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ABSTRACT: Allosteric interactions in DNA are crucial for various
biological processes. These interactions are quantified by measuring the
change in free energy as a function of the distance between the binding sites
for two ligands. Here, we show that trends in the interaction energy of
ligands binding to DNA can be explained within an elastic birod model,
which accounts for the deformation of each strand as well as the change in
stacking energy due to perturbations in position and orientation of the bases
caused by the binding of ligands. The strain fields produced by the ligands
decay with distance from the binding site. The interaction energy of two
ligands decays exponentially with the distance between them and oscillates
with the periodicity of the double helix in quantitative agreement with
experimental measurements. The trend in the computed interaction energy is
similar to that in the perturbation of groove width produced by the binding
of a single ligand, which is consistent with molecular simulations. Our analysis provides a new framework to understand
allosteric interactions in DNA and can be extended to other rod-like macromolecules whose elasticity plays a role in biological
functions.

■ INTRODUCTION

When a ligand binds to DNA, it induces conformational
changes at the binding site, which could propagate to regions
tens of base-pairs away, thereby encouraging or inhibiting the
binding of a second ligand in those places. Such interactions
between two binding agents are called allosteric interactions.
Our focus here is on a mechanism for allostery based on the
elasticity of long molecules. Although we will illustrate our
theory using DNA as an example, long-range allosteric
interactions have been documented in actin, microtubules,
and helical peptide chains. For example, myosin binds to actin
filaments leading to the suppression of the formation of cofilin
clusters via allosteric signaling.1 Long-range structural changes
induced by taxol binding to microtubules inside a cell prevents
cell division, thus making it a potent antitumor agent.2 The
transfer of chiral stimulus triggered by a binding agent across a
helical peptide chain gives the molecule an overall chiral
character and is yet another instance of allostery.3 Instances of
allostery in DNA have been known for decades.4,5 Antitumor
drug actinomycin D binds to DNA by intercalating between
the adjacent base pairs5 containing a guanine base. However, in
the presence of daunomycin, another antitumor drug,
actinomycin, is observed to bind to poly(dAT) DNA
oligomers too. This is due to the allosteric stabilizing influence
exerted by the already bound daunomycin molecule near its
binding site. We will analyze allostery in ds-DNA because
detailed experimental and simulation results are available for
it,6−8 thus allowing quantitative comparisons with our theory.
We define the allosteric interaction energy ΔG = E12

{0,p} − E1
0

− E2
p, where E12

{0,p} is the free energy of the protein−DNA

complex consisting of two proteins separated by distance p and
E1
0 and E2

p are the free energies of the protein−DNA complexes
consisting of one protein. Kim et al.7 have conducted single-
molecule experiments using fluorescence techniques to
measure allosteric interaction energy ΔG between two proteins
on a DNA oligomer. In their paper,7 DNA-binding proteins are
categorized as (a) proteins that bend DNA such as LacR and
T7-RNAp and (b) proteins that bind to straight DNA such as
GRDBD and BamHI. Here, we deal with the latter category.
We use the theory of elastic birods9 to develop a mechanical

model for investigating protein−DNA interactions. A birod
consists of two elastic strands joined by an elastic web. We
represent the sugar-phosphate backbone of DNA using the
outer strands and the complimentary base pairing is modeled
using the elastic web. A birod model of DNA has different
properties than a homogeneous rod model at short length
scales; however, as the length of the birod increases, the elastic
properties of both models become indistinguishable.10

We discuss key features that distinguish our model from the
state-of-the-art8 worm-like chain model for DNA allostery.

1. Helical geometry: Kim et al.11 discovered that the
interaction energy ΔG between two proteins on DNA
decays exponentially while oscillating with the perio-
dicity of the DNA double helix. It is thereby imperative
that we account for the double helical geometry of DNA,
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which is conveniently incorporated in a birod model,9

but is absent in a worm-like chain model of DNA.
2. Elasticity of base pairs: Proteins interact with DNA by

altering the geometry of the double helix, such as
changing the width of major/minor groove.6,12 The
elasticity of the base pairs, represented by the elastic web
in a birod model is essential to accurately model these
local deformations.

