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Allosteric interactions between molecules bound to
DNA at distant locations have been known for
a long time. The phenomenon has been studied
via experiments and numerical simulations, but a
comprehensive understanding grounded in a theory
of DNA elasticity remains a challenge. Here, we
quantify allosteric interactions between two entities
bound to DNA by using the theory of birods. We
recognize that molecules bound to DNA cause local
deformations that can be captured in a birod model
which consists of two elastic strands interacting via
an elastic web representing the basepairs. We show
that the displacement field caused by bound entities
decays exponentially with distance from the binding
site. We compute the interaction energy between two
proteins on DNA as a function of distance between
them and find that it decays exponentially while
oscillating with the periodicity of the double helix,
in excellent agreement with experiments. The decay
length of the interaction energy can be determined
in terms of the mechanical properties of the strands
and the webbing in our birod model, and it varies
with the GC content of the DNA. Our model provides
a framework for viewing allosteric interactions in
DNA within the ambit of configurational forces of
continuum elasticity.

1. Introduction
Configurational forces that describe the interaction
between defects in an elastic solid are those that depend
explicitly on the positions of the defects [1,2]. For
example, two parallel screw dislocations at a distance
a from each other interact with a configurational force
per unit length proportional to 1/a or an energy per
unit length proportional to log a [3]. Similarly, the
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interaction energy of a point defect located at distance a from an edge dislocation varies as 1/a.
Just as defects produce local elastic fields in a solid, proteins binding to DNA also deform it
locally. Since DNA behaves like an elastic rod at scales of a few tens of nanometres [4], we expect
that if two proteins bind to DNA separated by a distance a, then the deformation fields created by
them will overlap and lead to an interaction energy which depends on a in a clearly quantifiable
way. There is compelling experimental evidence for such an interaction, some of which has been
extracted by connecting the interaction energy with the kinetics of protein binding/unbinding. In
spirit, this is similar to continuum elasticity in which configurational forces often determine defect
dynamics through a kinetic law [1,2]. Kim et al. [5] have exploited this connection of interaction
energies to kinetics to show that gene expression, which depends on RNA polymerase binding
affinity to DNA in live bacteria, is a function of the proximity of LacR and T7 RNA polymerase
bound to DNA. Similarly, the IHF protein affects RNA polymerase activity in Escherichia coli
DNA [6]. Again, the binding of the drug distamycin to calf thymus DNA has been shown
to be cooperative, i.e. if one drug molecule binds to the DNA, then it becomes energetically
favourable for other drug molecules to bind [7]. Similarly, binding of the Hox transcription
factor to DNA contributes nearly 1.5 kcal mol−1 to binding the Exd transcription factor [8]. These
effects are called allosteric interactions on DNA. Our goal in this paper is to quantify interaction
energies between proteins binding to DNA as a function of the distance a separating them and
the boundary conditions imposed by the proteins on the DNA. We will apply our methods to
the quantitative experimental results of Kim et al. [5], who measure allosteric effects on gene
expression as well as transcription factor affinity to DNA.

In the experiments of Kim et al. [5] one end of a DNA molecule is attached to the passivated
surface of a flow cell and binding sites are provided for two specific proteins to bind. The length
of the DNA between these binding sites, a, is increased in 1 basepair (bp) increments between
7 bp and 45 bp. First, one type of fluorescently labelled protein (call it A) is flowed into the
cell so that it binds to the DNA. Then, the second protein (call it B) is flowed in at a specific
concentration. The dissociation times of the fluorescent protein are then monitored as a function
of a. This dissociation time depends on the free energy change �G of the DNA + two protein
complexes from the state when the two proteins are bound to that when protein A is unbound.
Now, in general, the free energy �G of the ternary complex formed by the DNA and proteins A
and B consists of three parts [5],

�G= �GA + �GB + ��GAB(a), (1.1)

where �GA and �GB are the free energy changes caused by binding of A and B, respectively, to
the DNA. These are constants. The last term ��GAB(a) is the portion of the free energy change
that accounts for the interaction of the two proteins bound to the DNA while being separated
by a distance a. The off-rate of A, which is affected by this term, is plotted as a function of a
in Kim et al. [5], and it is found that it oscillates with a period of 10–11 bp with the amplitude of
oscillation decreasing as a function of a. Similar curves for a free energy as a function of separation
between protein binding sites on DNA have been obtained experimentally for the binding of the
lac repressor to DNA [9,10]. It has been shown that these free energy profiles can be reproduced by
modelling DNA as an elastic rod which is forced into forming a loop due to stereo-specific binding
of the lac repressor monomers [11], which come together due to thermal fluctuations. However,
Kim et al. [5] have ruled out DNA loop formation by careful experimental design and choice of
DNA-binding proteins. They have also found that the form of the curve is independent of ionic
strength (ruling out electrostatic interactions between A and B), but dependent on modifications
of the linker DNA. Kim et al. [5] infer that this implies ��GAB(a) largely depends on DNA
mechanical properties. However, as yet there is no analytical description of how the interaction
energy ��GAB(a) depends on the DNA mechanical properties.

Allosteric effects and their relation to protein–DNA interactions have been studied using
molecular dynamic (MD) simulations [12,13]. Gu et al. [12] have studied various kinds of
deformations which include shift, roll, rise, twist, slide and tilt of the DNA bases. They observed
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a sinusoidal correlation in the major groove widths similar to the one observed by Kim et al. [5].
Furthermore, Gu et al. point out that the presence of GC-rich sequences dampens the allosteric
effects, which is what Kim et al. observe experimentally. Major groove widths have also been
implicated in the MD simulations of Hancock et al. [13], who show how bound proteins alter
this quantity. By contrast, our approach in this paper is based on elastic energy considerations
and could complement the analysis of major groove widths as an indicator of allostery
in DNA.

Our goal in this paper is to quantitatively describe allosteric interactions using the birod model
of DNA of Moakher & Maddocks [14], who originally derived it to study DNA melting. This
birod model is a double-stranded rod theory in which addition to the standard variables of
a Cosserat rod theory (i.e. the centreline of the rod cross section r(s, t) and a material frame
[d1(s, t) d2(s, t) d3(s, t)]), there are two micro-structural variables—w(s, t), a micro-displacement
measuring the change in distance between the two strands, and P(s, t), a micro-rotation measuring
the change in orientation of one strand relative to the other. Fortunately, the forces conjugate to
these micro-structural variables obey balance laws that look similar to the balance of forces and
moments equations of a standard Cosserat rod. They are coupled to the macroscopic balance
equations for the centreline of the rod through distributed body forces and moments. Moakher &
Maddocks [14] have provided hyper-elastic constitutive laws for these micro-structural variables
that are based on quadratic energies.

