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 Abstract 24 

Graphene’s unique physical structure, as well as its chemical and electrical properties, make it ideal for 25 

use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine 26 

and modified graphene with nanoparticles and polymers. Several of these platforms were used to 27 

immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective 28 

biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed 29 

based on its chemical composition. The most common ones are adsorption to graphene’s surface and the 30 

coupling of the biomolecules via the 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 31 

(EDC) and N-hydroxysuccinimide (NHS) reaction. In the literature, several detection methods are 32 

employed; however, the most common is electrochemical. The main reason for researchers to use this 33 

detection approach is because this method is simple, rapid and present good sensitivity. These biosensors 34 

can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high 35 

sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen 36 

detection. In this review, we will present the research conducted with antibodies, DNA molecules and, 37 

enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective 38 

biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to 39 

diseases. 40 

 41 

Keywords: nano-biosensors, graphene, graphene oxide, DNA, antibody, enzyme, detection, pathogens, 42 

 43 

 44 

 45 

 46 

 47 

 48 



3 
 

Background 49 

Sensors in medicine and life sciences have been used to monitor vitals, diagnose patients, and 50 

improve the critical care of patients [1–4]. Due to the need for early detection and diagnosis of diseases, 51 

as well as minimally invasive detection approaches, many novel sensors have been developed. A 52 

particular focus of sensor development has been in miniaturization via application of nanomaterials to 53 

fabricate nanosensors. The nano-sized nature of nanomaterials and their unique chemical and electrical 54 

properties can improve patient care by making the sensors minimally invasive and extremely sensitive 55 

[4]. Among the nanomaterials used for nano-sensor fabrication,  graphene and graphene-based 56 

nanomaterials have been showing the most promise since they present an enhanced signal response in a 57 

variety of sensing applications [5–7]. Furthermore, graphene-based nanomaterials possess high surface 58 

area and offer excellent biocompatibility with a variety of biomolecules, like antibodies, enzymes, DNA, 59 

cells, and proteins [7]. The incorporation of such biological molecules in graphene’s detection scheme 60 

(Figure 1) has allowed the development of the so-called biosensors. These biosensors can detect multiple 61 

molecules, biomolecules and even cells [8,9]. 62 

Graphene-based nanomaterials as a biosensor  63 

In general terms, sensors consist of two elements: a receptor and a transducer (see Fig. 1). The 64 

receptor is the organic or inorganic material that interacts specifically with the target molecule. The target 65 

molecule can be organic, inorganic or even whole cells. The transducer is the part of the sensor, which 66 

converts chemical information into a measurable signal. Graphene-based nanomaterials are used as 67 

transducers of biosensors, which are involved in converting the interactions between the receptor and the 68 

target molecules into detectable measurements [10].  69 

Graphene has been employed in the design of different biosensors of various transduction modes 70 

because of its large surface area, electrical conductivity, high electron transfer rate and capacity to 71 

immobilize different molecules [11]. For instance, the conjugated structure of graphene can facilitate the 72 

electron transfer between the bioreceptor and transducer, which can generate high signal sensitivity for 73 
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electrochemical sensors [6,10,12,13]. Furthermore, graphene-based nanomaterial can act as a quencher in 74 

the transducer to generate fluorescent biosensors. Studies have determined that graphene (G), graphene 75 

oxide (GO), and reduced graphene oxide (rGO) have a very high efficiency of fluorescent quenching [14–76 

16]. 77 

When using graphene nanomaterials for designing sensors, some aspects of the graphene properties 78 

affecting the detection limit of the target molecules need to be taken into consideration. For instance, 79 

different synthesis batches of graphene and derivatives, as well as different synthetic methods can lead to 80 

different properties and functionalities of the graphene-based nanomaterials in the biosensors. The 81 

orientation between the G, GO or rGO sheets and the bioreceptor can also directly affect the selectivity 82 

and sensitivity of the biosensors. Additionally, the number of layers, the functional groups and oxidation 83 

states of graphene and derivatives will cause differences in the sensing performance among the sensors 84 

and even impact the bonding between the transducer and bioreceptor (Figure 2).  The amount of 85 

functional groups on the nanomaterials can also affect the interactions and the detection limit of the target 86 

molecule. In this context, it is necessary to block any nonspecific adsorption sites on the nanomaterial to 87 

prevent unspecific binding of biomolecules instead of the target molecules. By taking into consideration 88 

these limitations, biosensors of graphene-based nanomaterials can have high sensitivity/stability as well 89 

as faster response time, potentially resulting in advances in healthcare and diagnosis.   90 

In this mini-review, we will briefly summarize recent developments on biosensor technology with 91 

graphene and graphene-based nanomaterials. More specifically, we will focus on antibody, DNA and 92 

enzyme-based biosensors with applications in life sciences as well as in clinical settings. We aim to 93 

present conceptual advances that have been made in the synthesis and applications of biosensors for 94 

clinical diagnosis and real-time molecular detection.  95 

Graphene-based nanomaterials and antibodies 96 

The analytical detection platforms that measure the specific conjugation reaction between antibody and 97 

antigen are called immunosensors. The biocompatibility and high-affinity binding of antibodies to 98 
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antigens make this molecule attractive for use in several fields, particularly in diagnostics. The antibody 99 