3. Stacking energy: Stacking energy penalizes the change in
orientations of the base pairs with respect to each other.
We use a stacking energy quadratic in the twist and
stretch of the DNA-double helix.

In an existing model8 of allostery, tension in the worm-like
polymer chain to which the two proteins are bound plays an
important role in the decaying oscillatory behavior of the
interaction energy ΔG. However, in the experiments of Kim et
al.7 and simulations of Drsǎta et al.,6 the oscillatory
exponentially decaying allosteric interactions on DNA are
present even in the absence of tension. Here, we use an
analytical model to show that decaying oscillatory behavior of
the interaction energy can arise from the interplay between the
double helical geometry and the elasticity of the base pairs.
Our model provides key insights into the structural

deformations of the DNA helix, changes in the groove width
when a ligand binds to DNA, and the allosteric interaction
energy ΔG between two proteins on DNA. We compute the
correlations between the displacement variables at the two sites
of protein binding and establish their connection to the
interaction energy between the two proteins. Our results are in
excellent quantitative agreement with the experimental data in
Kim et al.7 and Kopka et al.12

Numerical simulations6,13 have been used to propose
mechanical models for DNA allostery. These papers describe
DNA using three sets of coordinates: intra-base-pair
coordinates buckle, propeller, opening, shear, stretch and
stagger, inter-base-pair coordinates tilt, roll, twist, shift, slide,
and rise, and major and minor groove widths. The DNA-
binding protein fixes some (or all) of the degrees of freedom at
the site of binding, resulting in deformations away from it. The
energy of binding can therefore be computed. The approach is
comprehensive, but computationally expensive. Drawing upon
the know-how from Drsǎta et al.,6,13 we allow for the bending,
twisting, stretching, and shearing of the base pairs.
Furthermore, we go beyond their numerical models by
considering the mechanics of the outer strands, which, as
pointed out later, is crucial to getting the correct twist−stretch
coupling for double-stranded DNA.

■ THEORY
DNA comprises of two helical strands held together via
complementary base pairing. When a ligand, such as a protein
or a drug, binds to DNA, it exerts forces and moments on the
double helix14,15 causing deformations at the base-pair level.
We use the theory of birods9 to investigate these deformations.
A birod consists of two elastic strands that interact through an
elastic web. This construction makes it suitable for
investigating the deformations at the base-pair level in a
DNA molecule, which a homogeneous rod model cannot
capture.16 The latter ignores the double-helical structure and
the elasticity of the base pairs, both of which are crucial to the

problem under consideration. In the following (·)x denotes
∂ ·
∂x
( ) .

Lower case letters such as a, r, β± are scalars, bold lower case

letters such as t+, b− are vectors, whereas bold upper case
letters such as R−, R0

+, Z are 3 × 3 tensors.
We assume the phosphate backbones comprising of

phosphodiester bonds, represented by outer strands in our
model to be inextensible and unshearable. Our assumption of
inextensibility can be justified by examining the elastic
properties of ssDNA. The stretch modulus of ssDNA, at
high ion concentration, is about 1000 pN,17 which is about
twice that of the largest modulus (Ke = 600 pN) used in our
model. At low ion concentrations, under which the experi-
ments reported in Kim et al. are conducted, ssSDNA shows an
even stiffer response.18 The assumption of unshearability is
justified if the cross-sectional dimensions are much smaller
than the length of a rod,19 which is indeed true for DNA
molecules. Because these backbones consist of consecutive
single bonds that allow free rotation about the bond, we
assume that they cannot resist twisting moments. The base
pairing is represented by the elastic web, which is capable of
extending, shearing, bending, and twisting. In addition to the
elastic energy, we consider contributions from the stacking
energy, which is associated with the change in orientations of
the successive base pairs.
In this paper, we consider the proteins that do not bend

DNA. Kim et al.7 report experimental data for allosteric
interaction energy using a DNA-binding protein pair: GRDBD
and BamHI, both of which do not bend DNA.20,21 Kim et al.7

have also experimented with proteins that bend DNA, and they
have been theoretically treated elsewhere.22,23 We denote the
helical strands as ±; their positions in the reference state are
denoted by r0

