

Recent advances in graphene-based biosensor technology with applications in life sciences

Janire Peña-Bahamonde[†], Hang N. Nguyen[†], Sofia K. Fanourakis[†] and Debora F. Rodrigues^{1*}

¹Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204 – 4003

12 * Corresponding Author: Debora F. Rodrigues, email: dfrigirodrigues@uh.edu

13 [◊] These authors contributed equally to this work

15 **Janire Pena-Bahamonde:** jpenabah@central.uh.edu

16 **Hang N. Nguyen:** hnnguyen16@uh.edu

17 **Sofia K. Fanourakis:** skfanourakis@uh.edu

18 **Debora F. Rodrigues:** dfrigirodrigues@uh.edu

24 **Abstract**

25 Graphene's unique physical structure, as well as its chemical and electrical properties, make it ideal for
26 use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine
27 and modified graphene with nanoparticles and polymers. Several of these platforms were used to
28 immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective
29 biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed
30 based on its chemical composition. The most common ones are adsorption to graphene's surface and the
31 coupling of the biomolecules via the 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
32 (EDC) and N-hydroxysuccinimide (NHS) reaction. In the literature, several detection methods are
33 employed; however, the most common is electrochemical. The main reason for researchers to use this
34 detection approach is because this method is simple, rapid and present good sensitivity. These biosensors
35 can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high
36 sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen
37 detection. In this review, we will present the research conducted with antibodies, DNA molecules and,
38 enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective
39 biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to
40 diseases.

41

42 **Keywords:** nano-biosensors, graphene, graphene oxide, DNA, antibody, enzyme, detection, pathogens,

43

44

45

46

47

48

49 **Background**

50 Sensors in medicine and life sciences have been used to monitor vitals, diagnose patients, and
51 improve the critical care of patients [1–4]. Due to the need for early detection and diagnosis of diseases,
52 as well as minimally invasive detection approaches, many novel sensors have been developed. A
53 particular focus of sensor development has been in miniaturization via application of nanomaterials to
54 fabricate nanosensors. The nano-sized nature of nanomaterials and their unique chemical and electrical
55 properties can improve patient care by making the sensors minimally invasive and extremely sensitive
56 [4]. Among the nanomaterials used for nano-sensor fabrication, graphene and graphene-based
57 nanomaterials have been showing the most promise since they present an enhanced signal response in a
58 variety of sensing applications [5–7]. Furthermore, graphene-based nanomaterials possess high surface
59 area and offer excellent biocompatibility with a variety of biomolecules, like antibodies, enzymes, DNA,
60 cells, and proteins [7]. The incorporation of such biological molecules in graphene's detection scheme
61 (Figure 1) has allowed the development of the so-called biosensors. These biosensors can detect multiple
62 molecules, biomolecules and even cells [8,9].

63 **Graphene-based nanomaterials as a biosensor**

64 In general terms, sensors consist of two elements: a receptor and a transducer (see Fig. 1). The
65 receptor is the organic or inorganic material that interacts specifically with the target molecule. The target
66 molecule can be organic, inorganic or even whole cells. The transducer is the part of the sensor, which
67 converts chemical information into a measurable signal. Graphene-based nanomaterials are used as
68 transducers of biosensors, which are involved in converting the interactions between the receptor and the
69 target molecules into detectable measurements [10].

70 Graphene has been employed in the design of different biosensors of various transduction modes
71 because of its large surface area, electrical conductivity, high electron transfer rate and capacity to
72 immobilize different molecules [11]. For instance, the conjugated structure of graphene can facilitate the
73 electron transfer between the bioreceptor and transducer, which can generate high signal sensitivity for

74 electrochemical sensors [6,10,12,13]. Furthermore, graphene-based nanomaterial can act as a quencher in
75 the transducer to generate fluorescent biosensors. Studies have determined that graphene (G), graphene
76 oxide (GO), and reduced graphene oxide (rGO) have a very high efficiency of fluorescent quenching [14–
77 16].

78 When using graphene nanomaterials for designing sensors, some aspects of the graphene properties
79 affecting the detection limit of the target molecules need to be taken into consideration. For instance,
80 different synthesis batches of graphene and derivatives, as well as different synthetic methods can lead to
81 different properties and functionalities of the graphene-based nanomaterials in the biosensors. The
82 orientation between the G, GO or rGO sheets and the bioreceptor can also directly affect the selectivity
83 and sensitivity of the biosensors. Additionally, the number of layers, the functional groups and oxidation
84 states of graphene and derivatives will cause differences in the sensing performance among the sensors
85 and even impact the bonding between the transducer and bioreceptor (Figure 2). The amount of
86 functional groups on the nanomaterials can also affect the interactions and the detection limit of the target
87 molecule. In this context, it is necessary to block any nonspecific adsorption sites on the nanomaterial to
88 prevent unspecific binding of biomolecules instead of the target molecules. By taking into consideration
89 these limitations, biosensors of graphene-based nanomaterials can have high sensitivity/stability as well
90 as faster response time, potentially resulting in advances in healthcare and diagnosis.

91 In this mini-review, we will briefly summarize recent developments on biosensor technology with
92 graphene and graphene-based nanomaterials. More specifically, we will focus on antibody, DNA and
93 enzyme-based biosensors with applications in life sciences as well as in clinical settings. We aim to
94 present conceptual advances that have been made in the synthesis and applications of biosensors for
95 clinical diagnosis and real-time molecular detection.

96 **Graphene-based nanomaterials and antibodies**

97 The analytical detection platforms that measure the specific conjugation reaction between antibody and
98 antigen are called immunosensors. The biocompatibility and high-affinity binding of antibodies to

99 antigens make this molecule attractive for use in several fields, particularly in diagnostics. The antibody
100 (Ab) structure is made of four polypeptide chains with a characteristic “Y” shape (Figure 3). The chains
101 are connected via a single disulfide bond. The structure of the Ab consists of two different parts: the
102 “arms” of the Ab that contains two domains, *i.e.* a constant and a variable domain. The variable domain
103 gives the selectivity of antibodies to a specific antigen. The “body” of the Ab part consists of two
104 different segments, the crystallizable fragment (Fc) and the antigen-binding fragment (Fab). The Fc and
105 Fab contain carboxyl (–COOH) and amino (–NH₂) groups that bind to the target molecule with high
106 affinity [17,18]. This high-affinity recognition to a specific antibody-antigen reaction is mainly because of
107 the structure, properties, and reactivity of the antibodies, making them excellent candidates for sensing
108 applications.

109 The versatility of functional groups of the GO surface allows different strategies for Ab
110 attachment. This Ab functionalization can be summarized in Table 1. Most of the strategies to
111 functionalize GO with antibodies involve functionalization via 1-Ethyl-3-(3-dimethylaminopropyl)
112 carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) (EDC/NHS) chemistry reaction,
113 electrostatic bonding, or via 1-pyrenebutanoic acid succinimidyl ester (PASE) linker. The
114 functionalization via EDC/NHS chemistry is the most popular and versatile method for producing
115 biochemical conjugations. EDC is a water-soluble cross-linker agent, which allows direct bioconjugation
116 between carboxyl and amine groups. In this reaction, the nucleophilic attack from the primary amine
117 group from the antibody forms an amide bond with the carboxyl groups on the GO surface. This process
118 can form conjugates between two different molecules with an amide group [19].

119 The detection of the target molecules can be achieved through different methods (see Table 3).
120 The most commonly described method is electrochemical. In this method, upon the coupling of antibody-
121 antigen, the electrode transducer will convert the binding reaction into an electrical signal [20]. This
122 method is selected over other immunosensor methods since it is simple, rapid, sensitive, use small sample

123 volumes, and present good selectivity [17]. This method, however, has a few limitations such as binding
124 affinity and irreversible antigen-antibody interaction [21].

125 Graphene-based nanomaterials on antibody biosensors offer a broad versatility regarding
126 pathogen detection. Recently, several graphene-antibody biosensors with clinical applications have been
127 developed for early detection of diseases (Table 1). Antibody nanosensors with G were developed to
128 detect *E. coli* [22,23] and Zika virus [24]. GO, on the other hand, has been employed for the detection of
129 dengue virus [25], rotavirus [26] and cardiovascular diseases [27]. rGO has been employed to detect *E.*
130 *coli* in different samples [28] but with higher detection limits comparing to G [22,23] and G modified
131 with poly(methyl methacrylate) (PMMA) [29]. More advanced research has shown that the modification
132 of G with nanoparticles can improve the sensing properties of the transductor. In this context, G has been
133 modified with silver nanoparticles for the detection of *Salmonella typhimurium* [30] and hepatitis C virus
134 (HCV) [31]. Gold nanoparticles attached to G surfaces have been employed to detect avian influenza
135 virus H7, [32] and for diagnosis, prognosis, and prediction of treatment efficacy and recurrence of cancer
136 [33,34]. The modification of G with magnetic nanoparticles allows the early detection of Alzheimer [35]
137 and also cancer diagnosis [36]. More complex biosensors modifying the surface of G with dendrimer
138 [37], polymers [38,39] or cyclodextrin [40] have been developed to detect Celiac disease, HIV, Cholera
139 toxin, and cancer.