(Ab) structure is made of four polypeptide chains with a characteristic “Y” shape (Figure 3). The chains 100 

are connected via a single disulfide bond. The structure of the Ab consists of two different parts: the 101 

“arms” of the Ab that contains two domains, i.e. a constant and a variable domain. The variable domain 102 

gives the selectivity of antibodies to a specific antigen. The “body” of the Ab part consists of two 103 

different segments, the crystallizable fragment (Fc) and the antigen-binding fragment (Fab). The Fc and 104 

Fab contain carboxyl (–COOH) and amino (–NH2) groups that bind to the target molecule with high 105 

affinity [17,18]. This high-affinity recognition to a specific antibody-antigen reaction is mainly because of 106 

the structure, properties, and reactivity of the antibodies, making them excellent candidates for sensing 107 

applications.   108 

The versatility of functional groups of the GO surface allows different strategies for Ab 109 

attachment. This Ab functionalization can be summarized in Table 1. Most of the strategies to 110 

functionalize GO with antibodies involve functionalization via 1-Ethyl-3-(3-dimethylaminopropyl) 111 

carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) (EDC/NHS) chemistry reaction, 112 

electrostatic bonding, or via 1-pyrenebutanoic acid succinimidyl ester  (PASE) linker. The 113 

functionalization via EDC/NHS chemistry is the most popular and versatile method for producing 114 

biochemical conjugations. EDC is a water-soluble cross-linker agent, which allows direct bioconjugation 115 

between carboxyl and amine groups. In this reaction, the nucleophilic attack from the primary amine 116 

group from the antibody forms an amide bond with the carboxyl groups on the GO surface. This process 117 

can form conjugates between two different molecules with an amide group [19].  118 

The detection of the target molecules can be achieved through different methods (see Table 3). 119 

The most commonly described method is electrochemical. In this method, upon the coupling of antibody-120 

antigen, the electrode transducer will convert the binding reaction into an electrical signal [20]. This 121 

method is selected over other immunosensor methods since it is simple, rapid, sensitive, use small sample 122 

https://www.sciencedirect.com/topics/chemistry/ester
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volumes, and present good selectivity [17]. This method, however, has a few limitations such as binding 123 

affinity and irreversible antigen-antibody interaction [21].  124 

Graphene-based nanomaterials on antibody biosensors offer a broad versatility regarding 125 

pathogen detection. Recently, several graphene-antibody biosensors with clinical applications have been 126 

developed for early detection of diseases (Table 1). Antibody nanosensors with G were developed to 127 

detect E. coli [22,23] and Zika virus [24].  GO, on the other hand, has been employed for the detection of 128 

dengue virus [25], rotavirus [26] and cardiovascular diseases [27]. rGO has been employed to detect E. 129 

coli in different samples [28] but with higher detection limits comparing to G [22,23] and G modified 130 

with poly(methyl methacrylate) (PMMA) [29].  More advanced research has shown that the modification 131 

of G with nanoparticles can improve the sensing properties of the transductor. In this context, G has been 132 

modified with silver nanoparticles for the detection of Salmonella typhimurium [30] and hepatitis C virus 133 

(HCV) [31]. Gold nanoparticles attached to G surfaces have been employed to detect avian influenza 134 

virus H7, [32] and for diagnosis, prognosis, and prediction of treatment efficacy and recurrence of cancer 135 

[33,34].  The modification of G with magnetic nanoparticles allows the early detection of Alzheimer [35] 136 

and also cancer diagnosis [36]. More complex biosensors modifying the surface of G with dendrimer 137 

[37], polymers [38,39] or cyclodextrin [40] have been developed to detect Celiac disease, HIV, Cholera 138 

toxin, and cancer.  139 

The early detection of these diseases with such sensors can aid in diagnosis, prevention, and 140 

management of the disease in ‘high-risk’ individuals, which in turn would contribute to better 141 

management and survival of patients. Many biosensors based on graphene nanomaterials have been 142 

proposed in the last few years for the diagnosis and real-time monitoring of the health status of patients. 143 

The proposed biosensors exhibit very low detection limits (see Table 1), speed, sensitivity, and selectivity 144 

making these graphene-based biosensors ideal candidates for medical diagnostic tests. 145 

 146 

 147 

 148 
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Table 1: Overview of discussed graphene antibody-based nanosensors 149 

Target Inmunose-

nsor 

design 

Detection 

methods 

Antibody Antibody 

binding 

Detection 

limit 

Ref. 