±. We use arclength parameter x to parametrize
the double helix (Figure 1). Thus,

ω ω

ω α ω α

= + +

= + + + +

+

−

a x x x

a x x x

r e e e

r e e e

(cos sin ) ,

(cos( ) sin( ) )

0 1 2 3

0 1 2 3 (1)

where a = 1 nm is the radius of the DNA helix, p = 3.4 nm is
the pitch, ω = π

p
2 , and α is the phase difference between the

helices. Here, we assume α = π to make the computations
analytically tractable. We consider a deformed configuration
where the double helix extends and twists about e3, and its
radius and phase angle also change due to binding of ligands.
The deformed state of the ± strands is denoted by r±(x),
where

Figure 1. Birod model of DNA. The angle between the tangent t+ and
e3 is k. A base pair in reference and deformed state is shown. The
director frames attached to ± ends of the base pair change from Q0 to
Q±, respectively. The rigid rotation of the strand Q = (Q+Q−T)1/2Q−

and microrotation P = (Q+Q−T)1/2.
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∫

∫

ω β ω β
ξ

ω β ω β
ξ

= + + + +
+ +

= − + + + +
+ +

+ + +

−∞

+

− − −

−∞

−

x a r x x
x a x

x a r x x
x a x

r d d

e

r d d

e

( ) ( )(cos( ) sin( ) )

( d ) ,

( ) ( )(cos( ) sin( ) )

( d )

x

x

1 2

3

1 2

3

(2)

such that d1x = k3d2 and d2x = −k3d1. To gain a better physical
insight, we give a visual representation of the deformation
described in the above equation in Figure 2. We only show the

deformation for the + strand for clarity and indicate the strain
variables r (change in radius), β (change in phase angle), and ξ
(stretch of the center-line). We assume all the displacement
and strain parameters r, β±, and ξ± vanish at x = ±∞ because
the deformations caused by the proteins are local. The change
in radius r, change in the phase angle β±, stretches ξ±, and the
twist k3 are assumed to be small (∼O(ε)) such that second-
order terms such as r2 and ξβ− are negligible. However, there
could be finite rotations resulting from k3.
As shown in Figure 3, the birod consists of two elastic

strands joined by an elastic web. We show a straight elastic
ladder for easy visualization of the key forces and moments.
The + strand exerts a body force l and a body moment c on the

− strand via the elastic web. The balance laws for the two outer
strands constitute the governing equations for the birod.9 The
deformation of the elastic web can be calculated once the
deformation of the outer strands is known. We need to solve
the following balance equations for a helical birod,

∓ + =

+ × + − × ∓ + =

±

± ± ± + −

n f l

m n f c hr r r

0,

1
2
( ) 0

x

x x (3)

where m± and n± are the contact moment and contact force,
respectively, in ± strands. f and c are the distributed force and
distributed moment exerted by the + strand on the − strand. l
and h are the body force and body moment exerted by the base
pairs onto both ± strands. In what follows, we use the position
vectors for the deformed helix r±(x) (eq 2) to compute these
quantities. The constitutive relations for the forces n±,
moments m±, and the force l and moment c transferred by
the web, are discussed in the relevant subsections.

Contact Forces in the Outer Strands (n±). The outer
strands are inextensible, which means |rx

±| = |r0x
± | yielding

ω ω β ξ+ + + =± ±r a k( ) 0x
2

3 (4)

We use the above equation to eliminate ξ± from eq 2. Due to
the constraint in eq 4, the contact forces n± enter as Lagrange
multipliers.

