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1 Introduction

One of the most challenging goals in the study of Quantum Chromodynamics (QCD) is

a precise mapping of the phase diagram of strongly interacting matter. First principle,

lattice QCD simulations predict that the transition from hadrons to deconfined quarks and

gluons is a smooth crossover [1–6], taking place in the temperature range T ' 145–165MeV.

Lattice simulations cannot presently be performed at finite density due to the sign problem,

thus leading to the fact that the QCD phase diagram is still vastly unexplored when the

asymmetry between matter and antimatter becomes large.

With the advent of the second Beam Energy Scan (BES-II) at the Relativistic Heavy

Ion Collider (RHIC), scheduled for 2019–2020, there is a renewed interest in the heavy ion

community towards the phases of QCD at moderate-to-large densities. A rich theoretical

effort is being developed in support of the experimental program; several observables are

being calculated, in order to constrain the existence and location of the QCD critical point

and to observe it experimentally.

Fluctuations of conserved charges (electric charge Q, baryon number B and strangeness

S) are among the most relevant observables for the finite-density program for several rea-

sons. One possible way to extend lattice results to finite density is to perform Taylor

expansions of the thermodynamic observables around chemical potential µB = 0 [7–11].

Fluctuations of conserved charges are directly related to the Taylor expansion coefficients of

such observables, thus, they are needed to extend first principle approaches to the regions

of the phase diagram relevant to RHIC. An other popular method to extend observables
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to finite density is the analytical continuation from imaginary chemical potentials [12–16].

The agreement between the analytical continuation and Taylor expansion was shown for

the transition temperature with physical quark masses by Bonati et al. in ref. [17].

Fluctuations can also be measured directly, and a comparison between theoretical

and experimental results was used to extract the chemical freeze-out temperature Tf and

chemical potential µBf as functions of the collision energy [18–22]. Such fluctuations have

been recently calculated and extrapolated using the Taylor method in ref. [23]. Finally,

higher order fluctuations of conserved charges are proportional to powers of the correlation

length and are expected to diverge at the critical point, thus providing an important

signature for its experimental detection [9, 24, 25].

In this paper, we calculate several diagonal and non-diagonal fluctuations of conserved

charges up to sixth-order and give estimates for higher orders, in the temperature range

135MeV ≤ T ≤ 220MeV, for a system of 2+1+1 dynamical quarks with physical masses

and lattice size 483 × 12. We simulate the lower-order fluctuations at imaginary chemical

potential and extract the higher order fluctuations as derivatives of the lower order ones

at µB = 0. This method has been successfully used in the past and proved to lead to

a more precise determination of the higher order fluctuations, compared to their direct

calculation [26, 27]. The direct method (see e.g. [7]) requires the evaluation of several

terms and is affected by a signal-to-noise ratio which is decreasing as a power law of the

spatial volume V , with an exponent that grows with the order of the susceptibility.

We also construct combinations of these diagonal and non-diagonal fluctuations in

order to study the ratio of the cumulants of the net-baryon number distribution as functions

of temperature and chemical potential by means of their Taylor expansion in powers of

µB/T . We discuss their qualitative comparison with the experimental results from the

STAR collaboration, as well as the validity of the truncation of the Taylor series.

The paper is organized as follows: we first discuss the use of imaginary chemical poten-

tials in section 2. Section 3 gives details on the lattice setup, on the fitting procedure, on its

generalization for cross-correlators, and finally on the error estimation. The phenomeno-

logical results for the ratios of kurtosis, skewness and variance of the baryon number are

presented in section 4. Conclusions and outlook are discussed in section 5, while in the

appendix we present all diagonal and non-diagonal fluctuations needed to construct the

cumulant ratios shown in section 4, and give additional technical details.

2 Fluctuations and imaginary chemical potentials

The chemical potentials are implemented on a flavor-by-flavor basis, their relation to the

phenomenological baryon (B), electric charge (Q) and strangeness (S) chemical potentials

are given by

µu =
1

3
µB +

2

3
µQ

µd =
1

3
µB −

1

3
µQ

µs =
1

3
µB −

1

3
µQ − µS . (2.1)
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The observables we are looking at are the derivatives of the free energy with respect to the

chemical potentials. Since the free energy is proportional to the pressure, we can write:

χB,Q,S
i,j,k =

∂i+j+k(p/T 4)

(∂µ̂B)i(∂µ̂Q)j(∂µ̂S)k
, (2.2)

with

µ̂i =
µi

T
. (2.3)

These are the generalized fluctuations we calculated around µ = 0 in our previous work [28].

The fermion determinant detM(µ) is complex for real chemical potentials, prohibiting

the use of traditional simulation algorithms. For imaginary µ, however, the determinant

stays real. The chemical potential is introduced through weighted temporal links in the

staggered formalism:

U0(µ) = eµU0, U †
0(µ) = e−µU †

0 (2.4)

Thus, an imaginary µ translates into a phase factor for the antiperiodic boundary condition

in the Dirac operator. Due to the Z(3) symmetry of the gauge sector, there is a non-trivial

periodicity in the imaginary quark chemical potential µq → µq+i(2π/3)T , which translates

to the baryochemical potential as µB → µB + i2πT , the Roberge-Weiss symmetry. This

is independent of the charge conjugation symmetry µB ↔ −µB. As a result, e.g. for the

imaginary part of the baryon density:

〈B〉|µB/T=iπ−ε = − 〈B〉|µB/T=iπ+ε (2.5)

At µB = iπT there is a first order phase transition at all temperatures above the

Roberge-Weiss critical end point TRW [29]. When µB crosses iπT in the imaginary direc-

tion, the imaginary baryon density is discontinuous. This behaviour is illustrated in figure 1,

where the imaginary baryon density as a function of the imaginary chemical potential is

shown. At low temperature the Hadron Resonance Gas model predicts 〈B〉 ∼ sinh(µB/T ),

thus for imaginary values we expect a sine function below Tc: Im〈B〉 ∼ sin(ImµB/T ).

