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TRAVELING STRIPES IN THE KLAUSMEIER MODEL OF
VEGETATION PATTERN FORMATION*

PAUL CARTER! AND ARJEN DOELMAN#

Abstract. The Klausmeier equation is a widely studied reaction-diffusion-advection model of
vegetation pattern formation on gently sloped terrain in semiarid ecosystems. We consider the case
of constantly sloped terrain and study the formation of planar vegetation stripe patterns which align
in the direction transverse to the slope and travel uphill. These patterns arise as solutions to an
underlying traveling wave equation, which admits a separation of scales due to the fact that water
flows downhill faster than the rate at which vegetation diffuses. We rigorously construct solutions
corresponding to single vegetation stripes as well as long wavelength spatially periodic wave trains
using geometric singular perturbation theory. Blow-up desingularization methods are needed to
understand slow passage of solutions near a degenerate transcritical bifurcation. The underlying
geometry of the traveling wave equation predicts relations between pattern wavelength, speed, and
terrain slope.
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1. Introduction. Vegetation patterns are pervasive in water limited regions [17,
22, 31, 33, 34, 44, 45], and it has been observed that on sloped terrain vegetation aligns
in resilient striped patterns [1, 2, 8, 30, 42] due to an oriented flow of water downslope.
The formation of such patterns is frequently modeled by reaction-diffusion equations,
where an advective term accounts for downhill flow of water. One of the simplest
and most commonly used models for studying vegetation patterns on sloped terrain
is the Klausmeier model [22], a two-component reaction-diffusion-advection partial
differential equation describing the evolution of water and plant biomass.

When suitably nondimensionalized, the model takes the form

1
U=A-U-UV?+ ~U,,
(1.1) ‘ T3

Vi =AV —mV +UV?,

where A,m > 0 and A = 0,4, + 0yy. The components U, V' represent water and plant
biomass, respectively. The input parameter A represents rainfall, and the parameter
m denotes the death rate of vegetation. The linear term —U represents evaporation
and the nonlinear term UV ? represents water uptake by plants. This nonlinear term
also appears in the second equation, where it represents plant growth. That is, the
water consumption by vegetation converted into plant biomass at a constant rate. The
two-dimensional terrain has constant slope, oriented so that “uphill” corresponds to
direction of increasing x. The parameter 0 < € < 1 is taken small, which ensures that
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the downhill advection term is large. This is not due to the steepness of the slope
(such slopes are typically gentle) but rather reflects the separation of scales between
the downhill flow of water versus the diffusion of plant biomass. The parameter
values suggested by Klausmeier in [22] are A = 0.94 — 2.81, m = 0.45 for grass and
A =0.077 — 0.23,m = 0.045 for trees, with ¢ = 0.005.

Equation (1.1) admits a spatially homogeneous steady state

(1.2) (U, V)(x,y,t) = (Us, Vi) = (4,0),

which corresponds to the bare desert state. In the case A > 2m, there also exist two
other uniform steady states,

(1.3) (U:I:;Vj:): (A:I:\/A2—4m2 A:F\/A2_4m2>'

2 ’ 2m

Given the dominating appearance and resilience of striped patterns on hillsides
with sufficiently steep slopes [1, 2, 8, 30, 42], we are interested in the (mathematical)
formation of traveling vegetation stripe solutions. Such solutions are given as profiles
(U, V)(z,y,t) = (U, V)(x — St) which are constant in the direction transverse to the
slope (the y-direction), and traveling toward increasing z, corresponding to positive
wave speed S > 0. As is usual in the analysis of reaction-diffusion(-advection) equa-
tions, we first focus on the construction of localized patterns or pulses, i.e., patches
of vegetation localized in the direction of slope and bordered on each side by the
bare desert state (Us, Vi). Figure 1 shows the U and V profiles of a localized stripe
solution obtained by direct numerical simulation in (1.1) for the parameter values
A =1.2,m = 045, = 0.005. Also shown is a space-time plot of the location of
the vegetation patch; note that the direction of motion is toward increasing x, corre-
sponding to the uphill direction.

The behavior of stripe solutions to (1.1) has been studied in previous works, no-
tably a collection of articles [36, 37, 38, 39, 40] in which the author investigates pattern
solutions of (1.1) in various parameter regimes. However, results in the direction of
far-from-onset or large amplitude patterns for (1.1) are primarily numerical or rely
on formal leading order asymptotic analysis, and there is a notable lack of rigorous
mathematical existence analysis. From the analytical point of view, much is known
regarding pulse solutions in Gray—Scott type models [10, 11, 13, 20, 23, 24, 32] and
in the so-called generalized Klausmeier—Gray—Scott model [35, 41, 43] in the context
of vegetation pattern formation. The latter was originally proposed in [43] as a nat-
ural generalization of (1.1) in which the water component U also diffuses, typically
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F1G. 1. Shown are the U and V profiles (left and middle panels, respectively) of a traveling pulse
solution of (1.1) obtained by direct numerical simulation with A = 1.2, m = 0.45, and € = 0.005.
The right panel depicts a space-time plot of the V -profile; the pulse travels to the right, corresponding
to the uphill direction.
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at a faster rate than that of the vegetation component. By stretching the classical
methods originally introduced in [10, 11] to their limits, stripe solutions were con-
structed for the Klausmeier—-Gray—Scott model in [35] for parameter values up to a
certain maximal ratio between the advective and diffusive (water) transport effects.
However, it was also shown in [35] that these stripe solutions must be unstable (with
respect to transverse instabilities). Nevertheless, the simulations of [41] indicate that
stripes may be stable beyond the region for which the methods of [35] apply, i.e., in
cases where the advective effects are so strong that the ratio between the advective
and diffusive effects passes beyond the (theoretical) upper bound of [35]. Note that
the stabilizing effect of sloped terrain on vegetation stripes is in line with observations
of real vegetation patterns [8, 9]. From this point of view, (1.1) arises as a natural
“advection-dominant” limit, in which the diffusion of water is ignored entirely and the
advection is assumed large, and serves as a first step in understanding the potentially
stabilizing effect of downhill advection of water.

We therefore focus on (1.1) and aim to construct stripe solutions analytically.
Motivated by Klausmeier’s choice of parameters, we focus on the regime where the
system parameters satisfy 0 < e < 1 and 0 < A,m = O(1). In this regime, we con-
struct traveling stripe solutions rigorously, using the methods of geometric singular
perturbation theory [14] and blow-up desingularization [27, 28, 29]. In particular,
we are able to construct (homoclinic) traveling pulse solutions, representing single
vegetation stripes. Based on these insights, we next consider the ecologically more
relevant spatially periodic vegetation patterns (see Figure 2) and establish the exis-
tence of a family of such traveling wave trains. All of these solutions travel in the
uphill direction. While a stability analysis is outside the scope of this article, we do
confirm that these solutions lie outside the geometric framework of those which fall
into the two-dimensional-unstable regime in Klausmeier—Gray—Scott type models; in
particular, the unstable Klausmeier—Gray—Scott pulses of [35] center around a fast
homoclinic orbit that drives the transverse instability of the stripe, while the pulses
constructed here are based on a fast heteroclinic jump.
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Fi1G. 2. Depicted are the U and V profiles (upper and lower panels, respectively) of three
traveling wave train solutions to (1.1) obtained via direct numerical simulations for values of A =
1.2, m = 0.45, and € = 0.005. The spatial domain length is fized at L = 1000 with periodic boundary
conditions. Note that longer wavelength correlates with larger amplitude.
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Concerning the existence of pulses, we have the following.

