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1 Introduction

One of the most challenging goals in the study of Quantum Chromodynamics (QCD) is
a precise mapping of the phase diagram of strongly interacting matter. First principle,
lattice QCD simulations predict that the transition from hadrons to deconfined quarks and
gluons is a smooth crossover [1-6], taking place in the temperature range 7' ~ 145-165 MeV.
Lattice simulations cannot presently be performed at finite density due to the sign problem,
thus leading to the fact that the QCD phase diagram is still vastly unexplored when the
asymmetry between matter and antimatter becomes large.

With the advent of the second Beam Energy Scan (BES-II) at the Relativistic Heavy
Ion Collider (RHIC), scheduled for 2019-2020, there is a renewed interest in the heavy ion
community towards the phases of QCD at moderate-to-large densities. A rich theoretical
effort is being developed in support of the experimental program; several observables are
being calculated, in order to constrain the existence and location of the QCD critical point
and to observe it experimentally.

Fluctuations of conserved charges (electric charge @, baryon number B and strangeness
S) are among the most relevant observables for the finite-density program for several rea-
sons. One possible way to extend lattice results to finite density is to perform Taylor
expansions of the thermodynamic observables around chemical potential up = 0 [7-11].
Fluctuations of conserved charges are directly related to the Taylor expansion coefficients of
such observables, thus, they are needed to extend first principle approaches to the regions
of the phase diagram relevant to RHIC. An other popular method to extend observables



to finite density is the analytical continuation from imaginary chemical potentials [12-16].
The agreement between the analytical continuation and Taylor expansion was shown for
the transition temperature with physical quark masses by Bonati et al. in ref. [17].

Fluctuations can also be measured directly, and a comparison between theoretical
and experimental results was used to extract the chemical freeze-out temperature 7'y and
chemical potential ppy as functions of the collision energy [18-22]. Such fluctuations have
been recently calculated and extrapolated using the Taylor method in ref. [23]. Finally,
higher order fluctuations of conserved charges are proportional to powers of the correlation
length and are expected to diverge at the critical point, thus providing an important
signature for its experimental detection [9, 24, 25].

In this paper, we calculate several diagonal and non-diagonal fluctuations of conserved
charges up to sixth-order and give estimates for higher orders, in the temperature range
135MeV < T < 220 MeV, for a system of 2+1+41 dynamical quarks with physical masses
and lattice size 483 x 12. We simulate the lower-order fluctuations at imaginary chemical
potential and extract the higher order fluctuations as derivatives of the lower order ones
at up = 0. This method has been successfully used in the past and proved to lead to
a more precise determination of the higher order fluctuations, compared to their direct
calculation [26, 27]. The direct method (see e.g. [7]) requires the evaluation of several
terms and is affected by a signal-to-noise ratio which is decreasing as a power law of the
spatial volume V', with an exponent that grows with the order of the susceptibility.

We also construct combinations of these diagonal and non-diagonal fluctuations in
order to study the ratio of the cumulants of the net-baryon number distribution as functions
of temperature and chemical potential by means of their Taylor expansion in powers of
up/T. We discuss their qualitative comparison with the experimental results from the
STAR collaboration, as well as the validity of the truncation of the Taylor series.

The paper is organized as follows: we first discuss the use of imaginary chemical poten-
tials in section 2. Section 3 gives details on the lattice setup, on the fitting procedure, on its
generalization for cross-correlators, and finally on the error estimation. The phenomeno-
logical results for the ratios of kurtosis, skewness and variance of the baryon number are
presented in section 4. Conclusions and outlook are discussed in section 5, while in the
appendix we present all diagonal and non-diagonal fluctuations needed to construct the
cumulant ratios shown in section 4, and give additional technical details.

2 Fluctuations and imaginary chemical potentials

The chemical potentials are implemented on a flavor-by-flavor basis, their relation to the
phenomenological baryon (B), electric charge (@) and strangeness (S) chemical potentials
are given by

1 2
Pu = ZHB + S 1Q

3 3
1 1
Ha = 3NB 3NQ
1 1 (2.1)
Hs = SNB SNQ us- .



The observables we are looking at are the derivatives of the free energy with respect to the
chemical potentials. Since the free energy is proportional to the pressure, we can write:

BQs  OTIR(p/TY)

Ba.s ¢ " W= ) 2.2
sk (0ip) (9hiq)T (Ofis)F (22)

with
gi:%. (2.3)

These are the generalized fluctuations we calculated around p = 0 in our previous work [28].