At temperatures slightly above Tc, we observe that further Fourier components appear in

addition to sin(ImµB/T ) with alternating coefficients, these are consistent with a repulsive

interaction between baryons [30]. At very high temperatures, on the other hand, 〈B〉 is

a polynomial of µB since the diagrams contributing to its ∼ µ5
B and higher order compo-

nents are suppressed by asymptotic freedom [31, 32]. The Stefan-Boltzmann limit is non-

vanishing only for two Taylor coefficients of Im 〈B〉, giving Im〈B〉|µB/T=iπ−ε = 8π/27. At

finite temperatures above TRW this expectation value is smaller but positive. By eq. (2.5),

it implies a first order transition at µB = iπT .

The order of the transition at TRW heavily depends on the quark masses [33, 34]. For

physical quark masses one obtains TRW = 208(5) MeV, and the scaling around the end-

point is consistent with the Ising exponents [35]. This implies that, for physical parameters,

the transition is limited to µB = iπT without any other structures between the imaginary

interval [0, iπ) [33].
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 0 π/2 π 3π/2 2π

Im <B>

T = Tc 

T< Tc

Tc < T < TRW

T > TRW

Im µB/T

Figure 1. Cartoon for the imaginary baryon number (Im χB
1 ) as a function of the imaginary

chemical potential. TRW is the temperature of the Roberge-Weiss critical point.

Thus, we have only the range µ/T ∈ [0, iπ) to explore the µ-dependence of the observ-

ables. Recent simulations in this range include the determination of the transition line,

where the slope was determined on the negative side of the T − µ2
B phase diagram. Using

analyticity arguments, this coefficient gives the curvature of the transition line on the real

T −µB phase diagram [36–38]. Apart from the transition temperature, we used imaginary

chemical potentials also to extrapolate the equation of state to real µB [26], which serves

as an alternative approach to the Taylor extrapolation [39]. In an recent study D’Elia

et al. have used the low order fluctuations at imaginary chemical potentials to calculate

generalized quark number susceptibilities [27].

3 Analysis details

3.1 Lattice setup

In this work we calculate high order fluctuations by studying the imaginary chemical po-

tential dependence of various generalized quark number susceptibilities.

We use a tree-level Symanzik improved gauge action, with four times stout smeared

(ρ = 0.125) staggered fermions. We simulate 2 + 1 + 1 dynamical quarks, where the light

flavors are tuned in a way to reproduce the physical pion and kaon masses and we set
mc

ms
= 11.85 [40]. For the zero-temperature runs that we used for the determination of the

bare masses and the coupling, the volumes satisfy Lmπ > 4. The scale is determined via

fπ. More details on the scale setting and lattice setup can be found in [28].

Our lattice ensembles are generated at eighteen temperatures in the temperature range

135. . . 220MeV. We simulate at eight different values of imaginary µB given as: µ
(j)
B = iT jπ

8

for j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. In this work the analysis is done purely on a 483 × 12 lattice,

we leave the continuum extrapolation for future work.

In terms of quark chemical potentials we generate ensembles with µu=µd=µs=µB/3.

In each simulation point we calculate all derivatives in eq. (2.2) up to fourth order. Thanks

to our scan in Im µ̂B, we can calculate additional µB derivatives. Ref. [27] uses various
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“trajectories” in the µB − µQ − µS space, allowing the numerical determination of higher

e.g. µQ and µS derivatives. We find relatively good signal for the µQ and µS derivatives

by directly evaluating eq. (2.2) within one simulation. We recently summarized the details

of the direct calculation in ref. [28].

3.2 Expected result for χ
B

8

Before we embark into the discussion of the fit procedure we outline our expectations for

the higher order fluctuations. It is an established fact that Tc changes with the chemical

potential [17, 36–38] resulting in a positive curvature κ of the phase diagram with:

Tc = T

(

1− κ
µ2
B

T 2
+O

(

µ4
B

T 4

))

(3.1)

Let us make a simple observation regarding the observed pattern of the baryon den-

sities at imaginary chemical potential. At leading order in µ̂B the baryon density is sim-

ply χB
1 (T, µ̂B) ≈ χB

2 (T, 0)µ̂B. Thus, at very small chemical potential χB
1 (T, µ̂B)/µ̂B ≈

χB
2 (T, 0). In the left panel of figure 2 we show this ratio in the limit of µB = 0, that is, we

plot χB
2 (T, 0) and interpolate with a spline. We have access to the same ratio χB

1 (T, µ̂B)/µ̂B

at larger imaginary chemical potentials as well, one example (µ̂B = i5π/8) is plotted with

blue dots in figure 2. This curve is essentially similar, but its inflection point has been

shifted to higher temperatures, as a consequence of a positive κ parameter. We define the

following rescaling:

χB
1
(toy)

(T, µ̂B) = µ̂Bχ
B
2

(

T (1 + κµ̂2
B), 0

)

(3.2)

The quality of the agreement between χB
1
toy

and χB
1 can be seen in the left panel of figure 2.

For the rescaling we used κ = 0.02 as obtained for the µS = 0 setup in ref. [38]. We note

that χB
2 at finite chemical potential cannot be so simply approximated by shifting the

µB = 0 result.

