%]

10
11

12

13

14

15

16

17

18

19

20

21

22

23

Recent advances in graphene-based biosensor

technology with applications in life sciences

Janire Pefia-Bahamonde®!, Hang N. Nguyen?!, Sofia K. Fanourakis®' and Debora
F. Rodrigues'*

"Department of Civil and Environmental Engineering, University of Houston, Houston, TX
77204 — 4003

* Corresponding Author: Debora F. Rodrigues, email: dfrigirodrigues@uh.edu

¢ These authors contributed equally to this work

Janire Pena-Bahamonde: jpenabah@central.uh.edu
Hang N. Nguyen: hnnguyenl6@uh.edu
Sofia K. Fanourakis: skfanourakis@uh.edu

Debora F. Rodrigues: dfrigirodrigues@uh.edu



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Abstract

Graphene’s unique physical structure, as well as its chemical and electrical properties, make it ideal for
use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine
and modified graphene with nanoparticles and polymers. Several of these platforms were used to
immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective
biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed
based on its chemical composition. The most common ones are adsorption to graphene’s surface and the
coupling of the biomolecules via the 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDC) and N-hydroxysuccinimide (NHS) reaction. In the literature, several detection methods are
employed; however, the most common is electrochemical. The main reason for researchers to use this
detection approach is because this method is simple, rapid and present good sensitivity. These biosensors
can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high
sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen
detection. In this review, we will present the research conducted with antibodies, DNA molecules and,
enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective
biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to

diseases.

Keywords: nano-biosensors, graphene, graphene oxide, DNA, antibody, enzyme, detection, pathogens,



49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Background
Sensors in medicine and life sciences have been used to monitor vitals, diagnose patients, and

improve the critical care of patients [1-4]. Due to the need for early detection and diagnosis of diseases,
as well as minimally invasive detection approaches, many novel sensors have been developed. A
particular focus of sensor development has been in miniaturization via application of nanomaterials to
fabricate nanosensors. The nano-sized nature of nanomaterials and their unique chemical and electrical
properties can improve patient care by making the sensors minimally invasive and extremely sensitive
[4]. Among the nanomaterials used for nano-sensor fabrication, graphene and graphene-based
nanomaterials have been showing the most promise since they present an enhanced signal response in a
variety of sensing applications [5—7]. Furthermore, graphene-based nanomaterials possess high surface
area and offer excellent biocompatibility with a variety of biomolecules, like antibodies, enzymes, DNA,
cells, and proteins [7]. The incorporation of such biological molecules in graphene’s detection scheme
(Figure 1) has allowed the development of the so-called biosensors. These biosensors can detect multiple
molecules, biomolecules and even cells [8,9].
Graphene-based nanomaterials as a biosensor

In general terms, sensors consist of two elements: a receptor and a transducer (see Fig. 1). The
receptor is the organic or inorganic material that interacts specifically with the target molecule. The target
molecule can be organic, inorganic or even whole cells. The transducer is the part of the sensor, which
converts chemical information into a measurable signal. Graphene-based nanomaterials are used as
transducers of biosensors, which are involved in converting the interactions between the receptor and the
target molecules into detectable measurements [10].

Graphene has been employed in the design of different biosensors of various transduction modes
because of its large surface area, electrical conductivity, high electron transfer rate and capacity to
immobilize different molecules [11]. For instance, the conjugated structure of graphene can facilitate the

electron transfer between the bioreceptor and transducer, which can generate high signal sensitivity for
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electrochemical sensors [6,10,12,13]. Furthermore, graphene-based nanomaterial can act as a quencher in
the transducer to generate fluorescent biosensors. Studies have determined that graphene (G), graphene
oxide (GO), and reduced graphene oxide (rGO) have a very high efficiency of fluorescent quenching [14—
16].

When using graphene nanomaterials for designing sensors, some aspects of the graphene properties
affecting the detection limit of the target molecules need to be taken into consideration. For instance,
different synthesis batches of graphene and derivatives, as well as different synthetic methods can lead to
different properties and functionalities of the graphene-based nanomaterials in the biosensors. The
orientation between the G, GO or rGO sheets and the bioreceptor can also directly affect the selectivity
and sensitivity of the biosensors. Additionally, the number of layers, the functional groups and oxidation
states of graphene and derivatives will cause differences in the sensing performance among the sensors
and even impact the bonding between the transducer and bioreceptor (Figure 2). The amount of
functional groups on the nanomaterials can also affect the interactions and the detection limit of the target
molecule. In this context, it is necessary to block any nonspecific adsorption sites on the nanomaterial to
prevent unspecific binding of biomolecules instead of the target molecules. By taking into consideration
these limitations, biosensors of graphene-based nanomaterials can have high sensitivity/stability as well
as faster response time, potentially resulting in advances in healthcare and diagnosis.

