and their errors are computed via
Eqs. (2)–(5).

• The code checks if the data is compatible with zero on the
whole domain. There is an option not to proceed with the fit
if this is the case. This feature is particularly useful for data
suffering from a severe sign problem.
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Fig. 1. Flowchart of the algorithm.

• The next step is fitting a spline of orderm on the given spline
interval division. The starting point is one spline interval,
which means that one polynomial P(x) =

∑m
k=0 akx

k is fitted
on the whole domain. The fit minimizes
K∑

n=0

χ2
n

2n , (8)

where χ2
n is defined for bins on hierarchy level n in the usual

way:

χ2
n =

∑
bins i on level n

(
Ii − I (P)i

δIi

)2

, (9)

where I (p)i =
∫ xi,max
xi,min

P(x)dx is the integral of the spline over
the bin i.

• Afterwards the goodness of fit is evaluated on each hierarchy
level individually. The criterion is

χ2
n

ñ
≤ 1 + T

√
2
ñ
, (10)

where T is the fit acceptance threshold (input parameter) and
ñ the number of bins on level n that were used for fitting. The
expression

√
2/ñ corresponds to one standard deviation of

the χ2-distribution.
• If at least one level fails the global goodness-of-fit check,
the goodness-of-fit is then evaluated on each spline interval
separately (again level by level). Spline intervals onwhich the
fit was acceptable remain unchanged, while the others are
split into two parts, by introducing a spline knot in themiddle
(‘‘number of bins"-wise).

• If any of the resulting intervals is too small, meaning that
there is not enough data to fit on that interval, the code exits
without having produced an acceptable spline. Otherwise the
BHM fit is repeated on the new interval division.

Fig. 2. Illustration of the bin hierarchy.

• Once an acceptable spline has been found, there is an op-
tion to refit the data on the same interval division with an
additional constraint that aims to minimize the jump in the
highest derivative.

• The resulting BHM spline is output (spline coefficients and
error coefficients). In addition, the spline values can be output
evaluated on a grid.

4. Input and output

4.1. Running the program

Instructions for compiling the program and executing unit tests
can be found in the README file.

The program executable requires 1 argument, the name of the
parameter file, e.g.:
$ ./bhm in.param

In particular, the parameter file determines the name of the input
file with the histogram data and the name of the output file for the
BHM spline (see below).



208 O. Goulko, A. Gaenko, E. Gull et al. / Computer Physics Communications 236 (2019) 205–213

Fig. 3. Sample parameter file.

As a special case, if the parameter file name is an empty string,
the default parameters will be used which are suitable for most
applications:

$ ./bhm "" <histogram.dat >spline.dat

In this case, the histogram data input is expected to be provided at
the standard input, and the results will be printed to the standard
output. In the example above, the standard input is redirected from
file histogram.dat, and the standard output is redirected to file
spline.dat. Note that in this particular case the fit information
is printed to standard error rather than to standard output.

Without an argument, the program prints a short help message
and exits.

4.2. Histogram input format

The input histogram data is text-based, line-oriented, and has
the following format:

1A Nexc

2x1,min N1 f̄1 M2(f1)
3x2,min N2 f̄2 M2(f2)
4....
5xi,min Ni f̄i M2(fi)
6....
7xmax

where the first line specifies an overall normalization factor A and
the number Nexc of samples outside of the histogram bounds. The
normalization step is omitted if either A = 1 or A = 0. Otherwise,
all values f̄i andM2(fi) are divided by A and A2, respectively, before
constructing the BHM fit. The value Nexc is used to calculate the
total number of samples N = Nexc +

∑
i Ni, which is needed for

Eqs. (2)–(5). Nexc can be zero.
Starting from the second line, each line, except the last one, con-

tains 2 or 4 blank-separated values, specifying the left bin bound-
ary, the number of samples in the bin, and, optionally, mean value
and scaled variance. For example, line 5 of the listing corresponds
to a bin iwith the left boundary xi,min, number of samples Ni, mean
value f̄i and scaled variance M2(fi). The latter two quantities are
defined in Eqs. (6) and (7). If themean value and the scaled variance
are both omitted, they are assumed to be f̄i = 1 and M2(fi) = 0,
which corresponds to only ever adding 1 to bin counters, or in other

words p(x) = f (x), as detailed in Section 2. The last line of the file
(line 7 of the listing) must contain a single entry xmax, the right
boundary of the last bin.

The numbers x1,min . . . < xi,min . . . < xmax must form a
strictly monotonically increasing sequence, corresponding to non-
overlapping, finite-size bins with no gaps. In the current imple-
mentation, the number of bins must be a power of 2 (in the later
versions we may remove this limitation).