140 The early detection of these diseases with such sensors can aid in diagnosis, prevention, and
141 management of the disease in ‘high-risk’ individuals, which in turn would contribute to better
142 management and survival of patients. Many biosensors based on graphene nanomaterials have been
143 proposed in the last few years for the diagnosis and real-time monitoring of the health status of patients.
144 The proposed biosensors exhibit very low detection limits (see Table 1), speed, sensitivity, and selectivity
145 making these graphene-based biosensors ideal candidates for medical diagnostic tests.

146

147

148

149 Table 1: Overview of discussed graphene antibody-based nanosensors

Target	Inmunosenso r design	Detection methods	Antibody	Antibody binding	Detection limit	Ref.
<i>Escherichia coli</i>	Graphene oxide cellulose nanopaper	Photolumini -scence	antihuman IgG Ab	Conjugation process	1.60 ng/mL	[41]
	Graphene/P MMA	Electrical	anti <i>E. coli</i> O157:H7 antibody	--	10 CFU/mL	[29]
	Graphene	Electrical	anti- <i>E. coli</i> antibody	Via PASE linker	10 CFU/mL	[22]
	Graphene	Electrical	anti- <i>E. coli</i> O157:H7 antibodies	Via PASE linker	10–10 ⁷ cells/mL	[23]
	Reduced graphene oxide	Electrical	generic anti- <i>E. coli</i> antibody	EDC- NHS chemistry	10 ³ CFU/ mL	[28]
<i>Salmonella typhimurium</i>	GO-AgNPs nanocomposite	Cyclic voltammetry	anti- <i>S.typhimurium</i>	EDC- NHS chemistry	10 CFU/mL	[30]
Zika Virus	Graphene	Electrical	Anti-Zika NS1	NHS surface chemistry	0.45 nM	[24]
Dengue virus	Graphene oxide	Electrochemical impedance spectroscopy	4G2 monoclonal antibody	Electrostatic bond	0.12 pfu/mL	[25]
Adenovirus	Graphene quantum dots	Optoelectronic	Anti-Adenovirus, Group II (HEV) polyclonal antibody	Electrostatic bond	8.75 PFU/mL	[42]
Avian influenza virus H7	Gold nanoparticle-graphene nanocomposites (AuNPs-G)	Electrochemical immunosensor	H7-polyclonal antibodies and H7-monoclonal antibodies	EDC/NHS chemistry	1.6 pg/mL	[32]
Influenza A virus	Graphene oxide-MB-chitosan	Electrochemical	Monoclonal antibodies (H5N1 or H1N1)	Covalent and crosslinked via chitosan	9.4 pM and 8.3 pM	[39]
Cholera toxin	Graphene-Polypyrrole	Surface plasmon resonance	anti-CT	π - π Interactions	4 pg/mL	[43]
Rotavirus	Graphene	Photolumini	rotavirus	Carbodiimid	10 ⁵	[26]

	oxide	science	antibodies	e-assisted amidation reaction	Pfu/mL	
Hepatitis C virus	Graphene quantum dots with silver nanoparticles	Electrochemical immunosensing	Anti—HCV antibody.	NH ₂ group of antibody was covalent attachment to the AgNPs	3 fg/mL	[31]
HIV	Peptide-functionalized UCNPs to graphene oxide	Fluorescence	anti-HIV-1 gp120 antibody	π - π Interactions	2 nM	[38]
Celiac disease	Polyamido amine dendrimer with GQDs on AuNP embedded in MWCNT	Electrochemical	anti-tTG antibody	EDC/NHS chemistry	0.1fg per 6 μ l	[37]
Alzheimer disease	Magnetic core-plasmonic shell nanoparticle attached hybrid graphene oxide	Surface-enhanced Raman spectroscopy	Cy3 antibody	Amine functionalization	100 fg/mL	[35]
Cardiovascular diseases	Graphene oxide	Electrochemical	PAC1 antibody	EDC/NHS Chemistry	--	[27]
Hormones	Reduced graphene oxide	Electrochemical	anti-GHRL and anti-PYY	EDC- NHS chemistry	1.0 pg/mL GHRL and 0.02 pg/mL PYY	[44]
Cancer	Magnetic Fe ₃ O ₄ @G O composites	Electrochemical	RAB0331 for PSA and Lifeome Biolabs/Cusabio EL008782HU-96 for PSMA.	EDC-NHSS	15 fg/mL for PSA and 4.8 fg/mL for PSMA	[36]
	Graphene-PYR-NHS	Electrochemical Impedance Spectroscopy	Monoclonal antibody anti-carcinoembryonic antigen	Non-covalent modification	less than 100 pg/ml	[45]

		y				
Reduced graphene and gold nano particle	Electrochemical	anti-estradiol antibody (curve)	EDC-NHS	0.1 fmol	[33]	
Reduced graphene oxide gold nano particle	Electrochemical	p53 antibodies	Electrostatic interactions	0.088 pg/mL	[34]	
β -cyclodextrin functionalized graphene nanosheet	Electrochemical	CEA primary antibody (Ab1), and CEA secondary antibody (Ab2)	EDC-NHS	20 fg/mL	[40]	

150

151 **Graphene-based nanomaterials and deoxyribonucleic acid (DNA)**

152 Deoxyribonucleic acid (DNA) has a broad range of physical, chemical, and biological properties
 153 making this biomolecule highly suitable for biosensor technologies. Among the most critical properties of
 154 DNA for a biosensor is its flexibility, easy synthesis, facile chemistry to attach to diverse platforms,
 155 simple regeneration and high specificity due to unique sequences of nucleotides [46,47]. As such, nucleic
 156 acids have gained increasingly more attention in the fields of biosensors and biological assays for their
 157 applications in genetics, infectious diseases, and detection of pathogens in clinical settings [48]. In DNA
 158 biosensors using graphene-based nanomaterials as transducers, there are two main types of sensors:
 159 electrochemical and fluorescent sensors.

160 The electrochemical sensor is based on the potential changes of the oxidation of adenine (A),
 161 thymine (T), cytosine (C) and guanine (G) of the DNA, which can be detected by measuring
 162 electrochemical factors, such as conductivity or capacitance. The electrochemical signals produced by
 163 these biosensors can be detected using cyclic voltammetry (CV), differential pulse voltammetry (DPV) or
 164 electrochemical impedance spectroscopy (EIS) [12,49]. In the electrochemistry approach, the
 165 immobilization of DNA is done via π - π interactions on the surface of graphene-based nanomaterials

166 (Figure 4). G edges and GO or rGO with their functional groups (carboxylic, hydroxyl and epoxide
 167 groups) can also be used to covalently interact with the DNA [13,50]. The most common chemistry
 168 used for immobilization of the DNA on graphene-based nanomaterials is EDC/NHS, which is described
 169 in detail in the antibody section. Research to improve sensitivity and selectivity of electrochemical
 170 biosensors has been mostly in the modification of the transducers. For instance, the original glassy carbon
 171 electrode (GCE) can be modified with GO for the direct detection of A, T, G, and C for dsDNA or
 172 ssDNA using the DPV method at pH 7.0 [51]. In another study, the GCE is modified with rGO and DNA
 173 probes to hybridize with a target DNA to be detected with either EIS or CV [52]. This study takes
 174 advantage of the large surface area and high conductivity of rGO. Another study investigates the DNA
 175 sensor using the sharp and active edges of reduced graphene nanowalls (RGNW) to detect dsDNA with a
 176 sensitivity ranging from 0.1 fM to 10 mM. In this study, the authors suggest that the active edge sites of
 177 the RGNW sheet could enhance the electron transfer between DNA and the electrode in the DPV more
 178 uniformly [53]. Graphene-based DNA biosensors have been investigating with focusing on lowering the
 179 detection limits, fast measurements and facilitating the fabrication process and biomedical applications.
 180 Therefore, there has been a large number of published studies to improve these features of graphene-
 181 based DNA biosensors, which are summarized on Table 2.