THEOREM 1.1. There exists a unique 6y > 0 such that the following holds. Fiz
A;m > 0. Then for all sufficiently small € > 0, the Klausmeier equation (1.1)
admits a traveling pulse solution (U,V)(z,y,t) = (U,V)(xz — St) with wave speed

§ = (228)13 + 0(1),

The background of the crucial constant 6y will be discussed in the upcoming
description of the singular nature of these orbits. Based on this result we establish
the existence of (one-parameter families of) periodically repeating vegetation stripe
pattern solutions.

THEOREM 1.2. Fiz A,m > 0 and A > 0 sufficiently small. For all sufficiently
small € > 0, the Klausmeier equation (1.1) admits a family of traveling wave trains

(1.4) (U, V) (z,y,t) = (U, V)(x— Sk,e)t; k,e), ke (AA),

with wave speeds S(k,e) = (@)1/3—&-(9(1), with 8y as in Theorem 1.1, and amplitudes

(1.5) Umax(k,e) = sup |U(& K, e)| =k + h(k,e),
§E10.T(h,e)]

where |h(k,e)| = 0 as € = 0, and the periods T(k,e) — oo as € — 0 for each fized
k € (A, A). Furthermore, for each sufficiently small fized e, the periods T (k,e) satisfy
T(k,e) = oo as k — A, and the periodic orbits limit onto the pulse solution from
Theorem 1.1.

From Theorems 1.1-1.2, we immediately obtain relations between properties of
the emergent pattern solutions. First we note that the leading order expressions for
the wave speeds in both theorems imply that the vegetation patches move uphill,
which is in line with the (idealized) ecological mechanism which suggests that vege-
tation travels in the direction of the source of water. While this agrees with many
observations, static vegetation stripe patterns have also been observed on slopes [4, 8].
Also, Theorems 1.1-1.2 predict that stripes travel faster for larger values of the slope,
which is in line with prior results [36]. Although this is confirmed by the recent
observations in [4], empirical data again paints a mixed picture [42], with some ob-
servations of negative correlation between speed and slope [16]. We further note that
Theorem 1.2 predicts that longer wavelengths correspond to larger amplitudes (see
Figure 2), which is confirmed by observations [4, 8]. Moreover, it should be remarked
that the results of Theorems 1.1-1.2 concern “perfect” spatially periodic patterns on
terrains with a “perfect” constant slope. It is shown in [3] (in the context of the gen-
eralized Klausmeier—Gray—Scott model) that pulses may indeed move downhill, due
either to a change in slope or to the presence of other—nonequidistant—pulses. Nev-
ertheless, there is a remarkable variability in relations between properties of empirical
observations of vegetation patterns, and a highly simplified model such as (1.1) may
not be capable of capturing all ecologically relevant behavior.

Our results on the existence of traveling wave solutions of (1.1) are established
through the corresponding traveling wave equation

1
0= <+S> Us+A—-U-UV?
(1.6) €

0=Vee + SVe —mV + UV?,
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obtained by substituting the ansatz (U, V)(z,y,t) = (U,V)(x — St) into (1.1), where
we have denoted the traveling wave variable by ¢ = x — St. The existence analysis
therefore reduces to understanding the dynamics of the three-dimensional ordinary
differential equation (1.6), where we exploit the small parameter ¢ as a singular per-
turbation parameter. The existence of singular pulse (Theorem 1.1) and spatially pe-
riodic (Theorem 1.2) pattern solutions corresponds directly to similar results obtained
in [35, 41] in the context of the generalized Klausmeier—-Gray—Scott model, where the
effect of water diffusion is included. In that case, the traveling wave existence problem
is four-dimensional and the approach of [35, 41] runs along the lines of the literature
on Gray—Scott type models. However, we emphasize that this approach does not ex-
tend to the present original Klausmeier equation (1.1)—see especially [35]. In each
case the vegetation stripe patterns can be constructed as solutions of an associated
traveling wave ODE, though the underlying geometry of this ODE changes when the
diffusion of water is added. In particular, the construction of the pulse and/or periodic
solutions in the Gray—Scott variety of models is based on the family of integrable ho-
moclinic orbits of the planar fast reduced V-subsystem Vee —mV +UV?2 = 0 (cf. (1.6)
with S = 0 and U = U) that governs the excursion of the full homoclinic/periodic
orbit away from and back to a two-dimensional slow manifold. The present case dif-
fers essentially from this setting: the natural homoclinic orbit of the fast reduced
V-subsystem does not play a role here (see also Remark 1.3).

The traveling pulse and wave train solutions of Theorems 1.1 and 1.2 correspond
to singular orbits that can be seen as the (singular) compositions of three parts: a
superslow part that follows a slow manifold that is not normally hyperbolic, a slow
part along a standard normally hyperbolic manifold, and a fast jump along a planar
heteroclinic connection. Similarly to the construction of traveling pulses in FitzHugh—
Nagumo type equations [21], the fast jump determines the speed, and thus the crucial
constant 6y that appears in both theorems. However, unlike these more classical
models, the fast jump is described by a somewhat nonstandard planar system,

(1.7) Z" + (9 — ;ZQ) Z'+(1-2)7% =0.

This system has two critical points: (Z,Z’) = (0,0) is degenerate and corresponds
to the nonhyperbolic slow manifold, while the saddle (Z, Z’) = (1,0) represents the
normally hyperbolic manifold. Apart from the eigenvalue A = 0, (0,0) also has a
stable eigenvalue A\ = —6# with an associated well-defined one-dimensional strong
stable manifold W#5((0,0)): 69 is defined as the unique value of 6 for which W*¢((0, 0))
coincides (partly) with the one-dimensional unstable manifold W*((1, 0)) of the saddle
(1,0)—see section 2.2. The core of this paper is dedicated to the validation of this
construction for € > 0 (and sufficiently small). Very different from the classical
four-dimensional Gray—Scott type existence problems, a central role is played by the
geometric blow-up techniques as developed in [27, 28, 29]. Especially since the orbits
we consider here must remain close to a nonhyperbolic slow manifold for “long times,”
the analytic construction is quite subtle.

The remainder of this paper is organized as follows. In section 2, we study (1.6)
as a slow-fast system in the context of geometric singular perturbation theory, and we
construct singular homoclinic and periodic orbits. The persistence of these solutions
for small € > 0 and the proofs of Theorems 1.1 and 1.2 will be given in section 3. We
conclude with results of numerical simulations and a brief discussion in section 4.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/30/19 to 150.135.174.98. Redistribution subject to SIAM license or copyright; see http://www .siam.org/journals/ojsa.php

3218 PAUL CARTER AND ARJEN DOELMAN

Remark 1.3. Tt is possible to construct homoclinic and periodic solutions of (1.6)
that do follow a fast reduced limit homoclinic solution of Vee — mV + UV? =0in
the fast field. However, the U-components of these patterns necessarily must remain
asymptotically close to U* = A, the U-component of the trivial desert state (1.2).
As a consequence, these patterns are both ecologically unrealistic and unstable as
solutions of (1.1).