The theory of birods has been successfully used by Lessinnes and co-workers [15,16] to
study the growth and evolution of two filaments elastically bound to each other. These authors
have demonstrated the utility of the theory in accurately modelling biological structures across
multiple length scales—from tissues and arteries to growth of roots and stems in plants. Manning
et al. [17] have used both a discrete basepair model and a corresponding continuum rod model
to study the cyclization of short DNA molecules (150 bp). The results obtained from both these
approaches match remarkably well. However, for shorter length scales (approx. 16 bp) Lankaš
et al. [18] have assayed the merit of the assumptions of rigid bases versus rigid basepairs to
estimate the stiffness parameters of a DNA oligomer and found that the simulated data are closely
consistent with the assumption of rigid bases, but not rigid basepairs. Following this line of
thought Petkeviciute [19] constructed a parameter set to model sequence-dependent equilibrium
probability distribution for rigid base configurations of a DNA oligomer. These developments
necessitate the inclusion of elasticity of basepairs via the webbing in an elastic birod [14] to
accurately model the local deformations caused by proteins at small length scales.

An effort to account for the elasticity of basepairs has been made by Dršata et al. [20], who
have applied it to the DNA–protein system investigated by Kim et al. [5]. The model by Dršata
et al. does not require any input elastic constants but uses parameters (elasticity in terms of DNA
helical variables) extracted from MD simulations of free DNA. With this model, they explained
and interpreted the data by Kim et al. (Dršata et al. [21]), including the periodicity and decay of the
allosteric coupling between separate protein binding sites along DNA. In the work of Dršata et al.
[20], the structure of a DNA molecule is described using three sets of coordinates: intra-basepair
coordinates—buckle, propeller, opening, shear, stretch and stagger; inter-basepair coordinates—
tilt, roll, twist, shift, slide and rise; and major and minor groove widths. Any conformational
perturbations to the structure of DNA caused by a binding ligand are penalized using an energy
functional quadratic in the aforementioned coordinates. In this framework, the binding ligand
interacts with the DNA molecule by altering the various degrees of freedom (inter-basepair,
intra-basepair and major/minor grooves).

In contrast to Dršata et al. [20], we use a theory of elastic birods [14] to study the problem of
protein–DNA interactions. The phosphate backbones are represented by the outer strands of the
birod, while the basepairs are represented using an elastic web. We allow basepairs to bend, twist,
shear and stretch elastically. The outer strands, on the other hand, are assumed to be inextensible
rods similar to the worm-like chains of polymer elasticity [22]. The binding ligand causes a change
in the geometry of the DNA double helix by bending its centreline and changing its radius.
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2. Strategy to compute interaction energy
In this section, we give a concise blueprint of our strategy to compute the interaction energy for
two proteins binding to DNA. We assume elastic deformations throughout. When a protein binds
to DNA, it causes local bending and twisting. We assume that the resulting twist and curvatures
are small. These curvatures could possibly add up to produce large displacements and rotations.
The two phosphate backbones of DNA constitute the helical outer strands, which are out of phase
by a phase angle α = 2.1 radians. We assume these backbones to be inextensible. These outer
strands consist of sugar–phosphate single bonds. Thus, we assume that they cannot support
twisting moments. The inextensibility of the outer strands is a strong geometrical constraint
which induces a change in the radius and phase angle between the two helices when a protein
causes local deformations. We assume that these changes are small and of the same order as the
curvatures.

We give a stepwise procedure to do the calculation and in the following sections we label
each step. We give a pictorial representation for this procedure in the electronic supplementary
material, figure S1.

(i) We begin by assuming a form of displacement for each of the outer strands, which are
assumed to be inextensible and unshearable.

(ii) We then use this displacement to calculate the tangent, normal and binormal to the
deformed configuration of the outer strands, thereby obtaining the rotation matrix
attached to the deformed configuration of the outer strands.

(iii) Once we get the deformation and rotation of the outer strands, we use these to calculate
the extension, shear and rotation of the web.

(iv) At this point, we are in a position to substitute these quantities into the balance laws
for the birod. We, then, seek non-zero solutions to the resulting system of differential
equations. This leads to an eigenvalue problem.

(v) In the next step, we apply the boundary conditions to evaluate the constants in the
solution to the eigenvalue problem.

(vi) We carry out this process first when there is a single protein binding onto the DNA, and
second when there are two proteins binding.

(vii) Finally, we subtract the two energies obtained in the previous step to get our energy of
interaction. We find that it takes the form of a decaying exponential oscillating with the
periodicity of the underlying DNA helix.

We demonstrate the above procedure for a straight non-helical birod (called a ladder) in the
electronic supplementary material, §S1. Our calculations show that the interaction energy for two
defects on a ladder decays exponentially with the distance between them. In the next section,
we focus on how the geometry of the DNA helix leads to an interaction energy which decays
exponentially while oscillating with the periodicity of the helix.

3. Interaction energy for two DNA-binding proteins

(a) Step 1: deformation of the outer strands
DNA consists of two helical strands with radius b= 1 nm and pitch p= 3.4 nm, out of phase by
α = 2.1 radians, wrapped around a common axis as shown in figure 1. We follow the notation used
by Moakher & Maddocks [14] and refer to the two strands as ±. The undeformed state of the outer
strands denoted by r±0 (x) is a helix with a constant radius and pitch. We choose to parametrize
both the curves by arclength parameter x. Here, ω = 2π/p and k is the characteristic angle of the
helix such that tan k= 2πb/p= ωb,

r+0 = b(cos ωx e1 + sin ωx e2) + x e3

and r−0 = b(cos(ωx + α) e1 + sin(ωx + α) e2) + x e3.
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Figure 1. A DNA molecule as a double-helical elastic birod is shown on the left. The phosphate backbones are represented
by outer strands while the complementary basepairing is represented by the elastic web. The phase angle between the two
helices isα = 2.1 radians. Here R+ = [n+

0 b+
0 t+0 ] and R

− = [n−
0 b−

0 t−0 ] are the Frenet–Serret frames attached to the+
and− strands, respectively. Basepairs in the reference and current configuration are shown on the right. Q+

0 = Q−
0 = Q0 in

the reference configuration. In the current configuration, the rigid rotation of the basepair is quantified by Q= Z(1 + Φ)Q0
(equation (3.22)) and the elastic moment c is related to the Gibbs rotation vector of P= (Q+Q−T)1/2 (equation (3.18)). (Online
version in colour.)