In this mini-review, we will briefly summarize recent developments on biosensor technology with
graphene and graphene-based nanomaterials. More specifically, we will focus on antibody, DNA and
enzyme-based biosensors with applications in life sciences as well as in clinical settings. We aim to
present conceptual advances that have been made in the synthesis and applications of biosensors for
clinical diagnosis and real-time molecular detection.

Graphene-based nanomaterials and antibodies

The analytical detection platforms that measure the specific conjugation reaction between antibody and

antigen are called immunosensors. The biocompatibility and high-affinity binding of antibodies to
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antigens make this molecule attractive for use in several fields, particularly in diagnostics. The antibody
(ADb) structure is made of four polypeptide chains with a characteristic “Y” shape (Figure 3). The chains
are connected via a single disulfide bond. The structure of the Ab consists of two different parts: the
“arms” of the Ab that contains two domains, i.e. a constant and a variable domain. The variable domain
gives the selectivity of antibodies to a specific antigen. The “body” of the Ab part consists of two
different segments, the crystallizable fragment (Fc) and the antigen-binding fragment (Fab). The Fc and
Fab contain carboxyl (COOH) and amino (—NH>) groups that bind to the target molecule with high
affinity [17,18]. This high-affinity recognition to a specific antibody-antigen reaction is mainly because of
the structure, properties, and reactivity of the antibodies, making them excellent candidates for sensing

applications.

The versatility of functional groups of the GO surface allows different strategies for Ab
attachment. This Ab functionalization can be summarized in Table 1. Most of the strategies to
functionalize GO with antibodies involve functionalization via 1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) (EDC/NHS) chemistry reaction,
electrostatic bonding, or via 1-pyrenebutanoic acid succinimidyl ester (PASE) linker. The
functionalization via EDC/NHS chemistry is the most popular and versatile method for producing
biochemical conjugations. EDC is a water-soluble cross-linker agent, which allows direct bioconjugation
between carboxyl and amine groups. In this reaction, the nucleophilic attack from the primary amine
group from the antibody forms an amide bond with the carboxyl groups on the GO surface. This process
can form conjugates between two different molecules with an amide group [19].

The detection of the target molecules can be achieved through different methods (see Table 3).
The most commonly described method is electrochemical. In this method, upon the coupling of antibody-
antigen, the electrode transducer will convert the binding reaction into an electrical signal [20]. This

method is selected over other immunosensor methods since it is simple, rapid, sensitive, use small sample
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volumes, and present good selectivity [17]. This method, however, has a few limitations such as binding
affinity and irreversible antigen-antibody interaction [21].

Graphene-based nanomaterials on antibody biosensors offer a broad versatility regarding
pathogen detection. Recently, several graphene-antibody biosensors with clinical applications have been
developed for early detection of diseases (Table 1). Antibody nanosensors with G were developed to
detect E. coli [22,23] and Zika virus [24]. GO, on the other hand, has been employed for the detection of
dengue virus [25], rotavirus [26] and cardiovascular diseases [27]. rGO has been employed to detect E.
coli in different samples [28] but with higher detection limits comparing to G [22,23] and G modified
with poly(methyl methacrylate) (PMMA) [29]. More advanced research has shown that the modification
of G with nanoparticles can improve the sensing properties of the transductor. In this context, G has been
modified with silver nanoparticles for the detection of Salmonella typhimurium [30] and hepatitis C virus
(HCV) [31]. Gold nanoparticles attached to G surfaces have been employed to detect avian influenza
virus H7, [32] and for diagnosis, prognosis, and prediction of treatment efficacy and recurrence of cancer
[33,34]. The modification of G with magnetic nanoparticles allows the early detection of Alzheimer [35]
and also cancer diagnosis [36]. More complex biosensors modifying the surface of G with dendrimer
[37], polymers [38,39] or cyclodextrin [40] have been developed to detect Celiac disease, HIV, Cholera
toxin, and cancer.