2. Slow-fast analysis. We rewrite the traveling wave equation (1.6) as a first
order equation

9
Ue=—=
T 1+eS
@1) Ve=0Q,
Qe =mV —UV? - 5Q.

(U-A+UV?),

The disparity between the amplitudes of the U and V profiles in the results of nu-
merical simulations (see Figures 1 and 2) motivates a rescaling of the variables. We
perform the rescaling

S ( q
51/37 U =u, V = Q = ga f = 51/3827-7 6 = 852/37

(2.2) S = 223

which results in the rescaled traveling wave equation

. 1
U= 15 (w? + 6% (u — A)),
(2.3) b = s%q,

where = = chT' Stripe patterns manifest as periodic orbits, or homoclinic orbits to the

equilibrium (u,v,q) = (A,0,0) representing the spatially homogeneous desert state
solution (U, V,) = (A4,0) of (1.1). The rescaled equation (2.3) has lost the slow-fast
structure of the original equation (2.1). However, there is also a slow-fast separation
in (2.3), which can be seen by defining the new variable

w=1+8u+v+gq,
whereby (2.3) becomes
62

w:6mv+1+5

(2.4) v =s%q,

(w—v—q—a),

G = dmv — ﬁ(w —v—q? - s,
where we have set a = (1 + §)A. We refer to the traveling wave equation (2.4) as
the “fast” system, and in the new variables, we search for orbits homoclinic to the
equilibrium (w, v, q) = (a,0,0).

The strategy for constructing the solutions outlined in Theorems 1.1 and 1.2 is
to exploit the slow-fast separation in the traveling wave equation (2.4) which arises
due to the presence of the small parameter 0 < § < 1. The goal of this section is to
construct singular orbits for 6 = 0 which will persist for small § > 0 as solutions of
the full traveling wave equation (2.4). These singular solutions will be composed of
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concatenated portions of critical manifolds, which manifest as manifolds of equilibria
of the system (2.4) when § = 0, with fast jumps along heteroclinic orbits in the
associated layer problem. The critical manifolds and their associated reduced flows
are described in section 2.1, followed by a description of the layer problem in section
2.2. Finally in section 2.3, we construct singular § = 0 homoclinic and periodic orbits
which will serve as the basis for the stripe solutions of Theorems 1.1 and 1.2. The
persistence of these solutions for small § > 0 will be proved in section 3.

Remark 2.1. We assumed that parameters A and m of (1.1) are of O(1) with
respect to the small parameter €. Like in [35], in which traveling waves in the gener-
alized Klausmeier—Gray—Scott model are studied, one could perform a more general
scaling analysis. The outcome of such an analysis is a system very much like (2.4);
the only essential difference is that the §? factor in the w-equation of (2.4) will be
replaced by a factor 60X for some (free) parameter x > 0. For x < 1 this yields several
other types of solutions. Such (ecologically relevant) orbits are also considered in work
in progress in the context of a modified version of (1.1) [2]; we refrain from going into
this issue here.

2.1. The critical manifolds Mg ". By setting 6 = 0 in the fast system (2.4)
we obtain the planar layer problem
v = s°q,

2.5
29 §=—(w—v—qp’ -5’

parameterized by w. There are two equilibria p; (w) and py(w) given by (v, q) = (0,0)
and (v,q) = (w,0), respectively, which coincide for w = 0. The equilibrium ps(w) is
a hyperbolic saddle for each w > 0, while p;(w) is nonhyperbolic with one negative
and one zero eigenvalue. Therefore, the set of equilibria M = {p2(w) : w € R}
forms a critical manifold which is normally hyperbolic for w > 0, while the set M§ =
{p1(w) : w € R} forms a manifold of nonhyperbolic equilibria. These two manifolds
intersect at the origin in a manner which can be described as a degenerate transcritical
bifurcation.
For wy,, war € R with w,,, < wys, we will use the notation

M(e)(wmawM) = {pl(w) Twe [wmva}};
Mo (wim, war) = {p2(w) : w € [wi, war]}

to refer to subsets of the critical manifolds /\/lf,/ "

(2.6)

We now determine the reduced flow on each of the critical manifolds ij/ ". For
MG, we rescale o = §7 in (2.4) and obtain the slow system

wgzmv+m(w—v—q—a),

(2.7) Svy = 5°q,

1
0qy = dmv — m(w —v—q? - s,

and upon setting 6 = 0 we obtain the reduced problem

Wy = M,
(2.8) 0= s,
0=—(w—v—qn?—s
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MG

F1G. 3. Shown are dynamics on the critical manifolds Mg/T within the slow (left) and superslow

(right) reduced systems.

Here the flow is restricted to the union M} U M§, and within M}, the dynamics
are governed by the single equation

(2.9) Wy = MW,

which admits an unstable equilibrium at w = 0. Within the reduced system (2.8),
M consists of equilibria; see Figure 3, left panel.

To determine the flow on MY, we note that M} is an invariant set for all §.
Returning to the system (2.4), and considering the flow on M on the “superslow”
timescale ¢ = 627, we obtain the reduced equation

(2.10) we = w — a,

which admits a single repelling equilibrium at w = a; see Figure 3, right panel.

2.2. Layer problem: Singular fronts. In this section, we study fast connec-
tions between the manifolds MS/ ". We recall that for each w, the layer equation (2.5)
admits two equilibria p; (w), p2(w), which coincide for w = 0. The critical manifold

b= {pa2(w) : w € R} is normally hyperbolic for w > 0, while M§ = {p; (w) : w € R}
forms a manifold of nonhyperbolic equilibria. The manifolds formed by the union of
the stable/unstable manifolds of the equilibria ps(w) for w > 0 form two-dimensional
(un)stable manifolds W*(MF), W*(M§) of the normally hyperbolic critical manifold
M.

Within the layer problem (2.5), the equilibrium p; (w) has a unique strong stable
manifold W?**(p; (w)), and we are interested in heteroclinic orbits between ps(w) and
p1(w) which approach p; (w) along W**(p1(w)). We note that the equilibrium (a, 0, 0)
of the full system (2.4), which corresponds to the spatially homogeneous desert state
solution, coincides with p;(a). We have the following (see Figure 4).

PROPOSITION 2.2. Consider (2.5) for w > 0. There exists a unique s = s*(w) >
0 such that there is a heteroclinic orbit from pa(w) to pi(w), which we denote by
or(w), which approaches p1(w) along the strong stable manifold W** (p1(w)).
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F1G. 4. Shown is the geometry of the layer problem (2.5) for w = a, along with the heteroclinic
connection ¢¢(a), which exists for s = s*(a).

Proof. We begin by proving that there is some value of s = s*(w) for which the
orbit ¢¢(w) exists. We consider the planar system (2.5) for fixed w > 0,

v =s"q,
(2.11) . s s
¢=—(w—v—qv”—s°q.

We track the behavior of W#**(p;(w)) under the backward flow of (2.11) as s
varies. The linearization of (2.11) about p;(w) has eigenvalues 0, —s® with corre-
sponding eigenvectors (1,0) and (1, —1), respectively. In particular, this means that
the manifold W#*(p;(w)) approaches p; (w) asymptotically along the line ¢ = —v. We
are concerned with the branch of W#*(p;(w)) which approaches p;(w) via the region
q<0<uo.

We note that along the curve v + ¢ = 0, we have v + ¢ < 0 when v > 0. Further,
along the line v = w, we have ¥ < 0 when v > 0. Finally, along the curve ¢ = 0 we
have v =0 and ¢ < 0 for 0 < v < w. In particular, this means that in backward time,
W#¢(p1(w)) enters the triangular region 7 bounded by the curves ¢ = —v,v = w,
and ¢ = 0 and has one of three possible fates: W?*%(p;(w)) can exit this region via
the boundaries By = {¢ = 0,v < w} or By = {v = w,q < 0} or must converge to the
equilibrium py(w) = (w, 0).