The relation (3.2) is just an approximation, but if it is takes as a definition of a toy

model it gives access to the µ̂B dependence at any temperature if χB
2 (T, 0) is known. The

high µ̂B-derivatives of χB
1
(toy)

lead to high T -derivatives of χB
2 (T, 0), this is only possible

if we have a smooth interpolation, preferably an analytical formula for f(T ) = χB
2 (T, 0).

Being (3.2) inexact there is no point in tuning f(T ) too precisely to the lattice data, instead

we choose a simple sigmoid fit function: f(T ) = A+BT +Catan(D(T −E)) that describes

the gross features of the curve in the [120:300] MeV temperature interval. The resulting

χB
2n(T, 0) functions we give later in figure 4 where we also compare this toy model to the

lattice result.

Although the toy model only incorporates the feature of a smooth χB
2 (T, 0) and the

shifting of Tc with the chemical potential it correctly reproduces the oscillatory pattern of

the higher fluctuations.

At this point we use only the χB
8 /χ

B
4 ratio to motivate a prior that we will introduce

in the next section to stabilize the µ̂B fit. We know that in the Hadron Resonance Gas

model this ratio is one. We must, however, expect also slightly higher values, that would
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<B>/µB

κ=0.02

simulated at

imaginary µB/T=2i

shifted µB/T=0 result

µB/T=0 result

T [MeV]

-8

-6

-4

-2

 0

 2

 4

 120  140  160  180  200  220  240

T [MeV]

toy model HRG

χ
B

8/χ
B

4

Figure 2. Toy model setup and its result for χB
8 /χ

B
4 . In the left panel we observe that the directly

simulated χB
1 (T, µ̂B)/µB at imaginary chemical potential can be approximately reproduced by

rescaling the µB = 0 result χB
2 (T, 0), (see eq. (3.2)). The right panel shows a specific ratio of high

order fluctuations. The extraction of χB
8 is stabilized by a prior bound to χB

4 . With dark and light

bands we show the one and two σ regions of the prior distribution. The Hadron Resonance Gas

predicts 1 for this ratio, at high temperatures the Stefan-Boltzmann limit gives zero.

correspond to a signal from a nearby critical end point. The pattern of χB
8 /χ

B
4 in the right

panel of figure 2 is slightly asymmetric. In this paper we define a prior with

χ8 = χ4(−1.25 + 2.75ξ) , (3.3)

where ξ is a stochastic variable with normal distribution.

The HRG prediction is χ2n/χ4 = 1, which is within the prior range. At high tempera-

tures higher order fluctuations quickly approach the Stefan-Boltzmann limit as it was seen

in HTL perturbation theory [41, 42] as well as on lattice [28, 43]. The Stefan-Boltzmann

limit is zero for χB
2n if n ≥ 3. There is no reason to expect our toy model to work at high

temperatures, and indeed, the χB
6 estimate in figure 2 converges to zero slower than the

HTL prediction in ref. [42].

3.3 Correlated fit with priors

We start with the analysis for χB
2 (T ), χ

B
4 (T ) and χB

6 (T ). Our goal is to calculate these

quantities at zero chemical potential, using the imaginary chemical potential data up to

χB
4 (T, µ̂B). In this work we extract these derivatives at a fixed temperature. Results for

different temperatures are obtained completely independently, an interpolation in tem-

perature is not necessary at any point. Thus, the error bars in our results plot will be

independent. The errors between the quantities χB
2 (T ), χ

B
4 (T ) and χB

6 (T ) will be highly

correlated, though, since these are extracted through the same set of ensembles at the

given temperature. This correlation will be taken into account when combined quantities

are calculated, or when an extrapolation to real chemical potential is undertaken.

Thus we consider the ensembles at a fixed temperature T . For each value of imaginary

µB 6= 0 we determine χB
1 , χ

B
2 , χ

B
3 and χB

4 from simulation, while for µB = 0 only χB
2 and

χB
4 can be used, since χB

1 and χB
3 are odd functions of µB and therefore equal to zero.

– 6 –
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We make the ansatz for the pressure:

χB
0 (µ̂B) = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B + c8µ̂

8
B + c10µ̂

10
B , (3.4)

where the Taylor expansion coefficients cn are related to the baryon number fluctuations

χB
n by: n!cn = χB

n . Our data do not allow for an independent determination of c8 and

c10. Nevertheless, in order to have some control over these terms we make assumption on

the higher order terms. In section 3.2 we have motivated and specified our choice for a

prior distribution of eq. (3.3) for χB
8 = 8!c8. In the fit function we keep the terms up to

χB
10 = 10!c10. Without this term the statistical errors on χB

8 were clearly smaller, but the

fit would be less controlled. As the highest order in the function, the resulting χB
10 probably

contains severe contamination from even higher order terms. For this reason, and since we

fit χB
10 with large statistical errors we do not give results on that quantity. For simplicity,

we use the same prior distribution for χB
10/χ

B
4 as for χB

8 /χ
B
4 .

We can then rewrite our ansatz as

χB
0 (µ̂B) = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B +

4!

8!
c4ε1µ̂

8
B +

4!

10!
c4ε2µ̂

10
B , (3.5)

where ε1 and ε2 are drawn randomly from a normal distribution with mean -1.25 and

variance 2.75. We use the same distribution for all temperatures. In effect, our c8 and c10
coefficients are stochastic variables. The used distribution for ε1,2 actually implements a

prior for χB
8 and χB

10.

For this ansatz we calculate the following derivatives, which are the actually simulated

lattice observables:

χB
1 (µ̂B) = 2c2µ̂B + 4c4µ̂

3
B + 6c6µ̂

5
B +

4!

7!
c4ε1µ̂

7
B +

4!

9!
c4ε2µ̂

9
B (3.6)

χB
2 (µ̂B) = 2c2 + 12c4µ̂

2
B + 30c6µ̂

4
B +

4!