The early detection of these diseases with such sensors can aid in diagnosis, prevention, and
management of the disease in ‘high-risk’ individuals, which in turn would contribute to better
management and survival of patients. Many biosensors based on graphene nanomaterials have been
proposed in the last few years for the diagnosis and real-time monitoring of the health status of patients.
The proposed biosensors exhibit very low detection limits (see Table 1), speed, sensitivity, and selectivity

making these graphene-based biosensors ideal candidates for medical diagnostic tests.
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Table 1: Overview of discussed graphene antibody-based nanosensors

Target Inmunose- | Detection Antibody Antibody Detection Ref.
nsor methods binding limit
design
Graphene | Photolumini antihuman Conjugation 1.60 ng/mL [41]
oxide -scence IgG Ab process
cellulose
nanopaper
Graphene/P | Electrical anti E. coli - 10 CFU/mL [29]
MMA O157:H7
Escherichia antibody
. Graphene Electrical anti-E. coli Via PASE 10 CFU/mL [22]
coli . .
antibody linker
Graphene Electrical anti-£. coli Via PASE 10-107 [23]
O157:H7 linker cells/mL
antibodies
Reduced Electrical generic anti- | EDC- NHS 10° CFU/ M1 | [28]
graphene E. coli chemistry
oxide antibody
Salmonella | GO-AgNPs Cyclic anti- EDC- NHS 10 CFU/mL [30]
typhimurium | nanocompo | voltammetry | S.tzyphimurium | chemistry
site
Zika Virus Graphene Electrical | Anti-Zika NS1 | NHS surface 0.45 nM [24]
chemistry
Dengue virus | Graphene Electroche 4G2 Electrostatic | 0.12 pfu/mL [25]
oxide mical monoclonal bond
impedance antibody
spectroscop
y
Adenovirus Graphene | Optoelectro Anti- Electrostatic | 8.75 PFU/mL | [42]
quantum nic Adenovirus, bond
dots Group 11
(HEV)
polyclonal
antibody
Avian Gold Electrochem H7- EDC/NHS 1.6 pg/mL [32]
influenza nanoparticl ical polyclonal chemistry
virus H7 e-graphene | inmunosens | antibodies and
nanocompo or H7-
sites monoclonal
(AuNPs-G) antibodies
Influenza A Graphene | Electrochem | Monoclonal Covalent 9.4 pM and [39]
virus oxide-MB- ical antibodies and 8.3 pM
chitosan (H5NT or crosslinked
HINI) via chitosan
Cholera toxin | Graphene- Surface anti-CT -7 4 pg/mL [43]
Polypirrole plasmon Interactions
resonance
Rotavirus Graphene | Photolumini rotavirus Carbodiimid 10° [26]
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oxide scence antibodies e-assisted Pfu/mL
amidation
reaction
Hepatitis C Graphene | Electrochem | Anti—HCV NH: group 3 fg/mL [31]
virus quantum ical antibody. of antibody
dots with | immunosens was
silver ing covalent
nanoparticl attachment
es to the
AgNPs
HIV Peptide- Fluorescenc anti-HIV-1 -7 2nM [38]
functionali e gpl120 Interactions
zed UCNPs antibody
to graphene
oxide
Celiac Polyamido | Electrochem anti-tTG EDC/NHS | O.1fgper 6 ul | [37]
disease amine ical antibody chemistry
dendrimer
with GQDs
on AuNP
embedded
in
MWCNT
Alzheimer Magnetic Surface- Cy3 antibody Amine 100 fg/mL [35]
disease core- enhanced functionaliz
plasmonic Raman ation
shell spectroscop
nanoparticl y
e attached
hybrid
graphene
oxide
Cardiovascul | Graphene | Electrochem PACI1 EDC/NHS -- [27]
ar diseases oxide ical antibody Chemistry
Hormones Reduced | Electrochem | anti-GHRL EDC- NHS 1.0 pg/mL [44]
graphene | ical and anti-PYY chemistry GHRL and
oxide 0.02 pg/mL
PYY
Magnetic | Electrochem | RABO0331 for | EDC-NHSS | 15 fg/mL for [36]
Fe304@G | ical PSA and PSA and 4.8
O Lifeome fg/mL for
composites Biolabs/Cusab PSMA
i0
Cancer EL008782HU
-96 for PSMA.
Graphene- | Electrochem | Monoclonal Non- less than [45]
PYR-NHS | ical antibody anti- covalent 100 pg/ml
Impedance carcinoembry | modification
Spectroscop onic antigen
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y
Reduced | Electrochem | anti-estradiol | EDC-NHS | 0.1 fmol [33]
graphene | ical antibody
and gold (curve
nano
particle
Reduced | Electrochem | p53 antibodies | Electrostatic | 0.088 pg/mL [34]
graphene | ical interactions
oxide gold
nano
particle
B- Electrochem | CEA primary | EDC-NHS | 20 fg/mL [40]
cyclodextri | ical antibody
n (Abl), and
functionali CEA
zed secondary
graphene antibody
nanosheet (Ab2)