Escherichia 

coli 

Graphene 

oxide 

cellulose 

nanopaper 

Photolumini

-scence 

antihuman 

IgG Ab 

Conjugation 

process 

1.60 ng/mL [41] 

Graphene/P

MMA 

Electrical  anti E. coli 

O157:H7  

antibody 

-- 10 CFU/mL [29] 

Graphene Electrical anti-E. coli 

antibody 

Via PASE 

linker 

10 CFU/mL [22] 

Graphene Electrical  anti-E. coli 

O157:H7 

antibodies 

Via PASE 

linker  

10–107 

cells/mL 

[23] 

Reduced 

graphene 

oxide 

Electrical   generic anti-

E. coli 

antibody 

EDC- NHS 

chemistry 

103 CFU/ Ml [28] 

Salmonella 

typhimurium 

GO-AgNPs 

nanocompo

site 

Cyclic 

voltammetry

  

anti-

S.typhimurium 

EDC- NHS 

chemistry 

10 CFU/mL [30] 

Zika Virus Graphene Electrical Anti-Zika NS1 NHS surface 

chemistry 

0.45 nM [24] 

Dengue virus Graphene 

oxide 

 Electroche

mical 

impedance 

spectroscop

y 

4G2 

monoclonal 

antibody 

Electrostatic 

bond 

0.12 pfu/mL [25] 

Adenovirus Graphene 

quantum 

dots 

Optoelectro

nic 

Anti-

Adenovirus, 

Group II 

(HEV) 

polyclonal 

antibody 

Electrostatic 

bond 

8.75 PFU/mL [42] 

Avian 

influenza 

virus H7 

Gold 

nanoparticl

e-graphene 

nanocompo

sites 

(AuNPs-G) 

Electrochem

ical 

inmunosens

or 

H7- 

polyclonal 

antibodies and 

H7-

monoclonal 

antibodies 

EDC/NHS 

chemistry 

1.6 pg/mL [32] 

Influenza A 

virus 

Graphene 

oxide-MB-

chitosan 

Electrochem

ical 

Monoclonal 

antibodies 

(H5N1 or 

H1N1) 

Covalent 

and 

crosslinked 

via chitosan 

9.4 pM and 

8.3 pM 

[39] 

Cholera toxin Graphene-

Polypirrole 

Surface 

plasmon 

resonance 

anti-CT π- π 

Interactions 

4 pg/mL [43] 

Rotavirus Graphene Photolumini rotavirus Carbodiimid 105 [26] 

https://www.sciencedirect.com/topics/materials-science/dielectric-spectroscopy
https://www.sciencedirect.com/topics/materials-science/dielectric-spectroscopy
https://www.sciencedirect.com/topics/materials-science/dielectric-spectroscopy
https://www.sciencedirect.com/topics/materials-science/dielectric-spectroscopy
https://www.sciencedirect.com/topics/materials-science/dielectric-spectroscopy
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oxide scence antibodies e-assisted 

amidation 

reaction 

Pfu/mL 

Hepatitis C 

virus 

Graphene 

quantum 

dots with 

silver 

nanoparticl

es 

Electrochem

ical 

immunosens

ing 

Anti—HCV 

antibody. 

NH2 group 

of antibody 

was 

covalent 

attachment 

to the 

AgNPs 

3 fg/mL [31] 

HIV Peptide- 

functionali

zed UCNPs 

to graphene 

oxide 

Fluorescenc

e 

anti-HIV-1 

gp120 

antibody 

π- π 

Interactions 

2 nM [38] 

Celiac 

disease 

Polyamido

amine 

dendrimer 

with GQDs 

on AuNP 

embedded 

in 

MWCNT 

Electrochem

ical 

anti-tTG 

antibody 

EDC/NHS 

chemistry 

0.1fg per 6 µl [37] 

 

Alzheimer 

disease 

 

Magnetic 

core-

plasmonic 

shell 

nanoparticl

e attached 

hybrid 

graphene 

oxide 

Surface-

enhanced 

Raman 

spectroscop

y 

Cy3 antibody 

 

Amine 

functionaliz

ation 

100 fg/mL [35] 

Cardiovascul

ar diseases 

 

Graphene 

oxide 

Electrochem

ical 

PAC1 

antibody 

 

EDC/NHS 

Chemistry 

-- [27] 

 

Hormones Reduced 

graphene 

oxide 

Electrochem

ical 

anti-GHRL 

and anti-PYY 

EDC- NHS 

chemistry 

1.0 pg/mL 

GHRL and 

0.02 pg/mL 

PYY 

[44] 

Cancer 

Magnetic 

Fe3O4@G

O 

composites 

Electrochem

ical  

RAB0331 for 

PSA and 

Lifeome 

Biolabs/Cusab

io 

EL008782HU

-96 for PSMA. 

EDC-NHSS  15 fg/mL for 

PSA and 4.8 

fg/mL for 

PSMA 

[36] 

Graphene- 

PYR-NHS 

Electrochem

ical 

Impedance 

Spectroscop

Monoclonal 

antibody anti-

carcinoembry

onic antigen 

Non-

covalent 

modification 

less than 

100 pg/ml 

[45] 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glutamate-carboxypeptidase-ii
https://www.sciencedirect.com/topics/chemistry/dielectric-spectroscopy
https://www.sciencedirect.com/topics/chemistry/dielectric-spectroscopy
https://www.sciencedirect.com/topics/chemistry/dielectric-spectroscopy
https://www.sciencedirect.com/topics/chemistry/dielectric-spectroscopy
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y 

Reduced 

graphene 

and gold 

nano 

particle 

Electrochem

ical 

anti-estradiol 

antibody 

(curve 

EDC-NHS 0.1 fmol  [33] 