The fermion determinant det M (p) is complex for real chemical potentials, prohibiting
the use of traditional simulation algorithms. For imaginary u, however, the determinant
stays real. The chemical potential is introduced through weighted temporal links in the
staggered formalism:

Up(p) = e'Uo,  UJ(p) = e U{ (2.4)

Thus, an imaginary p translates into a phase factor for the antiperiodic boundary condition
in the Dirac operator. Due to the Z(3) symmetry of the gauge sector, there is a non-trivial
periodicity in the imaginary quark chemical potential p1; — pg+1(27/3)T, which translates
to the baryochemical potential as up — pp + 1277, the Roberge-Weiss symmetry. This
is independent of the charge conjugation symmetry up <> —pup. As a result, e.g. for the
imaginary part of the baryon density:

<B>‘HB/T:i7r—e == <B>|uB/T:iw+e (25)

At pup = inT there is a first order phase transition at all temperatures above the
Roberge-Weiss critical end point Try [29]. When pp crosses inT in the imaginary direc-
tion, the imaginary baryon density is discontinuous. This behaviour is illustrated in figure 1,
where the imaginary baryon density as a function of the imaginary chemical potential is
shown. At low temperature the Hadron Resonance Gas model predicts (B) ~ sinh(up/T),
thus for imaginary values we expect a sine function below T.: Im(B) ~ sin(Imup/T).
At temperatures slightly above T,, we observe that further Fourier components appear in
addition to sin(Imup/T) with alternating coefficients, these are consistent with a repulsive
interaction between baryons [30]. At very high temperatures, on the other hand, (B) is
a polynomial of pp since the diagrams contributing to its ~ u% and higher order compo-
nents are suppressed by asymptotic freedom [31, 32]. The Stefan-Boltzmann limit is non-
ppTim—e = 8m/27. At
finite temperatures above Try this expectation value is smaller but positive. By eq. (2.5),

vanishing only for two Taylor coefficients of Im (B), giving Im(B)]

it implies a first order transition at ug = in7T.

The order of the transition at Try heavily depends on the quark masses [33, 34]. For
physical quark masses one obtains Try = 208(5) MeV, and the scaling around the end-
point is consistent with the Ising exponents [35]. This implies that, for physical parameters,
the transition is limited to up = inT" without any other structures between the imaginary
interval [0,4m) [33].
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Figure 1. Cartoon for the imaginary baryon number (Im x¥) as a function of the imaginary
chemical potential. Try is the temperature of the Roberge-Weiss critical point.

Thus, we have only the range /T € [0, im) to explore the py-dependence of the observ-
ables. Recent simulations in this range include the determination of the transition line,
where the slope was determined on the negative side of the 7' — u% phase diagram. Using
analyticity arguments, this coefficient gives the curvature of the transition line on the real
T — pup phase diagram [36-38]. Apart from the transition temperature, we used imaginary
chemical potentials also to extrapolate the equation of state to real up [26], which serves
as an alternative approach to the Taylor extrapolation [39]. In an recent study D’Elia
et al. have used the low order fluctuations at imaginary chemical potentials to calculate

generalized quark number susceptibilities [27].

3 Analysis details

3.1 Lattice setup

In this work we calculate high order fluctuations by studying the imaginary chemical po-
tential dependence of various generalized quark number susceptibilities.

We use a tree-level Symanzik improved gauge action, with four times stout smeared
(p = 0.125) staggered fermions. We simulate 2 4+ 1 4+ 1 dynamical quarks, where the light
flavors are tuned in a way to reproduce the physical pion and kaon masses and we set
e =11.85 [40]. For the zero-temperature runs that we used for the determination of the
bare masses and the coupling, the volumes satisfy Lm, > 4. The scale is determined via
fr=. More details on the scale setting and lattice setup can be found in [28].

Our lattice ensembles are generated at eighteen temperatures in the temperature range
135...220 MeV. We simulate at eight different values of imaginary pp given as: ug) = Z'T%7T
for j € {0,1,2,3,4,5,6,7}. In this work the analysis is done purely on a 483 x 12 lattice,
we leave the continuum extrapolation for future work.

In terms of quark chemical potentials we generate ensembles with , =g = s =p1p/3.
In each simulation point we calculate all derivatives in eq. (2.2) up to fourth order. Thanks
to our scan in Im fip, we can calculate additional up derivatives. Ref. [27] uses various



“trajectories” in the up — g — ps space, allowing the numerical determination of higher
e.g. ug and pg derivatives. We find relatively good signal for the ug and pg derivatives
by directly evaluating eq. (2.2) within one simulation. We recently summarized the details
of the direct calculation in ref. [28].

