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TRAVELING STRIPES IN THE KLAUSMEIER MODEL OF
VEGETATION PATTERN FORMATION∗

PAUL CARTER† AND ARJEN DOELMAN‡

Abstract. The Klausmeier equation is a widely studied reaction-diffusion-advection model of
vegetation pattern formation on gently sloped terrain in semiarid ecosystems. We consider the case
of constantly sloped terrain and study the formation of planar vegetation stripe patterns which align
in the direction transverse to the slope and travel uphill. These patterns arise as solutions to an
underlying traveling wave equation, which admits a separation of scales due to the fact that water
flows downhill faster than the rate at which vegetation diffuses. We rigorously construct solutions
corresponding to single vegetation stripes as well as long wavelength spatially periodic wave trains
using geometric singular perturbation theory. Blow-up desingularization methods are needed to
understand slow passage of solutions near a degenerate transcritical bifurcation. The underlying
geometry of the traveling wave equation predicts relations between pattern wavelength, speed, and
terrain slope.

Key words. pattern formation, reaction diffusion advection equations, geometric singular per-
turbation theory, blow-up desingularization, traveling waves
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1. Introduction. Vegetation patterns are pervasive in water limited regions [17,
22, 31, 33, 34, 44, 45], and it has been observed that on sloped terrain vegetation aligns
in resilient striped patterns [1, 2, 8, 30, 42] due to an oriented flow of water downslope.
The formation of such patterns is frequently modeled by reaction-diffusion equations,
where an advective term accounts for downhill flow of water. One of the simplest
and most commonly used models for studying vegetation patterns on sloped terrain
is the Klausmeier model [22], a two-component reaction-diffusion-advection partial
differential equation describing the evolution of water and plant biomass.

When suitably nondimensionalized, the model takes the form

Ut = A− U − UV 2 +
1

ε
Ux,

Vt = ∆V −mV + UV 2,
(1.1)

where A,m > 0 and ∆ = ∂xx + ∂yy. The components U, V represent water and plant
biomass, respectively. The input parameter A represents rainfall, and the parameter
m denotes the death rate of vegetation. The linear term −U represents evaporation
and the nonlinear term UV 2 represents water uptake by plants. This nonlinear term
also appears in the second equation, where it represents plant growth. That is, the
water consumption by vegetation converted into plant biomass at a constant rate. The
two-dimensional terrain has constant slope, oriented so that “uphill” corresponds to
direction of increasing x. The parameter 0 < ε� 1 is taken small, which ensures that
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3214 PAUL CARTER AND ARJEN DOELMAN

the downhill advection term is large. This is not due to the steepness of the slope
(such slopes are typically gentle) but rather reflects the separation of scales between
the downhill flow of water versus the diffusion of plant biomass. The parameter
values suggested by Klausmeier in [22] are A = 0.94 − 2.81,m = 0.45 for grass and
A = 0.077− 0.23,m = 0.045 for trees, with ε = 0.005.

Equation (1.1) admits a spatially homogeneous steady state

(U, V )(x, y, t) = (U∗, V∗) = (A, 0),(1.2)

which corresponds to the bare desert state. In the case A > 2m, there also exist two
other uniform steady states,

(U±, V±) =

(
A±
√
A2 − 4m2

2
,
A∓
√
A2 − 4m2

2m

)
.(1.3)

Given the dominating appearance and resilience of striped patterns on hillsides
with sufficiently steep slopes [1, 2, 8, 30, 42], we are interested in the (mathematical)
formation of traveling vegetation stripe solutions. Such solutions are given as profiles
(U, V )(x, y, t) = (U, V )(x − St) which are constant in the direction transverse to the
slope (the y-direction), and traveling toward increasing x, corresponding to positive
wave speed S > 0. As is usual in the analysis of reaction-diffusion(-advection) equa-
tions, we first focus on the construction of localized patterns or pulses, i.e., patches
of vegetation localized in the direction of slope and bordered on each side by the
bare desert state (U∗, V∗). Figure 1 shows the U and V profiles of a localized stripe
solution obtained by direct numerical simulation in (1.1) for the parameter values
A = 1.2,m = 0.45, ε = 0.005. Also shown is a space-time plot of the location of
the vegetation patch; note that the direction of motion is toward increasing x, corre-
sponding to the uphill direction.

The behavior of stripe solutions to (1.1) has been studied in previous works, no-
tably a collection of articles [36, 37, 38, 39, 40] in which the author investigates pattern
solutions of (1.1) in various parameter regimes. However, results in the direction of
far-from-onset or large amplitude patterns for (1.1) are primarily numerical or rely
on formal leading order asymptotic analysis, and there is a notable lack of rigorous
mathematical existence analysis. From the analytical point of view, much is known
regarding pulse solutions in Gray–Scott type models [10, 11, 13, 20, 23, 24, 32] and
in the so-called generalized Klausmeier–Gray–Scott model [35, 41, 43] in the context
of vegetation pattern formation. The latter was originally proposed in [43] as a nat-
ural generalization of (1.1) in which the water component U also diffuses, typically
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Fig. 1. Shown are the U and V profiles (left and middle panels, respectively) of a traveling pulse
solution of (1.1) obtained by direct numerical simulation with A = 1.2, m = 0.45, and ε = 0.005.
The right panel depicts a space-time plot of the V -profile; the pulse travels to the right, corresponding
to the uphill direction.
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TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3215

at a faster rate than that of the vegetation component. By stretching the classical
methods originally introduced in [10, 11] to their limits, stripe solutions were con-
structed for the Klausmeier–Gray–Scott model in [35] for parameter values up to a
certain maximal ratio between the advective and diffusive (water) transport effects.
However, it was also shown in [35] that these stripe solutions must be unstable (with
respect to transverse instabilities). Nevertheless, the simulations of [41] indicate that
stripes may be stable beyond the region for which the methods of [35] apply, i.e., in
cases where the advective effects are so strong that the ratio between the advective
and diffusive effects passes beyond the (theoretical) upper bound of [35]. Note that
the stabilizing effect of sloped terrain on vegetation stripes is in line with observations
of real vegetation patterns [8, 9]. From this point of view, (1.1) arises as a natural
“advection-dominant” limit, in which the diffusion of water is ignored entirely and the
advection is assumed large, and serves as a first step in understanding the potentially
stabilizing effect of downhill advection of water.

We therefore focus on (1.1) and aim to construct stripe solutions analytically.
Motivated by Klausmeier’s choice of parameters, we focus on the regime where the
system parameters satisfy 0 < ε � 1 and 0 < A,m = O(1). In this regime, we con-
struct traveling stripe solutions rigorously, using the methods of geometric singular
perturbation theory [14] and blow-up desingularization [27, 28, 29]. In particular,
we are able to construct (homoclinic) traveling pulse solutions, representing single
vegetation stripes. Based on these insights, we next consider the ecologically more
relevant spatially periodic vegetation patterns (see Figure 2) and establish the exis-
tence of a family of such traveling wave trains. All of these solutions travel in the
uphill direction. While a stability analysis is outside the scope of this article, we do
confirm that these solutions lie outside the geometric framework of those which fall
into the two-dimensional–unstable regime in Klausmeier–Gray–Scott type models; in
particular, the unstable Klausmeier–Gray–Scott pulses of [35] center around a fast
homoclinic orbit that drives the transverse instability of the stripe, while the pulses
constructed here are based on a fast heteroclinic jump.
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Fig. 2. Depicted are the U and V profiles (upper and lower panels, respectively) of three
traveling wave train solutions to (1.1) obtained via direct numerical simulations for values of A =
1.2, m = 0.45, and ε = 0.005. The spatial domain length is fixed at L = 1000 with periodic boundary
conditions. Note that longer wavelength correlates with larger amplitude.
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3216 PAUL CARTER AND ARJEN DOELMAN

Concerning the existence of pulses, we have the following.

Theorem 1.1. There exists a unique θ0 > 0 such that the following holds. Fix
A,m > 0. Then for all sufficiently small ε > 0, the Klausmeier equation (1.1)
admits a traveling pulse solution (U, V )(x, y, t) = (U, V )(x − St) with wave speed

S = (
A2θ20
ε )1/3 +O(1).