182

183 Table 2: Graphene-based DNA biosensors with electrochemical detection

Detected element	Sensing material	Detection range	Ref.
dsDNA	Graphene nanosheets	2.0 pM to less than 10 mM	[53]
ssDNA	Graphene nanowalls	0.1 fM to 10 mM	
dsDNA	Epitaxial graphene	1 μ M	[54]
BRCA1 DNA	Graphene/Au	1 fM	[55]
<i>Staphylococcus aureus</i> nuc gene sequence	CTS–Co ₃ O ₄ –GR/CILE (Chitosan-Co ₃ O ₄ - graphene- carbon ionic liquid electrode)	1.0 \times 10 ⁻¹² to 1.0 \times 10 ⁻⁶ M with the detection limit as 4.3 \times 10 ⁻¹³ M	[56]
dsDNA	Thionine- graphene nanocomposite (Thi-G)	1.0 \times 10 ⁻¹² to 1.0 \times 10 ⁻⁷ M and low detection limit at 1.26 \times 10 ⁻¹³ M	[57]
Survivin gene	Graphene- nanostructure gold nanocomposite film glassy carbon electrode (G-3D Au/GCE)	50 – 5000 fM detection limit at 3.4 fM.	[58]

dsDNA	[Co(phen)2(Cl)(H ₂ O)] ⁺ AuNPs/GR (gold-graphene) modified electrode	2.50 × 10 ⁻¹¹ to 1.25 × 10 ⁻⁹ M detection limit at 8.33 × 10 ⁻¹² M	[59]
ssDNA	Graphene analogue tungsten sulfide-graphene (WS ₂ -Gr) composite	0.01 to 500 pM detection limit at 0.0023 pM	[60]
Multidrug resistance (MDR) DNA	Nitrogen-doped graphene nanosheets functionalized with Au nanoparticles (N-G/Au)	Detection limit 3.12 × 10 ⁻¹⁵ M	[61]
ssDNA	Nitrogen-doped graphene (NG) and Fe ₃ O ₄ nanoparticles	1.0 × 10 ⁻¹⁴ to 1.0 × 10 ⁻⁶ M Detection limit 3.63 × 10 ⁻¹⁵ M	[62]
ssDNA of HIV-1 gene	Graphene-Nafion composite fil	Detection limit 2.3 × 10 ⁻¹⁴ M	[63]
DNA	AuNCs/GR nanobybrids and exonuclease III (Exo III) aided cascade target	0.02 fM to 20 pM Detection limit at 0.057 fM	[64]
DNA	Graphene and polyaniline nanowires (PANIws) modified glassy carbon electrode	2.12 × 10 ⁻⁶ to 2.12 × 10 ⁻¹² M Detection 3.25 × 10 ⁻¹³ M	[65]
dsDNA, ssDNA and single nucleotide polymorphism	Poly(amidoamine) dendrimer (PAMAM) with graphene core	1 × 10 ⁻⁶ to 1 × 10 ⁻¹² M Detection limit 1 pM	[66]
DNA	Electroactive dye azophloxine functionalized graphene nanosheets (AP-GNs)	1.0 × 10 ⁻¹⁵ to 1.0 × 10 ⁻¹¹ M Detection limit at 4.0 × 10 ⁻¹⁶ M	[67]
ssDNA	Gold nanorods decorated GO sheets Au NRs-GO)	1.0 × 10 ⁻⁹ to 1.0 × 10 ⁻¹⁴ M Detection limit at 3.5 × 10 ⁻¹⁵ M	[68]
Hepatitis B virus (HBV)	GO/pencil graphite electrode (GO/PGE)	20 to 160 µg/mL Detection limit 2.02 µM	[69]
DNA	GO-Chitosan (CHI) nano-composite	10 fM to 50 nM Detection limit 10 fM (60 s hybridization times) and 100 fM at 25°C	[70]
ssDNA	ssDNA-Fe@AuNPs-AETGO	1.0 × 10 ⁻¹⁴ to 1.0 × 10 ⁻⁸ M Detection limit 2.0 × 10 ⁻¹⁵ M	[71]
DNA	rGO-graphene double-layer electrode	10 ⁻⁷ to 10 ⁻¹² M Detection limit 1.58 × 10 ⁻¹³ M	[72]
MDR1 gene	Au nanoparticles/toluidine blue-graphene oxide (Au NPs/TB-GO)	1.0 × 10 ⁻¹¹ to 1.0 × 10 ⁻⁹ M Detection limit 2.95 × 10 ⁻¹² M	[73]
DNA	AuNPs/ERGNO/GCE	2.0 × 10 ⁻⁷ to 1.0 × 10 ⁻⁶ M Detection limit at 1.0 × 10 ⁻⁶ M	[74]
DNA	ssDNA-AuNPs-ERGO	1 × 10 ⁻¹⁷ M to 1 × 10 ⁻¹³ M Detection limit 5 aM	[75]
DNA	Gold nanoparticles decorated rGO (Au NPs/rGO)	0.1 µM to 0.1 fM Detection limit at 35 aM	[76]

<i>Listeria monocytogenes</i>	Au/GR/CILE	1.0×10^{-12} to 1.0×10^{-6} M Detection limit 2.9×10^{-13} M	[77]
Amelogenin gene (AMEL)	rGO modified glassy carbon electrode (GCE/RGO)	1.0×10^{-20} to 1.0×10^{-14} M Detection limit 3.2×10^{-21} M	[52]
Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) DNA	rGO-modified glassy carbon electrode	10^{-13} M	[78]
DNA	Thionine functionalized rGO (Thi-rGO)	1.0×10^{-17} to 1.0×10^{-12} M Detection limit 4.28×10^{-19} M	[79]

184
 185 In the case of the fluorescent DNA nanosensor, this method is based on the hybridization of two
 186 single-stranded DNA (ssDNA). One ssDNA is labeled with a fluorescent dye, and the other is the
 187 complementary DNA corresponding to the target DNA. This method requires optical detection; therefore
 188 it takes advantage of the optical quenching property of graphene-based materials to enhance the
 189 visualization and detection of the target ssDNA [6]. The immobilization of the fluorescent-labeled DNA
 190 can be carried out by direct adsorption of the DNA probe on the graphene-based surface through the π - π
 191 interaction between the ring structure of the DNA bases and the graphene surface.

192 One example of fluorescence biosensors that has been developed is the GO-based sensor. This
 193 sensor has been produced with multicolor DNA probes for detecting different sequence-specific DNA.
 194 This multiplex GO-based DNA sensor presents low background fluorescence and excellent emission
 195 signal from specific targets when the hybridization occurs [80]. Another widely use of the fluorescence
 196 sensing approach, which can also employ graphene-based materials, is the fluorescence resonance energy
 197 transfer (FRET or Förster). In this detection method, initially, the fluorescent labeled DNA probe is
 198 quenched to the graphene-based nanomaterials surface through FRET, making the fluorescent signal off
 199 (Figure 4). Upon hybridization of the probe with the target DNA, the fluorescent molecule is released
 200 with the dsDNA from the graphene surface, and the fluorescent signal is turned on for optical detection
 201 [10]. For instance, in the effort to propose a reliable, biocompatible and scalable biosensor for HIV-1
 202 detection, a nanocomposite of gold nanoparticles (AuNPs) and GO was synthesized and used as a
 203 quencher with the use of fluorescent carbon dots (CDs) and a DNA probe, also called nano quencher. The

204 FRET strategy was also used in the CDs/AuNPs/GO nanoprobe. In the presence of target ssDNA,
205 hybridization occurs, and the fluorescent signal turns on. The presence of AuNPs on the GO nanosheets
206 serves to quench the fluorescence of CDs in the absence of the target DNA. AuNPs/GO exhibits
207 exceptional selective and sensitive capability in the DNA biosensors [81]. This sensor has a detection
208 limit as low as 15 fM. Table 3 presents the summary of other studies taking advantage of the quenching
209 ability of graphene-based nanomaterials to enhance or improve the fluorescent detection of DNA
210 biosensors.

211 Table 3: Graphene-based DNA biosensors with fluorescent detection.

Detected element	Sensing material	Detection range	Ref.
ssDNA	GO	Detection limit 200 nM	[82]
DNA	GO and exonuclease III	Detection limit 20 pM	[83]
ssDNA	GO	200 nM	[84]
DNA and Exonuclease activity	GO ethidium bromide (EB)	50 to 2500 nM Detection limit 32 nM	[85]
<i>Staphylococcus aureus</i> DNA	GO-DNA sensor	0.0125 to 3.125 nM Detection limit at 0.00625 nM	[86]
Hepatitis B virus (HBV) sequences	GO/pencil graphite electrode (GO/PGE)	20 to 160 μ g/mL Detection limit 2.02 μ M	[69]
DNA	Exonuclease III (ExoIII) and GO	Detection limit 0.5 pM	[87]
HIV-1 gene	AuNPs/GO nanocomposite	50.0 fM to 1.0 nM Detection limit at 15 fM	[88]
DNA	GO	0 to 25 nM Detection limit at 100 pM	[80]
T antigen gene of SV40 DNA	GO	40.0 to 260 nM Detection limit at 14.3nM	[80]

213
214 In summary, the two methods seem efficient and present low detection limits. However, each
215 technique has its advantages and disadvantages, which depends mainly on the ability of immobilization of
216 the DNA in the graphene-based nanomaterials and the method of measurement. The electrochemical
217 detection method takes into account the large surface area and conductivity of the nanomaterials. The
218 detection is based on the types and numbers of bases present in the DNA, which would cause the changes
219 in electrical potential for the measurement. Therefore, homogenous deposition of the probe on the

graphene material is essential for accurate measurements. Also, the electrostatic potential and DNA length could affect the efficiency of the sensor. On the other hand, fluorescence detection can be performed in ssDNA or dsDNA regardless of the length of the DNA. This method is based on the quenching and optical ability of graphene-based nanomaterials. One of the main disadvantages of this method is that it can overestimate the fluorescence signal due to the high background fluorescence signal in some complex samples, such as serum samples. On the other hand, the fluorescent-labeled probe can lose its intensity (photobleach) over time. Results of graphene-based DNA biosensor studies have shown that there is still need for further investigations related to the mechanisms of interactions between the DNA probe or modified DNA probe and the graphene-based transducer to provide more reliable and accurate measurements. Such studies could overcome the current disadvantages of the method by lowering the detection limit of the current sensors.