3.2 Expected result for X?

Before we embark into the discussion of the fit procedure we outline our expectations for
the higher order fluctuations. It is an established fact that T, changes with the chemical
potential [17, 36-38] resulting in a positive curvature  of the phase diagram with:

2 4
p P
TC:T<1—/<;T§+O<T§)> (3.1)

Let us make a simple observation regarding the observed pattern of the baryon den-
sities at imaginary chemical potential. At leading order in fip the baryon density is sim-
ply x2(T,i5) =~ xB(T,0)ip. Thus, at very small chemical potential x2(T,fig)/fip ~
X2 (T,0). In the left panel of figure 2 we show this ratio in the limit of up = 0, that is, we
plot x2(T,0) and interpolate with a spline. We have access to the same ratio x? (T, jig)/iip
at larger imaginary chemical potentials as well, one example (jip = i57/8) is plotted with
blue dots in figure 2. This curve is essentially similar, but its inflection point has been
shifted to higher temperatures, as a consequence of a positive k parameter. We define the
following rescaling:

t N N ~
XEYNT, fup) = fupxB (T + kji%), 0) (3.2)

The quality of the agreement between X? *Y and X? can be seen in the left panel of figure 2.
For the rescaling we used x = 0.02 as obtained for the ug = 0 setup in ref. [38]. We note
that x% at finite chemical potential cannot be so simply approximated by shifting the
up = 0 result.

The relation (3.2) is just an approximation, but if it is takes as a definition of a toy
model it gives access to the fip dependence at any temperature if xZ(7’,0) is known. The

) lead to high T-derivatives of xZ(T',0), this is only possible

high jip-derivatives of yP (foy
if we have a smooth interpolation, preferably an analytical formula for f(7T) = xZ(T’,0).
Being (3.2) inexact there is no point in tuning f(7") too precisely to the lattice data, instead
we choose a simple sigmoid fit function: f(7T") = A+ BT + Catan(D(T — E)) that describes
the gross features of the curve in the [120:300] MeV temperature interval. The resulting
x5 (T,0) functions we give later in figure 4 where we also compare this toy model to the
lattice result.

Although the toy model only incorporates the feature of a smooth xZ(7,0) and the
shifting of T, with the chemical potential it correctly reproduces the oscillatory pattern of
the higher fluctuations.

At this point we use only the Xg]? / Xf ratio to motivate a prior that we will introduce
in the next section to stabilize the jip fit. We know that in the Hadron Resonance Gas
model this ratio is one. We must, however, expect also slightly higher values, that would



0.3

5 .
<B>/iig 4 Bye
0.25 ge 4
ug/T=0 result 27
02r
0 L.
0.15 ol
0.1 <—— shifted pg/T=0 result 4|
0.05 *<— simulated at 6T
imaginary ug/T=21 8 toy model HRG ——
O L L L L L - E L L L L L
140 150 160 170 180 190 200 120 140 160 180 200 220 240
T [MeV] T [MeV]

Figure 2. Toy model setup and its result for xZ/x2Z. In the left panel we observe that the directly
simulated X2 (T, fip)/up at imaginary chemical potential can be approximately reproduced by
rescaling the up = 0 result xZ(T,0), (see eq. (3.2)). The right panel shows a specific ratio of high
order fluctuations. The extraction of XgB is stabilized by a prior bound to 2. With dark and light
bands we show the one and two o regions of the prior distribution. The Hadron Resonance Gas
predicts 1 for this ratio, at high temperatures the Stefan-Boltzmann limit gives zero.

correspond to a signal from a nearby critical end point. The pattern of Xf / Xf in the right
panel of figure 2 is slightly asymmetric. In this paper we define a prior with

Y8 = x4(—1.25 + 2.75¢) | (3.3)

where £ is a stochastic variable with normal distribution.

The HRG prediction is x2,/x4 = 1, which is within the prior range. At high tempera-
tures higher order fluctuations quickly approach the Stefan-Boltzmann limit as it was seen
in HTL perturbation theory [41, 42] as well as on lattice [28, 43]. The Stefan-Boltzmann
limit is zero for XQBn if n > 3. There is no reason to expect our toy model to work at high
temperatures, and indeed, the X6B estimate in figure 2 converges to zero slower than the
HTL prediction in ref. [42].

3.3 Correlated fit with priors

We start with the analysis for xZ(T), x2(T) and x&(T). Our goal is to calculate these
quantities at zero chemical potential, using the imaginary chemical potential data up to
XP(T, ip). In this work we extract these derivatives at a fixed temperature. Results for
different temperatures are obtained completely independently, an interpolation in tem-
perature is not necessary at any point. Thus, the error bars in our results plot will be
independent. The errors between the quantities x& (T'), xZ(T) and x&(T) will be highly
correlated, though, since these are extracted through the same set of ensembles at the
given temperature. This correlation will be taken into account when combined quantities
are calculated, or when an extrapolation to real chemical potential is undertaken.