The background of the crucial constant θ0 will be discussed in the upcoming
description of the singular nature of these orbits. Based on this result we establish
the existence of (one-parameter families of) periodically repeating vegetation stripe
pattern solutions.

Theorem 1.2. Fix A,m > 0 and ∆ > 0 sufficiently small. For all sufficiently
small ε > 0, the Klausmeier equation (1.1) admits a family of traveling wave trains

(U, V )(x, y, t) = (U, V )(x− S(k, ε)t; k, ε), k ∈ (∆, A),(1.4)

with wave speeds S(k, ε) = (
k2θ20
ε )1/3+O(1), with θ0 as in Theorem 1.1, and amplitudes

Umax(k, ε) := sup
ξ∈[0,T (k,ε)]

|U(ξ; k, ε)| = k + h(k, ε),(1.5)

where |h(k, ε)| → 0 as ε → 0, and the periods T (k, ε) → ∞ as ε → 0 for each fixed
k ∈ (∆, A). Furthermore, for each sufficiently small fixed ε, the periods T (k, ε) satisfy
T (k, ε) → ∞ as k → A, and the periodic orbits limit onto the pulse solution from
Theorem 1.1.

From Theorems 1.1–1.2, we immediately obtain relations between properties of
the emergent pattern solutions. First we note that the leading order expressions for
the wave speeds in both theorems imply that the vegetation patches move uphill,
which is in line with the (idealized) ecological mechanism which suggests that vege-
tation travels in the direction of the source of water. While this agrees with many
observations, static vegetation stripe patterns have also been observed on slopes [4, 8].
Also, Theorems 1.1–1.2 predict that stripes travel faster for larger values of the slope,
which is in line with prior results [36]. Although this is confirmed by the recent
observations in [4], empirical data again paints a mixed picture [42], with some ob-
servations of negative correlation between speed and slope [16]. We further note that
Theorem 1.2 predicts that longer wavelengths correspond to larger amplitudes (see
Figure 2), which is confirmed by observations [4, 8]. Moreover, it should be remarked
that the results of Theorems 1.1–1.2 concern “perfect” spatially periodic patterns on
terrains with a “perfect” constant slope. It is shown in [3] (in the context of the gen-
eralized Klausmeier–Gray–Scott model) that pulses may indeed move downhill, due
either to a change in slope or to the presence of other—nonequidistant—pulses. Nev-
ertheless, there is a remarkable variability in relations between properties of empirical
observations of vegetation patterns, and a highly simplified model such as (1.1) may
not be capable of capturing all ecologically relevant behavior.

Our results on the existence of traveling wave solutions of (1.1) are established
through the corresponding traveling wave equation

0 =

(
1

ε
+ S

)
Uξ +A− U − UV 2,

0 = Vξξ + SVξ −mV + UV 2,

(1.6)D
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TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3217

obtained by substituting the ansatz (U, V )(x, y, t) = (U, V )(x− St) into (1.1), where
we have denoted the traveling wave variable by ξ = x − St. The existence analysis
therefore reduces to understanding the dynamics of the three-dimensional ordinary
differential equation (1.6), where we exploit the small parameter ε as a singular per-
turbation parameter. The existence of singular pulse (Theorem 1.1) and spatially pe-
riodic (Theorem 1.2) pattern solutions corresponds directly to similar results obtained
in [35, 41] in the context of the generalized Klausmeier–Gray–Scott model, where the
effect of water diffusion is included. In that case, the traveling wave existence problem
is four-dimensional and the approach of [35, 41] runs along the lines of the literature
on Gray–Scott type models. However, we emphasize that this approach does not ex-
tend to the present original Klausmeier equation (1.1)—see especially [35]. In each
case the vegetation stripe patterns can be constructed as solutions of an associated
traveling wave ODE, though the underlying geometry of this ODE changes when the
diffusion of water is added. In particular, the construction of the pulse and/or periodic
solutions in the Gray–Scott variety of models is based on the family of integrable ho-
moclinic orbits of the planar fast reduced V -subsystem Vξξ−mV + ŪV 2 = 0 (cf. (1.6)
with S = 0 and U ≡ Ū) that governs the excursion of the full homoclinic/periodic
orbit away from and back to a two-dimensional slow manifold. The present case dif-
fers essentially from this setting: the natural homoclinic orbit of the fast reduced
V -subsystem does not play a role here (see also Remark 1.3).

The traveling pulse and wave train solutions of Theorems 1.1 and 1.2 correspond
to singular orbits that can be seen as the (singular) compositions of three parts: a
superslow part that follows a slow manifold that is not normally hyperbolic, a slow
part along a standard normally hyperbolic manifold, and a fast jump along a planar
heteroclinic connection. Similarly to the construction of traveling pulses in FitzHugh–
Nagumo type equations [21], the fast jump determines the speed, and thus the crucial
constant θ0 that appears in both theorems. However, unlike these more classical
models, the fast jump is described by a somewhat nonstandard planar system,

(1.7) Z ′′ +

(
θ − 1

θ
Z2

)
Z ′ + (1− Z)Z2 = 0.

This system has two critical points: (Z,Z ′) = (0, 0) is degenerate and corresponds
to the nonhyperbolic slow manifold, while the saddle (Z,Z ′) = (1, 0) represents the
normally hyperbolic manifold. Apart from the eigenvalue λ = 0, (0, 0) also has a
stable eigenvalue λ = −θ with an associated well-defined one-dimensional strong
stable manifold W ss((0, 0)): θ0 is defined as the unique value of θ for which W ss((0, 0))
coincides (partly) with the one-dimensional unstable manifold Wu((1, 0)) of the saddle
(1, 0)—see section 2.2. The core of this paper is dedicated to the validation of this
construction for ε > 0 (and sufficiently small). Very different from the classical
four-dimensional Gray–Scott type existence problems, a central role is played by the
geometric blow-up techniques as developed in [27, 28, 29]. Especially since the orbits
we consider here must remain close to a nonhyperbolic slow manifold for “long times,”
the analytic construction is quite subtle.

The remainder of this paper is organized as follows. In section 2, we study (1.6)
as a slow-fast system in the context of geometric singular perturbation theory, and we
construct singular homoclinic and periodic orbits. The persistence of these solutions
for small ε > 0 and the proofs of Theorems 1.1 and 1.2 will be given in section 3. We
conclude with results of numerical simulations and a brief discussion in section 4.
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3218 PAUL CARTER AND ARJEN DOELMAN

Remark 1.3. It is possible to construct homoclinic and periodic solutions of (1.6)
that do follow a fast reduced limit homoclinic solution of Vξξ − mV + ŪV 2 = 0 in
the fast field. However, the U -components of these patterns necessarily must remain
asymptotically close to U∗ = A, the U -component of the trivial desert state (1.2).
As a consequence, these patterns are both ecologically unrealistic and unstable as
solutions of (1.1).

2. Slow-fast analysis. We rewrite the traveling wave equation (1.6) as a first
order equation

Uξ =
ε

1 + εS

(
U −A+ UV 2

)
,

Vξ = Q,

Qξ = mV − UV 2 − SQ.

(2.1)

The disparity between the amplitudes of the U and V profiles in the results of nu-
merical simulations (see Figures 1 and 2) motivates a rescaling of the variables. We
perform the rescaling

S =
s

ε1/3
, U = u, V =

v

sε2/3
, Q =

q

ε
, ξ = ε1/3s2τ, δ = sε2/3,(2.2)

which results in the rescaled traveling wave equation

u̇ =
1

1 + δ

(
uv2 + δ2(u−A)

)
,

v̇ = s3q,

q̇ = δmv − uv2 − s3q,

(2.3)

where ˙ = d
dτ . Stripe patterns manifest as periodic orbits, or homoclinic orbits to the

equilibrium (u, v, q) = (A, 0, 0) representing the spatially homogeneous desert state
solution (U∗, V∗) = (A, 0) of (1.1). The rescaled equation (2.3) has lost the slow-fast
structure of the original equation (2.1). However, there is also a slow-fast separation
in (2.3), which can be seen by defining the new variable

w = (1 + δ)u+ v + q,

whereby (2.3) becomes

ẇ = δmv +
δ2

1 + δ
(w − v − q − a) ,

v̇ = s3q,

q̇ = δmv − 1

1 + δ
(w − v − q)v2 − s3q,

(2.4)

where we have set a = (1 + δ)A. We refer to the traveling wave equation (2.4) as
the “fast” system, and in the new variables, we search for orbits homoclinic to the
equilibrium (w, v, q) = (a, 0, 0).