Contact Moments in the Outer Strands (m±). We
attach a director frame R± = [n0

± b0
± t0

±] to each cross section of
the ± strands, where n0

±, b0
±, and t0

± are the normal, binormal,
and tangent in the reference state to ± strand, respectively. n±,
b0
±, t0

±, and the curvature in the reference configuration Ω0
± are

computed using eq 1 as follows

ω ω

ω ω

ω ω

ω

=
| |

= ± − + +

=
| |

= ∓ +

= ×
= ∓ − + +

Ω = Ω = =

±
±

±

±
±

±

± ± ±

± ± ±

k x x k

x x

k x x k

k

t
r
r

e e e

n
t
t

e e

b t n
e e e

t t

sin ( sin cos ) cos ,

(cos sin ),

cos ( sin cos ) sin ,

( . ) sin

x

x

x

x

0
0

0
1 2 3

0 1 2

0 0 0

1 2 3

0 0 0 0
1/2

(5)

Similarly, we use eq 2 to compute the Frenet−Serret frame R±

= [n± b± t±] and curvature Ω± in the deformed state. We
neglect terms higher than first order, such as rβ+,ξ− r∼O(ε2),
and get

Figure 2. Distortions to the helical geometry of the + strand. We
assume that the DNA remains straight after the binding of proteins.
Therefore, the axis e3 remains undisturbed. The radius of the helix a
changes to a + r, the phase angle ω x changes to ω x + β, and the
length of the infinitesimal element dx, shown in black, changes to (1 +
ξ) dx.

Figure 3. Free-body diagrams that establish the connection between an elastic rod and an elastic birod. We deliberately show a straight ladder
instead of helical birod to illustrate the mechanics. An elastic birod comprises two elastic rods + and −. The + strand exerts a moment c and force f
on the − strand through an elastic web. This transfer of moment and force leads to deformation of the web. In the figure, r± denotes the position
vector for ± strands and n± and m± denote the contact forces and contact moments in ± strands, respectively. The force and moment balance for +
and − strand constitute the governing equations (eq 3) for the elastic birod. For further discussion, see Moakher and Maddocks.9
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(6)

The bending moment in the outer strands m± is proportional
to the change in curvature κ± = Ω± − Ω0

± and is directed along
the binormal b± such that m± = EIκ±b±, where EI is the
bending modulus of the strand. Note that the twisting moment
is zero because the phosphate backbone consists of single
bonds that permit free rotations.
Force and Moment Transferred by the Web (f, c).

Now, we compute the bending and twisting of the web, which
represents base pairing. We attach a director frame Q0 to both
+ and − end of the base pair (Figure 1).

= [ ]θQ e e er0 3 (7)

where er = cosωxe1 + sinωxe2 and eθ = −sinωxe1 + cosωxe2.
As the birod deforms, these frames respectively get mapped to
Q ±. We compute Q± using the deformation of R± from eq 6
keeping in mind that the angles between the columns of R0

±

and Q0
± should remain constant during deformation implying

(R0
±TQ0 = R±TQ), thus

ε= + Θ Θ ∼± ± ± ± ± OQ ZR I R Q( ) , ( )0 0
T

0 (8)

Now, we can compute the rigid rotation Q and microrotation
P for each base pair. The microrotation contains information
about the “difference” between the rotations Q±.9 This is
related to the moment transferred by the base pair c via an
elastic constitutive relation for the web

= = + Φ+ −P Q Q Z I Z( ) ( )T 1/2 c T (9)

Here, Φ = Θ − Θ+ + + − − −R R R Rc
2

T T

is a skew symmetric tensor. The

moment transferred by the base pair is directly proportional to

the Gibbs vector of P. η = ̂λktan
2

is a Gibbs rotation vector

for a rotation matrix T if Tk̂ = k̂ and 1 + 2 cos λ = tr T. In our
case, the Gibbs vector of P is 2η = 2Zη ̅ = Zϕc, where ϕc is the
axial vector of skew symmetric tensor Φc. Note that in the
reference state, η0 = 0 because P0 = (Q0Q

T)1/ 2 = I. The rigid
rotation of the base pair Q = PQ−. Here,

= + ΦQ Z Q(1 ) 0 (10)

and Φ = Θ + Θ+ + + − − −R R R R
2

T T

is a skew symmetric matrix. The

moment exerted by + strand on the − strand by means of the
elastic web, c, is computed using c = QHQTη, where H =
diag[H1, H2, H3] are the elastic moduli.9 Now, we shift our
focus to the extension and shear of the web. In the reference
configuration, the displacement between the two strands

= =−+ −

aw er r
0 2 r

0 0 , which, in deformed configuration, changes

to = −+ −
w r r

2
. The force f exerted by + strand on the − strand

is computed using f = QL(QTw − Q0
Tw0), where L = diag[L1,

L2, L3] are the elastic moduli, β = β β++ −

2
and β = β β−+ −c

2
.