Graphene-based nanomaterials and enzymes

Enzymes deserve particular attention in biosensor design because they can be easily manipulated and have high stability. Furthermore, these molecules are involved in the metabolism of all organisms; they are reusable and highly selective catalysts that can discriminate between L and R enantiomers in different molecules. Enzymes can catalyze a large number of reactions with high specificity, efficiency, and selectivity, which are essential parameters in sensor designing [89]. Advancements in enzyme-based biosensor research have resulted in improved stability while reducing enzymatic loss and enzyme response time [90]. It has been demonstrated that the stability of enzymes is affected by pH, ionic strength, chemical inhibitors, solvent polarity, and temperature. The structure of graphene-based nanomaterials can be an effective transducer since it allows the direct electron transfer between enzymes and electrodes [13]. Furthermore, graphene-based materials have been shown to be excellent substrates for increasing thermal stability, enzymatic activity, and for enzyme immobilization [91–93].

Several approaches have been developed to immobilize enzymes onto graphene surfaces to create enzyme-based biosensors. Some of the most common methods are sonication, mixing, ultrasound, and cyclic voltammetry. These methods allow the attachment of the enzymes via adsorption, covalent

246 bonding, or physical entrapment. To date, the nonspecific binding of the enzyme to graphene via physical
247 adsorption is the most common one (see Table 4) since this immobilization technique is chemical-free
248 and straightforward. Another method also used to immobilize enzymes on the nanomaterial is the
249 EDC/NHS chemistry. This method described earlier is also common for enzymes because of its high
250 stability and robustness.

251 Enzyme-based biosensors are typically of electrochemical nature. This method possesses
252 advantages over the others because their electrodes can sense materials present in the host without
253 damaging the system. Enzyme-based electrochemical biosensors rely primarily on two mechanisms; one
254 is based on the catalytic properties of the enzymes (the enzyme catalyzes the analyte from its undetectable
255 form to a detectable form), and the other is based on enzyme activity inhibition/moderation [94]. Each of
256 these two mechanisms can create a detectable electrical signal change on the sensor electrode allowing for
257 the quantification of a particular analyte. In particular, this electrical signal is generated from the change
258 in current on the surface of the substrate as a direct result of the enzyme's activity. Enzymes catalyze
259 redox reactions which either produce or consume electrons thus altering the electrical current flowing to
260 the detection platform. The fundamental principle of how enzymatic biosensors work is presented in
261 Figure 5. While enzymes can be costly to utilize, sensors employing enzymes can detect a variety of
262 compounds with high specificity that would otherwise be difficult to detect in complex mixtures. For
263 example, these sensors can be particularly useful in detecting compounds such as phenols, hydrogen
264 peroxide, 17 β -estradiol, glucose, and bilirubin as described later in this section.

265 Different molecules have been detected with enzyme-based nanosensors. The most commonly
266 used model enzymes utilized for the development of these sensors are laccase and horseradish peroxidase
267 (HRP) [95]. These enzymes are less costly, more commonly available, and versatile allowing them to be
268 used to detect a high number of different compounds. Laccase is an oxygen-reducing enzyme which can
269 have a variety of applications. For example, a laccase-based electrochemical biosensor was developed for
270 the detection of 17 β -estradiol, a natural hormone classified as an emerging contaminant affecting humans
271 and aquatic life [96]. Additionally, laccase can be used for the detection of phenols and catechols [95,97–

272 99]. HRP, the other enzyme widely used for enzyme immobilization studies, can help determine hydrogen
273 peroxide concentrations even under complex test conditions [100]. HRP has been immobilized on porous
274 calcium carbonate microspheres encapsulated with graphene capsules and presented high selectivity
275 towards hydrogen peroxide. This sensor platform could potentially be used to immobilize different
276 enzymes for stable, long-term use as a biosensor [100]. Furthermore, HRP, as well as laccase, have been
277 immobilized on a rGO-Fe₃O₄ based substrate [95]. This hybrid nanomaterial takes advantage of the
278 properties of rGO and the magnetic properties of iron oxide making it an attractive substrate for biosensor
279 design.

280 While HRP and laccase have been vital in enzyme biosensor studies, other enzymes can be
281 immobilized to create highly specific biosensors. For example, bilirubin oxidase was immobilized on GO-
282 based surfaces [101,102]. Such biosensors can have a significant impact in the medical field due to their
283 ability to detect bilirubin, an essential compound for assessing liver function. Another enzyme with
284 medical applications is glucose oxidase (GOx). This enzyme is highly specific and has been used to
285 develop biosensors for the measurement of glucose levels [103–111]. This type of biosensor could be
286 especially important to diabetic patients. As such, in recent years, GOx has been immobilized using
287 different sensing platforms, such as: zinc sulfide decorated graphene [103], three dimensional graphene
288 [111], silk fibroin film on a graphene field effect transistor [104], nanostructured graphene-conducting
289 polyaniline (PANI) composite [105], three-dimensional GO and polyaniline (PANI) composite [109], GO
290 and titanium oxide nanoparticles modified with an Organic-Inorganic Supporting Ligand (OISL) [106],
291 and gold-palladium modified polyimide/rGO film [110], among others. These sensing platforms show
292 the versatility that graphene and its nanocomposites have regarding the chemistry for the detection of
293 different substrates.

294 Table 4: Recent studies using graphene-based materials to immobilize enzymes.

295

Enzyme	Immobilization platform	Testing compound	Detection method	Attachment	Range	Ref.
Laccase,	Fe ₃ O ₄ -rGO	–	–	Adsorption	–	[95]

HRP						
Laccase	GO-rhodium nanoparticles	17 β -estradiol	Electrochemical	Donor-acceptor interactions	0.9-11 pM	[96]
Laccase	Palladium-copper nanocages on rGO	Phenol	Electrochemical	Adsorption	0.005-1.155mM, 1.655-5.155mM	[97]
Laccase	Yolk shell Fe ₂ O ₃	2,6-dimethoxyphenol	Electrochemical	Gluaraldehyde reaction	0.025-750 μ M	[98]
Laccase	Graphene-Cellulose microfiber	Catechol	Amperometric	Adsorption	0.085-209.7 μ M	[99]
Laccase	MoS ₂ and graphene quantum dots	Caffeic acid	Electrochemical	Electrostatic interaction	0.38-100 μ M	[112]
HRP	CaCO ₃ microspheres encapsulated with a graphene capsule	Hydrogen peroxide	Electrochemical	Absorption	0.01-12 mmol/L	[100]
HRP	3D graphene/methyle ne blue-carbon nanotubes	Hydrogen peroxide	Electrochemical	In-situ self-polymerized polydopamine	0.2 μ M-1.1 mM	[113]
Bilirubin Oxidase	Electrochemically reduced GO	–	–	Adsorption	–	[102]
GOx	ZnS-graphene	Hydrogen peroxide, Glucose	Electrochemical	–	–	[103]
GOx	Silk-graphene field effect transistor	Glucose	Electrical	Hydrophobic interaction	0.1-10 mM	[104]
GOx	Nanostructured graphene with conducting polyaniline	Glucose	Electrochemical	Adsorption	10.0 μ M-1.48 mM	[105]
GOx	TiO ₂ -GO-OISL	Hydrogen peroxide	Electrochemical	Immobilization	1-120 μ M	[106]
GOx	Chitosan/Nafion/Pt nanoparticle/SG GT	Hydrogen peroxide, Glucose	–	–	3-300 μ M, 0.5 μ M-1 mM	[107]
GOx	GO modified by amidation	Glucose	–	Carbodiimide coupling	–	[108]
GOx	3D GO and PANI	Glucose	Electrochemical	–	0.07-1.10 mM	[109]
GOx	AuPd-rGO-polyimide	Hydrogen peroxide,	Electrochemical	Adsorption	0.004-1.0 mM, 0.024-	[110]

		Glucose			4.6 mM	
296	GOx	3D graphene	Glucose	Electrochemical	–	0.3-6 mM [111]

297 Conclusion

298 In this mini-review, we have reported the recent studies describing graphene and graphene-related
 299 biosensors with possible applications in clinical settings and life sciences. We have shown results of the
 300 reported analytical performance of each sensor and indicated their use in the life sciences and medical
 301 fields. DNA, antibody, and enzyme-based biosensors have been presented in this study since each has its
 302 advantages and disadvantages. Overall, the type of sensor selected will depend on the type of application.
 303 For example, use of DNA in biosensing technology can be a cost-effective method for the rapid detection
 304 of microbes, viruses, or cancer markers. However, due to the vast variety of molecules present in the
 305 body, use of antibodies or enzymes in biosensors can be more effective in the detection or monitoring of
 306 certain diseases. For instance, antibodies can be used for the specific detection of viruses such as the Zika
 307 virus, HIV, Influenza A virus, among others. Enzymes, on the other hand, have shown to be promising in
 308 detecting glucose levels with only small amounts of sample. Overall, the incorporation of graphene and
 309 graphene-based nanomaterials in biosensor technologies have shown great promise due to its high surface
 310 area, electrical conductivity, electron transfer rate, and its capacity to immobilize a variety of different
 311 biomolecules. The developments of biosensors that are sensitive, stable, and specific to their target
 312 molecule and that can be processed rapidly are promising for use in clinical settings. However, to achieve
 313 uniform and reliable analysis results and produce biosensors capable of being used in the medical field,
 314 many more studies need to be conducted examining the safety and reliability of the sensors.