We further note that the line v + ¢ = w is invariant under the flow of (2.11). In
particular, if W?%(p;(w)) enters the region ¢ > 0 via the boundary B; in backward
time, then W?**(p; (w)) is confined to the region 0 < ¢ < w—wv for all (backward) time.
Similarly, if W#*(p;(w)) enters the region v > w via the boundary By in backward
time, then W#*(p;(w)) is confined to the region 0 < ¢ < w — v for all (backward)
time. That is, once W?**(p1(w)) leaves T via either of these boundaries in backward
time, W?*°(p1(w)) never returns to 7.

We proceed via a continuity argument for each w > 0. We show that for small
values of the speed s, W**(p1(w)) leaves T via B; in backward time, while for large
values of s, W**(p1(w)) leaves T via Bs, which implies the existence of a speed
s = s*(w) for which W?**(p;(w)) must connect to the equilibrium pg(w).

Within 7', we note that

dq__(w—v—q)v2_1

2.12 = =
(2.12) dv s3q

and since w —v — q > —q in T, we have

dg v?

(2.13) W

71,

from which we deduce that W?**(p;(w)) lies above the curve ¢ = % — v within 7.
By taking s3 < w?/3, we ensure that W**(p;(w)) must exit T via Bj.
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On the other hand, whenever ¢ < —2wv?/s® and s® > 2w?, within 7 we have
that

(w — q)v*
2.14 — <1
(214) —
and thus
dq v3
2.15 — < —=.
(2.15) dv < s3q

We deduce that W**(p;(w)) lies below the curve ¢ = —v?/+v/2s3 within 7 whenever
q < —2wv?/s®. In particular, this means that in backward time W?**(p;(w)) must
exit 7 via the boundary By whenever s > Sw?.

Therefore, there exists a heteroclinic connection between the equilibria ps(w) and
p1(w) which approaches pi(w) along W?**(p;1(w)) for some value s = s*(w) which
satisfies w?/3 < s*(w)3 < 8w?.

Finally, we consider the uniqueness of s*(w). We consider (2.11) and compute the
distance between W (p2(w)) and W?*(py(w)) to first order in s — s*(w). We consider
the adjoint equation of the linearization of (2.11) about the front ¢¢ given by

. 0 —(3vr(7)? — 2wvp (1) + 205(7) e (1))
(2.16) b= Y.

5" (w)? $*(w)® — vi(r)?

The space of solutions which grow as 7 — co at most algebraically is one-dimensional
and spanned by

(2.17) Pr(7) i e (WP T (O (f/l%(f)) .

vg(T)

Let Fy denote the right-hand side of (2.11). Then the Melnikov integral
M. = [ DuFo(n(r) - va(r)ir

= 35" (w)? / e (0" 7[5 0RO 1y — () — go(7) e (1) 2qe (r)dr
<0

measures the splitting of W"(pa(w)) and W**(p;(w)) along ¢r to first order in s —
s*(w). In particular, this guarantees the local uniqueness of the heteroclinic connec-
tion ¢¢(w). As the sign of the Melnikov coefficient is fixed independent of s*(w), this
also guarantees the uniqueness of the heteroclinic orbit over all values of s. ]

Remark 2.3. We note that there can be additional heteroclinic connections be-
tween the equilibria p; (w), p2(w) which approach p; (w) along a weak center direction
for other values of s. However, we will see in section 3 that in the full system for
§ > 0, any such orbits are blocked from approaching the manifold M and are not
relevant in the construction of traveling pulses and wave trains.

From the Melnikov analysis in the proof of Proposition 2.2, we immediately obtain
the following.
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COROLLARY 2.4. For each w > 0, the intersection of the manifolds W*(Mp) and
W25 (p1(w)) along the singular front ¢¢(w) is transverse in s, and the splitting function

(2.18) Do(s;w) = My(w)(s = 5" (w)) + O(|s — 5" (w)[?)
measures the distance between W"(MG) and W3 (p1(w)) for s = s*(w).

We now introduce Z, @, n, and 8 by the rescalings

_ _ _n _..2/312/3
(2.19) v=wZ, q=wQ, T= g S=U <72,

which results in

=00,

(2.20) g
Q_l_ _ _ 2 _ p2
T2z -#q).

which coincides with planar system (1.7). Moreover, by construction, s*(w) as intro-
duced in Proposition 2.2 corresponds to 8y as defined in Theorems 1.1 and 1.2 through
s*(w) = w2/30§/3 so that indeed (by Proposition 2.2) 6y is the value of 6 for which a
connection between W*#((0,0)) and W*((1,0)) exists in (1.7) or equivalently (2.20).

Remark 2.5. By the above analysis, we have that %\/g < 0y < 2v/2. Numerically,
we can approximate the value of 6y, and we determine that critical speed s = s*(w)

for which the front ¢ exists is given by s*(w) = w2/393/3, where 6y ~ 0.8615.

2.3. Singular traveling wave solutions. From the analysis of the reduced/
layer problems in sections 2.1-2.2, we are able to define singular homoclinic orbits
and periodic orbits for the system (2.4).

We first construct a singular homoclinic orbit, or traveling pulse solution, as
follows. There is a singular trajectory which first departs the equilibrium p;(a) along
the critical manifold Mf; in the superslow timescale, and upon reaching w = 0 then
transitions to M in the slow timescale. By concatenating this trajectory with the
singular front ¢¢(a), we obtain a singular homoclinic orbit

(2.21) Ho = M§(0,0) UM (0,0) U dr(a)

to the equilibrium p;(a); see Figure 5.
For periodic orbits, the construction is similar. For each value of k € (A, a), there
exists a singular periodic orbit

(2.22) Po(k) = M0, k) UMy (0, k) U ¢ (k)

obtained by first following the portion of the critical Mé in the region w € [0, k],
then following the critical manifold My in the slow timescale from w = 0 to the plane
w = k, and finally returning to M§ along the singular front ¢¢(k) which exists for
s = s*(k).

3. Persistence of solutions for 0 < § < 1. In this section, we construct
solutions for sufficiently small § > 0 based on the singular solutions described in sec-
tion 2.3 and complete the proofs of the main existence Theorems 1.1 and 1.2. Much
of the analysis involved is related to studying the flow in neighborhoods of the criti-
cal manifolds Mg/ " for small § > 0. In section 3.1, we analyze the flow near M§
and in particular study the behavior of the unstable manifold W*(p;(a)) of the
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w

,
M,

e

A

0L

W5

F1c. 5. Shown is the geometry of the singular pulse solution Ho.

equilibrium p; (a). The flow near M} is analyzed in section 3.2, followed by the proofs
of Theorems 1.1 and 1.2, which are given in sections 3.3 and 3.4, respectively.

3.1. The flow near Mﬁ for 0 < § <« 1. The flow near /\/lf) requires care
as this manifold is not normally hyperbolic, so standard methods of geometric singu-
lar perturbation theory do not apply. The equilibria p;(w) which comprise Mé are
nonhyperbolic with one center direction and one strong stable direction. We there-
fore begin by constructing a two-dimensional normally attracting center manifold W§
which contains M§.