η

ω β
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(11)

Contributions from the Stacking Energy (l, h).We now
consider the contributions from the stacking energy. The
center line of the double helix e3 undergoes both twist k3 and

extension ξ = ξ ξ++ −

2
. We associate a quadratic stacking energy

= + ξ ξ++ −( )E K k Ks c 3
2

e 2

2
to penalize this change in the

orientation of successive base pairs. Due to this energy, the
base pairs exert a body force l and a body moment h on both ±
strands, which are given by

ξ ξ= + =
+ −i

k
jjjj

y
{
zzzzl hK K ke e

2
,e 3 c 3 3

(12)

■ RESULTS
Now we have all the ingredients for solving the governing
differential equations of a birod. Substituting these quantities
in the balance laws (eq 3) gives us a set of 12 differential
equations. The complete procedure for solving those equations
is in the supplement; however, we highlight crucial points here.
It follows from the governing equations that β+ = β− (= β, say),
n3
c = n1 = n2 = 0. β+ = β− implies ξ+ = ξ− (= ξ, say), thereby
reducing 12 equations to 6 equations in 6 unknowns r, β, k3,
n1,2
c , n3. We look for solutions of the form

β β ξ ξ= = =

= = =

λ λ λ

λ λ λ

− − −

− − −

r x r x x

n x n n x n n x n

( ) e , ( ) e , ( ) e ,

( ) e , ( ) e , ( ) e

x x x

x x x

0 0 0

1
c

10
c

2
c

20
c

3 30

(13)

We substitute this form into the governing equations (eq 3)
and obtain an eigenvalue problem in λ. To make further
progress, we need the values of the elastic constants. We use Kc
= 80 pNnm2, Ke = 600 pN, L1 = L2 = L3 = H1 = H2 = H3 = 10
pN. In the supplement, we show that these values yield the
correct twist, stretch, and twist−stretch coupling moduli for
double-stranded B-DNA.24 Solving for the eigenvalues, λ we
get

λ ζ ω ζ= ± ± = −i , 0.32 nm 1 (14)

and the solution for the strain parameters y1 = r, y2 = k3, and y3
= β is of the form

= +

+ +

ζ ω ζ ω

ζ ω ζ ω

− − − +

− +

y x A i A i

B i B i

V V

V V

( ) ( ) e ( ) e

( ) e ( ) e
i

x x

x x

1 1
( i )

2 2
( i )

1 3
( i )

2 4
( i )

(15)
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where Vj(i) is the ith component of the eigenvector
corresponding to the eigenvalue j in the exponent. Clearly,
the decay length ζ is only a function of the elastic parameters
of ds-DNA, in agreement with the conclusion of Kim et al.7

Note that the strain parameters are exponentially decaying
while oscillating with the period ω of the double helix. We
impose the boundary conditions on r and β, remembering that
the displacements of the strands must be continuous. For a
protein binding at x = p

β

β β

→ ±∞ →

= = =

x r x x

x p r r

as , ( ), ( ) 0

at , (0) , (0)0 0 (16)

We present the variation of r, k3, and β for a protein binding at
x = 0 for two different sets of boundary conditions in Figure 4.
Notice the sinusoidal correlation between the local deforma-
tion of base pairs that is in agreement with earlier work that
used Monte Carlo simulations.22,23