315

316 List of Abbreviations

Ab: Antibody

A, T, G, C: Adenine, thymine, guanine and, cytosine.

AD: Alzheimer disease

AuNPs: Gold nanoparticles

BRCA1: breast cancer 1

CD: celiac disease

CDs: Carbon dots

CV: cyclic voltammetry

CEA: carcinoembryonic antigen

CHI: Chitosan

DNA: Deoxyribonucleic acid

dsDNA: double stranded DNA

DVP: differential pulse voltammetry

EB: ethidium bromide

EDC/NHS: 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/ N-hydroxysuccinimide

EIS: electrochemical impedance spectroscopy

ELISA: enzyme-linked immunosorbent assay

ExoIII: exonuclease III

Fab: and the antigen-binding fragment

Fc: crystallizable fragment

FET: Field effect transistor

FRET: fluorescence resonance energy transfer

GCE: glassy carbon electrode

GHRL: ghrelin

GO: graphene oxide

GOx: glucose oxidase

GQD: graphene quantum dot

HCV: hepatitis C virus

HIV: human immunodeficiency virus

HRP: horseradish peroxidase

LOD: lower detection limit

MWCNT: multiwall carbon nanotube

NP: nanoparticle

OISL: organic-inorganic supporting ligand

PAMAM: poly(amidoamine)

PANI: polyaniline

PASE: 1-pyrenebutanoic acid succinimidyl ester

PCR: polymerase chain reaction

PMP: platelet-derived microparticle

PMMA: poly(methyl methacrylate)

PYY: peptide YY

RGNW: reduced graphene nanowalls

rGO: reduced graphene oxide

SGGT: solution-gated graphene transistor

SNP: single nucleotide polymorphism

ssDNA: single-stranded DNA

Thi: thionine

317 **Declarations**

318 **Ethics approval and consent to participate**

319 Not applicable

320 **Consent for publication**

321 All authors have read and approved this publication.

322 **Availability of data and material**

323 Not applicable

324 **Competing interests**

325 The authors declare that they have no competing interests.

326 **Authors' contributions**

327
328 Rodrigues coordinated the organization, content and elaboration of the manuscript as well as was
329 responsible for editing the images and texts. Peña-Bahamonde compiled and wrote the sections:
330 Graphene-based nanomaterials as a biosensor and Graphene-based nanomaterials and antibodies.
331 She. also assisted in the preparation of the abstract and images Nguyen wrote the section
332 Graphene-based nanomaterials and deoxyribonucleic acid (DNA) and assisted in the preparation
333 of some of the images. Fanourakis wrote the sections: Abstract, Background, conclusions and
334 Graphene-based nanomaterials and enzymes with the assistance of Peña-Bahamonde and
335 Nguyen.

336 **Acknowledgements**

337 Not applicable

338 **Funding**

339 This work was supported by the following funds: NPRP grant [# 9-318-1-064] from the Qatar National
340 Research Fund (a member of Qatar Foundation); CBET NSF Career grant number: 1150255; NSF
341 BEINM Grant Number: 1705511; and the USDA National Institute of Food and Agriculture, AFRI
342 Project No. 2018-67022-27969. The findings achieved herein are solely the responsibility of the authors.

343

344 **References**

345
346 1. Wilson CB. Sensors in medicine. West J Med. BMJ Publishing Group; 1999;171:322.
347 2. Sapsford KE, Bradburne C, Delehanty JB, Medintz IL. Sensors for detecting biological agents. Mater
348 Today [Internet]. Elsevier Ltd; 2008;11:38–49. Available from: [http://dx.doi.org/10.1016/S1369-7021\(08\)70018-X](http://dx.doi.org/10.1016/S1369-7021(08)70018-X)
349
350 3. Patolsky F, Zheng G, Lieber CM. Nanowire sensor for medicine and the life science. Nanomedicine.
351 2006;1:51–65.
352 4. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: Synthesis,
353 properties, and applications. Adv Mater. 2010;22:3906–24.
354 5. Morales-Narváez E, Baptista-Pires L, Zamora-Gómez A, Merkoçi A. Graphene-Based
355 Biosensors: Going Simple. Adv Mater [Internet]. 2017;29. Available from:
356 <https://doi.org/10.1002/adma.201604905>
357 6. Chauhan N, Maekawa T, Kumar DNS. Graphene based biosensors - Accelerating medical diagnostics

358 to new-dimensions. *J Mater Res* [Internet]. 2017;32:2860–82. Available from:
359 <https://www.cambridge.org/core/journals/journal-of-materials-research/article/graphene-based->
360 biosensorsaccelerating-medical-diagnostics-to-
361 newdimensions/87F978487BAB6F713C38158D3DD8382A

362 7. Janegitz BC, Silva TA, Wong A, Ribovski L, Vicentini FC, Taboada Sotomayor MDP, et al. The
363 application of graphene for in vitro and in vivo electrochemical biosensing. *Biosens Bioelectron*
364 [Internet]. Elsevier; 2017;89:224–33. Available from: <http://dx.doi.org/10.1016/j.bios.2016.03.026>

365 8. Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: Biofunctionalization and
366 applications in biotechnology. *Trends Biotechnol* [Internet]. Elsevier Ltd; 2011;29:205–12. Available
367 from: <http://dx.doi.org/10.1016/j.tibtech.2011.01.008>

368 9. Liu J, Tang J, Gooding JJ. Strategies for chemical modification of graphene and applications of
369 chemically modified graphene. *J Mater Chem* [Internet]. 2012;22:12435. Available from:
370 <http://xlink.rsc.org/?DOI=c2jm31218b>

371 10. Pumera M. Graphene in biosensing. *Mater Today* [Internet]. Elsevier Ltd; 2011;14:308–15. Available
372 from: [http://dx.doi.org/10.1016/S1369-7021\(11\)70160-2](http://dx.doi.org/10.1016/S1369-7021(11)70160-2)

373 11. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional
374 nanomaterial. *Angew Chemie* [Internet]. 2009 [cited 2013 May 22];48:7752–77. Available from:
375 <http://www.ncbi.nlm.nih.gov/pubmed/19784976>

376 12. Park CS, Yoon H, Kwon OS. Graphene-based nanoelectronic biosensors. *J Ind Eng Chem* [Internet].
377 The Korean Society of Industrial and Engineering Chemistry; 2016;38:13–22. Available from:
378 <http://dx.doi.org/10.1016/j.jiec.2016.04.021>

379 13. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based
380 biosensors. *Biosens Bioelectron* [Internet]. Elsevier B.V.; 2011;26:4637–48. Available from:
381 <http://dx.doi.org/10.1016/j.bios.2011.05.039>

382 14. Kasry A, Ardakani AA, Tulevski GS, Menges B, Copel M, Vyklicky L. Highly efficient fluorescence
383 quenching with graphene. *J Phys Chem C*. 2012;116:2858–62.

384 15. Batır GG, Arik M, Caldırın Z, Turut A, Aydogan S. Synthesis and Characterization of Reduced
385 Graphene Oxide/Rhodamine 101 (rGO-Rh101) Nanocomposites and Their Heterojunction Performance
386 in rGO-Rh101/p-Si Device Configuration. *J Electron Mater*. 2018;47:329–36.

387 16. Wu X, Xing Y, Zeng K, Huber K, Zhao JX. Study of Fluorescence Quenching Ability of Graphene
388 Oxide with a Layer of Rigid and Tunable Silica Spacer. *Langmuir*. 2018;34:603–11.

389 17. Wan Y, Su Y, Zhu X, Liu G, Fan C. Development of electrochemical immunosensors towards point
390 of care diagnostics. *Biosens Bioelectron* [Internet]. Elsevier; 2013;47:1–11. Available from:
391 <http://dx.doi.org/10.1016/j.bios.2013.02.045>

392 18. Wujcik EK, Wei H, Zhang X, Guo J, Yan X, Sutrave N, et al. Antibody nanosensors: A detailed
393 review. *RSC Adv*. Royal Society of Chemistry; 2014;4:43725–45.

394 19. Fischer MJE. Amine Coupling Through EDC/NHS: A Practical Approach. In: Mol NJ, Fischer MJE,
395 editors. *Surf Plasmon Reson Methods Protoc* [Internet]. Totowa, NJ: Humana Press; 2010. p. 55–73.
396 Available from: https://doi.org/10.1007/978-1-60761-670-2_3

397 20. Cho IH, Lee J, Kim J, Kang MS, Paik JK, Ku S, et al. Current technologies of electrochemical
398 immunosensors: Perspective on signal amplification. *Sensors (Switzerland)*. 2018;18.

399 21. Singh P, Pandey . Shailendra Kumar, Singh . Jyoti, Srivastava . Sameer, Singh SS, Kumar S.
400 Biomedical Perspective of Electrochemical Nanobiosensor. *Nano-Micro Lett*. 2016;8:193–203.