We consider a compact segment of M§ which contains the equilibria p;(w) for
—p < w < a+ p, that is, a connected segment of M which includes both the origin
and the equilibrium p;(a) of the full system (2.4). We consider the linearization
of (2.5) about p;(w), which has eigenvalues \Y = 0 and A\] = —s? and associated
eigenvectors

(3.1) el = (é) , el = (_11> )

Therefore, for § = 0, these equilibria all have one center direction and one stable
direction which depend smoothly on w. Therefore, by the center manifold theorem,
in a neighborhood of each equilibrium p;(w), there exists a center manifold which
depends C*-smoothly on w, which can be represented as a graph over the center
eigenspace. The union of all these center manifolds for —p < w < a + p forms a
C*-smooth normally attracting invariant manifold W§ which contains M.

This manifold therefore persists as a two-dimensional locally invariant C*-smooth
normally attracting manifold W§ for 0 < § < 1. We now determine the flow on
Wg. We begin by straightening the center/stable eigenspaces by defining the variable
z = v + ¢, whence (2.4) becomes
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w=3dm(z—q)+ 1i_5(w—z—a),
(32) s = oz —q) = 15 (w— )= — )
§=0m(z — )~ 5w =) -0~ g

The center manifold Wy is given as a graph ¢ = f(w, z,0). Since W§ contains the
invariant set {z = ¢ = 0}, we have that f(w,z,§) = O(0z,2?). Defining § = ¢ —
f(w, z,0), we obtain

2

w:§m(z—(j—f(w,z75))+m(w—z—a),
B8 = bmle =g fw,2,0) — 1w —2) (=~ fw,2,0),

5 = (_83 + h(w7 2, (jy 5)) (ja

where h(w, z,q4,0) = O(z,§,d), whence the flow on WJ is determined by ¢ = 0. By
performing a final coordinate change to straighten out the strong stable fibers, we

obtain
2

w=dm(z— f(w,z9§))+ s (w—z—a),
(3.4) s = 0z — f(w,2,0)) — 10— 2) (2 = f(w,2,0)

Q= (=" +h(w,2.9))

by a slight abuse of notation again denoted in terms of (w,z,§) and where again
h(w, z,q,0) = O(z,q,9). Hence we have decomposed the flow into the two-dimensional
dynamics of basepoints on Wy and the flow along the one-dimensional strong stable
fibers. We now focus on the flow of basepoints on the center manifold W¥, determined
by
2
146
1
2=0omz(1+0(, %)) — m(w —2)22(14+0(6,2)) .

We break the analysis into four regions R; — R4, which require different scalings. The
first region R; determines the flow near M for z = O(6). The regions Ry, R3 concern
the transition from z = O(8) to (w,z) = O(5'/?), and the final region R, determines
how the dynamics for (w,z) = O(§'/?) match up with the normally hyperbolic man-
ifold M in the region (w,z) = O(1) .

3.1.1. The region R;. We begin with the region z = O(J), which will allow us
to determine the local stable/unstable manifolds of the equilibrium p;(a) for 6 > 0.
We rescale z = §z1, whence we obtain

w=3dmz(l+ O, 2)) + (w—z—a),

(3.5)

2

W= 6*mz(1+0(0)) + —— (w— 62 —a),
(3.6) 1 1;5 1
71 =0mz (1+O(9)) — m(w —3021)28 (14 0(9)).
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On the slow timescale, we obtain
0
w' = dmz1(1+ OF)) + s (w—109z —a),

2 —mz (14 0)) — 1%(S(u; —52)2 (14 0(5))

which gives a new slow-fast system with respect to the “superslow” time t; = do =
§27. Setting § = 0 in (3.7) gives the layer problem

(3.7)

w' =0,
(3.9)

!l 2
Z1 = mzp — wzy,

m

which has two hyperbolic equilibria g (w), g2(w) given by z = 0 and z = 2, respec-
tively, for each w > 0. The equilibrium ¢; (w) is repelling while go(w) is attracting.
Therefore, away from w = 0, there exist normally hyperbolic critical manifolds C§ and
C2 formed by the sets of equilibria {g; (w) : w € R} and {g2(w) : w > p}, respectively.

With respect to the superslow time t1, we obtain the reduced systems on each of
the critical manifolds C§ and C3. On C§, the reduced flow is given by

dw

3.9 = —w—
(39) E—u-a
while on C2, the reduced flow is

dw — m?
3.10 — = — —a.
( ) dtl w tw @

We see that for a < 2m, there are no equilibria on C3, with a saddle-node bifurcation
occurring when a = 2m, resulting in two equilibria given by

a+va? —4m?
2

when a > 2m. The equilibrium at w = w_ is attracting while that at w = wy is
repelling.

The manifolds C} and CZ perturb to one-dimensional locally invariant manifolds
C} and CZ, on which the slow flow is an O(d) perturbation of the respective reduced
flows (3.9) and (3.9). See Figure 6 for a schematic in each of the cases a > 2m and
a < 2m.

Furthermore the unstable manifold W*(C{) of C} and the stable manifold W*(C3)
of Cg persist as two-dimensional locally invariant manifolds W*(C}) and W#(C%). The
equilibrium p(a) of the full system (2.4) lies on C} on which it is locally repelling
within W§. In particular we now determine that for 0 < § < 1, the equilibrium p; (a)
becomes hyperbolic with two-dimensional unstable manifold W¥(p;(a)) = W*(C})
and one-dimensional stable manifold given by the strong stable fiber W**(p1(a)) of
W with basepoint at p;(a).

Additionally, for the case of a > 2m, the equilibria w = w4 of the reduced
system (3.10) persist as equilibria p+ of the full system for 0 < ¢ < 1 and we
immediately obtain the following.

(3.11) wy =

PRrOPOSITION 3.1. Fiz a,m > 0 satisfying a > 2m. Then for all sufficiently small
d > 0, there exists a unique front solution ¢4 between the equilibria pi(a) and py,
and unique front solution ¢_ between the equilibria pi(a) and p— which approaches
p_ along its strong stable manifold.
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w
)tw/ k
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p1(a)
Cs 3
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N% /Ll ! DI
21 21
0 0
(a) a < 2m (b) a > 2m

Fic. 6. Shown are the dynamics of (3.7) in the region Ri for 0 < § < 1 in the cases a < 2m
(left panel) and a > 2m (right panel). In the latter case, additional equilibria p+ persist on the slow
manifold Cg and there exist fronts ¢+ which connect p1(a) to each of p+, with ¢_ approaching p—
along a strong stable manifold. In each case, we have that £t C W¥(p1(a)).

Proof. The result follows from geometric singular perturbation theory applied to
the planar system (3.7). |

Remark 3.2. The equilibria p1 correspond to the spatially homogeneous vege-
tated steady states (Ux, Vi) of (1.1) defined in (1.3). Each of the front solutions ¢4
therefore describes the invasion of the barren desert state into a uniformly vegetated
state.

We now focus on tracking the unstable manifold W*(p;(a)) through the region
w = 0. In particular, for |w| bounded, all points which lie in a small neighborhood
of C} lie on W¥(p1(a)). For z; > 0, we see from (3.6) that 2| > 0; hence we may
integrate forward and see that W"(p1(a)) extends to z; = 1/u for p > 0 independent
of §, provided ¢ is sufficiently small.

To summarize, we may therefore define the section X" = {(w, 21,0) : |w| <
Y2/, 21 = 1/p,0 < 6 < K2p?} for w sufficiently small, which thus consists entirely
of points which lie on W*(p1(a)).