Reduced 

graphene 

oxide gold 

nano 

particle 

Electrochem

ical 

p53 antibodies Electrostatic 

interactions 

0.088 pg/mL [34] 

β-

cyclodextri

n 

functionali

zed 

graphene 

nanosheet 

Electrochem

ical 

CEA primary 

antibody 

(Ab1), and 

CEA 

secondary 

antibody 

(Ab2)  

EDC-NHS 20 fg/mL [40] 

 150 

Graphene-based nanomaterials and deoxyribonucleic acid (DNA) 151 

Deoxyribonucleic acid (DNA) has a broad range of physical, chemical, and biological properties 152 

making this biomolecule highly suitable for biosensor technologies. Among the most critical properties of 153 

DNA for a biosensor is its flexibility, easy synthesis, facile chemistry to attach to diverse platforms, 154 

simple regeneration and high specificity due to unique sequences of nucleotides [46,47]. As such, nucleic 155 

acids have gained increasingly more attention in the fields of biosensors and biological assays for their 156 

applications in genetics, infectious diseases, and detection of pathogens in clinical settings [48]. In DNA 157 

biosensors using graphene-based nanomaterials as transducers, there are two main types of sensors: 158 

electrochemical and fluorescent sensors. 159 

The electrochemical sensor is based on the potential changes of the oxidation of adenine (A), 160 

thymine (T), cytosine (C) and guanine (G) of the DNA, which can be detected by measuring 161 

electrochemical factors, such as conductivity or capacitance. The electrochemical signals produced by 162 

these biosensors can be detected using cyclic voltammetry (CV), differential pulse voltammetry (DPV) or 163 

electrochemical impedance spectroscopy (EIS) [12,49]. In the electrochemistry approach, the 164 

immobilization of DNA is done via π–π interactions on the surface of graphene-based nanomaterials 165 

https://www.sciencedirect.com/topics/chemistry/dielectric-spectroscopy
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(Figure 4). G edges and GO or rGO with their functional groups (carboxylic, hydroxyl and epoxide 166 

groups) can also be used to covalently interacted with the DNA [13,50].  The most common chemistry 167 

used for immobilization of the DNA on graphene-based nanomaterials is EDC/NHS, which is described 168 

in detail in the antibody section. Research to improve sensitivity and selectivity of electrochemical 169 

biosensors has been mostly in the modification of the transducers. For instance, the original glassy carbon 170 

electrode (GCE) can be modified with GO for the direct detection of A, T, G, and C for dsDNA or 171 

ssDNA using the DPV method at pH 7.0  [51]. In another study, the GCE is modified with rGO and DNA 172 

probes to hybridize with a target DNA to be detected with either EIS or CV [52]. This study takes 173 

advantage of the large surface area and high conductivity of rGO. Another study investigates the DNA 174 

sensor using the sharp and active edges of reduced graphene nanowalls (RGNW) to detect dsDNA with a 175 

sensitivity ranging from 0.1 fM to 10 mM. In this study, the authors suggest that the active edge sites of 176 

the RGNW sheet could enhance the electron transfer between DNA and the electrode in the DPV more 177 

uniformly [53]. Graphene-based DNA biosensors have been investigating with focusing on lowering the 178 

detection limits, fast measurements and facilitating the fabrication process and biomedical applications. 179 

Therefore, there has been a large number of published studies to improve these features of graphene-180 

based DNA biosensors, which are summarized on Table 2.   181 

 182 

Table 2: Graphene-based DNA biosensors with electrochemical detection 183 
Detected element Sensing material Detection range Ref. 

dsDNA 

ssDNA 

Graphene nanosheets 

Graphene nanowalls 

2.0 pM to less than 10 mM 

0.1 fM to 10 mM 

[53] 

dsDNA Epitaxial graphene 1 µM [54] 

BRCA1 DNA Graphene/Au 1 fM [55] 

Staphylococcus aureus 

nuc gene sequence 

CTS–Co3O4–GR/CILE 

(Chitosan-Co3O4- graphene- 

carbon ionic liquid electrode) 

1.0×10−12 to 1.0×10−6 M with 

the detection limit as 4.3×10−13 

M 

[56] 

dsDNA Thionine- 

graphene nanocomposite (Thi-

G) 

1.0 × 10−12 to 1.0 × 10−7 M and 

low detection limit 

at 1.26 × 10−13 M 

[57] 

Survivin gene Graphene- nanostructure gold 

nanocomposite film glassy 

carbon electrode (G-3D 

Au/GCE) 

50 – 5000 fM detection limit at 

3.4 fM. 