We show the deformed shapes of the helices in Figure 5 for
three cases: first when one protein binds at x = 0, second when
two proteins bind at x = ±1.5 nm, and third when two proteins
bind at x = ±3.5 nm. The boundary condition for each protein
is r0 = 0.2 nm, β0 = 0. We deliberately choose large values for r0
and β0 to distinguish the deformed shape from the reference
shape. The large configuration changes near the site of protein

binding (x = 0) decay exponentially with distance. Note, there
is a strong overlap in the deformation fields when the distance
between two proteins is 3 nm compared to 7 nm. This overlap
results in an interaction energy between the two proteins,
which we subsequently quantify using eq 18.
We now compute the interaction energy ΔG for two

proteins. The energy functional of the double-helical rod is

∑β κ κ

η ξ

[ ] = + + Δ

+ ̂ + +

+ −

=
E r k EI EI L

H K k K

w, ,
1
2

( )
1
2

( )
1
2
(

)

i
i i

i i

3
2 2

1

3
2

2
c 3

2
e

2
(17)

where η̂ = QTη and Δ w = QTw − Q0
Tw0. Consider two

proteins, P1 and P2 binding at x = 0 and x = p. The interaction
energy ΔG is defined as

Δ = − −{ }G p E E E( ) p p
12
0,

1
0

2 (18)

where E12
{0,p} = E[r12, β12, (k3)12] is the energy of two proteins

binding onto DNA at x = 0 and x = p, whereas E1
0 = E[r1, β1,

(k3)1] and E2
p = E[r2, β2, (k3)2] are the energies of a single

protein binding at x = 0 and x = p, respectively. We linearly
superimpose the strain fields from each protein (r1 and r2, etc.)
to get the resultant strain field (r12, etc.) caused by two
proteins simultaneously binding to DNA.

= + −r x r x r x p( ) ( ) ( )12 1 2 (19)

We obtain β12 and (k3)12 similarly. We compute the interaction
energy ΔG(p) as a function of the distance between two
proteins p and plot it in Figure 6 together with experimental
data from Kim et al.7 In excellent agreement with experiment7

Figure 4. Variation of r, k3, ξ, and β
+ = β− = β for a single protein. The red curve corresponds to the boundary conditions β0 = 0, r0 = 0.05 nm, and

the green curve to r0 = 0, β0 = 0.05. Even if r0 = 0, i.e., the protein does not change the radius of the molecule at the binding site, a change in the
phase angle β0 ≠ 0 can cause the radius to change at locations away from the binding site. Similar coupling exists among other strain parameters.
The magnitudes r0 and β0 chosen here ensure that the change in the groove width, a parameter whose magnitude is known,12 is in the correct range
(3 Å). The decay length is ld = ζ−1 ≈ 10 bp, which is close to the one documented in literature.7,23

Figure 5. We show the deformed configuration of the double helix,
with red and green colors corresponding to + and − strand,
respectively. In the first figure, one protein binds at x = 0 with r0 = 0.2
nm and β0 = 0. The magnitudes are chosen to be artificially large to
make the deformations discernible in the figure. In the second figure,
two proteins bind at x = ±1.5 nm. In the third figure, two proteins
bind at x = ±3.5 nm. Notice the overlap of deformations in the
second figure, which is absent in the third one. We use eqs 19, 20, and
21 to demonstrate how this overlap leads to an interaction energy
between the two proteins. The dotted lines denote the corresponding
undeformed configuration.

Figure 6. The first figure shows the variation of interaction energy ΔG
with distance p between the two proteins P1 and P2. The boundary
conditions r1 = 0.001 nm, β1 = 0.0045 for P1 and r2 = 0.001 nm, β2 =
−0.0045 for P2 give the best fit to the experimental data for ΔG.7 In
the second figure, we show the variation of change in groove width
ρ = −x g x( ) ( ) p

2
when a protein with boundary conditions r0, β0

binds at x = 0. The decaying sinusoidal character is documented in
previous work.7,22 The magnitude of the change in groove width (∼3
A) is consistent with estimates in ref 12.
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and numerical simulations,22 ΔG decays exponentially while
oscillating with the period of the double helix (∼10 bp).
We justify this variation of interaction energy for a simple

case as follows. Consider a strain parameter δ(x) and the

associated quadratic energy potential ∫δ[ ] = δ
−∞

∞
x x( ) dx( )

2

2

.