6!
c4ε1µ̂

6
B +

4!

8!
c4ε2µ̂

8
B (3.7)

χB
3 (µ̂B) = 24c4µ̂B + 120c6µ̂

3
B +

4!

5!
c4ε1µ̂

5
B +

4!

7!
c4ε2µ̂

7
B (3.8)

χB
4 (µ̂B) = 24c4 + 360c6µ̂

2
B + c4ε1µ̂

4
B +

4!

6!
c4ε2µ̂

6
B. (3.9)

We perform a correlated fit for the four measured observables, thus obtaining the values

of c2, c4 and c6 for each temperature, and the corresponding χB
2 , χ

B
4 and χB

6 . We repeat

the fit for 1000 random draws for ε1 and ε2. The result is weighted using the Akaike

Information Criterion [44]. Through these weights we get a posterior distribution from the

prior distribution. Our final estimate for χB
8 represents this posterior distribution. These

results are shown in figure 3, together with an estimate of χB
8 , related to χB

4 by eq. (3.5).

Finally we show a comparison of these fit results to the toy model that we introduced

in section 3.2. We find a reasonable (though not complete) agreement with data. The toy

model correctly finds the zero crossings and acceptably approximates heights of the peaks

in the temperature dependence. (Note, that varying the interpolator in the toy model

will alter the peak heights of the resulting χB
2n(T ) functions.) We emphasize that the toy

model assumed only the shift of the transition temperature with the chemical potential

– 7 –
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4 Phenomenology at finite chemical potential

For a comparison with heavy ion collision experiments, the cumulants of the net-baryon dis-

tribution are very useful observables. The first four cumulants are the mean MB, the vari-

ance σ2
B, the skewness SB and the kurtosis κB. By forming appropriate ratios, we can can-

cel out explicit volume factors. However, the measured distributions themselves may still

depend on the volume, which one should take into account when comparing to experiments.

Heavy ion collisions involving lead or gold atoms at µB > 0 correspond to the following

situation

〈nS〉 = 0 〈nQ〉 = 0.4〈nB〉 . (4.1)

For each T and µB pair, we have to first calculate µQ and µS that satisfy this condition. The

resulting µQ(µB) and µS(µB) functions, too, can be Taylor expandend [19, 20], introducing

qj =
1

j!

djµ̂Q

(dµ̂B)j

∣

∣

∣

∣

µB=0

(4.2)

sj =
1

j!

djµ̂S

(dµ̂B)j

∣

∣

∣

∣

µB=0

. (4.3)

We investigate three different ratios of cumulants:

MB

σ2
B

=
χB
1 (T, µ̂B)

χB
2 (T, µ̂B)

= µ̂Br
B,1
12 + µ̂3

Br
B,3
12 + . . . (4.4)

SBσ
3
B

MB
=

χB
3 (T, µ̂B)

χB
1 (T, µ̂B)

= rB,0
31 + µ̂2

Br
B,2
31 + . . . (4.5)

κBσ
2
B =

χB
4 (T, µ̂B)

χB
2 (T, µ̂B)

= rB,0
42 + µ̂2

Br
B,2
42 + µ̂4

Br
B,4
42 + . . . (4.6)

The µB-dependence of the χB
i (T, µ̂B) can again be written as a Taylor series:

χBQS
i,j,k (µ̂B) = χBQS

i,j,k (0) + µ̂B

[

χBQS
i+1,j,k(0) + q1χ

BQS
i,j+1,k(0) + s1χ

BQS
i,j,k+1(0)

]

+
1

2
µ̂2
B

[

χBQS
i+2,j,k(0) + q21χ

BQS
i,j+2,k(0) + s21χ

BQS
i,j,k+2(0)

+ 2q1s1χ
BQS
i,j+1,k+1(0) + 2q1χ

BQS
i+1,j+1,k(0) + 2s1χ

BQS
i+1,j,k+1(0)

]

+ . . . . (4.7)

The χ coefficients that we determined in section 3 include derivatives up to sixth order,

and we have estimates for the eighth order, too. The fit coefficients corresponding to the

tenth order are likely to be contaminated by higher orders, that we did not include into

the ansatz. These χBQS
ijk coefficients, however, are given for j + k ≤ 4, which is the highest

order that we used in µQ and µS .
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and is not contained in the next-to-leading order (NLO) band. This behaviour reflects

the pattern in the Taylor coefficients of figure 8. Notice that up to T = 155MeV rB,4
42

is consistent to zero, and already positive at 160MeV or somewhat higher temperatures.

For temperatures where we have a small rB,4
42 coefficient the NLO result is satisfactory. To

make the NNLO prediction precise substantially more computer time would be needed.

5 Conclusions and outlook

In this manuscript, we have calculated several diagonal and non-diagonal fluctuations of

electric charge, baryon number and strangeness up to sixth-order, in a system of 2+1+1

quark flavors with physical quark masses, on a lattice with size 483 × 12. The analysis

has been performed simulating the lower order fluctuations at zero and imaginary chemical

potential µB, and extracting the higher order fluctuations as derivatives of the lower order

ones at µB = 0. The chemical potentials for electric charge and strangeness have both

been set to zero in the simulations. From these fluctuations, we have constructed ratios

of baryon number cumulants as functions of T and µB, by means of a Taylor series which

takes into account the experimental constraints 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉. These

ratios qualitatively explain the behavior observed in the experimental measurements by

the STAR collaboration as functions of the collision energy.