401 22. Huang Y, Dong X, Liu Y, Li L-J, Chen P. Graphene-based biosensors for detection of bacteria and

402 their metabolic activities. *J Mater Chem* [Internet]. 2011;21:12358. Available from:
403 <http://xlink.rsc.org/?DOI=c1jm11436k>

404 23. Pandey A, Gurbuz Y, Ozguz V, Niazi JH, Qureshi A. Graphene-interfaced electrical biosensor for
405 label-free and sensitive detection of foodborne pathogenic *E. coli* O157:H7. *Biosens Bioelectron*
406 [Internet]. Elsevier; 2017;91:225–31. Available from: <http://dx.doi.org/10.1016/j.bios.2016.12.041>

407 24. Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi DA, et al. Novel graphene-based
408 biosensor for early detection of Zika virus infection. *Biosens Bioelectron* [Internet]. Elsevier B.V.;
409 2018;100:85–8. Available from: <http://dx.doi.org/10.1016/j.bios.2017.08.051>

410 25. Navakul K, Warakulwit C, Yenchitsomanus P thai, Panya A, Lieberzeit PA, Sangma C. A novel
411 method for dengue virus detection and antibody screening using a graphene-polymer based
412 electrochemical biosensor. *Nanomedicine Nanotechnology, Biol Med* [Internet]. Elsevier Inc.;
413 2017;13:549–57. Available from: <http://dx.doi.org/10.1016/j.nano.2016.08.009>

414 26. Jung JH, Cheon DS, Liu F, Lee KB, Seo TS. A Graphene Oxide Based Immuno-biosensor for
415 Pathogen Detection. *Angew Chemie Int Ed* [Internet]. 2010;49:5708–11. Available from:
416 <http://doi.wiley.com/10.1002/anie.201001428>

417 27. Kailashiy J, Singh N, Singh SK, Agrawal V, Dash D. Graphene oxide-based biosensor for detection
418 of platelet-derived microparticles: A potential tool for thrombus risk identification. *Biosens Bioelectron*
419 [Internet]. Elsevier; 2015;65:274–80. Available from: <http://dx.doi.org/10.1016/j.bios.2014.10.056>

420 28. Thakur B, Zhou G, Chang J, Pu H, Jin B, Sui X, et al. Biosensors and Bioelectronics Rapid detection
421 of single *E. coli* bacteria using a graphene-based field-effect transistor device. *Biosens Bioelectron*
422 [Internet]. Elsevier B.V.; 2018;110:16–22. Available from: <https://doi.org/10.1016/j.bios.2018.03.014>

423 29. Akbari E, Nikoukar A, Buntat Z, Afrozeh A, Zeinalinezhad A. *Escherichia coli* bacteria detection by
424 using graphene-based biosensor. *IET Nanobiotechnology* [Internet]. 2015;9:273–9. Available from:
425 <http://digital-library.theiet.org/content/journals/10.1049/iet-nbt.2015.0010>

426 30. Sign C, Sumana G. Antibody conjugated graphene nanocomposites for pathogen detection. *J Phys*
427 *Conf Ser.* 2016;704:0–7.

428 31. Valipour A, Roushani M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite
429 as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation
430 of riboflavin was used as redox probe. *Biosens Bioelectron* [Internet]. Elsevier; 2017;89:946–51.
431 Available from: <http://dx.doi.org/10.1016/j.bios.2016.09.086>

432 32. Huang J, Xie Z, Xie Z, Luo S, Xie L, Huang L, et al. Silver nanoparticles coated graphene
433 electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. *Anal Chim Acta*
434 [Internet]. Elsevier Ltd; 2016;913:121–7. Available from: <http://dx.doi.org/10.1016/j.aca.2016.01.050>

435 33. Dharuman V, Hahn JH, Jayakumar K, Teng W. Electrochemically reduced graphene-gold nano
436 particle composite on indium tin oxide for label free immuno sensing of estradiol. *Electrochim Acta*
437 [Internet]. Elsevier Ltd; 2013;114:590–7. Available from:
438 <http://dx.doi.org/10.1016/j.electacta.2013.10.128>

439 34. Elshafey R, Siaj M, Tavares AC. Au nanoparticle decorated graphene nanosheets for electrochemical
440 immunosensing of p53 antibodies for cancer prognosis. *Analyst* [Internet]. Royal Society of Chemistry;
441 2016;141:2733–40. Available from: <http://xlink.rsc.org/?DOI=C6AN00044D>

442 35. Demeritte T, Viraka Nellore BP, Kanchanapally R, Sinha SS, Pramanik A, Chavva SR, et al. Hybrid
443 Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and
444 Label-Free Identification of Alzheimer's Disease Biomarkers. *ACS Appl Mater Interfaces*.
445 2015;7:13693–700.

446 36. Sharafeldin M, Bishop GW, Bhakta S, El-Sawy A, Suib SL, Rusling JF. Fe₃O₄nanoparticles on
447 graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker
448 proteins. *Biosens Bioelectron* [Internet]. Elsevier; 2017;91:359–66. Available from:
449 <http://dx.doi.org/10.1016/j.bios.2016.12.052>

450 37. Gupta S, Kaushal A, Kumar A, Kumar D. Ultrasensitive transglutaminase based nanosensor for early
451 detection of celiac disease in human. *Int J Biol Macromol* [Internet]. Elsevier B.V.; 2017;105:905–11.
452 Available from: <https://doi.org/10.1016/j.ijbiomac.2017.07.126>

453 38. Wu Y-M, Cen Y, Huang L-J, Yu R-Q, Chu X. Upconversion fluorescence resonance energy transfer
454 biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum. *Chem
455 Commun* [Internet]. 2014;50:4759–62. Available from: <http://xlink.rsc.org/?DOI=C4CC00569D>

456 39. Veerapandian M, Hunter R, Neethirajan S. Dual immunosensor based on methylene blue-
457 electroadSORBED graphene oxide for rapid detection of the influenza A virus antigen. *Talanta* [Internet].
458 Elsevier; 2016;155:250–7. Available from: <http://dx.doi.org/10.1016/j.talanta.2016.04.047>

459 40. Gao J, Guo Z, Su F, Gao L, Pang X, Cao W, et al. Ultrasensitive electrochemical immunoassay for
460 CEA through host-guest interaction of β -cyclodextrin functionalized graphene and Cu@Ag core-shell
461 nanoparticles with adamantine-modified antibody. *Biosens Bioelectron* [Internet]. Elsevier;
462 2015;63:465471. Available from: <http://dx.doi.org/10.1016/j.bios.2014.07.081>

463 41. Cheeveewattanagul N, Morales-Narváez E, Hassan ARHA, Bergua JF, Surareungchai W,
464 Somasundrum M, et al. Straightforward Immunosensing Platform Based on Graphene Oxide-Decorated
465 Nanopaper: A Highly Sensitive and Fast Biosensing Approach. *Adv Funct Mater*. 2017;27:1–8.

466 42. Ahmed SR, Mogus J, Chand R, Nagy E, Neethirajan S. Optoelectronic fowl adenovirus detection
467 based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid. *Biosens
468 Bioelectron* [Internet]. Elsevier B.V.; 2018;103:45–53. Available from:
469 <https://doi.org/10.1016/j.bios.2017.12.028>

470 43. Singh M, Holzinger M, Tabrizian M, Berner NC, Cosnier S, Duesberg GS. Noncovalently
471 Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance
472 Immunosensors. 2015;

473 44. Martínez-García G, Agüí L, Yáñez-Sedeño P, Pingarrón JM. Multiplexed Electrochemical
474 Immunosensor for Obesity-related Hormones Using Grafted Graphene-modified Electrodes as Platforms
475 for Antibodies Immobilization. *Procedia Technol* [Internet]. The Author(s); 2017;27:187–9. Available
476 from: <http://linkinghub.elsevier.com/retrieve/pii/S2212017317300816>

477 45. Zhou L, Mao H, Wu C, Tang L, Wu Z, Sun H, et al. Label-free graphene biosensor targeting cancer
478 molecules based on non-covalent modification. *Biosens Bioelectron* [Internet]. Elsevier; 2017;87:701–7.
479 Available from: <http://dx.doi.org/10.1016/j.bios.2016.09.025>

480 46. Premkumar T, Geckeler KE. Graphene–DNA hybrid materials: Assembly, applications, and
481 prospects. *Prog Polym Sci*. 2012;37:515–29.

482 47. Pedersen R, Marchi AN, Majikes J, Nash JA, Estrich NA, Courson DS, et al. Properties of DNA.
483 *Handb Nanomater Prop*. Springer; 2014. p. 1125–57.

484 48. Ray M, Ray A, Dash S, Mishra A, Achary KG, Nayak S, et al. Fungal disease detection in plants:
485 Traditional assays, novel diagnostic techniques and biosensors. *Biosens Bioelectron* [Internet]. Elsevier;
486 2017;87:708–23. Available from: <http://dx.doi.org/10.1016/j.bios.2016.09.032>

487 49. Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, et al. Development of electrochemical DNA
488 biosensors. *TrAC - Trends Anal Chem* [Internet]. Elsevier Ltd; 2012;37:101–11. Available from:
489 <http://dx.doi.org/10.1016/j.trac.2012.03.008>

490 50. Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y. Recent advances in electrochemical biosensors based on
491 graphene two-dimensional nanomaterials. *Biosens Bioelectron*. 2016;76:195–212.