Graphene-based nanomaterials and deoxyribonucleic acid (DNA)

Deoxyribonucleic acid (DNA) has a broad range of physical, chemical, and biological properties
making this biomolecule highly suitable for biosensor technologies. Among the most critical properties of
DNA for a biosensor is its flexibility, easy synthesis, facile chemistry to attach to diverse platforms,
simple regeneration and high specificity due to unique sequences of nucleotides [46,47]. As such, nucleic
acids have gained increasingly more attention in the fields of biosensors and biological assays for their
applications in genetics, infectious diseases, and detection of pathogens in clinical settings [48]. In DNA
biosensors using graphene-based nanomaterials as transducers, there are two main types of sensors:
electrochemical and fluorescent sensors.

The electrochemical sensor is based on the potential changes of the oxidation of adenine (A),
thymine (T), cytosine (C) and guanine (G) of the DNA, which can be detected by measuring
electrochemical factors, such as conductivity or capacitance. The electrochemical signals produced by
these biosensors can be detected using cyclic voltammetry (CV), differential pulse voltammetry (DPV) or
electrochemical impedance spectroscopy (EIS) [12,49]. In the electrochemistry approach, the

immobilization of DNA is done via m—n interactions on the surface of graphene-based nanomaterials


https://www.sciencedirect.com/topics/chemistry/dielectric-spectroscopy

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

(Figure 4). G edges and GO or rGO with their functional groups (carboxylic, hydroxyl and epoxide
groups) can also be used to covalently interacted with the DNA [13,50]. The most common chemistry
used for immobilization of the DNA on graphene-based nanomaterials is EDC/NHS, which is described
in detail in the antibody section. Research to improve sensitivity and selectivity of electrochemical
biosensors has been mostly in the modification of the transducers. For instance, the original glassy carbon
electrode (GCE) can be modified with GO for the direct detection of A, T, G, and C for dsDNA or
ssDNA using the DPV method at pH 7.0 [51]. In another study, the GCE is modified with rGO and DNA
probes to hybridize with a target DNA to be detected with either EIS or CV [52]. This study takes
advantage of the large surface area and high conductivity of rGO. Another study investigates the DNA
sensor using the sharp and active edges of reduced graphene nanowalls (RGNW) to detect dsSDNA with a
sensitivity ranging from 0.1 fM to 10 mM. In this study, the authors suggest that the active edge sites of
the RGNW sheet could enhance the electron transfer between DNA and the electrode in the DPV more
uniformly [53]. Graphene-based DNA biosensors have been investigating with focusing on lowering the
detection limits, fast measurements and facilitating the fabrication process and biomedical applications.
Therefore, there has been a large number of published studies to improve these features of graphene-

based DNA biosensors, which are summarized on Table 2.

Table 2: Graphene-based DNA biosensors with electrochemical detection

Detected element Sensing material Detection range Ref.
dsDNA Graphene nanosheets 2.0 pM to less than 10 mM [53]
ssDNA Graphene nanowalls 0.1 fM to 10 mM
dsDNA Epitaxial graphene 1 uM [54]
BRCAI1 DNA Graphene/Au 1 fM [55]
Staphylococcus aureus | CTS—Co0304~GR/CILE 1.0x107'2 to 1.0x107¢ M with [56]
nuc gene sequence (Chitosan-Co304- graphene- the detection limit as 4.3x10713
carbon ionic liquid electrode) M

dsDNA Thionine- 1.0x10"2t01.0x 10"Mand | [57]
graphene nanocomposite (Thi- low detection limit
G) at 1.26 x 10°° M

Survivin gene Graphene- nanostructure gold 50 — 5000 fM detection limit at | [58]
nanocomposite film glassy 3.4 fM.
carbon electrode (G-3D
Au/GCE)