Let us now focus on the two strands separately. The calculations for the + strand are given in this
section while the results for the − strand are given in the electronic supplementary material. We
posit a form of displacement wherein the radius of the helix changes and its axis is allowed to
take arbitrary shapes within the ambit of the assumptions specified in §2. Here [e1, e2, e3] denotes
the standard spatial reference frame and e3 is along the common axis of the two helices ± in the
reference configuration. This common axis in the deformed configuration is defined by the set of
orthogonal directors [d1(x), d2(x), d3(x)]. The displacement fields which define the undeformed
and deformed configurations are

r+0 = b(cos ωx e1 + sin ωx e2) + x e3

and r+(x) = (b + r)(cos(ωx + β+)d1 + sin(ωx + β+)d2) +
∫ x

0
dx(1 + bξ )d3,

⎫⎪⎬
⎪⎭ (3.1)

where

r= r(x), β+ = β+(x), ξ = ξ (x).

Here r is the change in the radius of the helix, β+ is the change in the phase of the + strand and ξ

can be considered as a stretching of the axis of the helix.
Let Z be a second-order orthogonal tensor which relates the directors of the deformed

centreline di to those of the undeformed one ei, i= 1, 2, 3. As stated in §2, the curvatures (k1, k2, k3)
associated with the deformation of the centreline are assumed to be small, nonetheless these could
aggregate to potentially produce large rotations. The orthogonal tensor Z operates as follows:

di =Z ei, Z=
3∑

i=1

di ⊗ ei, i= 1, 2, 3 (3.2)
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and
dix = κ × di, where κκκ = k1 d1 + k2 d2 + k3 d3

and d1x = k3 d2 − k2 d3, d2x = k1 d3 − k3 d2, d3x = k2 d1 − k1 d2.

}
(3.3)

In the above equations, we assume that

r+(x), k1(x), k2(x), k3(x), ζ (x), β+(x) ∼O(ε).

Thus, in the treatment henceforth, any product terms such as r2 or ξk3 are O(ε2) and are neglected.

(b) Step 2: rotation of strands
We proceed in a standard way by attaching a Frenet–Serret director frame consisting of normal,
binormal and tangent to each cross section of the strand as shown in figure 1. We denote it by
R+

0 (x) in the reference configuration,

R+
0 = [n+

0 b+
0 t+],

n+
0 = − cos ωx e1 − sin ωx e2,

b+
0 = − cos k(− sin ωx e1 + cos ωx e2) + sin k e3

and t+0 = sin k(− sin ωx e1 + cos ωx e2) + cos k e3.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)

For the sake of brevity, we use

(cos ωxd1 + sin ωxd2) = f+1 , (− sin ωxd1 + cos ωxd2) = f+2 , d3 = f+3 .

As the strand deforms, the frame R+
0 evolves into R+(x), which consists of normal, binormal and

tangent to the deformed configuration of the strand. Our next step is to calculate the tangent
vector to the deformed configuration. We differentiate equation (3.1) to obtain

r+x = (rx − bωβ+)(cos ωxd1 + sin ωxd2) + (bω + ωr + bβ+
x + bk3)(− sin ωxd1 + cos ωxd2)

+ (1 + bξ − bk2 cos ωx + bk1 sin ωx)d3. (3.5)

We assume the strand to be inextensible and unshearable. This means

|r+x |2 = 1 + ω2b2 + 2b(ω2r + bωβ+
x + bωk3 + ξ − k2 cos ωx + k1 sin ωx)

+ O(ε2) = |r+0x|2 = 1 + b2ω2,

which leads us to the inextensibility condition,

ξ − k2 cos ωx + k1 sin ωx= −ω2r − bω(k3 + β+
x ). (3.6)

We will subsequently use this equation to impose boundary conditions. We substitute equation
(3.6) into equation (3.5) to get

r+x = (rx − bωβ+) f+1 + (bω + ωr + bβ+
x + bk3) f+2 + (1 − bω2r − b2ω(k3 + β+

x )) f+3 . (3.7)

Now, we need to find the director frame for the strand in the deformed configuration. We start by
calculating the tangent vector

t+ = r+x
|r+0x|

= (rx cos k − β+ sin k) f+1 + (sin k + ωr cos k + b(β+
x + k3) cos k) f+2

+ (cos k − ωr sin k − b(β+
x + k3) sin k) f+3

=Z(t+0 − (rx cos k − β+ sin k)n+
0 − (ωr + b(β+

x + k3))b+
0 ). (3.8)
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We differentiate the tangent vector to calculate the normal in the deformed configuration

t+x = (−ω sin k + (rxx + ξ ) cos k − (βx + k3) sin k) f+1
+ (2ω cos krx + −ωβ+ sin k + b cos k(β+

xx + k3x) − f cos k) f+2
+ ( f − ωrx − b(β+

xx + k3x)) sin k f+3 + O(ε2). (3.9)

We can use the above expression to calculate the curvature Ω+ for the strand. We find that this
is equal to the sum of the original curvature (ω sin k) and the one induced by the process of
deformation κ+. Hence,

Ω+ = (t+x . t+x )1/2 = ω sin k − (rxx + ξ ) cos k + (β+
x + k3) sin k

and κ+ = Ω+ − ω sin k= −(rxx + ξ ) cos k + (β+
x + k3) sin k.

}
(3.10)

The bending moment m+ in the strand is proportional to κ+,

m+ = EIκ+b+ = EIκ+(− cos k f+2 + sin k f+3 ) (3.11)

Also, the normal is

n+ = 1
Ω+ t+ = −f+1 + 1

sin k
(rx sin k − β+ sin k) f+2 + f − ωrx − b(β+

xx + k3x)
ω sin k

(− cos k f2 + sin k f+3 )

=Z
(
n+

0 + (rx cos k − β+ sin k)t+0 +
(

− (rx cos k − β+ sin k) cos k
sin k

+ g
ω sin k

)
b+

0

)
, (3.12)

where
g(x) = f (x) − ωrx − b(β+

xx + k3x), f (x) = k1 cos ωx + k2 sin ωx.

Using the above deformed orthogonal frame attached to each cross section

R+ = [n+ b+ t+] =ZR+
0 (1 + Θ+), (3.13)

where Θ+ is a skew symmetric tensor and Z= ∑3
i=1 di × ei as defined in equation (3.2)

Θ+ =

⎡
⎢⎣ 0 −θ+

3 θ+
2

θ+
3 0 −θ+

1
−θ+

2 θ+
1 0

⎤
⎥⎦ ,

in which θ+
1 = rω + b(β+

x + k3), θ+
2 = −rx cos k + β+ sin k,

θ+
3 = g

ω sin k
− (rx cos k − β+ sin k) cos k

sin k
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

We can derive all the above quantities r−, R− and κ−, etc., for the − strand too. We give the
relevant expressions for these quantities in the electronic supplementary material.