492 51. Ming Zhou, Yueming Zhai and SD. Electrochemical Sensing and Biosensing Platform Based on
493 Chemically Reduced Graphene Oxide. *Anal Chem*. 2009;81:5603–13.

494 52. Benvidi A, Rajabzadeh N, Mazloum-Ardakani M, Heidari MM, Mulchandani A. Simple and label-
495 free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene
496 oxide. *Biosens Bioelectron*. 2014;58:145–52.

497 53. Akhavan O, Ghaderi E, Rahighi R. Toward Single-DNA Electrochemical Biosensing by Graphene
498 Nanowalls. *ACS Nano*. American Chemical Society; 2012;6:2904–16.

499 54. Lim CX, Hoh HY, Ang PK, Loh KP. Direct voltammetric detection of DNA and pH sensing on
500 epitaxial graphene: an insight into the role of oxygenated defects. *Anal Chem*. 2010/08/18.
501 2010;82:7387–93.

502 55. Rasheed PA, Sandhyarani N. Graphene-DNA electrochemical sensor for the sensitive detection of
503 BRCA1 gene. *Sensors Actuators B Chem*. 2014;204:777–82.

504 56. Qi X, Gao H, Zhang Y, Wang X, Chen Y, Sun W. Electrochemical DNA biosensor with chitosan-
505 Co₃O₄ nanorod-graphene composite for the sensitive detection of staphylococcus aureus nuc gene
506 sequence. *Bioelectrochemistry*. 2012;88:42–7.

507 57. Zhu L, Luo L, Wang Z. DNA electrochemical biosensor based on thionine-graphene nanocomposite.
508 *Biosens Bioelectron*. 2012;35:507–11.

509 58. Liu A-L, Zhong G-X, Chen J-Y, Weng S-H, Huang H-N, Chen W, et al. A sandwich-type DNA
510 biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure
511 gold nanocomposite films. *Anal Chim Acta*. 2013;767:50–8.

512 59. Niu S, Sun J, Nan C, Lin J. Sensitive DNA biosensor improved by 1,10-phenanthroline cobalt
513 complex as indicator based on the electrode modified by gold nanoparticles and graphene. *Sensors
514 Actuators B Chem*. 2013;176:58–63.

515 60. Huang K-J, Liu Y-J, Wang H-B, Gan T, Liu Y-M, Wang L-L. Signal amplification for
516 electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene
517 composites and gold nanoparticles. *Sensors Actuators B Chem*. 2014;191:828–36.

518 61. Chen M, Hou C, Huo D, Bao J, Fa H, Shen C. An electrochemical DNA biosensor based on nitrogen-
519 doped graphene/Au nanoparticles for human multidrug resistance gene detection. *Biosens Bioelectron*.
520 2016;85:684–91.

521 62. Chen M, Hou C, Huo D, Fa H, Zhao Y, Shen C. A sensitive electrochemical DNA biosensor based on
522 three-dimensional nitrogen-doped graphene and Fe₃O₄ nanoparticles. *Sensors Actuators B Chem*.
523 2017;239:421–9.

524 63. Gong Q, Wang Y, Yang H. A sensitive impedimetric DNA biosensor for the determination of the HIV
525 gene based on graphene-Nafion composite film. *Biosens Bioelectron*. 2017;89:565–9.

526 64. Wang W, Bao T, Zeng X, Xiong H, Wen W, Zhang X, et al. Ultrasensitive electrochemical DNA
527 biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-
528 aided cascade target recycling. *Biosens Bioelectron*. 2017;91:183–9.

529 65. Bo Y, Yang H, Hu Y, Yao T, Huang S. A novel electrochemical DNA biosensor based on graphene
530 and polyaniline nanowires. *Electrochim Acta*. 2011;56:2676–81.

531 66. Jayakumar K, Rajesh R, Dharuman V, Venkatasan R, Hahn JH, Karutha Pandian S. Gold nano
532 particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA
533 hybridization sensing. *Biosens Bioelectron*. 2012;31:406–12.

534 67. Guo Y, Guo Y, Dong C. Ultrasensitive and label-free electrochemical DNA biosensor based on water-
535 soluble electroactive dye azophloxine-functionalized graphene nanosheets. *Electrochim Acta*.
536 2013;113:69–76.

537 68. Han X, Fang X, Shi A, Wang J, Zhang Y. An electrochemical DNA biosensor based on gold nanorods
538 decorated graphene oxide sheets for sensing platform. *Anal Biochem*. 2013;443:117–23.

539 69. Mihrican M, Surbhi S, Arzum E, Pagona P. Electrochemical Monitoring of Nucleic Acid
540 Hybridization by Single-Use Graphene Oxide-Based Sensor. *Electroanalysis*. 2011;23:272–9.

541 70. Singh A, Sinsinbar G, Choudhary M, Kumar V, Pasricha R, Verma HN, et al. Graphene oxide-
542 chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. *Sensors
543 Actuators B Chem*. 2013;185:675–84.

544 71. Yola ML, Eren T, Atar N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au
545 nanoparticles decorated graphene oxide. *Electrochim Acta*. 2014;125:38–47.

546 72. Li B, Pan G, Avent ND, Lowry RB, Madgett TE, Waines PL. Graphene electrode modified with
547 electrochemically reduced graphene oxide for label-free DNA detection. *Biosens Bioelectron*.
548 2015;72:313–9.

549 73. Peng H-P, Hu Y, Liu P, Deng Y-N, Wang P, Chen W, et al. Label-free electrochemical DNA
550 biosensor for rapid detection of multidrug resistance gene based on Au nanoparticles/toluidine blue-
551 graphene oxide nanocomposites. *Sensors Actuators B Chem*. 2015;207:269–76.

552 74. Du M, Yang T, Jiao K. Immobilization-free direct electrochemical detection for DNA specific
553 sequences based on electrochemically converted gold nanoparticles/graphene composite film. *J Mater
554 Chem*. The Royal Society of Chemistry; 2010;20:9253–60.

555 75. Dong H, Zhu Z, Ju H, Yan F. Triplex signal amplification for electrochemical DNA biosensing by
556 coupling probe-gold nanoparticles-graphene modified electrode with enzyme functionalized carbon
557 sphere as tracer. *Biosens Bioelectron*. 2012;33:228–32.

558 76. Wang J, Shi A, Fang X, Han X, Zhang Y. An ultrasensitive supersandwich electrochemical DNA
559 biosensor based on gold nanoparticles decorated reduced graphene oxide. *Anal Biochem*. 2015;469:71–5.

560 77. Sun W, Qi X, Zhang Y, Yang H, Gao H, Chen Y, et al. Electrochemical DNA biosensor for the
561 detection of *Listeria monocytogenes* with dendritic nanogold and electrochemical reduced graphene
562 modified carbon ionic liquid electrode. *Electrochim Acta*. 2012;85:145–51.

563 78. Wang Z, Zhang J, Chen P, Zhou X, Yang Y, Wu S, et al. Label-free, electrochemical detection of
564 methicillin-resistant *staphylococcus aureus* DNA with reduced graphene oxide-modified electrodes.
565 *Biosens Bioelectron*. 2011;26:3881–6.

566 79. Ye Y, Xie J, Ye Y, Cao X, Zheng H, Xu X, et al. A label-free electrochemical DNA biosensor based
567 on thionine functionalized reduced graphene oxide. *Carbon N Y*. 2018;129:730–7.

568 80. He S, Song B, Li D, Zhu C, Qi W, Wen Y, et al. A graphene nanoprobe for rapid, sensitive, and
569 multicolor fluorescent DNA analysis. *Adv Funct Mater*. 2010;20:453–9.

570 81. Hamd Qaddare S, Salimi A. Amplified fluorescent sensing of DNA using luminescent carbon dots
571 and AuNPs/GO as a sensing Platform: A novel coupling of FRET and DNA hybridization for
572 homogeneous HIV-1 gene detection at femtomolar level. *Biosens. Bioelectron*. 2016.

573 82. Liu F, Choi JY, Seo TS. Graphene oxide arrays for detecting specific DNA hybridization by
574 fluorescence resonance energy transfer. *Biosens Bioelectron*. 2010;25:2361–5.

575 83. Zhao X-H, Ma Q-J, Wu X-X, Zhu X. Graphene oxide-based biosensor for sensitive fluorescence
576 detection of DNA based on exonuclease III-aided signal amplification. *Anal Chim Acta*. 2012;727:67–70.

577 84. Liu C, Wang Z, Jia H, Li Z. Efficient fluorescence resonance energy transfer between upconversion

578 nanophosphors and graphene oxide: a highly sensitive biosensing platform. *Chem Commun*. The Royal
579 Society of Chemistry; 2011;47:4661–3.

580 85. Jiang Y, Tian J, Chen S, Zhao Y, Wang Y, Zhao S. A Graphene Oxide-Based Sensing Platform for
581 The Label-free Assay of DNA Sequence and Exonuclease Activity via Long Range Resonance Energy
582 Transfer. *J Fluoresc*. 2013;23:697–703.

583 86. Pang S, Gao Y, Li Y, Liu S, Su X. A novel sensing strategy for the detection of *Staphylococcus*
584 *aureus* DNA by using a graphene oxide-based fluorescent probe. *Analyst*. The Royal Society of
585 Chemistry; 2013;138:2749–54.