It is important to note that all supplied variances are assumed
to be uncorrelated. If correlations are present in the sampled data,
they have to be removed prior to the BHM fit, for example through
appropriate blocking analysis or by scaling the variances with the
estimated correlation factor.

4.3. Input parameter format

The input parameter file is a text-based, line-oriented file that
has a key = value format. An example input is shown in Fig. 3.
The keys are case-insensitive; the string values may be enclosed
in quotes; the # symbol starts a comment which is ignored until
the end of the line. The meaning of each parameter is indicated in
the figure in the corresponding comment. Below we provide more
detailed explanations for some of the parameters.

DataPointsMin in line 1 specifies the minimal number of
data points that a bin must contain in order to be used for fit-
ting. Bins that contain fewer sampled points are ignored (but still
contribute in combination with other bins at higher hierarchy
levels).DataPointsMinmust be at least 10, in order to ensure that
meaningful statistics can be made from the data. The default value
is 100. If a hierarchy level does not contain enough usable bins (the
minimal number is given by the parameter UsableBinFraction
in line 7, times the total number of bins on that level) then this level
and all subsequent levels are completely omitted from the fitting.

Whenever a spline interval fails the goodness-of-fit test, it is
divided in half by placing an additional spline knot in the middle
(‘‘number of bins"-wise). Such a division is no longer allowedwhen
there are too few bins left that are fully inside the spline interval.
Since the algorithm is designed in such a way that the spline
knots always coincide with a boundary between two bins on some
hierarchy level, this can be quantified by specifying the maximal
such level allowed. This is achieved via the parameter MinLevel
in line 3. For example, if there are 2K elementary bins,MinLevel=2
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means that the smallest possible spline intervals coincide with the
bins on hierarchy level K − 2. This means that there is one bin on
level K − 2 which is fully inside such an interval (its boundaries
are identical with the interval boundaries), two bins on level K −1
and four bins on the base level K , corresponding to a total of seven
bins fully inside the smallest possible interval. MinLevelmust be
at least 2; moreover, MinLevel must be large enough to ensure
that the fit is underdetermined for each interval, in other words
that there are more bins fully inside the smallest possible interval
than there are spline parameters.

The fit acceptance threshold T (lines 4–6) can be either set to
a fixed value, or to a range of values between Threshold and
ThresholdMax. In the latter case, a BHM fit is first attempted
with the smallest value Threshold. If no acceptable fit is found,
the threshold value is successively increased in ThresholdSteps
equidistant steps, until either an acceptable fit is produced or
ThresholdMax is reached. Setting ThresholdMax to be smaller
or equal to Threshold and/or setting ThresholdSteps=0 cor-
responds to only using one fixed value of T . Note that threshold
values that are too low can result in overfitting (too many spline
pieces) or the failure to produce an acceptable fit. Values that are
too high can result in underfitting (too few spline pieces and a poor
fit with underestimated error bars). These issues are illustrated in
Example 5.2. The value T = 2.0 is good generic choice. Specifying a
range of threshold values reduces the statistical chance that there
is no acceptable BHM fit with a given threshold, even though the
data quality is adequate. The default range between T = 2.0 and
T = 4.0 is suitable for most data sets.

Generally, the default parameter values in the example file are
suitable for all types of sampled functions, and hence there is no
need to change any of the parameters unless specifically desired.

4.4. Output format

The default verbose output is printed to standard output and
contains auxiliary information such as values of the input param-
eters, a brief description of the input histogram, and the log of the
fitting process. The fitting log is described in detail in Example 5.1.
If requested by the PrintFitInfo input parameter, information
about the final fit is also printed to the standard output.

The output of the program is both human and machine-
readable, and has the following text-based, line-oriented, blank-
separated format:

1# Arbitrary comments
2# ...
3m s
4x1 x2 ... xs
5# spline piece 1
6a0 a1 a2 ... am
7ε0 ε1 ε2... ε2m
8...
9# spline piece i
10a0 a1 a2 ... am
11ε0 ε1 ε2 ... ε2m
12# spline piece (i + 1)
13...

Any lines at the beginning of the file that start with # are
considered comments and are ignored. The first significant line of
the file (line 3 of the listing) specifies the spline polynomial order
m and the number of splines pieces s; the next line (line 4 of the
listing) lists all (s + 1) spline piece boundaries x1, . . . , xs+1. The
following lines form s sections describing each spline piece f̃i, for
i = 1 . . . s. Each section (lines 5–7, 9–11 of the listing) consists of 3
lines:

1. Header (startswith #) specifying the spline piece number (i),
2. (m + 1) numbers specifying the spline piece coefficients

a0 . . . am (f̃i(x) =
∑m

k=0 akx
k),

3. (2m + 1) numbers ε0 . . . ε2m specifying the error bar Ei(x) =√∑2m
k=0 εkxk.