10



dsDNA [Co(phen)2(C1)(H20)]" 250 x 10" t0 1.25x 10°M [59]
AuNPs/GR (gold-graphene) detection limit at 8.33 x107'2
modified electrode M
ssDNA Graphene analogue tungsten 0.01 to 500 pM [60]
sulfide—graphene (WS2—Gr) detection limit at 0.0023 pM
composite
Multidrug resistance Nitrogen-doped graphene Detection limit [61]
(MDR) DNA nanosheets functionalized 3.12 %105 M
with Au nanoparticles (N-G/Au)
ssDNA Nitrogen-doped graphene (NG) | 1.0 x 107 t0 1.0 x 10°M [62]
and Fe;0, nanoparticles Detection limit 3.63 x 107> M
ssDNA of HIV-1 gene Graphene-Nafion composite fil | Detection limit [63]
23x10 "M
DNA AuNCs/GR nanobybrids and 0.02 fM to 20 pM [64]
exonuclease I1I (Exo III) aided Detection limit at 0.057 fM
cascade target
DNA Graphene and polyaniline 2.12x107%t02.12x10° 2 M [65]
nanowires (PANIws) modified | Detection 3.25x10713 M
glassy
carbon electrode
dsDNA, ssDNA and Poly(amidoamine) dendrimer 1x10°%to 1 x10712M [66]
single nucleotide (PAMAM) with graphene core Detection limit 1 pM
polymorphism
DNA Electroactive dye azophloxine 1.0x10 " t0o 1.0 x 107" M [67]
functionalized graphene Detection limit at 4.0 x 10716
nanosheets M
(AP-GNs)
ssDNA Gold nanorods decorated GO 1.0x107°t0 1.0 x 10°* M [68]
sheets Au NRs—GO) Detection limit at 3.5 x 10713
M
Hepatitis B virus (HBV) | GO/pencil graphite electrode 20 to 160 pg/mL [69]
(GO/PGE) Detection limit 2.02 uM
DNA GO-Chitosan (CHI) nano- 10 fM to 50 nM Detection [70]
composite limit 10 fM (60 s hybridization
times) and 100 fM at 25°C
ssDNA ssDNA-Fe@AuNPs-AETGO 1.0 X107 t0 1.0 x10* M [71]
Detection limit 2.0 x10* M
DNA rGO-graphene double-layer 107to 102 M [72]
electrode Detection limit
1.58 x10°° M
MDRI1 gene Au nanoparticles/toluidine 1.0x10"t0 1.0 x 10°M [73]
blue—graphene oxide (Au Detection limit
NPs/TB-GO) 2.95x 102 M
DNA AuNPs/ERGNO/GCE 20x107t01.0x 10 M [74]
Detection limit at
1.0x10°M
DNA ssDNA—-AuNPs-ERGO 1x10"Mto 1 x 107 M [75]
Detection limit 5 aM
DNA Gold nanoparticles decorated 0.1 uM to 0.1 fM [76]

rGO (Au NPs/rGO)

Detection limit at 35 aM

11



184
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Listeria monocytogenes | Au/GR/CILE 1.0x10"2t01.0x 10°M [77]
Detection limit
29x10°M
Amelogenin gene rGO modified 1.0x102°t0 1.0 x 10°* M [52]
(AMEL) glassy carbon electrode Detection limit
(GCE/RGO) 32 %102 M
Methicillin- rGO-modified glassy carbon 105 M [78]
resistant Staphylococcus | electrode
aureus (MRSA) DNA
DNA Thionine functionalized rGO 1.0x10"7t0 1.0 x 10712 M [79]
(Thi-rGO Detection limit
428 x 107 M

In the case of the fluorescent DNA nanosensor, this method is based on the hybridization of two
single-stranded DNA (ssDNA). One ssDNA is labeled with a fluorescent dye, and the other is the
complementary DNA corresponding to the target DNA. This method requires optical detection; therefore
it takes advantage of the optical quenching property of graphene-based materials to enhance the
visualization and detection of the target ssDNA [6]. The immobilization of the fluorescent-labeled DNA
can be carried out by direct adsorption of the DNA probe on the graphene-based surface through the n-nt
interaction between the ring structure of the DNA bases and the graphene surface.