[58] 
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dsDNA [Co(phen)2(Cl)(H2O)]+ 

AuNPs/GR (gold-graphene) 

modified electrode 

2.50 × 10−11 to 1.25 × 10−9 M 

detection limit at 8.33 ×10−12 

M 

[59] 

ssDNA Graphene analogue tungsten 

sulfide–graphene (WS2–Gr) 

composite 

0.01 to 500 pM  

detection limit at 0.0023 pM 

[60] 

Multidrug resistance 

(MDR) DNA 

Nitrogen-doped graphene 

nanosheets functionalized 

with Au nanoparticles (N-G/Au) 

Detection limit 

3.12 ×10−15 M 

[61] 

ssDNA Nitrogen-doped graphene (NG) 

and Fe3O4 nanoparticles 

1.0 × 10−14 to 1.0 × 10−6 M 

Detection limit 3.63 × 10−15 M  

[62] 

ssDNA of HIV-1 gene Graphene-Nafion composite fil Detection limit 

2.3 × 10−14 M 

[63] 

DNA  AuNCs/GR nanobybrids and 

exonuclease III (Exo III) aided 

cascade target 

0.02 fM to 20 pM 

Detection limit at 0.057 fM 

[64] 

DNA Graphene and polyaniline 

nanowires (PANIws) modified 

glassy 

carbon electrode 

2.12 × 10−6 to 2.12×10−12 M 

Detection 3.25×10−13 M 

[65] 

dsDNA, ssDNA and 

single nucleotide 

polymorphism 

Poly(amidoamine) dendrimer 

(PAMAM) with graphene core 

1 × 10−6 to 1 × 10−12 M  

Detection limit 1 pM 

[66] 

DNA Electroactive dye azophloxine 

functionalized graphene 

nanosheets 

(AP-GNs) 

1.0 × 10−15 to 1.0 × 10−11 M 

Detection limit at 4.0 × 10−16 

M 

[67] 

ssDNA Gold nanorods decorated GO 

sheets Au NRs–GO) 

1.0 × 10−9 to 1.0 × 10−14 M 

Detection limit at 3.5 × 10−15 

M 

[68] 

Hepatitis B virus (HBV) GO/pencil graphite electrode 

(GO/PGE) 

20 to 160 µg/mL 

Detection limit 2.02 µM 

[69] 

DNA GO-Chitosan (CHI) nano-

composite 

10 fM to 50 nM Detection 

limit 10 fM (60 s hybridization 

times) and 100 fM at 25◦C 

[70] 

ssDNA ssDNA-Fe@AuNPs-AETGO 1.0 ×10−14 to 1.0 ×10−8 M 

Detection limit 2.0 ×10−15 M 

[71] 

DNA rGO-graphene double-layer 

electrode 

10−7 to 10−12 M 

Detection limit 

1.58 ×10−13 M 

[72] 

MDR1 gene Au nanoparticles/toluidine 

blue–graphene oxide (Au 

NPs/TB–GO) 

1.0 × 10−11 to 1.0 × 10−9 M  

Detection limit 

2.95 × 10−12 M 

[73] 

DNA AuNPs/ERGNO/GCE 2.0 × 10−7 to 1.0 × 10−6 M 

Detection limit at 

1.0 × 10−6 M 

[74] 

DNA ssDNA–AuNPs–ERGO 1 × 10−17M to 1 × 10−13 M 

Detection limit 5 aM 

[75] 

DNA Gold nanoparticles decorated 

rGO (Au NPs/rGO) 

0.1 µM to 0.1 fM 

Detection limit at 35 aM 

[76] 
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Listeria monocytogenes Au/GR/CILE 1.0 × 10−12 to 1.0 × 10−6 M  

Detection limit 

2.9 × 10−13 M 

[77] 

Amelogenin gene 

(AMEL) 

rGO modified 

glassy carbon electrode 

(GCE/RGO) 

1.0 × 10−20 to 1.0 × 10−14 M  

Detection limit 

3.2 × 10−21 M 

[52] 

Methicillin- 

resistant Staphylococcus 

aureus (MRSA) DNA 

rGO-modified glassy carbon 

electrode 

10−13 M [78] 

DNA Thionine functionalized rGO 

(Thi-rGO 

1.0 × 10−17 to 1.0 × 10−12 M  

Detection limit 

4.28 × 10−19 M 

[79] 

 184 
In the case of the fluorescent DNA nanosensor, this method is based on the hybridization of two 185 

single-stranded DNA (ssDNA). One ssDNA is labeled with a fluorescent dye, and the other is the 186 

complementary DNA corresponding to the target DNA. This method requires optical detection; therefore 187 

it takes advantage of the optical quenching property of graphene-based materials to enhance the 188 

visualization and detection of the target ssDNA [6]. The immobilization of the fluorescent-labeled DNA 189 

can be carried out by direct adsorption of the DNA probe on the graphene-based surface through the π-π 190 

interaction between the ring structure of the DNA bases and the graphene surface.  191 

One example of fluorescence biosensors that has been developed is the GO-based sensor. This 192 

sensor has been produced with multicolor DNA probes for detecting different sequence-specific DNA. 193 

This multiplex GO-based DNA sensor presents low background fluorescence and excellent emission 194 

signal from specific targets when the hybridization occurs [80]. Another widely use of the fluorescence 195 

sensing approach, which can also employ graphene-based materials, is the fluorescence resonance energy 196 

transfer (FRET or Förster). In this detection method, initially, the fluorescent labeled DNA probe is 197 

quenched to the graphene-based nanomaterials surface through FRET, making the fluorescent signal off 198 

(Figure 4). Upon hybridization of the probe with the target DNA, the fluorescent molecule is released 199 

with the dsDNA from the graphene surface, and the fluorescent signal is turned on for optical detection  200 