(c) Step 3: mechanics of basepairing
The sugar–phosphate backbones of the DNA molecule are tied together by means of
complementary basepairing. We model the basepairing by elastic rods capable of extension, shear,
bending and twisting. We attach the orthogonal frame Q0 = [f01 f02 f03] to the strands such that
f01 is a unit vector pointing from the − strand to the + strand in the reference configuration as
shown in figure 1. Thus,

Q0 = [f01 f02 f03],

f01 = sin
(
ωx + α

2

)
e1 − cos

(
ωx + α

2

)
e2

and f02 = cos
(
ωx + α

2

)
e1 + sin

(
ωx + α

2

)
e2, f03 = e3.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.15)

We denote the two ends of the rod in the web as ± such that the + end lies on the + strand
and the − end lies on the − strand. The deformation of the web is completely determined
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by the displacement (r+(x), r−(x)) and rotation (R+(x),R−(x)) of its ends. As the outer strands
undergo the deformation prescribed by equation (3.1), the web itself undergoes various kinds of
deformation. We describe the rotation of the web via a rigid rotation and a micro-rotation [14].
The micro-rotation encapsulates the information about the difference in rotation of the two ends
of the web. We calculate the mechanical quantities associated with the extension and bending of
the web in two separate sections below.

(i) Bending and twisting of the web

Our objective in this section is to calculate the micro-rotation tensor P. We attach a copy of Q0,
say Q±

0 , on the + and − end of every spoke in the reference configuration. Q±
0 change to Q±

in the current configuration. The ‘difference’ between Q+
0 and Q−

0 gives the bending and torsion
of the web while the ‘average’ of Q+

0 and Q−
0 gives the rigid rotation of the web. We relate Q± to

the rotations of ± strands R(x)±. The angles between the columns of Q+
0 and R+

0 should remain
the same during the deformation, which translates into the following condition:

R+T
0 Q0 =R+TQ+,

Q+ =R+R+T
0 Q0 =ZR+

0 (1 + Θ+)R+T
0 Q0

and Q− =ZR−
0 (1 + Θ−)R−T

0 Q0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16)

We are now in a position to calculate the micro-rotation P responsible for generating elastic
moment in the web. Let the micro-rotation tensor in the reference configuration be P0, which
changes to P during deformation. We use an expression for P/P0 given in Moakher &
Maddocks [14],

P2
0 =Q+

0 Q
−T
0 = I

and P2 =Q+Q−T =ZR+
0 (1 + Θ+)R+T

0 Q0Q
T
0R

−(1 − Θ−)R−T
0 ZT

=Z(1 + R+Θ+R+T − R−Θ−R−T)ZT.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

This gives

P0 = I, P≈Z

(
1 + R+Θ+R+T − R−Θ−R−T

2

)
ZT =Z(1 + Φc)ZT. (3.18)

Note that Φc is a skew symmetric tensor. The next step is to calculate the Gibbs rotation vector
of P [14]. The Gibbs rotation vector t̄ of a rotation matrix T is defined as t̄= tan(θ/2)k such that
trP= 1 + 2 cos θ and k is a unit vector such that Tk= k. Consider P̄= 1 + Φc where Φc ∼O(ε).
The axis of the infinitesimal rotation P̄ is the axial vector of Φc. Hence,

P̄φcφcφc = (1 + Φc)φcφcφc =φcφcφc, which gives k= φcφcφc

|φcφcφc| . (3.19)

We cannot calculate the magnitude of the rotation by taking tr P̄, since it gives 1 + 2 cos θ = 3,
which implies θ = 0. We consider the following limit:

1 + Φc = lim
φc

1→0
lim

φc
2→0

lim
φc

3→0
R1(φc

1)R2(φc
2)R3(φc

3). (3.20)

Now we take the trace of the r.h.s. and get θ = |φcφcφc|. Hence, the Gibbs rotation vector of P̄, η̄̄η̄η is
given as

2η̄̄η̄η = 2 tan
θ

2
k≈ |φcφcφc| φcφcφc

|φcφcφc| =φcφcφc. (3.21)

The Gibbs rotation vector of P is simply ηηη =Zη̄̄η̄η. Note that in the undeformed state ηηη0 = η̄̄η̄η0 = 0.
We now proceed to calculate the rigid rotation of the spoke Q,

Q= PQ− =Z

(
1 + R+Θ+R+T + R−Θ−R−T

2

)
Q0 =Z(1 + Φ)Q0 =Z(1 + Φ)Q0. (3.22)
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Here ηηη ∼O(ε). Now, the micro-moment c is related linearly to the ηηη via an elastic tensor H,

c=QH̄[QTηηη − QT
0ηηη0] + O(ε2) ≈ZQ0H̄QT

0 η̄̄η̄η. (3.23)

For further reference, let
ζ̂ζζ =QT

0 η̄. (3.24)

(ii) Extension of the web

The distance between the two strands is w= (r+ − r−)/2 and in the undeformed configuration
w0 = (r+0 − r−0)/2. By direct calculation, we observe

w0 = b sin
α

2

(
sin

(
ωx + α

2

)
e1 − cos

(
ωx + α

2

)
e2

)
and w= (b sin

α

2
+ w1)

(
sin

(
ωx + α

2

)
d1 − cos

(
ωx + α

2

)
d2

)
+ w2

(
cos

(
ωx + α

2

)
d1 + sin

(
ωx + α

2

)
d2

)
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.25)

where

w1 = r + r−

2
sin

α

2
− b

β+ − β−

2
cos

α

2
and w2 = r − r−

2
cos

α

2
+ b

β+ + β−

2
sin

α

2
.

The force exerted by the + strand on the − strand f is given by

f =QL̄[QTw − QT
0w0], (3.26)

where L̄ is a tensor of mechanical properties of the web. This force f causes the web to extend and
shear. For further reference let

ŵ=QTw − QT
0w0. (3.27)

(iii) Stacking energy

DNA consists of consecutive basepairs stacked on top of each other in a regular fashion.
The resistance to external forces and moments not only comes from the elastic deformation of
the strands and the webbing, but also from the change in alignment of the basepairs. We call the
energy associated with this change in the bases’ position and spatial orientation ‘stacking energy’.
Stacking energy plays a critical role in various phenomena such as melting of DNA [23,24]. We
prescribe a form of free energy which is quadratic in the twist k3 and stretch ξ ,

Fint =Kck2
3 + Keξ

2. (3.28)

There are other sophisticated expressions for the stacking energy [24], but we use the quadratic
form for two reasons: (i) the non-quadratic terms in the energy of [24] account for effects such as
basepair severing which are crucial to DNA melting, which does not occur in our problem and
(ii) a quadratic energy keeps our problem linear. This interaction energy results in a distributed
body force l and distributed body moment h on the strands

h=Kck3x d3 and l=Keξx d3. (3.29)

(d) Step 4: governing equations
We are now in a position to solve the governing equations for the mechanics of our helical birod.
These equations consist of the balance of linear momentum and angular momentum for both the
strands. In the balance equations (3.30) and (3.31):

— m± = EIκ± (equation (3.11)) denotes the elastic moment in the ± strand. n± are the contact
forces for which there is no constitutive relation since the outer strands are assumed to be
inextensible and unshearable.
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— f and c are the distributed force and moment, respectively, exerted by the + strand on the
− strand.