One example of fluorescence biosensors that has been developed is the GO-based sensor. This
sensor has been produced with multicolor DNA probes for detecting different sequence-specific DNA.
This multiplex GO-based DNA sensor presents low background fluorescence and excellent emission
signal from specific targets when the hybridization occurs [80]. Another widely use of the fluorescence
sensing approach, which can also employ graphene-based materials, is the fluorescence resonance energy
transfer (FRET or Forster). In this detection method, initially, the fluorescent labeled DNA probe is
quenched to the graphene-based nanomaterials surface through FRET, making the fluorescent signal off
(Figure 4). Upon hybridization of the probe with the target DNA, the fluorescent molecule is released
with the dsDNA from the graphene surface, and the fluorescent signal is turned on for optical detection
[10]. For instance, in the effort to propose a reliable, biocompatible and scalable biosensor for HIV-1
detection, a nanocomposite of gold nanoparticles (AuNPs) and GO was synthesized and used as a

quencher with the use of fluorescent carbon dots (CDs) and a DNA probe, also called nano quencher. The
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FRET strategy was also used in the CDs/AuNPs/GO nanoprobe. In the presence of target ssDNA,
hybridization occurs, and the fluorescent signal turns on. The presence of AuNPs on the GO nanosheets
serves to quench the fluorescence of CDs in the absence of the target DNA. AuNPs/GO exhibits
exceptional selective and sensitive capability in the DNA biosensors [81]. This sensor has a detection
limit as low as 15 fM. Table 3 presents the summary of other studies taking advantage of the quenching
ability of graphene-based nanomaterials to enhance or improve the fluorescent detection of DNA
biosensors.

Table 3: Graphene-based DNA biosensors with fluorescent detection.

Detected element Sensing material Detection range Ref.
ssDNA GO Detection limit 200 nM | [82]
DNA GO and exonuclease 11 Detection limit 20 pM [83]
ssDNA GO 200 nM [84]
DNA and GO ethidium bromide (EB) | 50 to 2500 nM [85]
Exonuclease activity Detection limit 32 nM
Staphylococcus aureus DNA GO-DNA sensor 0.0125t0 3.125nM [86]

Detection limit at
0.00625 nM
Hepatitis B virus (HBV) GO/pencil graphite electrode | 20 to 160 pg/mL [69]
sequences (GO/PGE) Detection limit 2.02 uM
DNA Exonuclease III (Exolll) and | Detection limit 0.5 pM [87]
GO
HIV-1 gene AuNPs/GO nanocomposite | 50.0 fM to 1.0 nM [88]
Detection limit at 15 fM
DNA GO 0 to 25 nM [80]
Detection limit at 100
pM
T antigen gene of SV40 DNA GO 40.0 to 260 nM [80]
Detection limit at
14.3nM

In summary, the two methods seem efficient and present low detection limits. However, each
technique has its advantages and disadvantages, which depends mainly on the ability of immobilization of
the DNA in the graphene-based nanomaterials and the method of measurement. The electrochemical
detection method takes into account the large surface area and conductivity of the nanomaterials. The
detection is based on the types and numbers of bases present in the DNA, which would cause the changes

in electrical potential for the measurement. Therefore, homogenous deposition of the probe on the
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graphene material is essential for accurate measurements. Also, the electrostatic potential and DNA
length could affect the efficiency of the sensor. On the other hand, fluorescence detection can be
performed in ssDNA or dsDNA regardless of the length of the DNA. This method is based on the
quenching and optical ability of graphene-based nanomaterials. One of the main disadvantages of this
method is that it can overestimate the fluorescence signal due to the high background fluorescence signal
in some complex samples, such as serum samples. On the other hand, the fluorescent-labeled probe can
lose its intensity (photobleach) over time. Results of graphene-based DNA biosensor studies have shown
that there is still need for further investigations related to the mechanisms of interactions between the
DNA probe or modified DNA probe and the graphene-based transducer to provide more reliable and
accurate measurements. Such studies could overcome the current disadvantages of the method by
lowering the detection limit of the current sensors.
Graphene-based nanomaterials and enzymes

Enzymes deserve particular attention in biosensor design because they can be easily manipulated
and have high stability. Furthermore, these molecules are involved in the metabolism of all organisms;
they are reusable and highly selective catalysts that can discriminate between L and R enantiomers in
different molecules. Enzymes can catalyze a large number of reactions with high specificity, efficiency,
and selectivity, which are essential parameters in sensor designing [89]. Advancements in enzyme-based
biosensor research have resulted in improved stability while reducing enzymatic loss and enzyme
response time [90]. It has been demonstrated that the stability of enzymes is affected by pH, ionic
strength, chemical inhibitors, solvent polarity, and temperature. The structure of graphene-based
nanomaterials can be an effective transducer since it allows the direct electron transfer between enzymes
and electrodes [13]. Furthermore, graphene-based materials have been shown to be excellent substrates
for increasing thermal stability, enzymatic activity, and for enzyme immobilization [91-93].