The strategy for constructing the solutions outlined in Theorems 1.1 and 1.2 is
to exploit the slow-fast separation in the traveling wave equation (2.4) which arises
due to the presence of the small parameter 0 < δ � 1. The goal of this section is to
construct singular orbits for δ = 0 which will persist for small δ > 0 as solutions of
the full traveling wave equation (2.4). These singular solutions will be composed of

D
ow

nl
oa

de
d 

05
/3

0/
19

 to
 1

50
.1

35
.1

74
.9

8.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3219

concatenated portions of critical manifolds, which manifest as manifolds of equilibria
of the system (2.4) when δ = 0, with fast jumps along heteroclinic orbits in the
associated layer problem. The critical manifolds and their associated reduced flows
are described in section 2.1, followed by a description of the layer problem in section
2.2. Finally in section 2.3, we construct singular δ = 0 homoclinic and periodic orbits
which will serve as the basis for the stripe solutions of Theorems 1.1 and 1.2. The
persistence of these solutions for small δ > 0 will be proved in section 3.

Remark 2.1. We assumed that parameters A and m of (1.1) are of O(1) with
respect to the small parameter ε. Like in [35], in which traveling waves in the gener-
alized Klausmeier–Gray–Scott model are studied, one could perform a more general
scaling analysis. The outcome of such an analysis is a system very much like (2.4);
the only essential difference is that the δ2 factor in the w-equation of (2.4) will be
replaced by a factor δχ for some (free) parameter χ > 0. For χ ≤ 1 this yields several
other types of solutions. Such (ecologically relevant) orbits are also considered in work
in progress in the context of a modified version of (1.1) [2]; we refrain from going into
this issue here.

2.1. The critical manifolds M`/r
0 . By setting δ = 0 in the fast system (2.4)

we obtain the planar layer problem

v̇ = s3q,

q̇ = −(w − v − q)v2 − s3q,
(2.5)

parameterized by w. There are two equilibria p1(w) and p2(w) given by (v, q) = (0, 0)
and (v, q) = (w, 0), respectively, which coincide for w = 0. The equilibrium p2(w) is
a hyperbolic saddle for each w > 0, while p1(w) is nonhyperbolic with one negative
and one zero eigenvalue. Therefore, the set of equilibria Mr

0 = {p2(w) : w ∈ R}
forms a critical manifold which is normally hyperbolic for w > 0, while the setM`

0 =
{p1(w) : w ∈ R} forms a manifold of nonhyperbolic equilibria. These two manifolds
intersect at the origin in a manner which can be described as a degenerate transcritical
bifurcation.

For wm, wM ∈ R with wm < wM , we will use the notation

M`
0(wm, wM ) = {p1(w) : w ∈ [wm, wM ]},

Mr
0(wm, wM ) = {p2(w) : w ∈ [wm, wM ]}(2.6)

to refer to subsets of the critical manifolds M`/r
0 .

We now determine the reduced flow on each of the critical manifolds M`/r
0 . For

Mr
0, we rescale σ = δτ in (2.4) and obtain the slow system

wσ = mv +
δ

1 + δ
(w − v − q − a) ,

δvσ = s3q,

δqσ = δmv − 1

1 + δ
(w − v − q)v2 − s3q,

(2.7)

and upon setting δ = 0 we obtain the reduced problem

wσ = mv,

0 = s3q,

0 = −(w − v − q)v2 − s3q.
(2.8)D
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Mr
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q

0
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0

w
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q

0

a

Fig. 3. Shown are dynamics on the critical manifoldsM`/r
0 within the slow (left) and superslow

(right) reduced systems.

Here the flow is restricted to the union Mr
0 ∪M`

0, and within Mr
0, the dynamics

are governed by the single equation

wσ = mw,(2.9)

which admits an unstable equilibrium at w = 0. Within the reduced system (2.8),
M`

0 consists of equilibria; see Figure 3, left panel.
To determine the flow on M`

0, we note that M`
0 is an invariant set for all δ.

Returning to the system (2.4), and considering the flow on M`
0 on the “superslow”

timescale ζ = δ2τ , we obtain the reduced equation

wζ = w − a,(2.10)

which admits a single repelling equilibrium at w = a; see Figure 3, right panel.

2.2. Layer problem: Singular fronts. In this section, we study fast connec-

tions between the manifoldsM`/r
0 . We recall that for each w, the layer equation (2.5)

admits two equilibria p1(w), p2(w), which coincide for w = 0. The critical manifold
Mr

0 = {p2(w) : w ∈ R} is normally hyperbolic for w > 0, whileM`
0 = {p1(w) : w ∈ R}

forms a manifold of nonhyperbolic equilibria. The manifolds formed by the union of
the stable/unstable manifolds of the equilibria p2(w) for w > 0 form two-dimensional
(un)stable manifolds Ws(Mr

0),Wu(Mr
0) of the normally hyperbolic critical manifold

Mr
0.

Within the layer problem (2.5), the equilibrium p1(w) has a unique strong stable
manifold Wss(p1(w)), and we are interested in heteroclinic orbits between p2(w) and
p1(w) which approach p1(w) alongWss(p1(w)). We note that the equilibrium (a, 0, 0)
of the full system (2.4), which corresponds to the spatially homogeneous desert state
solution, coincides with p1(a). We have the following (see Figure 4).

Proposition 2.2. Consider (2.5) for w > 0. There exists a unique s = s∗(w) >
0 such that there is a heteroclinic orbit from p2(w) to p1(w), which we denote by
φf(w), which approaches p1(w) along the strong stable manifold Wss(p1(w)).
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v

q

0 a
�f

Fig. 4. Shown is the geometry of the layer problem (2.5) for w = a, along with the heteroclinic
connection φf(a), which exists for s = s∗(a).

Proof. We begin by proving that there is some value of s = s∗(w) for which the
orbit φf(w) exists. We consider the planar system (2.5) for fixed w > 0,

v̇ = s3q,

q̇ = −(w − v − q)v2 − s3q.
(2.11)

We track the behavior of Wss(p1(w)) under the backward flow of (2.11) as s
varies. The linearization of (2.11) about p1(w) has eigenvalues 0,−s3 with corre-
sponding eigenvectors (1, 0) and (1,−1), respectively. In particular, this means that
the manifoldWss(p1(w)) approaches p1(w) asymptotically along the line q = −v. We
are concerned with the branch of Wss(p1(w)) which approaches p1(w) via the region
q < 0 < v.

We note that along the curve v + q = 0, we have v̇ + q̇ < 0 when v > 0. Further,
along the line v = w, we have v̇ < 0 when v > 0. Finally, along the curve q = 0 we
have v̇ = 0 and q̇ < 0 for 0 < v < w. In particular, this means that in backward time,
Wss(p1(w)) enters the triangular region T bounded by the curves q = −v, v = w,
and q = 0 and has one of three possible fates: Wss(p1(w)) can exit this region via
the boundaries B1 = {q = 0, v < w} or B2 = {v = w, q < 0} or must converge to the
equilibrium p2(w) = (w, 0).

We further note that the line v + q = w is invariant under the flow of (2.11). In
particular, if Wss(p1(w)) enters the region q > 0 via the boundary B1 in backward
time, thenWss(p1(w)) is confined to the region 0 < q < w−v for all (backward) time.
Similarly, if Wss(p1(w)) enters the region v > w via the boundary B2 in backward
time, then Wss(p1(w)) is confined to the region 0 < q < w − v for all (backward)
time. That is, once Wss(p1(w)) leaves T via either of these boundaries in backward
time, Wss(p1(w)) never returns to T .