[10]. For instance, in the effort to propose a reliable, biocompatible and scalable biosensor for HIV-1 201 

detection, a nanocomposite of gold nanoparticles (AuNPs) and GO was synthesized and used as a 202 

quencher with the use of fluorescent carbon dots (CDs) and a DNA probe, also called nano quencher. The 203 
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FRET strategy was also used in the CDs/AuNPs/GO nanoprobe. In the presence of target ssDNA, 204 

hybridization occurs, and the fluorescent signal turns on. The presence of AuNPs on the GO nanosheets 205 

serves to quench the fluorescence of CDs in the absence of the target DNA. AuNPs/GO exhibits 206 

exceptional selective and sensitive capability in the DNA biosensors [81]. This sensor has a detection 207 

limit as low as 15 fM. Table 3 presents the summary of other studies taking advantage of the quenching 208 

ability of graphene-based nanomaterials to enhance or improve the fluorescent detection of DNA 209 

biosensors. 210 

Table 3: Graphene-based DNA biosensors with fluorescent detection. 211 
 212 

Detected element Sensing material Detection range Ref. 

ssDNA GO Detection limit 200 nM [82] 

DNA GO and exonuclease III Detection limit 20 pM [83] 

ssDNA GO 200 nM [84] 

DNA and  

Exonuclease activity 

GO ethidium bromide (EB) 50  to 2500 nM 

Detection limit 32 nM 

[85] 

Staphylococcus aureus DNA GO–DNA sensor 0.0125 to 3.125 nM 

Detection limit at 

0.00625 nM 

[86] 

Hepatitis B virus (HBV) 

sequences 

GO/pencil graphite electrode 

(GO/PGE) 

20 to 160 µg/mL 

Detection limit 2.02 µM 

[69] 

DNA Exonuclease III (ExoIII) and 

GO 

Detection limit 0.5 pM [87] 

HIV-1 gene AuNPs/GO nanocomposite 50.0 fM to 1.0 nM 

Detection limit at 15 fM 

[88] 

DNA GO 0 to 25 nM 

Detection limit at 100 

pM 

[80] 

T antigen gene of SV40 DNA GO 40.0 to 260 nM 

Detection limit at 

14.3nM 

[80] 

 213 

In summary, the two methods seem efficient and present low detection limits. However, each 214 

technique has its advantages and disadvantages, which depends mainly on the ability of immobilization of 215 

the DNA in the graphene-based nanomaterials and the method of measurement. The electrochemical 216 

detection method takes into account the large surface area and conductivity of the nanomaterials. The 217 

detection is based on the types and numbers of bases present in the DNA, which would cause the changes 218 

in electrical potential for the measurement.  Therefore, homogenous deposition of the probe on the 219 
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graphene material is essential for accurate measurements. Also, the electrostatic potential and DNA 220 

length could affect the efficiency of the sensor. On the other hand, fluorescence detection can be 221 

performed in ssDNA or dsDNA regardless of the length of the DNA. This method is based on the 222 

quenching and optical ability of graphene-based nanomaterials. One of the main disadvantages of this 223 

method is that it can overestimate the fluorescence signal due to the high background fluorescence signal 224 

in some complex samples, such as serum samples. On the other hand, the fluorescent-labeled probe can 225 

lose its intensity (photobleach) over time. Results of graphene-based DNA biosensor studies have shown 226 

that there is still need for further investigations related to the mechanisms of interactions between the 227 

DNA probe or modified DNA probe and the graphene-based transducer to provide more reliable and 228 

accurate measurements. Such studies could overcome the current disadvantages of the method by 229 

lowering the detection limit of the current sensors.  230 

Graphene-based nanomaterials and enzymes 231 

Enzymes deserve particular attention in biosensor design because they can be easily manipulated 232 

and have high stability. Furthermore, these molecules are involved in the metabolism of all organisms; 233 

they are reusable and highly selective catalysts that can discriminate between L and R enantiomers in 234 

different molecules. Enzymes can catalyze a large number of reactions with high specificity, efficiency, 235 

and selectivity, which are essential parameters in sensor designing [89]. Advancements in enzyme-based 236 

biosensor research have resulted in improved stability while reducing enzymatic loss and enzyme 237 

response time [90]. It has been demonstrated that the stability of enzymes is affected by pH, ionic 238 

strength, chemical inhibitors, solvent polarity, and temperature. The structure of graphene-based 239 

nanomaterials can be an effective transducer since it allows the direct electron transfer between enzymes 240 

and electrodes [13]. Furthermore, graphene-based materials have been shown to be excellent substrates 241 

for increasing thermal stability, enzymatic activity, and for enzyme immobilization [91–93].  242 

Several approaches have been developed to immobilize enzymes onto graphene surfaces to create 243 

enzyme-based biosensors. Some of the most common methods are sonication, mixing, ultrasound, and 244 

cyclic voltammetry. These methods allow the attachment of the enzymes via adsorption, covalent 245 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ionic-strength
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ionic-strength
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bonding, or physical entrapment. To date, the nonspecific binding of the enzyme to graphene via physical 246 

adsorption is the most common one (see Table 4) since this immobilization technique is chemical-free 247 

and straightforward. Another method also used to immobilize enzymes on the nanomaterial is the 248 