Several approaches have been developed to immobilize enzymes onto graphene surfaces to create
enzyme-based biosensors. Some of the most common methods are sonication, mixing, ultrasound, and
cyclic voltammetry. These methods allow the attachment of the enzymes via adsorption, covalent
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bonding, or physical entrapment. To date, the nonspecific binding of the enzyme to graphene via physical
adsorption is the most common one (see Table 4) since this immobilization technique is chemical-free
and straightforward. Another method also used to immobilize enzymes on the nanomaterial is the
EDC/NHS chemistry. This method described earlier is also common for enzymes because of its high
stability and robustness.

Enzyme-based biosensors are typically of electrochemical nature. This method possesses
advantages over the others because their electrodes can sense materials present in the host without
damaging the system. Enzyme-based electrochemical biosensors rely primarily on two mechanisms; one
is based on the catalytic properties of the enzymes (the enzyme catalyzes the analyte from its undetectable
form to a detectable form), and the other is based on enzyme activity inhibition/moderation [94]. Each of
these two mechanisms can create a detectable electrical signal change on the sensor electrode allowing for
the quantification of a particular analyte. In particular, this electrical signal is generated from the change
in current on the surface of the substrate as a direct result of the enzyme’s activity. Enzymes catalyze
redox reactions which either produce or consume electrons thus altering the electrical current flowing to
the detection platform. The fundamental principle of how enzymatic biosensors work is presented in
Figure 5. While enzymes can be costly to utilize, sensors employing enzymes can detect a variety of
compounds with high specificity that would otherwise be difficult to detect in complex mixtures. For
example, these sensors can be particularly useful in detecting compounds such as phenols, hydrogen
peroxide, 17B-estradiol, glucose, and bilirubin as described later in this section.

Different molecules have been detected with enzyme-based nanosensors. The most commonly
used model enzymes utilized for the development of these sensors are laccase and horseradish peroxidase
(HRP) [95]. These enzymes are less costly, more commonly available, and versatile allowing them to be
used to detect a high number of different compounds. Laccase is an oxygen-reducing enzyme which can
have a variety of applications. For example, a laccase-based electrochemical biosensor was developed for
the detection of 17p-estradiol, a natural hormone classified as an emerging contaminant affecting humans
and aquatic life [96]. Additionally, laccase can be used for the detection of phenols and catechols [95,97—
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99]. HRP, the other enzyme widely used for enzyme immobilization studies, can help determine hydrogen
peroxide concentrations even under complex test conditions [100]. HRP has been immobilized on porous
calcium carbonate microspheres encapsulated with graphene capsules and presented high selectivity
towards hydrogen peroxide. This sensor platform could potentially be used to immobilize different
enzymes for stable, long-term use as a biosensor [100]. Furthermore, HRP, as well as laccase, have been
immobilized on a rGO-Fe3;O4 based substrate [95]. This hybrid nanomaterial takes advantage of the
properties of rGO and the magnetic properties of iron oxide making it an attractive substrate for biosensor
design.

While HRP and laccase have been vital in enzyme biosensor studies, other enzymes can be
immobilized to create highly specific biosensors. For example, bilirubin oxidase was immobilized on GO-
based surfaces [101,102]. Such biosensors can have a significant impact in the medical field due to their
ability to detect bilirubin, an essential compound for assessing liver function. Another enzyme with
medical applications is glucose oxidase (GOx). This enzyme is highly specific and has been used to
develop biosensors for the measurement of glucose levels [103—111]. This type of biosensor could be
especially important to diabetic patients. As such, in recent years, GOx has been immobilized using
different sensing platforms, such as: zinc sulfide decorated graphene [103], three dimensional graphene
[111], silk fibroin film on a graphene field effect transistor [104], nanostructured graphene-conducting
polyaniline (PANI) composite [105], three-dimensional GO and polyaniline (PANI) composite [109], GO
and titanium oxide nanoparticles modified with an Organic-Inorganic Supporting Ligand (OISL) [106],
and gold-palladium modified polyimide/rGO film [110], among others. These sensing platforms show
the versatility that graphene and its nanocomposites have regarding the chemistry for the detection of
different substrates.