We proceed via a continuity argument for each w > 0. We show that for small
values of the speed s, Wss(p1(w)) leaves T via B1 in backward time, while for large
values of s, Wss(p1(w)) leaves T via B2, which implies the existence of a speed
s = s∗(w) for which Wss(p1(w)) must connect to the equilibrium p2(w).

Within T , we note that

dq

dv
= − (w − v − q)v2

s3q
− 1(2.12)

and since w − v − q > −q in T , we have

dq

dv
>
v2

s3
− 1,(2.13)

from which we deduce that Wss(p1(w)) lies above the curve q = v3

3s3 − v within T .
By taking s3 < w2/3, we ensure that Wss(p1(w)) must exit T via B1.
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3222 PAUL CARTER AND ARJEN DOELMAN

On the other hand, whenever q < −2wv2/s3 and s3 > 2w2, within T we have
that

(w − q)v2
−s3q < 1(2.14)

and thus

dq

dv
<

v3

s3q
.(2.15)

We deduce that Wss(p1(w)) lies below the curve q = −v2/
√

2s3 within T whenever
q < −2wv2/s3. In particular, this means that in backward time Wss(p1(w)) must
exit T via the boundary B2 whenever s3 > 8w2.

Therefore, there exists a heteroclinic connection between the equilibria p2(w) and
p1(w) which approaches p1(w) along Wss(p1(w)) for some value s = s∗(w) which
satisfies w2/3 < s∗(w)3 < 8w2.

Finally, we consider the uniqueness of s∗(w). We consider (2.11) and compute the
distance between Wu(p2(w)) and Wss(p1(w)) to first order in s− s∗(w). We consider
the adjoint equation of the linearization of (2.11) about the front φf given by

ψ̇ =

 0 −(3vf(τ)2 − 2wvf(τ) + 2vf(τ)qf(τ))

−s∗(w)3 s∗(w)3 − vf(τ)2

ψ.(2.16)

The space of solutions which grow as τ →∞ at most algebraically is one-dimensional
and spanned by

ψf(τ) := es
∗(w)3τ−

∫ τ
0
vf (ζ)

2dζ

(
−q′f(τ)
v′f(τ)

)
.(2.17)

Let F0 denote the right-hand side of (2.11). Then the Melnikov integral

Ms =

∫ ∞
−∞

DsF0(φf(τ)) · ψf(τ)dτ

= 3s∗(w)2
∫ ∞
−∞

es
∗(w)3τ−

∫ τ
0
vf (ζ)

2dζ(w − vf(τ)− qf(τ))vf(τ)2qf(τ)dτ

< 0

measures the splitting of Wu(p2(w)) and Wss(p1(w)) along φf to first order in s −
s∗(w). In particular, this guarantees the local uniqueness of the heteroclinic connec-
tion φf(w). As the sign of the Melnikov coefficient is fixed independent of s∗(w), this
also guarantees the uniqueness of the heteroclinic orbit over all values of s.

Remark 2.3. We note that there can be additional heteroclinic connections be-
tween the equilibria p1(w), p2(w) which approach p1(w) along a weak center direction
for other values of s. However, we will see in section 3 that in the full system for
δ > 0, any such orbits are blocked from approaching the manifold M`

0 and are not
relevant in the construction of traveling pulses and wave trains.

From the Melnikov analysis in the proof of Proposition 2.2, we immediately obtain
the following.
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Corollary 2.4. For each w > 0, the intersection of the manifolds Wu(Mr
0) and

Wss(p1(w)) along the singular front φf(w) is transverse in s, and the splitting function

D0(s;w) = Ms(w)(s− s∗(w)) +O(|s− s∗(w)|2)(2.18)

measures the distance between Wu(Mr
0) and Wss(p1(w)) for s ≈ s∗(w).

We now introduce Z, Q, η, and θ by the rescalings

v = wZ, q = wQ, τ =
η

w2θ
, s = w2/3θ2/3,(2.19)

which results in

dZ

dη
= θQ,

dQ

dη
=

1

θ

[
−(1− Z −Q)Z2 − θ2Q

]
,

(2.20)

which coincides with planar system (1.7). Moreover, by construction, s∗(w) as intro-
duced in Proposition 2.2 corresponds to θ0 as defined in Theorems 1.1 and 1.2 through

s∗(w) = w2/3θ
2/3
0 so that indeed (by Proposition 2.2) θ0 is the value of θ for which a

connection between W ss((0, 0)) and Wu((1, 0)) exists in (1.7) or equivalently (2.20).

Remark 2.5. By the above analysis, we have that 1
3

√
3 < θ0 < 2

√
2. Numerically,

we can approximate the value of θ0, and we determine that critical speed s = s∗(w)

for which the front φf exists is given by s∗(w) = w2/3θ
2/3
0 , where θ0 ≈ 0.8615.

2.3. Singular traveling wave solutions. From the analysis of the reduced/
layer problems in sections 2.1–2.2, we are able to define singular homoclinic orbits
and periodic orbits for the system (2.4).

We first construct a singular homoclinic orbit, or traveling pulse solution, as
follows. There is a singular trajectory which first departs the equilibrium p1(a) along
the critical manifold M`

0 in the superslow timescale, and upon reaching w = 0 then
transitions to Mr

0 in the slow timescale. By concatenating this trajectory with the
singular front φf(a), we obtain a singular homoclinic orbit

H0 =M`
0(0, a) ∪Mr

0(0, a) ∪ φf(a)(2.21)

to the equilibrium p1(a); see Figure 5.
For periodic orbits, the construction is similar. For each value of k ∈ (∆, a), there

exists a singular periodic orbit

P0(k) =M`
0(0, k) ∪Mr

0(0, k) ∪ φf(k)(2.22)

obtained by first following the portion of the critical M`
0 in the region w ∈ [0, k],

then following the critical manifoldMr
0 in the slow timescale from w = 0 to the plane

w = k, and finally returning to M`
0 along the singular front φf(k) which exists for

s = s∗(k).

3. Persistence of solutions for 0 < δ � 1. In this section, we construct
solutions for sufficiently small δ > 0 based on the singular solutions described in sec-
tion 2.3 and complete the proofs of the main existence Theorems 1.1 and 1.2. Much
of the analysis involved is related to studying the flow in neighborhoods of the criti-

cal manifolds M`/r
0 for small δ > 0. In section 3.1, we analyze the flow near M`

0

and in particular study the behavior of the unstable manifold Wu(p1(a)) of the
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�f

Mr
0

M`
0

Wc
0

p1(a) p2(a)

w

v

q

0 a

a

Fig. 5. Shown is the geometry of the singular pulse solution H0.

equilibrium p1(a). The flow nearM`
0 is analyzed in section 3.2, followed by the proofs

of Theorems 1.1 and 1.2, which are given in sections 3.3 and 3.4, respectively.

3.1. The flow near M`
0 for 0 < δ � 1. The flow near M`

0 requires care
as this manifold is not normally hyperbolic, so standard methods of geometric singu-
lar perturbation theory do not apply. The equilibria p1(w) which comprise M`

0 are
nonhyperbolic with one center direction and one strong stable direction. We there-
fore begin by constructing a two-dimensional normally attracting center manifold Wc

0

which contains M`
0.

We consider a compact segment of M`
0 which contains the equilibria p1(w) for

−ρ ≤ w ≤ a+ ρ, that is, a connected segment of M`
0 which includes both the origin

and the equilibrium p1(a) of the full system (2.4). We consider the linearization
of (2.5) about p1(w), which has eigenvalues λ01 = 0 and λ−1 = −s3 and associated
eigenvectors

e01 =

(
1
0

)
, e−1 =

(
1
−1

)
.(3.1)

Therefore, for δ = 0, these equilibria all have one center direction and one stable
direction which depend smoothly on w. Therefore, by the center manifold theorem,
in a neighborhood of each equilibrium p1(w), there exists a center manifold which
depends Ck-smoothly on w, which can be represented as a graph over the center
eigenspace. The union of all these center manifolds for −ρ ≤ w ≤ a + ρ forms a
Ck-smooth normally attracting invariant manifold Wc

0 which contains M`
0.