3.1.2. The regions R; and Rg3. The region R3 concerns the passage near
w,z = O(6Y/?). We therefore perform the rescaling w = dsws, z = d323,0 = 62, which
results in the system

. 3
w3y = (ngZg(l + O((Sg, 5323)) + H%ﬁ ((531113 — 0323 — CL) R
(3.12) .
7y = 63mzs (1 + O(83, 0323)) — ﬁ?’éﬂ(w?} — z3)73 (1+ O(63,8323)) ,
3
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which on the slow timescale 0 = §7 = 037 results in
(313) wh=ms b O0)
' 2h = mazs + 25 — wszs + O(0323,0323).

The region Ry concerns the transition from R;, where z = O(d), to Rs3, where
z = O(6/?). We thus perform the secondary projective rescaling

(3.14) 03 = 2302

which is valid in the region z3 > 0, which results in the system
wh = mz(1+ O(32)),

(3.15) 2y = mzz + 25 — w32k + O(6323,8223),
8y = —mday(1 + O(da, 23)).

In the region Do = {(ws, 23,d2) : |ws| < 3,0 < 23 < p,0 < o < p}, solutions are
confined to curves which satisfy

dws 14+ O(62)
(316) ng 1+ O(Zg, Wwsz3, (522%)
=14 O(6s,23).

We define the entry/exit sections
(3.17) SR =Don{jw| <2,0, =p}, B9 =Dyn{|w| <1,z =r}.

Due to (3.16), a solution which enters D via 3i* at a point (ws, 23, 62) = (w30, 23,0, f42)
remains on a curve which satisfies

(3.18) w3 = w30 + 23(1 + O, k),

throughout its passage through D,, and hence must exit Dy via the set {z3 = k}.
This solution therefore exits Do at a point (ws, z3,92) = (ws 1, p,d2,1) where w31 =
ws,o + O(k); that is, the w3 coordinate of any solution entering Ds via ¥ changes
by no more than O(k) before exiting via the set {z3 = x}. In particular, this means
that the section ' = Do N {|w| < 2,05 = p} is mapped onto the section X" =
Dyn{|w| <1, 23 = Kk}

We now focus on the passage through R3. Recalling the relation d3 = 2362, in the
Rj3 coordinates, the section ¥3" is given by
(3.19) YU = 2 = {(ws, 23,03) ¢ |w] < 1,23 = K,0 < 63 < kpu}.
We consider the flow in R3 for 63 = 0, given by

/
Wy = Mmzs,
(3.20) | 3 )
Zz = Mmz3 + 23 — w323,
and by defining the new variable x3 = z3 — w3, we obtain the system
/ 2
Ts = 23T3,

(3.21) / ,
Zz = mz3 + 2323,

which leaves the subspace 3 = 0 invariant with flow given by z§ = mzs. The time
spent between z3 = k and z3 = 1/ for fixed u, k > 0 is finite. We fix v > 0 sufficiently
small; then for all p > 0 small enough, by a regular perturbation we can ensure that
under the flow of (3.13), the section X' is mapped onto the section

(3.22) 25" = {(ws, 23,05) : |23 — ws| < y,ws =1/, 0 < 03 < pu}.
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3.1.3. The region R4: Blow-up rescaling near MJj. We now study how
solutions on the center manifold W§ behave near the critical manifold M{. We
perform the projective rescaling

(3.23) 2= 1wz, O=w?dy,
which is valid in the region w > 0. This results in the system
= mw®Sy(z4 + O(w)),
1
(324) Z.4 = mwzzi(a — 1) + 0(541112, U]B),
54 = 72mw252(z’4 + O(w)),

which we desingularize by a rescaling of time dt, = w?dr and obtain

d
@ _ mwdy(z4 + O(w)),
dty
d

(3.25) B4 20— 1) + O, w),
dty
o4 = —2md; (24 + O(w)).
dty

The line Ly = {0, = w = 0} is invariant with dynamics

dz
(3.26) Fi =22(z4 — 1)
and thus contains two equilibria, at z4 = 0 and z4 = 1, which we refer to as qo, q1,
respectively (see Figure 7). The equilibrium ¢; at z4 = 1 is hyperbolic repelling with
respect to the reduced flow on L4 with eigenvalue \y = 1. The linearization of the
full equation (3.25) additionally admits a double zero eigenvalue. The plane {§, = 0}
is also invariant with dynamics

dw _
(3.27) 324
S = 22— 1) + O(w).
dty
phoc
Ziut
My o
My
Ly
o N
<« 0 »_
. AN
nin N,

Fic. 7. Shown are the dynamics of (3.25) in the region R4.
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This system has a normally hyperbolic curve of equilibria My o = {24 = 1 + O(w)}
which emanates from ¢; and exactly corresponds to the critical manifold Mg in the
original coordinates. In the invariant plane w = 0, the dynamics are given by

dz
f = 24(z1 — 1) + O(64),
4
(3.28)
@ = —2md2z
dt, 4=

Here we still have the equilibrium ¢g; which has a zero eigenvalue due to the second

equation, and hence there exists a one-dimensional center manifold Ny at ¢; along

which §, decreases. Note that the branch of N4 in the half space 4 > 0 is unique.
For any sufficiently small 3, p, u > 0, we restrict attention to the set

(3.29) Dy ={(w,24,04) : 0<w<p,lza — 1| < B,0< 4 < uQ}.

The next result follows from standard center manifold theory.

ProprosITION 3.3. For all sufficiently small 8, p,p > 0, the following holds for
the dynamics of (3.25) within Dy. There exists a repelling center manifold My at q1
which contains the line of equilibria My and the center manifold Ny. In Dy, My
is given as a graph z4 = hg(w,04) = —1 + O(w,d4). Furthermore, there exists an
unstable invariant foliation with base My and one-dimensional fibers.

We define the following sections:
(3.30) Y = Dy N {6y = p?}, Y9 = Dy N {w = p}.

We note that in the Ry coordinates, the section X8" is given by
(3.31) YU = {(w, 24,04) : 0 < w < p, |z — 1| < yp, 64 = p?} C ZiM

By setting 8 = yu, we have that the flow of (3.25) maps X' onto X3", from
which we deduce that 3§"* consists entirely of points on W*(p;(a)).

Transforming to the original (w, z,d) coordinates, we sum up the results of this
section in the following.

PROPOSITION 3.4. For each sufficiently small p > 0, there exists f > 0 such that
the following holds. For all sufficiently small 6 > 0, within the center manifold Wy,
the set X0 := {(w,z) : w = p,|z — w| < Bp} is contained in W*(pi(a)).

3.2. The flow near My for 0 < § < 1. We now determine the reduced flow
on the normally hyperbolic critical manifold M. We rescale time by ¢ = d7 and
obtain the slow system

w'—mv—i—i(w—v— —a)
B 1+6 1 ’
(3.32) sv' = s3q,
1
5q = émv — m(w — v —q)v? — s3q,
where ’ = %, whence for § = 0 we determine the reduced flow restricted to Mg as
(3.33) w' = muw.
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As the manifold M is normally hyperbolic for w > 0, using standard results
of geometric singular perturbation theory, for 0 < § < 1, M{ perturbs to a one-
dimensional locally invariant manifold M5 which is C1-O(4)-close to M}, on which
the flow is an O(§) perturbation of the reduced flow (2.8). Furthermore, in a neigh-
borhood of M}, the stable/unstable manifolds W*(M§), W¥*(M}) perturb to two-
dimensional locally invariant manifolds W?* (M%), W* (M%) which are C*-O(6)-close
to WP (M), WH(MF).