— l and h are the distributed force and moment exerted by basepairs on the + and − strand.

The balance equations are

n+
x − f + l= 0, (3.30a)

n−
x + f + l= 0, (3.30b)

m+
x + r+x × n+ + 1

2 (r+ − r−) × f − c + h= 0 (3.31a)

and m−
x + r−x × n− + 1

2 (r+ − r−) × f + c + h= 0. (3.31b)

Let [f1 f2 f3] =ZQ0. This gives

f1 =
(

sin
(
ωx + α

2

)
d1 − cos

(
ωx + α

2

)
d2

)
and f2 =

(
cos

(
ωx + α

2

)
d1 + sin

(
ωx + α

2

)
d2

)
, f3 = d3.

⎫⎪⎬
⎪⎭ (3.32)

We decompose the forces n+ = (n + nc) ∼O(ε) and n− = (n − nc) ∼O(ε); n= n1f1 + n2f2 + n3f3
and nc = nc1f1 + nc2f2 + nc3f3. Now, nx = (n1x − ωn2) f1 + (n2x + ωn1) f2 + n3xf3 + O(ε2). Similarly
for ncx. We use c= c1f1 + c2f2 + c3f3 and f = f1f1 + f2f2 + f3f3 from equations (3.26) and (3.23).
Then, the balance equations become:

n1x − ωn2 = 0,

n2x + ωn1 = 0,

n3x + Keξx = 0,

nc1x − ωnc2 − f1 = 0,

nc2x + ωnc1 − f2 = 0,

nc3x − f3 = 0,

EI cos k
[
(κ+

x + κ−
x ) cos

α

2
+ (κ+ − κ−)ω sin

α

2

]
− 2n2 + 2aωnc3 sin

α

2
= 0,

EI cos k
[
(κ−

x − κ+
x ) sin

α

2
+ (κ− + κ+)ω cos

α

2

]
+ 2n1 + 2aωn3 cos

α

2
− 2af3 sin

α

2
= 0,

EI sin k(κ+
x + κ−

x ) + 2af2 sin
α

2
− 2sn2 cos

α

2
− 2aωnc1 sin

α

2
+ 2Kck3x = 0,

EI cos k
[
(κ+

x − κ−
x ) cos

α

2
+ (κ+ + κ−)ω sin

α

2

]
+ 2aωn3 sin

α

2
− 2nc2 − 2c1 = 0,

EI cos k
[
−(κ−

x + κ+
x ) sin

α

2
+ (κ+ − κ−)ω cos

α

2

]
+ 2ωnc3 cos

α

2
+ 2nc1 − 2c2 = 0

and EI sin k(κ+
x − κ−

x ) − 2aωnc2 cos
α

2
− 2aωn1 sin

α

2
− 2c3 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.33)

We have 12 differential equations in the 12 unknowns (r, f , ξ , k3, β+, β−, nc1, nc2, nc3, n1, n2, n3). We
substitute the following ansatz into the equations:

y= y0 e−λx where y could be r(x), f (x), ξ (x), k3(x), β+(x), β−(x),nc1, nc2, nc3, n1, n2, n3. (3.34)

This results in an eigenvalue problem. We find 23 eigenvalues, but retain only six for reasons
explained in the electronic supplementary material. Let those six eigenvalues be ±λ, ±μ, ±δ and
the corresponding eigenvectors v±λ and v±μ. Let

v(x) = [r(x) f (x) ξ (x) k3(x) β+(x) β−(x) nc1(x) nc2(x) nc3(x) n3(x) n1(x) n2(x)]T.
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Hence,

v(x) = p1 e−λxvλ + p2 eλxv−λ + p3 e−μxvμ + p4 eμxv−μ + p5 e−δxvδ + p6 eδxv−δ . (3.35)

Here, p1, p2, p3, p4, p5 and p6 are the constants which are determined using boundary conditions.

(e) Step 5: boundary conditions
We assume that the impact of a protein binding to DNA is twofold: (i) the protein fixes the
curvatures at the binding site as in [25,27] and (ii) the protein causes a change in the radius of
the DNA helix [5] as shown in the inset of figure 5b. Thus, we apply boundary conditions on the
curvatures k1, k2 and the change in radius r of the DNA helix. We discuss two cases: (i) when one
protein binds to the DNA and (ii) when two proteins bind to it.

(i) One protein. Let us assume that the protein binds at x= 0. The boundary conditions for
this case are:

At x= 0, k1(x) = k10, k2(x) = k20, r(x) = r0.

As x→ ±∞, k1(x), k2(x), r(x) → 0.

}
(3.36)

The second boundary condition says that the DNA is straight far away from the protein
and that the perturbation in DNA radius occurs only in the vicinity of the bound protein.

(ii) Two proteins. Let us assume that the two proteins bind at x= 0 and x= a, respectively. We
divide our domain into three parts −∞ < x< 0, 0 < x< a and a< x< ∞, each of which
has different boundary conditions attached to it.

Region 1 : x ∈ (−∞, 0)

as x→ −∞, k1(x), k2(x), r(x) → 0,

at x= 0, k1(x) = k11, k2(x) = k12, r(x) = r1.

Region 2 : x ∈ (0, a)

at x= 0, k1(x) = k11, k2(x) = k12, r(x) = r1,

at x= a, k1(x) = k21, k2(x) = k22, r(x) = r2.

Region 3 : x ∈ (a, ∞)

at x= a, k1(x) = k21, k2(x) = k22, r(x) = r2,

as x→ ∞, k1(x), k2(x), r(x) → 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.37)

(f) Step 6: energy of the birod
We assume small elastic deformations throughout, hence the resulting energy is quadratic in
the strain variables. The elastic energy has contributions from the bending of the outer strands
(equation (3.11)), the extension, bending and twisting of the web (equations (3.24) and (3.25)) and
the stacking energy (equation (3.29)).