This manifold therefore persists as a two-dimensional locally invariant Ck-smooth
normally attracting manifold Wc

δ for 0 < δ � 1. We now determine the flow on
Wc
δ . We begin by straightening the center/stable eigenspaces by defining the variable

z = v + q, whence (2.4) becomes
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TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3225

ẇ = δm(z − q) +
δ2

1 + δ
(w − z − a) ,

ż = δm(z − q)− 1

1 + δ
(w − z)(z − q)2,

q̇ = δm(z − q)− 1

1 + δ
(w − z)(z − q)2 − s3q.

(3.2)

The center manifold Wc
δ is given as a graph q = f(w, z, δ). Since Wc

δ contains the
invariant set {z = q = 0}, we have that f(w, z, δ) = O(δz, z2). Defining q̃ = q −
f(w, z, δ), we obtain

ẇ = δm(z − q̃ − f(w, z, δ)) +
δ2

1 + δ
(w − z − a) ,

ż = δm(z − q̃ − f(w, z, δ))− 1

1 + δ
(w − z) (z − q̃ − f(w, z, δ))

2
,

˙̃q =
(
−s3 + h(w, z, q̃, δ)

)
q̃,

(3.3)

where h(w, z, q̃, δ) = O(z, q̃, δ), whence the flow on Wc
δ is determined by q̃ = 0. By

performing a final coordinate change to straighten out the strong stable fibers, we
obtain

ẇ = δm(z − f(w, z, δ)) +
δ2

1 + δ
(w − z − a) ,

ż = δm(z − f(w, z, δ))− 1

1 + δ
(w − z) (z − f(w, z, δ))

2
,

˙̃q =
(
−s3 + h̃(w, z, q̃, δ)

)
q̃,

(3.4)

by a slight abuse of notation again denoted in terms of (w, z, q̃) and where again
h̃(w, z, q̃, δ) = O(z, q̃, δ). Hence we have decomposed the flow into the two-dimensional
dynamics of basepoints on Wc

δ and the flow along the one-dimensional strong stable
fibers. We now focus on the flow of basepoints on the center manifoldWc

δ , determined
by

ẇ = δmz(1 +O(δ, z)) +
δ2

1 + δ
(w − z − a) ,

ż = δmz (1 +O(δ, z))− 1

1 + δ
(w − z)z2 (1 +O(δ, z)) .

(3.5)

We break the analysis into four regions R1−R4, which require different scalings. The
first region R1 determines the flow nearM`

0 for z = O(δ). The regions R2, R3 concern
the transition from z = O(δ) to (w, z) = O(δ1/2), and the final region R4 determines
how the dynamics for (w, z) = O(δ1/2) match up with the normally hyperbolic man-
ifold Mr

δ in the region (w, z) = O(1) .

3.1.1. The region R1. We begin with the region z = O(δ), which will allow us
to determine the local stable/unstable manifolds of the equilibrium p1(a) for δ > 0.
We rescale z = δz1, whence we obtain

ẇ = δ2mz1(1 +O(δ)) +
δ2

1 + δ
(w − δz1 − a) ,

ż1 = δmz1 (1 +O(δ))− δ

1 + δ
(w − δz1)z21 (1 +O(δ)) .

(3.6)
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3226 PAUL CARTER AND ARJEN DOELMAN

On the slow timescale, we obtain

w′ = δmz1(1 +O(δ)) +
δ

1 + δ
(w − δz1 − a) ,

z′1 = mz1 (1 +O(δ))− 1

1 + δ
(w − δz1)z21 (1 +O(δ)) ,

(3.7)

which gives a new slow-fast system with respect to the “superslow” time t1 = δσ =
δ2τ . Setting δ = 0 in (3.7) gives the layer problem

w′ = 0,

z′1 = mz1 − wz21 ,
(3.8)

which has two hyperbolic equilibria q1(w), q2(w) given by z = 0 and z = m
w , respec-

tively, for each w > 0. The equilibrium q1(w) is repelling while q2(w) is attracting.
Therefore, away from w = 0, there exist normally hyperbolic critical manifolds C10 and
C20 formed by the sets of equilibria {q1(w) : w ∈ R} and {q2(w) : w ≥ ρ}, respectively.

With respect to the superslow time t1, we obtain the reduced systems on each of
the critical manifolds C10 and C20 . On C10 , the reduced flow is given by

dw

dt1
= w − a,(3.9)

while on C20 , the reduced flow is

dw

dt1
=
m2

w
+ w − a.(3.10)

We see that for a < 2m, there are no equilibria on C20 , with a saddle-node bifurcation
occurring when a = 2m, resulting in two equilibria given by

w± =
a±
√
a2 − 4m2

2
(3.11)

when a > 2m. The equilibrium at w = w− is attracting while that at w = w+ is
repelling.

The manifolds C10 and C20 perturb to one-dimensional locally invariant manifolds
C1δ and C2δ , on which the slow flow is an O(δ) perturbation of the respective reduced
flows (3.9) and (3.9). See Figure 6 for a schematic in each of the cases a > 2m and
a < 2m.

Furthermore the unstable manifoldWu(C10) of C10 and the stable manifoldWs(C20)
of C20 persist as two-dimensional locally invariant manifolds Wu(C1δ ) andWs(C2δ ). The
equilibrium p1(a) of the full system (2.4) lies on C1δ on which it is locally repelling
within Wc

δ . In particular we now determine that for 0 < δ � 1, the equilibrium p1(a)
becomes hyperbolic with two-dimensional unstable manifold Wu(p1(a)) = Wu(C1δ )
and one-dimensional stable manifold given by the strong stable fiber Wss(p1(a)) of
Wc
δ with basepoint at p1(a).

Additionally, for the case of a > 2m, the equilibria w = w± of the reduced
system (3.10) persist as equilibria p± of the full system for 0 < δ � 1 and we
immediately obtain the following.

Proposition 3.1. Fix a,m > 0 satisfying a > 2m. Then for all sufficiently small
δ > 0, there exists a unique front solution φ+ between the equilibria p1(a) and p+,
and unique front solution φ− between the equilibria p1(a) and p− which approaches
p− along its strong stable manifold.
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C1
�

⌃out
1

z1

w

0

p1(a)

C2
�

(a) a < 2m

C1
�

⌃out
1

z1

w

0

p1(a)

C2
�

p�

p+��

�+

(b) a > 2m

Fig. 6. Shown are the dynamics of (3.7) in the region R1 for 0 < δ � 1 in the cases a < 2m
(left panel) and a > 2m (right panel). In the latter case, additional equilibria p± persist on the slow
manifold C2δ and there exist fronts φ± which connect p1(a) to each of p±, with φ− approaching p−
along a strong stable manifold. In each case, we have that Σout

1 ⊂ Wu(p1(a)).

Proof. The result follows from geometric singular perturbation theory applied to
the planar system (3.7).

Remark 3.2. The equilibria p± correspond to the spatially homogeneous vege-
tated steady states (U±, V±) of (1.1) defined in (1.3). Each of the front solutions φ±
therefore describes the invasion of the barren desert state into a uniformly vegetated
state.

We now focus on tracking the unstable manifold Wu(p1(a)) through the region
w ≈ 0. In particular, for |w| bounded, all points which lie in a small neighborhood
of C1δ lie on Wu(p1(a)). For z1 > 0, we see from (3.6) that z′1 > 0; hence we may
integrate forward and see that Wu(p1(a)) extends to z1 = 1/µ for µ > 0 independent
of δ, provided δ is sufficiently small.

To summarize, we may therefore define the section Σout
1 = {(w, z1, δ) : |w| ≤

δ1/2/µ, z1 = 1/µ, 0 ≤ δ ≤ κ2µ2} for κ sufficiently small, which thus consists entirely
of points which lie on Wu(p1(a)).

3.1.2. The regions R2 and R3. The region R3 concerns the passage near
w, z = O(δ1/2). We therefore perform the rescaling w = δ3w3, z = δ3z3, δ = δ23 , which
results in the system

ẇ3 = δ23mz3(1 +O(δ23 , δ3z3)) +
δ33

1 + δ23
(δ3w3 − δ3z3 − a) ,

ż3 = δ23mz3
(
1 +O(δ23 , δ3z3)

)
− δ23

1 + δ23
(w3 − z3)z23

(
1 +O(δ23 , δ3z3)

)
,

(3.12)D
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3228 PAUL CARTER AND ARJEN DOELMAN

which on the slow timescale σ = δτ = δ23τ results in

w′3 = mz3 +O(δ3),

z′3 = mz3 + z33 − w3z
2
3 +O(δ23z3, δ3z

2
3).