We focused on observables (baryon distribution, ratios of cumulants) that are less

sensitive to lattice artefacts. An obvious extension of our work will be the use of finer

lattices and a continuum extrapolation. The other extension is to use a two- or even

three-dimensional mapping of the space of the imaginary chemical potentials using non-

vanishing µS and µQ. That would not only improve the µS− and µQ−derivatives, but

would allow us to study the melting of states with various strangeness and electric charge

quantum numbers. Our first study in this direction using strangeness chemical potentials

was published in ref. [49].
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B Statistics and lattice details

In table 1 we give the number of analyzed configurations per ensemble. The simulation

parameters and the details of the analysis are given in ref. [28].

The determination of the µ derivatives follows the lines of refs. [7, 28]. We calculate

four quantities per configuration and per quark mass

Aj =
d

dµj
log(detMj)

1/4 =
1

4
trM−1

j M ′
j , (B.1)

Bj =
d2

(dµj)2
log(detMj)

1/4 =
1

4
tr
(

M ′′
j M

−1
j −M ′

jM
−1
j M ′

jM
−1
j

)

, (B.2)

Cj =
d3

(dµj)3
log(detMj)

1/4 =
1

4
tr
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M ′
jM

−1
j − 3M ′′

j M
−1
j M ′

jM
−1
j

+2M ′
jM

−1
j M ′

jM
−1
j M ′

jM
−1
j

)

, (B.3)

Dj =
d4

(dµj)4
log(detMj)

1/4 =
1

4
tr
(

M ′′
j M

−1
j − 4M ′

jM
−1
j M ′

jM
−1
j − 3M ′′

j M
−1
j M ′′

j M
−1
j

+12M ′′
j M

−1
j M ′

jM
−1
j M ′
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−6M ′
jM

−1
j M ′

jM
−1
j M ′

jM
−1
j M ′

jM
−1
j

)

. (B.4)

Here Mj is the fermion matrix corresponding to the j-th quark mass in the system. M ′

and M ′′ indicate the first and higher order derivatives with respect to the quark chemical

potential. For this simple staggered action higher order derivatives are equal to lower order

ones, M ′′′ = M ′ and M ′′′′ = M ′′ by construction. These traces are calculated using the

standard stochastic method, by calculating the effect of the matrices on random sources.

At finite (imaginary) chemical potentials we used 4× 256 Gaussian random sources for the

light quarks and 4 × 128 sources for the strange quarks. The analysis was accelerated by

calculating 256 eigenvectors of the Dirac operator first. These eigenvectors were then fed

into an Eig-CG algorithm.

Using the isospin symmetry (mu = md), the ABCD traces can be used to calculate

the χuds derivatives with the following formulas:

χuds
200 = +〈Bu〉+ 〈A2

u〉 − 〈Au〉
2 (B.5)

χuds
110 = +〈A2

u〉 − 〈Au〉
2 (B.6)

χuds
101 = +〈AuAs〉 − 〈As〉〈Au〉 (B.7)

χuds
300 = +〈Cu〉+ 3〈AuBu〉+ 〈A3

u〉 − 3〈Bu〉〈Au〉 − 3〈Au〉〈A
2
u〉+ 2〈Au〉

3 (B.8)

χuds
210 = +〈AuBu〉+ 〈A3

u〉 − 〈Bu〉〈Au〉 − 3〈Au〉〈A
3
u〉+ 2〈Au〉

3 (B.9)

χuds
120 = +〈AuBu〉+ 〈A3

u〉 − 〈Bu〉〈Au〉 − 3〈Au〉〈A
2
u〉+ 2〈Au〉

3 (B.10)

χuds
111 = +〈AuAuAs〉 − 〈As〉〈A

2
u〉 − 2〈Au〉〈AuAs〉+ 2〈As〉〈Au〉

2 (B.11)
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χuds
400 = +〈Du〉+ 3〈BuBu〉+ 4〈AuCu〉+ 6〈A2

uBu〉+ 〈A4
u〉

− 4〈Cu〉〈Au〉 − 3〈Bu〉
2 − 6〈Bu〉〈A

2
u〉 − 12〈Au〉〈AuBu〉

− 4〈Au〉〈A
3
u〉 − 3〈AuAu〉〈A

2
u〉+ 12〈Bu〉〈Au〉

2

+ 12〈Au〉
2〉〈A2

u〉 − 6〈Au〉
4 (B.12)

χuds
310 = +〈AuCu〉+ 3〈A2

uBu〉+ 〈A4
u〉 − 〈Cu〉〈Au〉 − 3〈Bu〉〈A

2
u〉

− 6〈Au〉〈AuBu〉 − 4〈Au〉〈A
3
u〉 − 3〈A2

u〉〈A
2
u〉

+ 6〈Bu〉〈Au〉
2 + 12〈Au〉〈Au〉〈A

2
u〉 − 6〈Au〉

4 (B.13)

χuds
220 = +〈B2

u〉+ 2〈A2
uBu〉+ 〈A4

u〉 − 〈Bu〉
2 − 2〈Bu〉〈A

2
u〉

− 4〈Au〉〈AuBu〉 − 4〈Au〉〈A
3
u〉 − 3〈A2

u〉〈A
2
u〉

+ 4〈Bu〉〈Au〉〈Au〉+ 12〈Au〉〈Au〉〈A
2
u〉 − 6〈Au〉

4 (B.14)

χuds
211 = +〈AuBuAs〉+ 〈A3

uAs〉 − 〈As〉〈AuBu〉 − 〈As〉〈A
3
u〉 − 〈Bu〉〈AuAs〉 − 〈BuAs〉〈Au〉

− 3〈Au〉〈A
2
uAs〉 − 3〈AuAs〉〈A

2
u〉+ 2〈As〉〈Bu〉〈Au〉+ 6〈As〉〈Au〉〈A

2
u〉

+ 6〈Au〉
2〈AuAs〉 − 6〈As〉〈Au〉

3 (B.15)

If the listed products of the A,B,C,D traces are calculated as products of the stochastic

estimators, a bias could be introduced. Thus, in products different random vectors have to

be used in each factor. Alternatively, the expectation value of the bias has to be subtracted.