E=
∫∞

−∞

[
1
2
EIκ+2 + 1

2
EIκ−2 + 1

2
ŵ.Lŵ + 1

2
ζ̂ζζ .Hζ̂ζζ + Keξ

2 + Kck2
3

]
dx. (3.38)

We are especially interested in the interaction energy �G, which is the elastic energy of
interactions between the two proteins,

�G= E2
a − E1

0 − E1
a , (3.39)

where E2
a is the energy of two proteins bound to DNA, one at x= 0 and other at x= a, and E1

a and
E1

0 are the elastic energies corresponding to a single protein binding at x= a and x= 0, respectively.
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4. Elastic constants
Our model has nine elastic constants L1, L2, L3,H1,H2,H3,Kc,Ke,EI. The experimental values for
these constants are not known. In order to get some idea about the magnitude of the elastic
constants we calculate the extensional modulus, torsional modulus and twist–stretch coupling
modulus for a double-stranded DNA within our birod model. The explicit calculation is presented
in the electronic supplementary material. We choose

Kc = 80 pN nm2, Ke = 600 pN, H1 = 15 pN, H2 = 10 pN,

H3 = 20 pN, L1 = 50 pN nm−1

and L2 = 250 pN nm−1, L3 = 30 pN nm−1, EI = 65 pN nm2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

This choice of elastic constants gives the extensional modulus S≈ 1245 pN, torsional modulus
C≈ 490 pN nm2 and twist–stretch coupling modulus g≈ −90 pN nm, which are close to actual
values for double-stranded DNA [4] measured in experiments. We point out that this choice of
elastic constants is not unique, nonetheless we use them to make further calculations.

When we substitute these constants into the governing equations (equation (3.33)) and solve
the eigenvalue problem involving λ, we get the following eigenvalues:

λ1 = −0.68, λ2 = −0.42, λ3 = −0.36, λ4 = 0.36, λ5 = 0.42, λ6 = 0.68. Units: nm−1 (4.2)

Other eigenvalues are either very large (→ ±∞), very small (∼ 0) or purely imaginary. Purely
imaginary and zero eigenvalues when substituted in eλx give a sinusoidal and a constant function,
respectively, which do not decay to zero as x→ ±∞. As mentioned in §3e, the curvatures k1, k2
and change in radius r must go to zero at ±∞. Thus, zero or purely imaginary eigenvalues cannot
satisfy our boundary conditions, and are, therefore, not useful. We refer the reader to the electronic
supplementary material for further discussion on the choice of eigenvalues.

Consider a situation in which two proteins bind DNA, one at x= 0 and the other at x= a. In
the region a< x< ∞, the solution equation (3.35) consists of only negative eigenvalues. There
are three negative eigenvalues λ2,3,4 and consequently three unknown constants. We have three
boundary conditions on k1, k2 and r at x= a to determine those constants. Similarly in the region
−∞ < x< 0, the solution consists of only positive eigenvalues λ7,8,9, so the constants can again be
evaluated from three boundary conditions. We use this scheme to evaluate the strain parameters
which we substitute into the expression for the elastic energy functional equation (3.38). Note that
the dominant eigenvalue ±0.36 nm−1 corresponds to a decay length of 2.8 nm (≈10 bp), which is
what Kim et al. [5] report in their experiments.

5. Results
The experimental evidence for allosteric interactions when two proteins bind to DNA is
documented in Kim et al. [5]. Many earlier papers have also described allostery in DNA, but
Kim et al. present exquisite quantitative details which call for a quantitative explanation.

To unravel the physics behind these allosteric interactions, we begin by examining the case
when one protein binds to DNA. As discussed in §2d, the strain variables (r, ζ , β±, k1,2,3) are linear
combinations of decaying exponentials. For instance, consider k3(x) for a protein binding at x= 0:

k3(x) = p1v−λ(4) eλx + p2v−μ(4) eμx + p3v−δ(4) eδx x< 0

and k3(x) = q1vλ(4) e−λx + q2vμ(4) e−μx + q3vδ(4) e−δx x> 0,

}
(5.1)

where λ = 0.36 nm−1, μ = 0.42 nm−1 and δ = 0.68 nm−1. v±λ, v±μ and v±δ are the eigenvectors
associated with eigenvalues ±λ, ±μ and ±δ, respectively. The constants pi and qi (i= 1, 2, 3) are
evaluated using the boundary conditions at x= 0. It is not difficult to see that the strain variables
decay to zero as x→ ±∞. We can replace k3 in the above equation by other strain variables
(r, ξ , β±) and recover similar behaviour. We discuss a few characteristics of the variation of the
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Figure 2. Variation of strain variables for a single protein. We plot the change in radius r, twist k3, stretch of centreline ξ

and change in phase angle �β = β+ − β− for the double helix. The red curve corresponds to the boundary conditions
k10 = r0 = 0 and k20 = 0.1 nm−1 at x = 0 and the green curve corresponds to k10 = k20 = 0 and r0 = 0.05 nm at x = 0.
The asymmetry of the double helix (there is a major and minor groove in DNA) arising from the phase angle α = 2.1 radian
gives the curves a slight asymmetry about the site of protein binding. The curves are exactly symmetric about the site of protein
binding if we choose phase angle α = π radians (which results in no major and minor groove) as shown in the electronic
supplementary material. (Online version in colour.)

strain parameters as functions of position. The results are plotted in figures 2 and 3. The strain
parameters (r, k3, β±) decay exponentially with distance from the site of protein binding. The
curvatures exhibit an exponentially decaying sinusoidal character with a period of 11 bp. This
periodic decay of the curvatures manifests itself as sinusoidal variations in the interaction energy.
We find that these plots are slightly asymmetric about x= 0. We attribute this to the structural
asymmetry in the right-handed double helix with phase angle α = 2.1 radians. If we choose the
phase angle α = π radians instead, we find that the plots are exactly symmetric about the site of
protein binding as shown in the electronic supplementary material. We now consider the case
when two proteins bind to DNA, one at x= 0 and the other at x= a. We proceed in a similar
manner as above and express the strain profiles as linear combinations of exponentials

Case 1 k3(x) = p1v−λ(4) eλx + p2v−μ(4) eμx + p3v−δ(4) eδx x< 0,

Case 2 k3(x) =m1vλ(4) e−λx + m2vμ(4) e−μx + m3v−λ(4) eλx

+ m4v−μ(4) eμx + m5vδ(4) e−δx + m6v−δ(4) eδx 0 < x< a

and Case 3 k3(x) = q1vλ(4)(3) e−λx + q2vμ(4) e−μx + q3vδ(4) e−δx x> a.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.2)