Similar to our strain parameters in eq 15, let us assume δ(x) =
A e−bx cos(μx), then

∫δ δ μ
μ

[ ] = = +
+−∞

∞
x

x
x

A b
b b

( )
( )
2

d
(2 )

4 ( )

2 2 2 2

2 2 (20)

δ δ[ − ] = [ ]x p x( ) ( ) . Now, the strain obtained by super-
posing two strain sources a distance p apart are δ2(x) = δ(x) +
δ(x − p). The energy functional corresponding to δ2(x) is

δ μ
μ

μ

μ

δ δ

[ ] = +
+

+

+

= [ ] + [ − ] + Δ

−

−

x
A b
b b

A c p

A c p

x x p G

( )
(2 )

2 ( )
e sin( )

e cos( )

( ) ( )

bp

bp

2

2 2 2

2 2
2
1

2
2

(21)

where =
μ μ+

c b
b b1 2 ( )

3

2 2 and = μ μ μ
μ μ

+ + +
+

c b pb pb
b b2

( 2 )
2 ( )

2 2 3 2

2 2 . It is

notable how the decaying sinusoidal behavior of the
interaction energy ΔG follows naturally from the functional
form of the strain parameters and their eventual superposition.
A cartoon illustrating this key point is presented in Figure 7.

Next, we focus on the width of the groove because many
proteins are known to change the width of the major/minor
groove of DNA.7,12,25 We define the width of the groove, g(x),
as follows (we do not have a major/minor groove because α =
π, for simplicity):

π
ω

π
ω

= + − −− +i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzzg x x xr e r e( ) .

2
.

23 3 (22)

Note that in the reference configuration, the groove width
= =π

ω
g p
0 2

. We consider a protein binding at x = 0 and

compute the change in groove width ρ(x) = g(x) − g0 for two
sets of boundary conditions, r0 = 0, β0 = 0.02 and r0 = 0.02 nm,
β0 = 0 (see Figure 6). The groove width ρ decays exponentially
with increasing distance from the binding site while oscillating
with the periodicity of the double helix. This characteristic
decaying sinusoidal oscillation is documented in refs 22, 23

and is also observed experimentally.7 It has been proposed that
this change in groove width could explain the sinusoidally
decaying interaction energy (notice the similarity of the two
panels in Figure 6) between two proteins bound to DNA
because the binding energy of a protein binding to DNA could
potentially depend on the groove width.22,23 However, we have
arrived at the decaying sinusoidal variation of the interaction
energy by computing the elastic energy stored in the birod
without assuming any connection to the groove width. Thus,
we argue that the characteristic variation in groove width and
the characteristic variation of the interaction energy have the
same underlying causethe geometry and elasticity of helical
DNA at the base-pair level.
To make the above point more concrete, we give another

analytical argument. Consider two proteins P1 and P2 binding
at x = 0 and x = p, respectively. Kim et al.7 argue that when a
protein binds to DNA, it alters the groove width, which leads
to ΔG ∝ ρ0

1ρ0
2 + ρp

1ρp
2, where ρp

1 is the change in the groove
width caused by protein P1 at x = p, and so on. On the other
hand, we assume that the protein binds to DNA by fixing the
radius r and phase angle β at the binding site. Let us examine
whether ΔG ∝ α1r12(p) + α2β12(p), where r12(p) = r0

1r0
2 + rp

1 rp
2,

β12(p) = β0
1β0

2 + βp
1 βp

2, for some constants α1 and α2. Here, r0
1 is

the change in radius caused by protein P1 at x = 0. Other
quantities (r0

2, rp
1, rp

2, β0
1, β0

2, βp
1, βp

2) are defined similarly. For
simplicity, assume α1 = α2 and define q(p) = r12(p) +β12(p).

We plot Δ = Δ
|Δ |Gn

G
G max

and = | |qn
q p

q p
( )

( ) max
versus the distance

between the two proteins p in Figure 8a. We observe that while
the location of peaks and valleys for ΔGn and q(p)n coincides,
the magnitudes are not identical.