4.5. Plotting the resulting spline

The simplest way to plot the resulting spline is to use the
provided Python3 script bhm_spline.py, as follows:

$ python3 bhm_spline.py spline.dat

On the other hand, it may be convenient to customize the plot
and/or compare it with a known function, or plot it interactively
(e.g., from a Jupyter notebook). For this purpose the script can
be imported as a module that provides a BHM Spline class. The
following listing demonstrates a possible way of using themodule.

1import numpy as np
2import matplotlib.pyplot as plt
3from bhm_spline import BHMSpline
4
5spline=BHMSpline("spline.dat")
6x=np.linspace(*spline.domain())
7# reference function:
8def fn(x): return (x**4-0.8*x*x)/0.171964
9# plot the spline and the reference:
10plt.plot(x,spline(x), x,fn(x))
11# plot the errorbar:
12plt.plot(x,spline.errorbar(x))
13# plot the spline with errorbars:
14spline.plot()
15# plot the spline and a reference:
16spline.plot(fn)
17# plot difference between spline and reference

with error bar:
18spline.plot_difference(fn)

In line 3 the class BHMSpline is imported; line 5 creates the
object representing the spline. In line 6 an interval of x-values is
created corresponding to the domain of the spline. Line 8 defines a
reference function to compare with the spline. In line 10 the spline
and the reference function are plotted using the Matplotlib
plotting library; in line 12 the error bar E(x) is plotted. The class
also provides a convenience plottingmethod: when calledwithout
arguments (as on line 14), the spline is plotted alongwith the error
bars; when a function is passed as an argument (line 16), its graph
is plotted also. It is also possible to plot the difference between the
spline and the reference function with error bar (line 18).

4.6. Grid output

If the GridOutput parameter in the parameter file is set to a
non-empty filename, the program also outputs to the specified file
the values and the error bars of the spline computed on a one-
dimensional grid of points. A plotting program, such as gnuplot,
can then be used to plot the generated function and the error bars
and to compare them with a reference function; for example:

1$ gnuplot
2gnuplot> quartic(x)=(x**4-0.8*x*x)/0.171964
3gnuplot> plot "spline_plot.dat" with errors
4gnuplot> replot quartic(x)

In this example, line 1 of the listing starts the gnuplot program;
line 2 defines a reference function (quartic polynomial); line 3 plots
the grid output file generated by BHM; and line 4 plots the reference
function on the same graph.
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Fig. 4. Sample parameter file to generate example input.

5. Examples

In this section we present three detailed examples of the fea-
tures of BHM illustrated on different distributions f (x). We provide
a program to generate the input data for these examples (as well as
for several additional test functions). Calling the program without
arguments:

$ ./generator

prints a brief help message, which includes a list of the functions
supported by the program.

Calling the program with a single file argument:

$ ./generator generator.param

generates the histogram data for a given analytical function ac-
cording to the parameters listed in the generator.param file.
For all examples discussed below, the parameters are the same as
shown in the example generator parameter file shown in Fig. 4 (in-
cluding the random number generator seed), except when stated
otherwise.

Calling the program as:

$ ./generator -python name

(where name is the name of the function, possibly abbreviated)
prints the Python code that corresponds to the function, which is
convenient for plotting the analytical function against the approx-
imating spline in an interactive Python environment (as has been
discussed in Section 4.5).

If the GridOutput parameter in the parameter file is set to a
non-empty filename, the program also outputs the values of the
function computed on a one-dimensional grid to the specified file;
a plotting program, such as gnuplot, can then be used to plot the
generated function; for example:

1$ gnuplot
2gnuplot> plot "function.dat" with lines
3gnuplot> replot "spline_plot.dat" with errors

In this example, line 1 of the listing starts the gnuplot program;
line 2 plots the generated function; and line 3 plots the content of
the spline_plot.dat generated by BHM as discussed in Section
4.6.

5.1. Example 1

This example demonstrates BHM fits for different choices of
spline orderm.

The original function is a quartic polynomial (Function=
quartic_polynomial):

f (x) = α(x4 − 0.8x2). (11)

Because f (x) changes sign, sampling on the interval [−1, 1] is
performed with the probability density p(x) = |f (x)| and α =

0.171964 is chosen to ensure normalization of p(x) on this interval.