The last step is to express the derivatives in terms of µB, µQ and µS in eq. (2.2) using

eqs. (2.1), which is a straightforward exercise.

C Data tables

For the reproducibility of this work we tabulate the raw data at two temperatures of this

study in tables 3–6. We have chosen one temperature below deconfinement (140MeV) and

one above (170MeV), near the peak of the higher order baryon fluctuations.

For T = 140 MeV we used the parameters: β = 3.7420, amud = 0.00185777, ams =

0.0519023 and amc = 0.615042. For T = 170 MeV we had β = 3.8236, amud = 0.00151761,

ams = 0.0420951 and amc = 0.498827. For a complete list of the simulation parameters

see ref. [28]. In all cases we used the ρ = 0.125 smearing parameters in four levels of stout

smearing in the fat links of the standard staggered action. For the gluon fields we employed

the tree-level improved Symanzik action.

In table 2 we illustrate the correlations between the mean baryon, electric charge and

strangeness. Black dots means 100% correlation, red dot stands for perfect anti-correlation.

The strong correlations can be understood by the relation

χB
1 − 2χQ

1 + χS
1 = 0 (C.1)

which is exactly satisfied by our data. This relation follows from the isospin symmetric

setting of our simulations with mu = md and µu = µd for the u and d quarks.
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obs j = 0 j = 1 j = 2 j = 3

χBQS
100 - 0.018± 0.003 0.032± 0.001 0.044± 0.001

χBQS
200 0.048± 0.001 0.047± 0.006 0.030± 0.002 0.018± 0.002

χBQS
300 - 0.034± 0.025 0.039± 0.009 0.039± 0.010

χBQS
400 0.052± 0.014 −0.001± 0.093 −0.043± 0.038 −0.017± 0.045

χBQS
010 - 0.004± 0.001 0.009± 0.000 0.012± 0.000

χBQS
110 0.013± 0.000 0.013± 0.002 0.008± 0.001 0.005± 0.001

χBQS
210 - 0.007± 0.007 0.011± 0.003 0.012± 0.003

χBQS
310 0.014± 0.005 −0.021± 0.048 0.009± 0.016 0.004± 0.020

χBQS
020 0.244± 0.001 0.245± 0.003 0.230± 0.001 0.220± 0.001

χBQS
120 - 0.018± 0.007 0.026± 0.002 0.039± 0.003

χBQS
220 0.042± 0.003 0.034± 0.021 0.021± 0.009 0.015± 0.008

χBQS
030 - 0.015± 0.006 0.022± 0.002 0.035± 0.002

χBQS
130 0.037± 0.002 0.030± 0.014 0.026± 0.007 0.019± 0.007

χBQS
040 0.295± 0.004 0.300± 0.030 0.268± 0.010 0.259± 0.011

χBQS
001 - −0.009± 0.002 −0.015± 0.000 −0.020± 0.001

χBQS
101 −0.022± 0.000 −0.021± 0.004 −0.014± 0.001 −0.008± 0.001

χBQS
201 - −0.020± 0.012 −0.016± 0.004 −0.015± 0.004

χBQS
301 −0.024± 0.006 −0.021± 0.048 0.009± 0.016 0.004± 0.020

χBQS
002 0.136± 0.000 0.136± 0.003 0.125± 0.001 0.117± 0.001

χBQS
102 - 0.022± 0.009 0.018± 0.003 0.024± 0.002

χBQS
202 0.031± 0.003 0.035± 0.032 0.012± 0.010 0.000± 0.011

χBQS
003 - −0.027± 0.009 −0.028± 0.002 −0.042± 0.002

χBQS
103 −0.050± 0.002 −0.051± 0.027 −0.027± 0.008 −0.003± 0.007

χBQS
004 0.197± 0.003 0.203± 0.025 0.162± 0.008 0.126± 0.008

χBQS
011 0.057± 0.000 0.057± 0.001 0.055± 0.000 0.055± 0.000

χBQS
111 - 0.001± 0.003 0.001± 0.001 0.004± 0.001

χBQS
211 0.003± 0.002 0.007± 0.012 0.011± 0.004 0.002± 0.006

χBQS
021 - −0.005± 0.004 −0.008± 0.001 −0.012± 0.001

χBQS
121 −0.014± 0.001 −0.016± 0.011 −0.005± 0.003 −0.003± 0.003

χBQS
012 - −0.003± 0.002 −0.005± 0.001 −0.009± 0.001

χBQS
112 −0.009± 0.001 −0.008± 0.006 −0.008± 0.002 −0.001± 0.003

χBQS
022 0.069± 0.001 0.076± 0.010 0.061± 0.002 0.060± 0.002

χBQS
031 0.054± 0.001 0.057± 0.011 0.053± 0.003 0.056± 0.003

χBQS
013 0.073± 0.001 0.076± 0.007 0.067± 0.002 0.062± 0.002

Table 3. Raw data at T = 140MeV and µ
(j)
B = iT jπ

8 for j ∈ {0, 1, 2, 3}.
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obs j = 4 j = 5 j = 6 j = 7