We now determine how the slow manifold Mj approaches Wy under the backward
flow of (2.4). As Mj is normally hyperbolic in the region w > 0, we can track M
until w = p. Further, from above we have that M} is O(d)-close to Mg, which is
given by the set of equilibria {ps(w) : w > p}. Therefore Mj is O(d)-close to the
curve {v = w, ¢ = 0}, and we have that the two-dimensional stable manifold W?*(M})
of Mj transversely intersects the two-dimensional center manifold W§ at w = p at
a point (w,v,q) = (p,p+ O(0),0(d)). The results of Proposition 3.4 thus guarantee
that for ¢ sufficiently small, W* (M) in fact transversely intersects W"(pi(a)) in the
set {w = p}.

Tracking W¥(p1(a)) forward under the flow of (2.4), by the exchange lemma
W¥(p1(a)) aligns C1-O(e=/%)-close to W*(M3) (for some constant C' > 0) upon
exiting a neighborhood of Mj.

3.3. Construction of pulses. In this section, we complete the proof of Theo-
rem 1.1 by matching W¥(p;(a)) and W**(p1(a)).

Proof of Theorem 1.1. We compute the distance between W*(p1(a)) and W?**(p1(a))
along the singular front ¢¢(a). By the results of section 3.2, upon exiting a neighbor-
hood of M%, W¥(p1(a)) aligns C*-O(e~¢/%)-close to the manifold W*(M3), which is
itself a C1-O(§) perturbation of W*(ME).

Using Corollary 2.4, we can therefore compute the distance between W*(p1(a))
and W?**(pi1(a)) to leading order in § > 0 and s ~ s* as

D(s,0) = My(s — s*(a)) + O(8,e=/% |s — s*(a)|?)

3.34
230 = M(s — s*(a)) + O3, |5 — s*(a)*),

which can be solved for D(s,d) = 0 when s = s*(a) + O(d) by the implicit function
theorem. This corresponds to an intersection of W*(p;(a)) and W**(p;(a)), and thus
a homoclinic orbit in the traveling wave equation (2.4) which is O(6'/?)-close to the
singular orbit Hg.

Using Proposition 2.2, noting a = (14 0)A, and undoing the rescalings (2.2) and
(2.19), we obtain the leading order expression

A292 1/3
(3.35) S = ( . 0) +0O(1)
for the wave speed S of the pulse solution. 0

3.4. Construction of periodic orbits. We now turn to the construction of
periodic orbits and complete the proof of Theorem 1.2. The singular periodic orbits
Po(k) have similar geometry to the homoclinic orbit constructed in section 3.3, com-
posed of portions of the critical manifolds Mg/ " and a singular front ¢¢(k), and we
will therefore be able to call on results from the pervious sections on properties of
the flow near Mg/ ". The periodic orbits will then be obtained as fixed points of an
appropriate Poincaré map.
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Proof of Theorem 1.2. We define a Poincaré section near M§ in the (w, z, §) co-
ordinates from section 3.1. Recall that within this coordinate system, the center
manifold W is given by the set {¢ = 0}, and the flow is decomposed into the two-
dimensional dynamics of basepoints on W§ and the flow along one-dimensional strong
stable fibers parametrized by ¢, given by the system

2
1+9

(3.36) = 6ma (14 0(,2)) — ﬁ(w C )2 (1400, ),

Q= (=" +h(w=4.9) 4

w=omz(l+ O(9,z)) +

(w—z—a),

where h(w, z, 4, 8) = O(z,q,d). In these coordinates, the equilibrium p; () is given by
(w,2,§) = (a,0,0), and for § = 0, the manifold M§ is given by the set {z = § = 0}.

We consider the flow of (3.36) in the set {(w,z,4} : w € [Ay,a+ Ay, |z <
A, lgl < Ag}, and we place a two-dimensional section P = {(w,z, Az} : w €
[Ay,a],|z] < A.} which will serve as the Poincaré section for the construction of
periodic orbits. We denote the corresponding Poincaré map by IIP : 3P — 3P,

For each k € [Ay,a + Ay, by Proposition 2.2, for 6 = 0, there exists a front
#¢(k) which connects M} and M} in the plane {w = k} when s = s*(k). In the local
(w, z,q) coordinates, the front ¢¢(k) corresponds to the strong stable fiber {(k,0,q) :
q € [0,A4]} of the basepoint (k,0,0); this basepoint corresponds to the equilibrium
p1(k) of the layer problem (2.5) in the plane {w = k}. Within ¥P, we can thus
represent the manifold Mj as a graph over w,

(3.37) M5NEP = {(w,z,Az) : 2 =2"(w;s,0)},

where 2" is a smooth function which satisfies z"(w; s*(w),0) = 0 for each w.

For each k € [A,,a), we consider a small interval of initial conditions Z(k) =
{(k,z,Aq} : |2] < A,} for A, chosen sufficiently small. We consider the forward
evolution of Z(k) under the flow of (3.36), which traces out a two-dimensional manifold
Z(k). By the analysis in sections 3.1.1-3.1.2 of the flow in the regions R;, Ry for
0 < § < 1, it is apparent that a subset of Z(k) of width O(6) is quickly contracted to
the unstable manifold W*(p;(a)) and aligns C'-O(e=¢/?) close to W"(p1(a)) upon
entering the region Ry. Continuing to track Z(k) through the regions Ro—Ry, the C'-
O(e=C/9) closeness of Z(k) and W*(p; (a)) guarantees that Z(k) transversely intersects
W?3(M5). Thus by the exchange lemma Z(k) aligns C*-O(e=¢/%)-close to W"(M5)
upon exiting a neighborhood of M3.

In particular, after this excursion, Z(k) again meets the section P, now in a curve
z = I*(w; s, 8, k) which satisfies |27 (w; s, 8) — I* (w; 8,6, k)| = O(e=/?) for w—k| < A
for 0 < A <« A, fixed sufficiently small independently of §. We denote by Z*(k) the
set

(3.38) (k) = {(w, 2, Ag) : 2 = I"(w; 8,0, k), |lw— k| <A}

We now consider the inverse image (IIP)~}(Z*(k)) C Z(k). By reversing the
exchange lemma and considering the dynamics in the regions R;-R4 under the re-
verse flow of (3.36), it is clear that the inverse map (IT?)~! applied to Z*(k) is an
O(e=C/9) contraction, and its derivatives are also exponentially small. In particular,
parametrizing solutions in ¥P by their (w, z)-coordinates, we have that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/30/19 to 150.135.174.98. Redistribution subject to SIAM license or copyright; see http://www .siam.org/journals/ojsa.php

TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3233

(3.39) (IP) Y (w, I* (w; 5,8, k) = (k, 2P(w; 5,0, k),

where the function zP(w; s, d, k) and its derivatives are exponentially small. We now
solve for a fixed point of (II?)~!, which occurs when w = k and

(3.40) I*(k;s,6,k) = 2P(k; 8,0, k).

To solve this equation, we recall from Corollary 2.4 that the manifolds M§ and M, in-
tersect along ¢¢(k) when s = s*(k), and the distance between W?**(M§) and W* (M)
in the plane w = k can be represented for small |s — s*(k)| as

(3.41) Do(s3k) = M(k)(s — 5™ (k)) + O(ls — 5" (k) [).