The histogram data is fitted with BHM using the default param-
eters, with the exception of SplineOrderwhich is set to 3, 4, and
5 respectively. The fit results are shown in Fig. 5. From the output
files "spline.dat" it can be seen that the cubic spline has four
spline pieces; the quartic spline has one spline piece, as expected;
the quintic spline also has one spline piece, its coefficients up to
quartic order are similar to the ones obtained via quartic fit, and its
highest spline coefficient is small.

We explain in detail the verbose output for the cubic fitm = 3.
At the beginning of the output, the fit parameters are listed, as well
as general information about the input histogram. Then follows in-
formation about the goodness-of-fit at the different fitting stages:

1...
2BHM fit:
3Begin BHM fitting with threshold T = 2
4Checking separate chi_n^2/n in spline fit
5level n chi_n^2/n max chi_n^2/n
60 1 9.7585 3.8284
71 2 2.7736 3.0000
82 4 1.7636 2.4142
93 8 832.1519 2.0000
104 14 539.3412 1.7559
115 24 210.2518 1.5774
126 41 118.5452 1.4417
137 54 67.7739 1.3849
14Checking interval 0 (order: 0, number: 0)
150 1 9.7585 3.8284
16This interval fit is not good
17Checking separate chi_n^2/n in spline fit
18level n chi_n^2/n max chi_n^2/n
190 1 0.0020 3.8284
201 2 0.0006 3.0000
212 4 1.6409 2.4142
223 8 7.0923 2.0000
234 14 7.8734 1.7559
245 24 5.2920 1.5774
256 41 3.3034 1.4417
267 54 2.0987 1.3849
27Checking interval 0 (order: 1, number: 0)
281 1 0.0005 3.8284
292 2 1.7172 3.0000
303 4 6.3727 2.4142
31This interval fit is not good
32Checking interval 1 (order: 1, number: 1)
331 1 0.0006 3.8284
342 2 1.5645 3.0000
353 4 7.8119 2.4142
36This interval fit is not good
37Checking separate chi_n^2/n in spline fit
38level n chi_n^2/n max chi_n^2/n
390 1 0.0001 3.8284
401 2 0.0002 3.0000
412 4 0.0055 2.4142
423 8 0.0519 2.0000
434 14 0.3837 1.7559
445 24 0.8437 1.5774
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Fig. 5. Quartic polynomial test function f (x) and BHM fits f̃ (x) with different spline orders m. The left panel shows the function and the fits; the right panel shows the
difference between them.

456 41 0.8378 1.4417
467 54 0.8693 1.3849
47Good spline found with threshold T = 2
48...

First a fit is attempted with one spline piece on the whole domain
(lines 4–13). This fit is not acceptable because χ2

n /ñ (third column
in the output) exceeds the maximally allowed value 1 + T

√
2/ñ

(fourth column in the output) for most of the levels. The second
column lists ñ, the number of available bins at each level. This
number is in general smaller than 2n, because some bins do not
contain enough data to be used for fitting. Also, hierarchy levels
below n = 7 were omitted because the fraction of usable bins on
these levels was below the set UsableBinFraction value.

Since the first fit was unsuccessful, χ2 is evaluated on each
spline interval separately (lines 14–16). In this case, this yields no
new information, since only one interval is present. As soon as a
level is found where the fit is unacceptable (level 0 in this case),
this check stops without proceeding to lower levels, since this is
enough to identify a bad interval.

After the interval is divided, another BHM fit is attempted on
two intervals (lines 17–26). This fit already has smallerχ2

n /ñ values
than the previous one, but still fails the threshold on several levels.
Both spline intervals are then again checked separately (lines 27–
31 and 32–36, respectively) and both fail the goodness-of-fit check
on level 3. Note that level 0 is not present in the individual interval
checks, because the bin on this level is larger than each of the spline
intervals.

The intervals are numbered consecutively, but additional infor-
mation is provided so that their location can be recovered (see e.g.
lines 27 and32). The boundaries of an interval always coincidewith
the boundaries of a bin on a certain hierarchy level (denoted by
‘‘order’’) and ‘‘number’’ denotes the number of this bin.

After the intervals are again divided, the resulting BHM fit
(lines 38–47) is acceptable. No separate interval checks need to be
performed and the code exits with the fit result. If PrintFitInfo
is requested, the goodness-of-fit information of the final result is
output again at the end. This includes the χ2

n /ñ values on each
level n, the unit standard deviation

√
2/ñ of the corresponding χ2-

distribution, aswell as the number of standard deviations bywhich
χ2
n /ñ exceeds 1 on each level (last column). If χ2

n /ñ ≤ 1 the latter
value is 0.