χBQS
100 0.047± 0.001 0.046± 0.001 0.035± 0.002 0.018± 0.001

χBQS
200 0.002± 0.004 −0.015± 0.003 −0.042± 0.005 −0.041± 0.004

χBQS
300 0.022± 0.016 0.028± 0.011 0.046± 0.023 0.007± 0.020

χBQS
400 0.005± 0.070 −0.058± 0.065 −0.105± 0.113 −0.135± 0.113

χBQS
010 0.013± 0.000 0.012± 0.000 0.009± 0.000 0.005± 0.000

χBQS
110 0.001± 0.001 −0.005± 0.001 −0.011± 0.001 −0.012± 0.001

χBQS
210 0.007± 0.004 0.006± 0.003 0.014± 0.007 0.001± 0.006

χBQS
310 −0.000± 0.033 0.027± 0.026 0.053± 0.048 0.063± 0.048

χBQS
020 0.204± 0.001 0.189± 0.001 0.176± 0.001 0.167± 0.001

χBQS
120 0.036± 0.003 0.033± 0.002 0.031± 0.003 0.012± 0.003

χBQS
220 0.005± 0.010 −0.021± 0.011 −0.044± 0.017 −0.048± 0.013

χBQS
030 0.033± 0.002 0.031± 0.002 0.027± 0.003 0.012± 0.002

χBQS
130 0.007± 0.007 −0.015± 0.008 −0.036± 0.011 −0.037± 0.009

χBQS
040 0.223± 0.009 0.181± 0.007 0.159± 0.010 0.138± 0.010

χBQS
001 −0.021± 0.001 −0.021± 0.001 −0.016± 0.001 −0.008± 0.001

χBQS
101 −0.000± 0.002 0.006± 0.001 0.019± 0.002 0.018± 0.002

χBQS
201 −0.007± 0.008 −0.015± 0.005 −0.018± 0.010 −0.006± 0.009

χBQS
301 −0.000± 0.033 0.027± 0.026 0.053± 0.048 0.063± 0.048

χBQS
002 0.105± 0.001 0.096± 0.001 0.083± 0.001 0.080± 0.001

χBQS
102 0.020± 0.005 0.025± 0.003 0.022± 0.005 0.009± 0.005

χBQS
202 −0.002± 0.018 −0.021± 0.013 −0.050± 0.026 −0.050± 0.021

χBQS
003 −0.040± 0.003 −0.042± 0.002 −0.035± 0.003 −0.016± 0.003

χBQS
103 0.004± 0.012 0.021± 0.009 0.057± 0.016 0.053± 0.011

χBQS
004 0.099± 0.010 0.075± 0.008 0.030± 0.013 0.024± 0.009

χBQS
011 0.052± 0.000 0.051± 0.000 0.051± 0.001 0.049± 0.001

χBQS
111 0.007± 0.002 0.005± 0.001 0.002± 0.003 0.002± 0.003

χBQS
211 −0.001± 0.009 0.003± 0.008 0.001± 0.013 0.007± 0.014

χBQS
021 −0.010± 0.001 −0.010± 0.001 −0.009± 0.001 −0.004± 0.001

χBQS
121 −0.000± 0.004 0.007± 0.003 0.014± 0.006 0.017± 0.005

χBQS
012 −0.010± 0.001 −0.009± 0.001 −0.006± 0.001 −0.003± 0.001

χBQS
112 0.001± 0.005 −0.000± 0.004 0.003± 0.006 0.002± 0.006

χBQS
022 0.050± 0.003 0.043± 0.002 0.040± 0.003 0.033± 0.002

χBQS
031 0.049± 0.003 0.050± 0.003 0.055± 0.004 0.051± 0.003

χBQS
013 0.051± 0.003 0.048± 0.002 0.043± 0.004 0.039± 0.003

Table 4. Raw data at T = 140MeV and µ
(j)
B = iT jπ

8 for j ∈ {4, 5, 6, 7}.
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obs j = 0 j = 1 j = 2 j = 3