We note that with 3P M is given by the set z = 0; we also note that |2"(w; s, ) —
I*(w; 5,0, k)| = O(e~¢/%), where the graph of the function z = 2" (w; s, ) denotes the
intersection of W*(Mj) with XP. Using the distance function (3.41) and the fact that
WU (M) is a C1-O(6) perturbation of W¥(M}), we can write

(3.42) 2" (kys,6) = M, (k)(s — 5™ (k) + O3, |s — 5" (K)|?)
for some ]\Zfs(k) # 0. The matching equation hence becomes

0=1TI"(k;s,0,k) — 2P(k;s,0,k)
(3.43) = 2"(k; 5,0) + O(e”¢/?)

= M.(k)(s = s"(K)) + O(4,]s — 5" (k)[*),

which can be solved uniquely by the implicit function theorem for s = s*(k) + O(9),
corresponding to a fixed point of the Poincaré map IIP and a periodic orbit close to
Po(k).

Similar to the proof of Theorem 1.1, by using Proposition 2.2 and undoing the
rescalings (2.2), (2.19), we obtain a leading order expression for the wave speed

1/3
(3.44) S = <k29‘%) +0(1).

3

The expression (1.5) for the amplitudes of the periodic orbits follows from the fact
that these solutions are obtained as perturbations from the singular limit orbits P (k).
Finally, we deduce the statements regarding the periods T'(k,¢) from the fact that
the singular orbit Py(a) corresponds to the singular homoclinic orbit Hy and further
that the amplitude k of the singular orbit Py(k) determines the time spent along the
slow manifolds Mg’r which are of O(1/6%) and O(1/4), respectively, where we recall
that 6 ~ £2/3. |

4. Discussion. In this work, we studied the existence of vegetation stripe pat-
tern solutions of the Klausmeier model (1.1). In particular we found traveling pulses,
corresponding to individual vegetation patches as well as periodic wave train solu-
tions, corresponding to repeating vegetation stripe patterns (see Figures 1 and 2 for
vegetation stripe profiles obtained via direct numerical simulations). Our results also
predict relationships between the speed, amplitude, and wavelength of patterns, and
we are able to confirm these using numerical continuation, the results of which are
depicted in Figure 8. As predicted by Theorem 1.2, we see that for fixed A, the
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Fic. 8. Shown are results of numerical continuation for m = 0.45 and € = 0.005 obtained in
AUTO. Panel (a) shows how the speed S varies with the rainfall A for single pulse homoclinic orbits;
the blue curve depicts the results of numerical continuation, while the dashed red curve depicts the
leading order approzimation S ~ 5.1915A2/3 from Theorem 1.1. For fized A, bifurcating from the
single pulse homoclinic orbit is a family of periodic orbits corresponding to traveling wave train
solutions of (1.1). For A = 1.2, we plot the speed S versus the amplitudes Umax, Vmax (b)—(c), as
well as S versus the wavelength T of the bifurcating periodic orbits (d). Finally (e)—(f) depict the
amplitudes Umax, Vmax versus T.

speed S increases with both amplitude and wavelength, and likewise there is a posi-
tive relationship between amplitude and wavelength. The relation between speed and
wavelength is in line with empirical observations [4, 8]; we further note that recent
empirical observations [4] find a positive relation between biomass and wavelength,
and the pattern amplitude V.« serves as one measure of biomass. Also pictured is
the relation between the speed S and rainfall A for single pulse homoclinic orbits. We
see that this relation forms a C-shaped curve, the upper branch of which closely tracks
the leading order approximation given in Theorem 1.1 (shown in dashed red), before
turning back along a lower branch of “slow” pulses with smaller wave speeds. While
Theorem 1.1 concerns only the upper branch, it is also possible to obtain a detailed
understanding of the lower branch of slow pulses using similar techniques, and this is
the subject of ongoing work (see also Remark 1.3). We remark that such a C-shaped
bifurcation diagram associated with branches of slow and fast pulses has also been
observed and studied in detail in other systems such as the FitzHugh—Nagumo model
of nerve impulse propagation [5, 6, 7, 18, 26].

Our existence analysis for pulses and wave train solutions is valid in the regime of
A,m = 0(1) and 0 < £ < 1, where (under an appropriate rescaling (2.2)) we are able
to capitalize on the slow-fast separation of the traveling wave ODE and employ the
methods of geometric singular perturbation theory and blow-up desingularization.
In this regime, we find that 6 = £2/3 is the small parameter which captures the
timescale separation. A feature which is immediately apparent from the singular
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perturbation analysis is the inherent degeneracy in the geometry of the traveling wave
equation. In particular, in order to rigorously determine the existence of traveling
waves, it is necessary to understand the flow near a nonhyperbolic slow manifold as
well as slow passage through a degenerate transcritical bifurcation; a somewhat related
phenomenon was analyzed in [19]. This degeneracy is responsible for the difficulty in
constructing solutions analytically and is also tied to the multitude of scaling regimes
needed in order to unfold the bifurcation structure of the traveling wave equation [40].

The present work opens up two main directions of further research. First, there
is the question of how our insight into the structure of the three-dimensional exis-
tence ODE (1.6)—as governed by (2.4)—is embedded in that of the four-dimensional
Gray—Scott type ODE associated to the extended Klausmeier system in which wa-
ter is allowed to diffuse, i.e., (1.1) with an additional diffusion term dw AU [35, 41].
Although this specific form is a simplification of the process of water spreading over
and/or through soil [15, 43], adding a diffusive effect to the model is crucial for terrains
that are gently sloped (or flat). Since water diffuses faster than plants, dy must be
(significantly) larger than 1. In other words, strictly speaking the Klausmeier model
(1.1) neglects an effect of at least O(1). On the other hand, the impact of this effect
on the dynamics of traveling patterns seems to be limited on terrains with sufficiently
steep slopes. As a first step toward understanding this, one thus has to unravel the
way a decreasing diffusivity parameter dy, transforms the geometry of the flow of the
four-dimensional ODE as studied in [35, 41] to that of the present three-dimensional
“core.” This is nontrivial problem, especially since the “classical” four-dimensional
Gray—Scott type approach of [10, 11] has been stretched to its limits in [35] and could
not be extended beyond a certain critical relation between the diffusion and steepness
parameters in the slow U-equation.

Finally, we comment on the stability of the patterns in the underlying PDE (1.1).
The direct numerical simulations (see Figures 1 and 2) suggest that the patterns are
stable in one spatial dimension. In the setting of the extended generalized Klausmeier—
Gray—Scott models, the stability of homoclinic pulses has been established in one space
dimension (for certain parameter combinations) [35, 41]. However, in two space di-
mensions, i.e., as stripe patterns, the constructed homoclinic structures are unstable
[35, 41]. This is typically the case for homoclinic stripes in singularly perturbed two-
component reaction-diffusion systems considered in the literature; the lateral destabi-
lization is associated to the unstable eigenvalue of the homoclinic solution of the scalar
fast reduced equation (the V-equation of (1.1) with U = U constant) [12, 25]. Since
the pulse structures constructed here are based on a fast heteroclinic jump, there is
a reason to expect the associated stripes to be stable. In fact, in [41] stable stripes
have been observed in the generalized Klausmeier—-Gray—Scott model with dy # 0 on
sufficiently steep hillsides (beyond the reach of the analysis in [35]).

A complete linear (and nonlinear) stability analysis of the homoclinic and periodic
pulses constructed here is outside the scope of this article. In fact, the degenerate
bifurcational structure of the Klausmeier model motivates the analysis of a modified
Klausmeier model, with additional parameters introduced in order to regularize the
equations and unfold these bifurcations more naturally. We refer to [2] for related
work in this direction.
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