(3.13)

The region R2 concerns the transition from R1, where z = O(δ), to R3, where
z = O(δ1/2). We thus perform the secondary projective rescaling

δ3 = z3δ2(3.14)

which is valid in the region z3 > 0, which results in the system

w′3 = mz3(1 +O(δ2)),

z′3 = mz3 + z33 − w3z
2
3 +O(δ22z

3
3 , δ2z

3
3),

δ′2 = −mδ2(1 +O(δ2, z3)).

(3.15)

In the region D2 = {(w3, z3, δ2) : |w3| ≤ 3, 0 ≤ z3 ≤ ρ, 0 ≤ δ2 ≤ µ}, solutions are
confined to curves which satisfy

dw3

dz3
=

1 +O(δ2)

1 +O(z23 , w3z3, δ2z23)

= 1 +O(δ2, z3).

(3.16)

We define the entry/exit sections

Σin
2 = D2 ∩ {|w| ≤ 2, δ2 = µ}, Σout

2 = D2 ∩ {|w| ≤ 1, z3 = κ}.(3.17)

Due to (3.16), a solution which enters D via Σin
2 at a point (w3, z3, δ2) = (w3,0, z3,0, µ2)

remains on a curve which satisfies

w3 = w3,0 + z3(1 +O(µ, κ)),(3.18)

throughout its passage through D2, and hence must exit D2 via the set {z3 = κ}.
This solution therefore exits D2 at a point (w3, z3, δ2) = (w3,1, ρ, δ2,1) where w3,1 =
w3,0 + O(κ); that is, the w3 coordinate of any solution entering D2 via Σin

2 changes
by no more than O(κ) before exiting via the set {z3 = κ}. In particular, this means
that the section Σin

2 = D2 ∩ {|w| ≤ 2, δ2 = µ} is mapped onto the section Σout
2 =

D2 ∩ {|w| ≤ 1, z3 = κ}.
We now focus on the passage through R3. Recalling the relation δ3 = z3δ2, in the

R3 coordinates, the section Σout
2 is given by

Σout
2 = Σin

3 = {(w3, z3, δ3) : |w| ≤ 1, z3 = κ, 0 ≤ δ3 ≤ κµ}.(3.19)

We consider the flow in R3 for δ3 = 0, given by

w′3 = mz3,

z′3 = mz3 + z33 − w3z
2
3 ,

(3.20)

and by defining the new variable x3 = z3 − w3, we obtain the system

x′3 = z23x3,

z′3 = mz3 + z23x3,
(3.21)

which leaves the subspace x3 = 0 invariant with flow given by z′3 = mz3. The time
spent between z3 = κ and z3 = 1/µ for fixed µ, κ > 0 is finite. We fix γ > 0 sufficiently
small; then for all ρ > 0 small enough, by a regular perturbation we can ensure that
under the flow of (3.13), the section Σin

3 is mapped onto the section

Σout
3 = {(w3, z3, δ3) : |z3 − w3| ≤ γ,w3 = 1/µ, 0 ≤ δ3 ≤ ρµ}.(3.22)
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TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3229

3.1.3. The region R4: Blow-up rescaling near Mr
δ. We now study how

solutions on the center manifold Wc
δ behave near the critical manifold Mr

0. We
perform the projective rescaling

z = wz4, δ = w2δ4,(3.23)

which is valid in the region w > 0. This results in the system

ẇ = mw3δ4(z4 +O(w)),

ż4 =
1

1 + δ4w
w2z24(z4 − 1) +O(δ4w

2, w3),

δ̇4 = −2mw2δ24(z4 +O(w)),

(3.24)

which we desingularize by a rescaling of time dt4 = w2dτ and obtain

dw

dt4
= mwδ4(z4 +O(w)),

dz4
dt4

= z24(z4 − 1) +O(δ4, w),

dδ4
dt4

= −2mδ24(z4 +O(w)).

(3.25)

The line L4 = {δ4 = w = 0} is invariant with dynamics

dz4
dt4

= z24(z4 − 1)(3.26)

and thus contains two equilibria, at z4 = 0 and z4 = 1, which we refer to as q0, q1,
respectively (see Figure 7). The equilibrium q1 at z4 = 1 is hyperbolic repelling with
respect to the reduced flow on L4 with eigenvalue λ4 = 1. The linearization of the
full equation (3.25) additionally admits a double zero eigenvalue. The plane {δ4 = 0}
is also invariant with dynamics

dw

dt4
= 0,

dz4
dt4

= z24(z4 − 1) +O(w).

(3.27)

q0 q1

L4

⌃in
4

⌃out
4

z4

w

�4

M4,0

N4

M4

µ2

⇢

Fig. 7. Shown are the dynamics of (3.25) in the region R4.
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3230 PAUL CARTER AND ARJEN DOELMAN

This system has a normally hyperbolic curve of equilibria M4,0 = {z4 = 1 + O(w)}
which emanates from q1 and exactly corresponds to the critical manifold Mr

0 in the
original coordinates. In the invariant plane w = 0, the dynamics are given by

dz4
dt4

= z24(z4 − 1) +O(δ4),

dδ4
dt4

= −2mδ24z4.

(3.28)

Here we still have the equilibrium q1 which has a zero eigenvalue due to the second
equation, and hence there exists a one-dimensional center manifold N4 at q1 along
which δ4 decreases. Note that the branch of N4 in the half space δ4 > 0 is unique.

For any sufficiently small β, ρ, µ > 0, we restrict attention to the set

(3.29) D4 = {(w, z4, δ4) : 0 ≤ w ≤ ρ, |z4 − 1| ≤ β, 0 ≤ δ4 ≤ µ2}.

The next result follows from standard center manifold theory.

Proposition 3.3. For all sufficiently small β, ρ, µ > 0, the following holds for
the dynamics of (3.25) within D4. There exists a repelling center manifold M4 at q1
which contains the line of equilibria M4,0 and the center manifold N4. In D4, M4

is given as a graph z4 = h4(w, δ4) = −1 + O(w, δ4). Furthermore, there exists an
unstable invariant foliation with base M4 and one-dimensional fibers.

We define the following sections:

Σin
4 = D4 ∩ {δ4 = µ2}, Σout

4 = D4 ∩ {w = ρ}.(3.30)

We note that in the R4 coordinates, the section Σout
3 is given by

Σout
3 = {(w, z4, δ4) : 0 ≤ w ≤ ρ, |z4 − 1| ≤ γµ, δ4 = µ2} ⊆ Σin

4 .(3.31)

By setting β = γµ, we have that the flow of (3.25) maps Σin
4 onto Σout

4 , from
which we deduce that Σout

4 consists entirely of points on Wu(p1(a)).
Transforming to the original (w, z, δ) coordinates, we sum up the results of this

section in the following.

Proposition 3.4. For each sufficiently small ρ > 0, there exists β > 0 such that
the following holds. For all sufficiently small δ > 0, within the center manifold Wc

δ ,
the set Σout := {(w, z) : w = ρ, |z − w| ≤ βρ} is contained in Wu(p1(a)).