χBQS
100 - 0.067± 0.001 0.130± 0.002 0.181± 0.001

χBQS
200 0.173± 0.001 0.163± 0.003 0.147± 0.004 0.112± 0.002

χBQS
300 - 0.029± 0.011 0.079± 0.011 0.113± 0.009

χBQS
400 0.069± 0.011 0.045± 0.045 0.096± 0.045 0.108± 0.039

χBQS
010 - 0.011± 0.000 0.022± 0.000 0.031± 0.000

χBQS
110 0.029± 0.000 0.027± 0.001 0.026± 0.001 0.022± 0.000

χBQS
210 - 0.004± 0.002 0.012± 0.002 0.015± 0.002

χBQS
310 0.007± 0.002 −0.058± 0.031 −0.054± 0.030 −0.055± 0.025

χBQS
020 0.474± 0.001 0.471± 0.002 0.456± 0.002 0.434± 0.001

χBQS
120 - 0.020± 0.003 0.048± 0.003 0.068± 0.002

χBQS
220 0.049± 0.002 0.052± 0.009 0.061± 0.008 0.071± 0.007

χBQS
030 - 0.011± 0.002 0.027± 0.002 0.038± 0.001

χBQS
130 0.025± 0.001 0.029± 0.005 0.037± 0.005 0.045± 0.004

χBQS
040 0.249± 0.004 0.260± 0.015 0.286± 0.015 0.302± 0.008

χBQS
001 - −0.045± 0.001 −0.086± 0.001 −0.119± 0.001

χBQS
101 −0.115± 0.001 −0.110± 0.002 −0.096± 0.003 −0.069± 0.002

χBQS
201 - −0.020± 0.008 −0.055± 0.008 −0.082± 0.006

χBQS
301 −0.055± 0.007 −0.058± 0.031 −0.054± 0.030 −0.055± 0.025

χBQS
002 0.411± 0.001 0.405± 0.003 0.381± 0.004 0.339± 0.002

χBQS
102 - 0.034± 0.008 0.083± 0.008 0.121± 0.005

χBQS
202 0.093± 0.006 0.111± 0.029 0.083± 0.027 0.077± 0.020

χBQS
003 - −0.071± 0.009 −0.160± 0.011 −0.226± 0.005

χBQS
103 −0.195± 0.006 −0.214± 0.030 −0.166± 0.028 −0.142± 0.020

χBQS
004 0.600± 0.008 0.605± 0.038 0.551± 0.034 0.486± 0.022

χBQS
011 0.148± 0.000 0.148± 0.001 0.142± 0.001 0.135± 0.001

χBQS
111 - 0.007± 0.001 0.014± 0.001 0.019± 0.001

χBQS
211 0.019± 0.001 0.027± 0.003 0.014± 0.004 0.011± 0.004

χBQS
021 - −0.013± 0.002 −0.029± 0.002 −0.042± 0.001

χBQS
121 −0.034± 0.001 −0.035± 0.005 −0.034± 0.005 −0.035± 0.004

χBQS
012 - −0.018± 0.001 −0.038± 0.002 −0.053± 0.001

χBQS
112 −0.051± 0.001 −0.051± 0.003 −0.041± 0.003 −0.033± 0.003

χBQS
022 0.129± 0.002 0.129± 0.008 0.135± 0.008 0.131± 0.004

χBQS
031 0.083± 0.002 0.082± 0.005 0.089± 0.006 0.085± 0.003

χBQS
013 0.203± 0.002 0.195± 0.006 0.193± 0.007 0.172± 0.003

Table 5. Raw data at T = 170MeV and µ
(j)
B = iT jπ

8 for j ∈ {0, 1, 2, 3}.
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obs j = 4 j = 5 j = 6 j = 7

χBQS
100 0.213± 0.001 0.225± 0.002 0.180± 0.003 0.109± 0.005

χBQS
200 0.055± 0.004 −0.034± 0.008 −0.143± 0.012 −0.245± 0.021

χBQS
300 0.180± 0.016 0.342± 0.057 0.334± 0.065 0.174± 0.168

χBQS
400 0.167± 0.093 0.588± 0.408 −0.698± 0.415 0.223± 1.184

χBQS
010 0.038± 0.000 0.041± 0.000 0.034± 0.001 0.021± 0.001

χBQS
110 0.013± 0.001 −0.003± 0.001 −0.026± 0.002 −0.046± 0.004

χBQS
210 0.029± 0.003 0.065± 0.011 0.071± 0.012 0.036± 0.032

χBQS
310 −0.101± 0.064 −0.329± 0.244 0.478± 0.268 −0.135± 0.739

χBQS
020 0.399± 0.001 0.359± 0.001 0.298± 0.001 0.257± 0.002

χBQS
120 0.099± 0.003 0.135± 0.006 0.139± 0.006 0.094± 0.008

χBQS
220 0.080± 0.013 0.119± 0.039 −0.045± 0.034 −0.174± 0.066

χBQS
030 0.058± 0.001 0.080± 0.003 0.085± 0.003 0.059± 0.004

χBQS
130 0.050± 0.006 0.075± 0.017 −0.012± 0.015 −0.121± 0.033

χBQS
040 0.326± 0.009 0.354± 0.012 0.290± 0.010 0.184± 0.013

χBQS
001 −0.137± 0.001 −0.143± 0.001 −0.112± 0.002 −0.067± 0.003

χBQS
101 −0.030± 0.003 0.028± 0.006 0.091± 0.008 0.153± 0.013

χBQS
201 −0.123± 0.011 −0.212± 0.036 −0.191± 0.043 −0.102± 0.104

χBQS
301 −0.101± 0.064 −0.329± 0.244 0.478± 0.268 −0.135± 0.739

χBQS
002 0.282± 0.003 0.214± 0.004 0.134± 0.005 0.070± 0.009

χBQS
102 0.165± 0.009 0.228± 0.026 0.197± 0.029 0.118± 0.064

χBQS
202 0.104± 0.050 0.213± 0.161 −0.362± 0.178 −0.043± 0.464

χBQS
003 −0.287± 0.009 −0.340± 0.020 −0.286± 0.020 −0.179± 0.040

χBQS
103 −0.131± 0.045 −0.126± 0.113 0.352± 0.123 0.258± 0.299

χBQS
004 0.414± 0.045 0.268± 0.084 −0.212± 0.093 −0.302± 0.206

χBQS
011 0.126± 0.001 0.121± 0.001 0.113± 0.002 0.112± 0.002

χBQS
111 0.021± 0.002 0.008± 0.006 0.003± 0.008 0.008± 0.020

χBQS
211 0.001± 0.008 −0.058± 0.043 0.058± 0.049 −0.089± 0.142

χBQS
021 −0.057± 0.002 −0.074± 0.003 −0.071± 0.004 −0.047± 0.004

χBQS
121 −0.039± 0.008 −0.049± 0.021 0.038± 0.020 0.084± 0.036

χBQS
012 −0.061± 0.002 −0.056± 0.004 −0.044± 0.005 −0.030± 0.013

χBQS
112 −0.014± 0.005 0.044± 0.025 −0.005± 0.033 0.107± 0.090

χBQS
022 0.133± 0.006 0.129± 0.013 0.069± 0.011 0.039± 0.020

χBQS
031 0.083± 0.004 0.069± 0.008 0.100± 0.010 0.133± 0.019

χBQS
013 0.142± 0.005 0.071± 0.016 0.070± 0.022 −0.022± 0.056

Table 6. Raw data at T = 170MeV and µ
(j)
B = iT jπ

8 for j ∈ {4, 5, 6, 7}.
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