5.2. Example 2

This example demonstrates BHM fits for different choices of the
threshold T . The sampled distribution is a decaying exponential

(Function=exponential),

f (x) = α exp(−3x), (12)

normalized on the interval [1, 3], which implies α = 3e9/(e6 − 1).
The function is sampled on the interval [1, 2.8], so that there is
a finite number of values Nexc sampled outside of the histogram
bounds. The total number of sampled points in this example is
SampleSize=100000.

The histogram data is fitted with BHM using the default pa-
rameters, with the exception of the parameters defining the fit
acceptance threshold, which is set to be fixed at T = 0, 2, and
8, respectively. This can be achieved by either setting the value of
ThresholdMax to be equal or less than the value ofThreshold, or
by setting ThresholdSteps=0. The fit results are shown in Fig. 6.

For all threshold values an acceptable fit exists, but with differ-
ent interval divisions. The extremely low threshold value T = 0
(which means that only fits with χ2

n /ñ ≤ 1 are accepted) yields
an overfitted spline with 12 spline pieces. The value T = 2
produces a suitable fit with 3 spline pieces that captures the shape
of the test function well. The very high value T = 8 yields an
underfitted spline with only 2 pieces. This spline deviates strongly
from the true function and the error on the spline is severely
underestimated.

5.3. Example 3

This example demonstrates that BHM works for both uniform
and non-uniform input histograms. The sampled distribution,

f (x) = 0.2G(0, 0.2) + 0.4[G(2, 1) + G(−2, 1)], (13)

is a linear combination of three Gaussians G(µ, σ ) with mean µ

and standard deviation σ (Function=triple_gaussian). It has
several distinct features and resembles a physically relevant case.

We sample SampleSize=1000000 data points on the interval
[−5, 5] into a uniform and a non-uniform histogram, both with
28 bins. Note that the non-uniform histogram binning is prede-
fined and cannot be adjusted by changing the PowerBins entry.
The non-uniform histogram bins are smaller in the center of the
domain (where the sampled function has a sharp feature) and
increase exponentially in size towards the domain boundaries. The
smallest bin size is equal to the domain length divided by 212. The
non-uniform histogram is always collected in addition to the cus-
tomizable uniform histogram if Function=triple_gaussian is
chosen and is output into the file nonuniform_histogram.dat.

The fit results are shown in Fig. 7. Both histogram divisions pro-
duce fits of similar quality that reproduce the tested distribution
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Fig. 6. Decaying exponential test function f (x) and BHM fits f̃ (x) of the test function with different goodness-of-fit thresholds T . The left panel shows the function and the
fits; the right panel shows the difference between them.

Fig. 7. Triple Gaussian test function f (x) and BHM fits f̃ (x) of the test function based on a uniform histogram and a histogram with bins of different sizes. The left panel
shows the function and the fits; the right panel shows the difference between them.

Fig. 8. Fröhlich polaron Green’s function. Reference calculationG(τ ) and BHM fit G̃(τ ) using default parameters (left panel) and the difference between BHM fit and reference
(right panel).

well. Since BHM automatically considers combinations of elemen-
tary bins, there is no need for a case-specific implementation of a
non-uniform histogram grid. Note that sampling the same data in
a uniform histogram with 212 bins produces nearly the same fit as
when using 28 uniform bins in this example.

5.4. Example 4

Wenowdemonstrate the effectiveness of BHM on a real physical
example: the restoration of the Fröhlich polaron [8] Green’s func-
tion from data sampled with diagrammatic Monte Carlo [9]. In this
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example, we consider the zeromomentum imaginary time Green’s
function of the Fröhlich Hamiltonian,

H = He + Hph + Heph, (14)

He =

∑
k

k2

2
a†
kak, (15)

Hph =

∑
q

ω0b†
qbq, (16)

Heph =

∑
k,q

i
√
23/2απ

q
(b†

q − b−q)a
†
k−qak, (17)

with the dimensionless coupling constant α = 2 and chemical
potential µ = −2.07ω0, where ω0 is the phonon frequency.
This Hamiltonian describes an electron (with annihilation op-
erator ak) coupled to a bath of phonons (with annihilation
operator bq).

The Green’s function is a fundamental quantity for diagram-
matic Monte Carlo, since it gives the most complete information
about the system, from which other observables of interest can
be extracted. We sample approximately 2 · 106 data points on the
interval [0, 2], divided into 210 elementary bins.

The full Green’s function cannot be computed analytically, so
we use a very long Monte Carlo run as the reference. The errors
on the reference run are several orders of magnitude smaller than
the errors on the data used for BHM. Fig. 8 shows the reference
function and the BHM fit result of the sampled data using default

parameters. It can be clearly seen the fit is in excellent agreement
with the reference function.
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