3.2. The flow near Mr
0 for 0 < δ � 1. We now determine the reduced flow

on the normally hyperbolic critical manifold Mr
0. We rescale time by σ = δτ and

obtain the slow system

w′ = mv +
δ

1 + δ
(w − v − q − a) ,

δv′ = s3q,

δq′ = δmv − 1

1 + δ
(w − v − q)v2 − s3q,

(3.32)

where ′ = d
dσ , whence for δ = 0 we determine the reduced flow restricted to Mr

0 as

w′ = mw.(3.33)
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TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3231

As the manifold Mr
0 is normally hyperbolic for w > 0, using standard results

of geometric singular perturbation theory, for 0 < δ � 1, Mr
0 perturbs to a one-

dimensional locally invariant manifold Mr
δ which is C1-O(δ)-close to Mr

0, on which
the flow is an O(δ) perturbation of the reduced flow (2.8). Furthermore, in a neigh-
borhood of Mr

0, the stable/unstable manifolds Ws(Mr
0),Wu(Mr

0) perturb to two-
dimensional locally invariant manifolds Ws(Mr

δ),Wu(Mr
δ) which are C1-O(δ)-close

to Ws(Mr
0),Wu(Mr

0).
We now determine how the slow manifoldMr

δ approachesWc
δ under the backward

flow of (2.4). As Mr
δ is normally hyperbolic in the region w > 0, we can track Mr

δ

until w = ρ. Further, from above we have that Mr
δ is O(δ)-close to Mr

0, which is
given by the set of equilibria {p2(w) : w ≥ ρ}. Therefore Mr

δ is O(δ)-close to the
curve {v = w, q = 0}, and we have that the two-dimensional stable manifold Ws(Mr

δ)
of Mr

δ transversely intersects the two-dimensional center manifold Wc
δ at w = ρ at

a point (w, v, q) = (ρ, ρ+O(δ),O(δ)). The results of Proposition 3.4 thus guarantee
that for δ sufficiently small, Ws(Mr

δ) in fact transversely intersects Wu(p1(a)) in the
set {w = ρ}.

Tracking Wu(p1(a)) forward under the flow of (2.4), by the exchange lemma
Wu(p1(a)) aligns C1-O(e−C/δ)-close to Wu(Mr

δ) (for some constant C > 0) upon
exiting a neighborhood of Mr

δ.

3.3. Construction of pulses. In this section, we complete the proof of Theo-
rem 1.1 by matching Wu(p1(a)) and Wss(p1(a)).

Proof of Theorem 1.1. We compute the distance betweenWu(p1(a)) andWss(p1(a))
along the singular front φf(a). By the results of section 3.2, upon exiting a neighbor-
hood ofMr

δ, Wu(p1(a)) aligns C1-O(e−C/δ)-close to the manifold Wu(Mr
δ), which is

itself a C1-O(δ) perturbation of Ws(Mr
0).

Using Corollary 2.4, we can therefore compute the distance between Wu(p1(a))
and Wss(p1(a)) to leading order in δ > 0 and s ≈ s∗ as

D(s, δ) = Ms(s− s∗(a)) +O(δ, e−C/δ, |s− s∗(a)|2)

= Ms(s− s∗(a)) +O(δ, |s− s∗(a)|2),
(3.34)

which can be solved for D(s, δ) = 0 when s = s∗(a) + O(δ) by the implicit function
theorem. This corresponds to an intersection of Wu(p1(a)) and Wss(p1(a)), and thus
a homoclinic orbit in the traveling wave equation (2.4) which is O(δ1/2)-close to the
singular orbit H0.

Using Proposition 2.2, noting a = (1 + δ)A, and undoing the rescalings (2.2) and
(2.19), we obtain the leading order expression

S =

(
A2θ20
ε

)1/3

+O(1)(3.35)

for the wave speed S of the pulse solution.

3.4. Construction of periodic orbits. We now turn to the construction of
periodic orbits and complete the proof of Theorem 1.2. The singular periodic orbits
P0(k) have similar geometry to the homoclinic orbit constructed in section 3.3, com-

posed of portions of the critical manifolds M`/r
0 and a singular front φf(k), and we

will therefore be able to call on results from the pervious sections on properties of

the flow near M`/r
0 . The periodic orbits will then be obtained as fixed points of an

appropriate Poincaré map.
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3232 PAUL CARTER AND ARJEN DOELMAN

Proof of Theorem 1.2. We define a Poincaré section near M`
0 in the (w, z, q̃) co-

ordinates from section 3.1. Recall that within this coordinate system, the center
manifold Wc

δ is given by the set {q̃ = 0}, and the flow is decomposed into the two-
dimensional dynamics of basepoints onWc

δ and the flow along one-dimensional strong
stable fibers parametrized by q̃, given by the system

ẇ = δmz(1 +O(δ, z)) +
δ2

1 + δ
(w − z − a) ,

ż = δmz (1 +O(δ, z))− 1

1 + δ
(w − z)z2 (1 +O(δ, z)) ,

˙̃q =
(
−s3 + h̃(w, z, q̃, δ)

)
q̃,

(3.36)

where h̃(w, z, q̃, δ) = O(z, q̃, δ). In these coordinates, the equilibrium p1(a) is given by
(w, z, q̃) = (a, 0, 0), and for δ = 0, the manifold M`

0 is given by the set {z = q̃ = 0}.
We consider the flow of (3.36) in the set {(w, z, q̃} : w ∈ [∆w, a + ∆w], |z| ≤

∆z, |q̃| ≤ ∆q̃}, and we place a two-dimensional section Σp = {(w, z,∆q̃} : w ∈
[∆w, a], |z| ≤ ∆z} which will serve as the Poincaré section for the construction of
periodic orbits. We denote the corresponding Poincaré map by Πp : Σp → Σp.

For each k ∈ [∆w, a + ∆w], by Proposition 2.2, for δ = 0, there exists a front
φf(k) which connectsMr

0 andM`
0 in the plane {w = k} when s = s∗(k). In the local

(w, z, q̃) coordinates, the front φf(k) corresponds to the strong stable fiber {(k, 0, q̃) :
q ∈ [0,∆q̃]} of the basepoint (k, 0, 0); this basepoint corresponds to the equilibrium
p1(k) of the layer problem (2.5) in the plane {w = k}. Within Σp, we can thus
represent the manifold Mr

δ as a graph over w,

Mr
δ ∩ Σp = {(w, z,∆q̃) : z = zr(w; s, δ)},(3.37)

where zr is a smooth function which satisfies zr(w; s∗(w), 0) = 0 for each w.
For each k ∈ [∆w, a), we consider a small interval of initial conditions I(k) =

{(k, z,∆q̃} : |z| ≤ ∆z} for ∆z chosen sufficiently small. We consider the forward
evolution of I(k) under the flow of (3.36), which traces out a two-dimensional manifold
Ī(k). By the analysis in sections 3.1.1–3.1.2 of the flow in the regions R1, R2 for
0 < δ � 1, it is apparent that a subset of Ī(k) of width O(δ) is quickly contracted to
the unstable manifold Wu(p1(a)) and aligns C1-O(e−C/δ) close to Wu(p1(a)) upon
entering the region R2. Continuing to track Ī(k) through the regions R2–R4, the C1-
O(e−C/δ) closeness of Ī(k) andWu(p1(a)) guarantees that Ī(k) transversely intersects
Ws(Mr

δ). Thus by the exchange lemma Ī(k) aligns C1-O(e−C/δ)-close to Wu(Mr
δ)

upon exiting a neighborhood of Mr
δ.

In particular, after this excursion, Ī(k) again meets the section Σp, now in a curve
z = I∗(w; s, δ, k) which satisfies |zr(w; s, δ)−I∗(w; s, δ, k)| = O(e−C/δ) for |w−k| ≤ ∆
for 0 < ∆� ∆w fixed sufficiently small independently of δ. We denote by I∗(k) the
set

I∗(k) = {(w, z,∆q̃) : z = I∗(w; s, δ, k), |w − k| ≤ ∆}.(3.38)

We now consider the inverse image (Πp)−1(I∗(k)) ⊂ I(k). By reversing the
exchange lemma and considering the dynamics in the regions R1–R4 under the re-
verse flow of (3.36), it is clear that the inverse map (Πp)−1 applied to I∗(k) is an
O(e−C/δ) contraction, and its derivatives are also exponentially small. In particular,
parametrizing solutions in Σp by their (w, z)-coordinates, we have that
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TRAVELING STRIPES IN THE KLAUSMEIER MODEL 3233

(Πp)−1(w, I∗(w; s, δ, k)) = (k, zp(w; s, δ, k)),(3.39)

where the function zp(w; s, δ, k) and its derivatives are exponentially small. We now
solve for a fixed point of (Πp)−1, which occurs when w = k and

I∗(k; s, δ, k) = zp(k; s, δ, k).(3.40)