Our next step is to relate the magnitudes of two quantities
ΔGn and qn. Assume an empirical relation ΔGn = y(qn). We
plot ΔGn versus qn in Figure 8 and find that the resultant
profile looks akin to y(x) = tanh(ax), a ≈ 3.0 gives the best fit.
Thus, ΔGn ≈ tanh(3qn). Note that for large values of p (p > 10
nm), the correlation function qn is small, thence tanh(3qn) ≈
3qn, and we recover the form similar to that used in Kim et al.7

Figure 7. Equation 15 shows that the strain parameters r, β, and ξ
decay exponentially while oscillating with the periodicity of the
double helix. Let us assume that the protein binding at x = 0 increases
the radius of the double helix from a to a + r0. This change in radius at
x = 0 decays exponentially while oscillating with the periodicity of the
double helix, away from the binding site. Similar behavior is observed
for other strain parameters, β and ξ. Due to this sinusoidal
modulation of the geometry, the binding of the second protein is
facilitated at some locations, while inhibited at others; this manifests
as an exponentially decaying oscillatory behavior observed in the
allosteric interaction energy (ΔG).

Figure 8. Consider two proteins P1 and P2 binding at x = 0 and x = p,
respectively. The first figure shows the variation of normalized free

energy Δ = Δ
|Δ |G p( )n

G
G max

and correlation function = | |q p( )n
q p
q
( )

max
with

the distance between the two proteins p. The correlation function
q(p) = (r0

1r0
2 + rp

1rp
2) + (β0

1β0
2 + βp

1βp
2) where rp

1 is the change in radius
caused by protein P1 at x = p. The boundary conditions for the two
proteins are given in the figure. We find that the peaks and valleys of
ΔGn and qn coincide; however, the magnitudes are not identical. We
find that the magnitudes are related as ΔGn ≈ tanh(3qn), as shown in
the inset. We test this empirical relation for two different sets of
boundary conditions and find a remarkable match. The diamonds
denote the free energies computed using eq 18 and the solid line
denotes the free energy computed using the normalized correlation
function q(p)n. This exercise shows that the correlation functions can
be used as a surrogate for free energies.
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(but with different strain variables) ΔGn ∝ qn. Note that we
used a particular set of boundary conditions to extract the
relation ΔGn ≈ tanh(3qn). Now, we test this relation to
compute interaction energies for other sets of proteins, which
apply different boundary conditions in Figure 8b. We observe a
remarkable agreement with the free energies computed using
eq 18. Thus, we have shown that the correlation function q(p)
can be used as a surrogate for the interaction energy as Kim et
al.7 did. Evaluating the correlation function q(p) involves
measuring displacement variables at two binding sites, which
can in turn be related to the free energy using the above
scheme.
To conclude, we have demonstrated that the theory of

elastic birods can provide useful insights into the allosteric
interactions between two proteins binding to a DNA molecule.
Our analysis ties together the continuum theory,9 experi-
ments,7 and numerical simulations.6,22 Our computations
indicate that the interaction energy (eq 18) for two proteins
bound to DNA decays exponentially while oscillating with the
period of the DNA double helix. The decay length depends
only on the elastic characteristics of the web, whereas the
oscillatory behavior is inherited from the underlying double-
helical geometry. We have shown that the strong correlation of
interaction energy with the changes in groove widths caused by
the proteins are rooted in elasticity and geometry of DNA.
However, our model suffers from some shortcomings. Existing
models6,23 rely on numerical simulations, possibly accounting
for the stacking energy in a more comprehensive way
compared to our approach, which assumes it is quadratic in
the twist and stretch of the centerline. Also, these models6,23

can account for a wider variety of boundary conditions applied
by a protein, owing to more variables describing the DNA
structure. Besides, we made various simplifying assumptions
such as assuming the outer strands to be inextensible and
unshearable. These assumptions could break down close to the
binding site where DNA structure might be drastically altered.
Some studies12 shed light on the kinematics of a protein
binding to DNA, but an analysis of the deformations at the
binding site is beyond the scope of our model. While the
results from our model agree with the experimental
observations, the outcomes from the existing models in
literature such as22,23 agree as well. The main strength of our
model compared to the existing models is twofold: (i) we
account for the mechanics of the outer strands and (ii) our
model provides useful insights into the phenomenon at a
modest computational cost. Our techniques based on a helical
birod model could potentially be applied to other molecules,
which have a double helical geometry such as dsRNA, and
coiled-coil intermediate filaments.
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