EDC/NHS chemistry. This method described earlier is also common for enzymes because of its high 249 

stability and robustness. 250 

 Enzyme-based biosensors are typically of electrochemical nature. This method possesses 251 

advantages over the others because their electrodes can sense materials present in the host without 252 

damaging the system. Enzyme-based electrochemical biosensors rely primarily on two mechanisms; one 253 

is based on the catalytic properties of the enzymes (the enzyme catalyzes the analyte from its undetectable 254 

form to a detectable form), and the other is based on enzyme activity inhibition/moderation [94]. Each of 255 

these two mechanisms can create a detectable electrical signal change on the sensor electrode allowing for 256 

the quantification of a particular analyte. In particular, this electrical signal is generated from the change 257 

in current on the surface of the substrate as a direct result of the enzyme’s activity. Enzymes catalyze 258 

redox reactions which either produce or consume electrons thus altering the electrical current flowing to 259 

the detection platform. The fundamental principle of how enzymatic biosensors work is presented in 260 

Figure 5. While enzymes can be costly to utilize, sensors employing enzymes can detect a variety of 261 

compounds with high specificity that would otherwise be difficult to detect in complex mixtures. For 262 

example, these sensors can be particularly useful in detecting compounds such as phenols, hydrogen 263 

peroxide, 17β-estradiol, glucose, and bilirubin as described later in this section. 264 

  Different molecules have been detected with enzyme-based nanosensors. The most commonly 265 

used model enzymes utilized for the development of these sensors are laccase and horseradish peroxidase 266 

(HRP) [95]. These enzymes are less costly, more commonly available, and versatile allowing them to be 267 

used to detect a high number of different compounds. Laccase is an oxygen-reducing enzyme which can 268 

have a variety of applications. For example, a laccase-based electrochemical biosensor was developed for 269 

the detection of 17β-estradiol, a natural hormone classified as an emerging contaminant affecting humans 270 

and aquatic life [96]. Additionally, laccase can be used for the detection of phenols and catechols [95,97–271 
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99]. HRP, the other enzyme widely used for enzyme immobilization studies, can help determine hydrogen 272 

peroxide concentrations even under complex test conditions [100]. HRP has been immobilized on porous 273 

calcium carbonate microspheres encapsulated with graphene capsules and presented high selectivity 274 

towards hydrogen peroxide. This sensor platform could potentially be used to immobilize different 275 

enzymes for stable, long-term use as a biosensor [100]. Furthermore, HRP, as well as laccase, have been 276 

immobilized on a rGO-Fe3O4 based substrate [95]. This hybrid nanomaterial takes advantage of the 277 

properties of rGO and the magnetic properties of iron oxide making it an attractive substrate for biosensor 278 

design.  279 

While HRP and laccase have been vital in enzyme biosensor studies, other enzymes can be 280 

immobilized to create highly specific biosensors. For example, bilirubin oxidase was immobilized on GO-281 

based surfaces [101,102]. Such biosensors can have a significant impact in the medical field due to their 282 

ability to detect bilirubin, an essential compound for assessing liver function.  Another enzyme with 283 

medical applications is glucose oxidase (GOx). This enzyme is highly specific and has been used to 284 

develop biosensors for the measurement of glucose levels [103–111]. This type of biosensor could be 285 

especially important to diabetic patients. As such, in recent years, GOx has been immobilized using 286 

different sensing platforms, such as: zinc sulfide decorated graphene [103], three dimensional graphene 287 

[111], silk fibroin film on a graphene field effect transistor [104], nanostructured graphene-conducting 288 

polyaniline (PANI) composite [105], three-dimensional GO and polyaniline (PANI) composite [109], GO 289 

and titanium oxide nanoparticles modified with an Organic-Inorganic Supporting Ligand (OISL) [106], 290 

and gold-palladium modified polyimide/rGO film [110], among others.  These sensing platforms show 291 

the versatility that graphene and its nanocomposites have regarding the chemistry for the detection of 292 

different substrates.   293 

Table 4: Recent studies using graphene-based materials to immobilize enzymes. 294 

 295 

Enzyme Immobilization 

platform 

Testing 

compound 

Detection 

method 

Attachment Range Ref. 

Laccase, Fe3O4-rGO – – Adsorption – [95] 



17 
 

HRP 

Laccase GO-rhodium 

nanoparticles 

17β-

estradiol 

Electrochemical Donor-

acceptor 

interactions 

0.9-11 pM [96] 

Laccase Palladium-copper 

nanocages on 

rGO 

Phenol  Electrochemical  Adsorption 0.005-

1.155mM, 

1.655-

5.155mM 

[97] 

Laccase Yolk shell Fe2O3 2,6-

dimethozyp-

henol  

Electrochemical Gluaraldehi-

de reaction 

0.025-750 

μM 

[98] 

Laccase Graphene-

Cellulose 

microfiber 

Catechol Amperometric Adsorption 0.085-209.7 

μM 

[99] 

Laccase MoS2 and 

graphene 

quantum dots 

Caffeic acid Electrochemical Electrostatic 

interaction 

0.38-100 μM [112] 