The constants pi and qi (i= 1, 2, 3) are determined by three boundary conditions (on k1, k2 and
r) at x= 0 and x= a, respectively. The constants mj ( j= 1, 2, 3, 4, 5, 6) are determined by six
boundary conditions at x= 0 and x= a. The behaviour of the strain variables for two proteins
is similar to that for one protein as shown in figure 4. When two proteins are separated by a
large distance a> 10 × 3.4 nm (i.e. more than 10 helical turns of DNA), the strain profile looks
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like a concatenation of the profiles of two proteins binding separately. Their strain fields do not
interact at such distances, thus there is little interaction energy. When the distance decreases,
the strain fields of the two proteins overlap, and this is responsible for the interaction energy.
As discussed in the electronic supplementary material, two defects on a straight ladder interact
via an interaction energy that decays exponentially with the distance between them. Now, we
focus on the double-helical birod and examine the behaviour of different boundary conditions
on the interaction energy �G in figure 5. We assume for simplicity that both proteins apply the
same boundary conditions on the DNA, the exact numerical values are given in the figure. If we
choose the change in radius r0 = 0 and apply the boundary conditions only on the two curvatures
k1, k2, the interaction energy decays exponentially while varying sinusoidally with a period of
5.5 ≈ 11/2 bp. This case corresponds to proteins that bend DNA as shown in the inset of figure 5b.
On the other hand, if the curvatures k1, k2 are zero while the change in radius r0 is non-zero,
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Figure 5. We plot the interaction energy between two proteins (equation (3.39)). In (a), we plot the behaviour of �G for
various boundary conditions. If the boundary conditions are specified on the curvatures, we get an exponentially decaying
profile oscillating with 5–6 bp (≈ 11

2 bp). The oscillatory behaviour arises from the periodic geometry of DNA. In (b), the
experimental data reproduced for comparison are from Kim et al [5]. We use k11 = k21 ≈ 0.02 nm−1, k12 = k22 = 0.05 nm−1,
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shows that bending a DNA oligomer leads to widening of the groove on one side while narrowing it on the other. We find that
the change in the groove width is approximately 2 A which is close to the values reported by Kopka et al. [26] (0.5–2 A). (Online
version in colour.)

we get an exponentially decaying profile devoid of any oscillatory character, which is similar to
the results for the ladder. The exponentially decaying component originates from the elasticity
of the web, and the sinusoidal behaviour comes from the double-helical structure of DNA. From
this exercise, we conclude that in order to get a sinusoidally varying interaction energy a protein
must change the local curvature in the DNA, a mere change in radius of the DNA is not sufficient
to give rise to the interaction energy profiles observed in experiments.

In our model, the magnitude of the interaction energy increases monotonically with an increase
in the magnitude of the changes in curvatures or radius caused by the two proteins. Thus,
by systematically varying the boundary conditions imposed by the proteins we can establish
agreement of our theoretical results for �G with the experimental values documented by Kim et al.
[5]. This is done in figure 5b. The values of the curvatures that give the best fit to the experimental
data are k11 = k21 = 0.02 nm−1, k12 = k22 = 0.05 nm−1 and r1 = −r2 = 0.02 nm. The magnitude of

the curvature |k| =
√
k2

1 + k2
2 ≈ 0.055 nm−1, which gives a radius of curvature in figure 5b (inset)

R= 1/k≈ 18 nm. Assuming the centreline does not extend and the pitch of the DNA helix is
3.4 nm, we get θ = 3.4/18 ≈ 0.18 rad. The radius of the DNA molecule is a= 1 nm, thus the change
in the groove width is approximately given by � = (R + a)θ − Rθ = 1 × 0.18 nm ≈ 2 A. This value
is close to the one reported by Kopka et al. [26] (0.5–2 A). Hence, our choice of curvature boundary
conditions is reasonable; it is, however, not unique and it is coupled with the choice of stiffnesses
of the webbing in our birod model. Be that as it may, our exercise above demonstrates that a
birod model can capture the dependence of interaction energy on the distance between proteins
bound to DNA. Calibration of the model and faithfully connecting it to experiment will require
deeper analysis, and, perhaps also, computation. It is important to note here that an elastic model
of DNA allostery, consistently parametrized from atomic-resolution MD simulations, has already
been proposed by Dršata et al. [20], which was later extended to describe the experiment of Kim
et al. (Dršata et al. [21]). Our model is similar to the one presented by Dršata et al. in certain aspects:

(i) Quadratic energy: Dršata et al. [20] use a quadratic energy to penalize deformations,
which is similar to our approach. This is appropriate for small deformations as assumed
in our work and that of Dršata et al. The expression for the interaction energy in
Dršata et al. [21] (eqn. (14) in their supplemental information) is identical to ours
(equation (3.39)).
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(ii) Boundary conditions: in our paper, a protein interacts with the DNA helix by imposing
boundary conditions on the curvatures and the radius of the double helix at the binding
site. In Dršata et al., a protein interacts with DNA by changing the width of the minor
groove. These approaches are equivalent since extending the minor/major groove at the
binding site causes bending of DNA.

Our model differs from Dršata et al. [20] on the following key points:

(i) Effect of outer strands: the basepair centric model of Dršata et al. [20] ignores the effect
of the mechanics of the phosphate backbones. We model the backbones as inextensible
rods (or worm-like chains of polymer elasticity [22]) capable of bending. Elasticity of the
outer strands is crucial for twist–stretch coupling observed in DNA (see the electronic
supplementary material, §S3).

(ii) Stacking energy: we use a stacking energy quadratic in the twist and stretch of the
centreline to account for the change in the orientations of successive basepairs relative
to each other. Our approach is simplistic compared with the holistic approach of Dršata
et al. [20], where stacking energy has quadratic contributions from the six inter-basepair
degrees of freedom.

(iii) Boundary conditions: one of the drawbacks of our model is its inability to account
for the nature of protein–DNA contacts. Dršata et al. [21] point out that while some
proteins such as BamHI show tight protein–DNA contacts, thereby constraining all inter-
and intra-basepair degrees of freedom, others such as GRDBD interact rather loosely
by altering only the major groove width. This flexibility is absent from our current
model.