586 87. Peng L, Zhu Z, Chen Y, Han D, Tan W. An exonuclease III and graphene oxide-aided assay for DNA
587 detection. *Biosens Bioelectron*. 2012;35:475–8.

588 88. Qaddare SH, Salimi A. Amplified fluorescent sensing of DNA using luminescent carbon dots and
589 AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous
590 HIV-1 gene detection at femtomolar level. *Biosens Bioelectron*. 2017;89:773–80.

591 89. Staiano M, Pennacchio A, Varriale A, Capo A, Majoli A, Capacchione C, et al. Enzymes as Sensors
592 [Internet]. 1st ed. *Methods Enzymol*. Elsevier Inc.; 2017. Available from:
593 <http://dx.doi.org/10.1016/bs.mie.2017.01.015>

594 90. Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety
595 and environmental monitoring. *Biosens Bioelectron* [Internet]. 2006 [cited 2018 May 3];21:1405–23.
596 Available from: https://s3.amazonaws.com/academia.edu.documents/35611175/Enzyme_inhibition-based_biosensors_for_food_safety_and_environmental_monitoring.pdf?AWSAccessKeyId=AKIAIWO
597 WYYGZ2Y53UL3A&Expires=1525367288&Signature=NGIZqbZ%2B5Ct7PTblORGcAiKmc3c%3D&
598 response-content

599 91. Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, et al. Graphene Oxide as a Matrix for Enzyme
600 Immobilization. *Langmuir* [Internet]. 2010 [cited 2018 May 1];26:6083–5. Available from:
601 <https://pubs.acs.org/doi/pdf/10.1021/la904014z>

602 92. Hermanová S, Zarevúcká M, Bouša D, Pumera M, Sofer Z. Graphene oxide immobilized enzymes
603 show high thermal and solvent stability. *Nanoscale* [Internet]. Royal Society of Chemistry; 2015 [cited
604 2018 May 1];7:5852–8. Available from: <http://xlink.rsc.org/?DOI=C5NR00438A>

605 93. Skoronski E, Souza DH, Ely C, Broilo F, Fernandes M, Fúrido A, et al. Immobilization of laccase
606 from *Aspergillus oryzae* on graphene nanosheets. *Int J Biol Macromol* [Internet]. Elsevier; 2017 [cited
607 2018 May 1];99:121–7. Available from:
608 <https://www.sciencedirect.com/science/article/pii/S0141813016320633>

609 94. Gaudin V. Advances in biosensor development for the screening of antibiotic residues in food
610 products of animal origin – A comprehensive review. *Biosens. Bioelectron*. 2017.

611 95. Patel SKS, Choi SH, Kang YC, Lee J-K. Eco-Friendly Composite of Fe 3 O 4 -Reduced Graphene
612 Oxide Particles for Efficient Enzyme Immobilization. [cited 2018 May 1]; Available from:
613 <https://pubs.acs.org/doi/pdf/10.1021/acsami.6b05165>

614 96. Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, et al. Decoration of reduced
615 graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme
616 biosensor for 17 β -estradiol. *Biosens Bioelectron*. 2017;

617 97. Mei LP, Feng JJ, Wu L, Zhou JY, Chen JR, Wang AJ. Novel phenol biosensor based on laccase
618 immobilized on reduced graphene oxide supported palladium-copper alloyed nanocages. *Biosens*
619 *Bioelectron* [Internet]. Elsevier; 2015;74:347–52. Available from:
620 <http://dx.doi.org/10.1016/j.bios.2015.06.060>

622 98. Patel SKS, Anwar MZ, Kumar A, Otari S V., Pagolu RT, Kim S-Y, et al. Fe₂O₃ yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. *Biochem Eng J* [Internet]. Elsevier; 2018 [cited 2018 May 3];132:1–8. Available from: <https://www.sciencedirect.com/science/article/pii/S1369703X17303479>

623 99. Palanisamy S, Ramaraj SK, Chen S-M, Yang TCK, Yi-Fan P, Chen T-W, et al. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol. *Nat Publ Gr* [Internet]. 2017 [cited 2018 May 3]; Available from: <https://www.nature.com/articles/srep41214.pdf>

624 100. Fan Z, Lin Q, Gong P, Liu B, Wang J, Yang S. A new enzymatic immobilization carrier based on graphene capsule for hydrogen peroxide biosensors. *Electrochim Acta* [Internet]. Elsevier Ltd; 2015;151:186–94. Available from: <http://dx.doi.org/10.1016/j.electacta.2014.11.022>

625 101. Chauhan N, Rawal R, Hooda V, Jain U. Electrochemical biosensor with graphene oxide nanoparticles and polypyrrole interface for the detection of bilirubin. *RSC Adv* [Internet]. 2016 [cited 2018 May 3]; Available from: <http://pubs.rsc.org/en/content/articlepdf/2016/RA/C6RA15671A>

626 102. Filip J, Andicsová-Eckstein A, Vikartovská A, Tkac J. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. *Biosens Bioelectron* [Internet]. Elsevier; 2017 [cited 2018 May 1];89:384–9. Available from: <https://www.sciencedirect.com/science/article/pii/S0956566316305383>

627 103. Suganthi G, Arockiadoss T, Uma TS. ZnS nanoparticles decorated graphene nanoplatelets as immobilisation matrix for glucose biosensor. *Nanosyst Physics, Chem Math* [Internet]. 2016 [cited 2018 May 1];7:637–42. Available from: <https://search.proquest.com/docview/1852737980?pq-origsite=gscholar>

628 104. You X, Pak JJ. Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. *Sensors Actuators B Chem* [Internet]. Elsevier; 2014 [cited 2018 May 1];202:1357–65. Available from: <https://www.sciencedirect.com/science/article/pii/S0925400514004900>

629 105. Feng X, Cheng H, Pan Y, Zheng H. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite. *Biosens Bioelectron* [Internet]. Elsevier; 2015;70:411–7. Available from: <http://dx.doi.org/10.1016/j.bios.2015.03.046>

630 106. Haghghi N, Hallaj R, Salimi A. Immobilization of glucose oxidase onto a novel platform based on modified TiO₂ and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity. *Mater Sci Eng C* [Internet]. Elsevier; 2017 [cited 2018 May 1];73:417–24. Available from: <https://www.sciencedirect.com/science/article/pii/S092849311631476X>

631 107. Zhang M, Liao C, Hin Mak C, You P, Leung Mak C, Yan F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. *Sci Rep* [Internet]. 2015 [cited 2018 May 1];8:311. Available from: <https://www.nature.com/articles/srep08311.pdf>

632 108. Novak MJ, Pattammattel A, Koshmerl B, Puglia M, Williams C, Kumar C V. “stable-on-the-Table” Enzymes: Engineering the Enzyme-Graphene Oxide Interface for Unprecedented Kinetic Stability of the Biocatalyst. *ACS Catal*. 2016;6:339–47.

633 109. Kang Z, Jiao K, Xu X, Peng R, Jiao S, Hu Z. Graphene oxide-supported carbon nanofiber-like network derived from polyaniline: A novel composite for enhanced glucose oxidase bioelectrode performance. *Biosens Bioelectron* [Internet]. Elsevier; 2017 [cited 2018 May 3];96:367–72. Available from: <https://www.sciencedirect.com/science/article/pii/S0956566317303330>

666 110. Shen X, Xia X, Du Y, Ye W, Wang C. Amperometric Glucose Biosensor Based on AuPd Modified
667 Reduced Graphene Oxide/Polyimide Film with Glucose Oxidase. *J Electrochem Soc* [Internet]. 2017
668 [cited 2018 May 3];164:285–91. Available from: <http://jes.ecsdl.org/content/164/6/B285.full.pdf>

669 111. Mansouri N, Babadi AA, Bagheri S, Hamid SBA. Immobilization of glucose oxidase on 3D
670 graphene thin film: Novel glucose bioanalytical sensing platform. *Int J Hydrogen Energy* [Internet].
671 Pergamon; 2017 [cited 2018 May 3];42:1337–43. Available from:
672 <https://www.sciencedirect.com/science/article/pii/S0360319916329913>

673 112. Vasilescu I, Eremita SAV, Kusko M, Radoi A, Vasile E, Radu G-L. Molybdenum disulphide and
674 graphene quantum dots as electrode modifiers for laccase biosensor. *Biosens Bioelectron* [Internet].
675 Elsevier; 2016 [cited 2018 May 3];75:232–7. Available from:
676 <https://www.sciencedirect.com/science/article/pii/S0956566315303778>

677 113. Liu J, Wang T, Wang J, Wang E. Mussel-inspired biopolymer modified 3D graphene foam for
678 enzyme immobilization and high performance biosensor. *Electrochim Acta* [Internet]. 2015 [cited 2018
679 May 1];161:17–22. Available from: https://ac.els-cdn.com/S0013468615003114/1-s2.0-S0013468615003114-main.pdf?_tid=35ca7522-3080-49e2-8c64-55410e942e1d&acdnat=1525195370_ab9d9d85ee4b0ecce4fa068cfdb976eb

682
683
684