Table 4: Recent studies using graphene-based materials to immobilize enzymes.

Enzyme | Immobilization | Testing Detection Attachment | Range Ref.

platform compound | method

Laccase, | Fe;04-rGO — Adsorption — [95]




HRP

Laccase | GO-rhodium 17p- Electrochemical | Donor- 0.9-11 pM [96]
nanoparticles estradiol acceptor
interactions
Laccase | Palladium-copper | Phenol Electrochemical | Adsorption 0.005- [97]
nanocages on 1.155mM,
rGO 1.655-
5.155mM
Laccase | Yolk shell Fe.O; | 2,6- Electrochemical | Gluaraldehi- | 0.025-750 [98]
dimethozyp- de reaction uM
henol
Laccase | Graphene- Catechol Amperometric Adsorption 0.085-209.7 [99]
Cellulose uM
microfiber
Laccase | MoS; and Caffeic acid | Electrochemical | Electrostatic | 0.38-100 uM | [112]
graphene interaction
quantum dots
HRP CaCOs Hydrogen Electrochemical | Absorption 0.01-12 [100]
microspheres peroxide mmol/L
encapsulated
with a graphene
capsule
HRP 3D Hydrogen Electrochemical | In-situ self- 0.2 uM-1.1 [113]
graphene/methyle | peroxide polymerized | mM
ne blue-carbon polydopamin
nanotubes e
Bilirubin | Electrochemicall | — - Adsorption - [102]
Oxidase | y reduced GO
GOx ZnS-graphene Hydrogen Electrochemical | — - [103]
peroxide,
Glucose
GOx Silk-graphene Glucose Electrical Hydrophobic | 0.1-10 mM [104]
field effect interaction
transistor
GOx Nanostructured Glucose Electrochemical | Adsorption 10.0 pM-1.48 | [105]
graphene with mM
conducting
polyaniline
GOx Ti0,-GO-OISL Hydrogen Electrochemical | Immobilizati | 1-120 uM [106]
peroxide on
GOx Chitosan/Nafion/ | Hydrogen 3-300 uM, [107]
Pt peroxide, 0.5 uyM-1
nanoparticle/SG | Glucose mM
GT
GOx GO modified by | Glucose — Carbodiimide | — [108]
amidation coupling
GOx 3D GO and Glucose Electrochemical | — 0.07-1.10 [109]
PANI mM
GOx AuPd-rGO- Hydrogen Electrochemical | Adsorption 0.004-1.0 [110]
polyimide peroxide, mM, 0.024-
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Glucose 4.6 mM

GOx 3D graphene Glucose Electrochemical | — 0.3-6 mM [111]

Conclusion

In this mini-review, we have reported the recent studies describing graphene and graphene-related
biosensors with possible applications in clinical settings and life sciences. We have shown results of the
reported analytical performance of each sensor and indicated their use in the life sciences and medical
fields. DNA, antibody, and enzyme-based biosensors have been presented in this study since each has its
advantages and disadvantages. Overall, the type of sensor selected will depend on the type of application.
For example, use of DNA in biosensing technology can be a cost-effective method for the rapid detection
of microbes, viruses, or cancer markers. However, due to the vast variety of molecules present in the
body, use of antibodies or enzymes in biosensors can be more effective in the detection or monitoring of
certain diseases. For instance, antibodies can be used for the specific detection of viruses such as the Zika
virus, HIV, Influenza A virus, among others. Enzymes, on the other hand, have shown to be promising in
detecting glucose levels with only small amounts of sample. Overall, the incorporation of graphene and
graphene-based nanomaterials in biosensor technologies have shown great promise due to its high surface
area, electrical conductivity, electron transfer rate, and its capacity to immobilize a variety of different
biomolecules. The developments of biosensors that are sensitive, stable, and specific to their target
molecule and that can be processed rapidly are promising for use in clinical settings. However, to achieve
uniform and reliable analysis results and produce biosensors capable of being used in the medical field,

many more studies need to be conducted examining the safety and reliability of the sensors.
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AuNPs: Gold nanoparticles
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HCV: hepatitis C virus

HIV: human immunodeficiency virus
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