The period of the interaction energy in figure 5a is approximately 5.5 bp while that in
figure 5b is 11 bp as in the experiment. Why? Note that the strain variables in a two-
protein complex shown in figure 6b are a function of both the parameter x and the
distance between the two proteins a. We fix x (=2 nm from protein P1) and focus on the
dependence on a. We assume that both the proteins apply identical boundary conditions. If
the proteins do not cause any change in the radius such that r0 = 0, then the strain parameters
involved in the elastic energy (equation (3.38)) ∝ e−Γ xψ(ωa), where ψ(ωa) is a sinusoidal
function oscillating with a period 11 bp, and the elastic energy of the two-protein complex
∝ (e−Γ xψ(ωa))2 oscillates with a period 5.5 bp. On the other hand, when the protein causes both a
change in radius r0 and a change in curvature k20, the strain variables are ∝ (e−Γ1aψ(ωa) + e−Γ2x)
and the elastic energy of the two-protein complex ∝ (e−Γ1aψ(ωa) + e−Γ2a)2 oscillates with a period
of 11 bp due to the cross term e−(Γ1+Γ2)aψ(ωa). We plot the interaction energy �G(a) between the
two proteins constituting the protein complex in figure 6b and verify the periods for respective
boundary conditions, which resolves the apparent discrepancy in the periods in figure 5a,b. As
a final application of our birod model, we examine the sequence dependence of the allosteric
interaction energy �G. While there is overwhelming qualitative evidence, both experimental
[5] and numerical [12], showing that AT-rich sequences exhibit stronger allosteric interactions
than GC-rich ones, a theoretical explanation is still lacking. Stronger interactions are associated
with longer decay lengths. Using our theory, we can find the dependence of the decay length
on the elastic constants of the web. Since, AT basepairs consist of two hydrogen bonds, the
corresponding elastic constants for the web are expected to be lower than GC basepairs, which
consist of three hydrogen bonds. In an attempt to simulate such a scenario, we replace the elastic
constants for the web (Kc,Ke, Li,Hi i= 1, 2, 3) in equation (4.1) with (χKc, χKe, χLi, χHi i= 1, 2, 3)
while keeping EI fixed, and vary the parameter χ in the range 0.5 ≤ χ ≤ 1. We define a measure
of the decay length ld to be the inverse of the eigenvalue having the least non-zero magnitude,
obtained in equation (4.2). For instance, if χ = 1, decay length ld = 1/0.34 nm ≈ 10 bp. We plot the
variation of ld with χ in figure 7. We find that the decay length increases with the decrease in
elastic constants of the web. We plot log ld versus log χ and deduce that ld ∼ 1/χ2/3.
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Figure 6. The inset in (b) shows a two-protein complex. The boundary conditions are identical for both the proteins k11 =
k21 = k10, k12 = k22 = k20, r1 = r2 = r0; the legend in (a) contains the exact numerical values. For (b), the legend is the same
as in (a).We examine the behaviour of ŵ3(x = 2 nm,a) (equation (3.38)) as a function of the distance between the two proteins
a for these boundary conditions. The strain variables oscillate with a period of 11 bp. We observe that, in the case of r0 = 0, the
strain parameter ŵ3(x = 2 nm,a) decays as e−Γ aψ (ωa), whereψ (ωa) is a sinusoidal function, hence the combined energy
of a two-protein complex which is proportional to (e−Γ aψ (ωa))2 oscillates with a period of 5.5 bp (period of sin2 x is half that
of sin x). If k10 = k20 = 0 the decay is exponential. If r0 
= 0 and k10 or k20 
= 0, ŵ3(x = 2 nm, a)∼ (e−Γ1aψ (ωa) + e−Γ2a)
and the energy of the two-protein complex, which is proportional to (e−Γ1aψ (ωa) + e−Γ2a)2, oscillates with a period of
11 bp. The behaviour of the other strain variables in equation (3.38) is similar. We plot the interaction energy�G(a) in (b) for
the boundary conditions indicated in the legend of (a) and use it to verify the period we predict using this argument. (Online
version in colour.)
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Figure 7. Decay length ld is defined as the inverse of the eigenvalue with the least non-zero magnitude, for χ = 1, ld =
1/|λ|min = 1/0.34≈ 9 bp.χ is meant to account for the reduction in the elastic constants for AT basepairs comparedwith GC
basepairs. The elastic constants for thewebare (χKc ,χKe,χH1,χH2,χH3,χ L1,χ L2,χ L3), equation (4.1) gives thenumerical
values for χ = 1. We find that the decay length increases with a decrease in elastic constants for the web, thus AT-rich DNA
sequences are expected to have higher decay lengths. Qualitative experimental and numerical evidence in support of the above
conclusion is documented in [5,12], respectively. The inset shows howwe extracted the power law ld ∼ χ−2/3. (Online version
in colour.)

6. Conclusion
Kim et al. [5] have presented compelling quantitative evidence for allosteric interactions between
two proteins bound to DNA at distant locations. They showed that the interaction energy for
two proteins separated by distance a on DNA is a decaying exponential oscillating with a period
of 11 bp. Various attempts to numerically simulate the allosteric interactions have been made

 on October 4, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


18

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180136

...................................................

[12,13] and have associated the oscillating interaction energy with the major groove width in the
double-helical structure of DNA. We approach the problem from a purely mechanical standpoint.
We conjecture that the local deformation field in DNA caused by a bound protein is similar to
that produced by a defect in an elastic solid. We begin by computing the interaction energy
for two defects on a ladder and find that it decays exponentially with the distance between
them. We, then, proceed to replicate the same calculation for DNA by modelling it as a double-
helical birod [14]. We assume that the outer phosphate backbones represented by ± strands to be
inextensible and unshearable while the basepairs are capable of elastic extension, shear, bending
and twisting. We assume a general form of displacement for these strands (equation (3.1)) which
we use to calculate the micro-displacement and micro-rotation for the basepairs. We, then, use
these expressions to solve the governing equations for our birod. A crucial factor in our treatment
is the boundary conditions. We follow Kwiecinski et al. [25], Kim et al. [5] and Liang & Purohit [27]
and impose boundary conditions on the curvatures and the radius of the DNA double helix.
The question of what kind of boundary conditions a protein could possibly apply is not yet
comprehensively addressed in the literature and is not the central issue of this study either. Rather,
our message is that, after solving the governing equations and plugging in boundary conditions,
we recover the exponentially decaying profile that oscillates with a period of 11 bp. We end by
examining the sequence dependence of allosteric interactions and show that AT-rich sequences
exhibit stronger interactions than GC-rich sequences.

Even though our birod model does surprisingly well by capturing the dependence of
interaction energy on distance, there are many important caveats that we must point out. First, we
do not expect our birod model to be accurate near the site of protein binding. The deformations
near the binding site could be large enough that a linear elastic theory may not be applicable. Our
assumptions that the outer strands are inextensible and the web is elastic could also break down
in the vicinity of the binding site. Second, we have little knowledge of the elastic constants of the
web. We have assumed some stiffness parameters for the web that gave the right experimentally
verified moduli for the DNA, but there could have been another set of parameters that would have
given similar results. One may have to appeal to molecular simulations [18–20,28] to get these
parameters. Third, the boundary conditions applied by the proteins on the DNA are not clear. One
may have to look for guidance from molecular simulations or protein–DNA co-crystal structures
to get a clearer picture [21]. Finally, we have not accounted for fluctuations or entropic interactions
in our model. This is partly justifiable because the length of DNA between two protein binding
sites for which significant allosteric interactions are observed is often much smaller than the
persistence length of the DNA. However, a rigorous calculation should be done to verify this
assumption. In spite of these shortcomings, our model could provide a starting point for analysing
allosteric interactions in DNA within the broad framework of configurational forces in elastic
solids.
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