HRP CaCO3 

microspheres 

encapsulated 

with a graphene 

capsule 

Hydrogen 

peroxide 

Electrochemical  Absorption  0.01-12 

mmol/L 

[100] 

HRP 3D 

graphene/methyle

ne blue-carbon 

nanotubes 

Hydrogen 

peroxide 

Electrochemical  In-situ self-

polymerized 

polydopamin

e 

0.2 μM-1.1 

mM 

[113] 

Bilirubin 

Oxidase 

Electrochemicall

y reduced GO 

– – Adsorption – [102] 

GOx ZnS-graphene Hydrogen 

peroxide, 

Glucose 

Electrochemical  –  –  [103] 

GOx Silk-graphene 

field effect 

transistor 

Glucose Electrical  Hydrophobic 

interaction 

0.1-10 mM [104] 

GOx Nanostructured 

graphene with 

conducting 

polyaniline 

Glucose Electrochemical  Adsorption 10.0 μM-1.48 

mM 

[105] 

GOx TiO2-GO-OISL Hydrogen 

peroxide 

Electrochemical  Immobilizati

on 

1-120 μM [106] 

GOx Chitosan/Nafion/

Pt 

nanoparticle/SG

GT 

Hydrogen 

peroxide, 

Glucose 

  3-300 μM, 

0.5 μM-1 

mM 

[107] 

GOx GO modified by 

amidation 

Glucose – Carbodiimide 

coupling 

– [108] 

GOx 3D GO and 

PANI  

Glucose Electrochemical  – 0.07-1.10 

mM 

[109] 

GOx AuPd-rGO-

polyimide 

Hydrogen 

peroxide, 

Electrochemical Adsorption 0.004-1.0 

mM, 0.024-

[110] 
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Glucose 4.6 mM 

GOx 3D graphene Glucose Electrochemical  – 0.3-6 mM [111] 

 296 

Conclusion 297 

In this mini-review, we have reported the recent studies describing graphene and graphene-related 298 

biosensors with possible applications in clinical settings and life sciences. We have shown results of the 299 

reported analytical performance of each sensor and indicated their use in the life sciences and medical 300 

fields.  DNA, antibody, and enzyme-based biosensors have been presented in this study since each has its 301 

advantages and disadvantages. Overall, the type of sensor selected will depend on the type of application.  302 

For example, use of DNA in biosensing technology can be a cost-effective method for the rapid detection 303 

of microbes, viruses, or cancer markers. However, due to the vast variety of molecules present in the 304 

body, use of antibodies or enzymes in biosensors can be more effective in the detection or monitoring of 305 

certain diseases. For instance, antibodies can be used for the specific detection of viruses such as the Zika 306 

virus, HIV, Influenza A virus, among others. Enzymes, on the other hand, have shown to be promising in 307 

detecting glucose levels with only small amounts of sample. Overall, the incorporation of graphene and 308 

graphene-based nanomaterials in biosensor technologies have shown great promise due to its high surface 309 

area, electrical conductivity, electron transfer rate, and its capacity to immobilize a variety of different 310 

biomolecules. The developments of biosensors that are sensitive, stable, and specific to their target 311 

molecule and that can be processed rapidly are promising for use in clinical settings. However, to achieve 312 

uniform and reliable analysis results and produce biosensors capable of being used in the medical field, 313 

many more studies need to be conducted examining the safety and reliability of the sensors. 314 

 315 

List of Abbreviations 316 

 

Ab: Antibody 

A, T, G, C: Adenine, thymine, guanine and, cytosine.  
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AD: Alzheimer disease 

AuNPs: Gold nanoparticles 

BRCA1: breast cancer 1 

CD: celiac disease 

CDs: Carbon dots 

CV: cyclic voltammetry 

CEA: carcinoembryonic antigen 

CHI: Chitosan 

DNA: Deoxyribonucleic acid 

dsDNA: double stranded DNA 

DVP: differential pulse voltammetry 

EB: ethidium bromide  

EDC/NHS: 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/ N-hydroxysuccinimide 

EIS: electrochemical impedance spectroscopy 

ELISA: enzyme-linked immunosorbent assay 

ExoIII: exonuclease III 

Fab: and the antigen-binding fragment 

Fc: crystallizable fragment 

FET: Field effect transistor 

FRET: fluorescence resonance energy transfer  

GCE: glassy carbon electrode 

GHRL: ghrelin 

GO: graphene oxide 

GOx: glucose oxidase 

GQD: graphene quantum dot 
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HCV: hepatitis C virus 

HIV: human immunodeficiency virus 

HRP: horseradish peroxidase 

LOD: lower detection limit 

MWCNT: multiwall carbon nanotube 

NP: nanoparticle 

OISL: organic-inorganic supporting ligand 

PAMAM: poly(amidoamine) 

PANI: polyaniline 

PASE: 1-pyrenebutanoic acid succinimidyl ester  

PCR: polymerase chain reaction 

PMP: platelet-derived microparticle 

PMMA: poly(methyl methacrylate  

PYY: peptide YY 

RGNW: reduced graphene nanowalls 

rGO: reduced graphene oxide 

SGGT: solution-gated graphene transistor 

SNP: single nucleotide polymorphism 

ssDNA: single-stranded DNA 

Thi: thionine 
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