To solve this equation, we recall from Corollary 2.4 that the manifoldsM`
0 andMr

0 in-
tersect along φf(k) when s = s∗(k), and the distance betweenWss(M`

0) andWu(Mr
0)

in the plane w = k can be represented for small |s− s∗(k)| as

D0(s; k) = Ms(k)(s− s∗(k)) +O(|s− s∗(k)|2).(3.41)

We note that with Σp M`
0 is given by the set z = 0; we also note that |zr(w; s, δ) −

I∗(w; s, δ, k)| = O(e−C/δ), where the graph of the function z = zr(w; s, δ) denotes the
intersection ofWu(Mr

δ) with Σp. Using the distance function (3.41) and the fact that
Wu(Mr

δ) is a C1-O(δ) perturbation of Wu(Mr
0), we can write

zr(k; s, δ) = M̃s(k)(s− s∗(k)) +O(δ, |s− s∗(k)|2)(3.42)

for some M̃s(k) 6= 0. The matching equation hence becomes

0 = I∗(k; s, δ, k)− zp(k; s, δ, k)

= zr(k; s, δ) +O(e−C/δ)

= M̃s(k)(s− s∗(k)) +O(δ, |s− s∗(k)|2),

(3.43)

which can be solved uniquely by the implicit function theorem for s = s∗(k) +O(δ),
corresponding to a fixed point of the Poincaré map Πp and a periodic orbit close to
P0(k).

Similar to the proof of Theorem 1.1, by using Proposition 2.2 and undoing the
rescalings (2.2), (2.19), we obtain a leading order expression for the wave speed

S =

(
k2θ20
ε

)1/3

+O(1).(3.44)

The expression (1.5) for the amplitudes of the periodic orbits follows from the fact
that these solutions are obtained as perturbations from the singular limit orbits P0(k).
Finally, we deduce the statements regarding the periods T (k, ε) from the fact that
the singular orbit P0(a) corresponds to the singular homoclinic orbit H0 and further
that the amplitude k of the singular orbit P0(k) determines the time spent along the

slow manifolds M`,r
0 which are of O(1/δ2) and O(1/δ), respectively, where we recall

that δ ∼ ε2/3.

4. Discussion. In this work, we studied the existence of vegetation stripe pat-
tern solutions of the Klausmeier model (1.1). In particular we found traveling pulses,
corresponding to individual vegetation patches as well as periodic wave train solu-
tions, corresponding to repeating vegetation stripe patterns (see Figures 1 and 2 for
vegetation stripe profiles obtained via direct numerical simulations). Our results also
predict relationships between the speed, amplitude, and wavelength of patterns, and
we are able to confirm these using numerical continuation, the results of which are
depicted in Figure 8. As predicted by Theorem 1.2, we see that for fixed A, the
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Fig. 8. Shown are results of numerical continuation for m = 0.45 and ε = 0.005 obtained in
AUTO. Panel (a) shows how the speed S varies with the rainfall A for single pulse homoclinic orbits;
the blue curve depicts the results of numerical continuation, while the dashed red curve depicts the
leading order approximation S ≈ 5.1915A2/3 from Theorem 1.1. For fixed A, bifurcating from the
single pulse homoclinic orbit is a family of periodic orbits corresponding to traveling wave train
solutions of (1.1). For A = 1.2, we plot the speed S versus the amplitudes Umax, Vmax (b)–(c), as
well as S versus the wavelength T of the bifurcating periodic orbits (d). Finally (e)–(f) depict the
amplitudes Umax, Vmax versus T .

speed S increases with both amplitude and wavelength, and likewise there is a posi-
tive relationship between amplitude and wavelength. The relation between speed and
wavelength is in line with empirical observations [4, 8]; we further note that recent
empirical observations [4] find a positive relation between biomass and wavelength,
and the pattern amplitude Vmax serves as one measure of biomass. Also pictured is
the relation between the speed S and rainfall A for single pulse homoclinic orbits. We
see that this relation forms a C-shaped curve, the upper branch of which closely tracks
the leading order approximation given in Theorem 1.1 (shown in dashed red), before
turning back along a lower branch of “slow” pulses with smaller wave speeds. While
Theorem 1.1 concerns only the upper branch, it is also possible to obtain a detailed
understanding of the lower branch of slow pulses using similar techniques, and this is
the subject of ongoing work (see also Remark 1.3). We remark that such a C-shaped
bifurcation diagram associated with branches of slow and fast pulses has also been
observed and studied in detail in other systems such as the FitzHugh–Nagumo model
of nerve impulse propagation [5, 6, 7, 18, 26].

Our existence analysis for pulses and wave train solutions is valid in the regime of
A,m = O(1) and 0 < ε� 1, where (under an appropriate rescaling (2.2)) we are able
to capitalize on the slow-fast separation of the traveling wave ODE and employ the
methods of geometric singular perturbation theory and blow-up desingularization.
In this regime, we find that δ = ε2/3 is the small parameter which captures the
timescale separation. A feature which is immediately apparent from the singular
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perturbation analysis is the inherent degeneracy in the geometry of the traveling wave
equation. In particular, in order to rigorously determine the existence of traveling
waves, it is necessary to understand the flow near a nonhyperbolic slow manifold as
well as slow passage through a degenerate transcritical bifurcation; a somewhat related
phenomenon was analyzed in [19]. This degeneracy is responsible for the difficulty in
constructing solutions analytically and is also tied to the multitude of scaling regimes
needed in order to unfold the bifurcation structure of the traveling wave equation [40].

The present work opens up two main directions of further research. First, there
is the question of how our insight into the structure of the three-dimensional exis-
tence ODE (1.6)—as governed by (2.4)—is embedded in that of the four-dimensional
Gray–Scott type ODE associated to the extended Klausmeier system in which wa-
ter is allowed to diffuse, i.e., (1.1) with an additional diffusion term dW∆U [35, 41].
Although this specific form is a simplification of the process of water spreading over
and/or through soil [15, 43], adding a diffusive effect to the model is crucial for terrains
that are gently sloped (or flat). Since water diffuses faster than plants, dW must be
(significantly) larger than 1. In other words, strictly speaking the Klausmeier model
(1.1) neglects an effect of at least O(1). On the other hand, the impact of this effect
on the dynamics of traveling patterns seems to be limited on terrains with sufficiently
steep slopes. As a first step toward understanding this, one thus has to unravel the
way a decreasing diffusivity parameter dW transforms the geometry of the flow of the
four-dimensional ODE as studied in [35, 41] to that of the present three-dimensional
“core.” This is nontrivial problem, especially since the “classical” four-dimensional
Gray–Scott type approach of [10, 11] has been stretched to its limits in [35] and could
not be extended beyond a certain critical relation between the diffusion and steepness
parameters in the slow U -equation.

Finally, we comment on the stability of the patterns in the underlying PDE (1.1).
The direct numerical simulations (see Figures 1 and 2) suggest that the patterns are
stable in one spatial dimension. In the setting of the extended generalized Klausmeier–
Gray–Scott models, the stability of homoclinic pulses has been established in one space
dimension (for certain parameter combinations) [35, 41]. However, in two space di-
mensions, i.e., as stripe patterns, the constructed homoclinic structures are unstable
[35, 41]. This is typically the case for homoclinic stripes in singularly perturbed two-
component reaction-diffusion systems considered in the literature; the lateral destabi-
lization is associated to the unstable eigenvalue of the homoclinic solution of the scalar
fast reduced equation (the V -equation of (1.1) with U ≡ Ū constant) [12, 25]. Since
the pulse structures constructed here are based on a fast heteroclinic jump, there is
a reason to expect the associated stripes to be stable. In fact, in [41] stable stripes
have been observed in the generalized Klausmeier–Gray–Scott model with dW 6= 0 on
sufficiently steep hillsides (beyond the reach of the analysis in [35]).

A complete linear (and nonlinear) stability analysis of the homoclinic and periodic
pulses constructed here is outside the scope of this article. In fact, the degenerate
bifurcational structure of the Klausmeier model motivates the analysis of a modified
Klausmeier model, with additional parameters introduced in order to regularize the
equations and unfold these bifurcations more naturally. We refer to [2] for related
work in this direction.
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