Thus we consider the ensembles at a fixed temperature T'. For each value of imaginary
pp # 0 we determine x, x %, X:*j? and x¥ from simulation, while for ug = 0 only x& and
X4B can be used, since XF and XéB are odd functions of yup and therefore equal to zero.



We make the ansatz for the pressure:

Xe (fip) = co + cofily + cafify + et + csfiy + croidy s (3.4)

where the Taylor expansion coefficients ¢, are related to the baryon number fluctuations
X2 by: nle, = xB. Our data do not allow for an independent determination of cg and
c19.- Nevertheless, in order to have some control over these terms we make assumption on
the higher order terms. In section 3.2 we have motivated and specified our choice for a
prior distribution of eq. (3.3) for xf = 8les. In the fit function we keep the terms up to
Xﬁ) = 10!¢1g. Without this term the statistical errors on XgB were clearly smaller, but the
fit would be less controlled. As the highest order in the function, the resulting X?o probably
contains severe contamination from even higher order terms. For this reason, and since we
fit Xﬁ) with large statistical errors we do not give results on that quantity. For simplicity,
we use the same prior distribution for x% /x? as for xZ/x%.
We can then rewrite our ansatz as

4!

10,0462MB : (3.5)

4!
C4€1MB +

X0 (ip) = co + cafiy + cafip + cofify + 9l

where €; and €2 are drawn randomly from a normal distribution with mean -1.25 and
variance 2.75. We use the same distribution for all temperatures. In effect, our cg and cjg
coefficients are stochastic variables. The used distribution for €; 2 actually implements a
prior for Xg and X{B()-

For this ansatz we calculate the following derivatives, which are the actually simulated
lattice observables:

A
X1 (iiB) = 2¢afip + deafily + Gegfi + 7,0461MB + 9,C4€2MB (3.6)
4!
X3 (i) = 2¢2 + 12¢4i + 30cs iy + 6,6461#3 + 8,6462#3 (3.7)
Bap) = 24cafip + 120c6/13 - - (3.8
X3 \UB C4lB + Cellp + 5'0461MB + 7|C462MB . )
N . . 4!

X4B(/LB) = 24cy4 + 36006M2B + C4€1,MB + C462MB (3.9)

6!

We perform a correlated fit for the four measured observables, thus obtaining the values
of ca, ¢4 and cg for each temperature, and the corresponding Xf , Xf and X6B . We repeat
the fit for 1000 random draws for ¢; and €. The result is weighted using the Akaike
Information Criterion [44]. Through these weights we get a posterior distribution from the
prior distribution. Our final estimate for X? represents this posterior distribution. These
results are shown in figure 3, together with an estimate of Xég, related to xZ by eq. (3.5).

Finally we show a comparison of these fit results to the toy model that we introduced
in section 3.2. We find a reasonable (though not complete) agreement with data. The toy
model correctly finds the zero crossings and acceptably approximates heights of the peaks
in the temperature dependence. (Note, that varying the interpolator in the toy model
will alter the peak heights of the resulting x&, (7) functions.) We emphasize that the toy
model assumed only the shift of the transition temperature with the chemical potential
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Figure 3. Results for x&, 2, x& and an estimate for xZ as functions of the temperature, obtained
from the single-temperature analysis. We plot x£ in green to point out that its determination is
guided by a prior, which is linked to the x¥ observable by eq. (3.5). The red curve in each panel
corresponds to the Hadron Resonance Gas (HRG) model result.

while keeping the strength of the transition constant. If this toy model is in agreement
with the lattice data, then the lattice data are also compatible with a scenario without a
critical end point.

3.4 Cross-correlators

So far we only considered derivatives with respect to the baryonic chemical potential. In
our previous, direct analysis in ref. [28], the pp-derivatives had larger errors than pg—
or pg—derivatives. For pug, the most noisy disconnected contributions come with smaller
prefactors, while for ug the disconnected contributions are small due to the heavier strange
mass. Our approach was designed to improve the pp-derivatives only. Therefore, the ug
and pg derivatives have to be simulated directly and without the support from the fit that
we used in the pp direction. Our result on X?ks improved only due to the increase in the
statistics since [28].

On the other hand, baryon-strange and baryon-charge mixed derivatives do benefit
B7Q7S
i,k

and k and all possible values of i so that ¢+ j + k < 4. For each group of fluctuations with

from the imaginary up data. We simulate various x with the appropriate values of j
the same j and k we perform a fit analogous to the procedure described in section 3.3.

Let’s take the example of j = 1,k = 0. Our ansatz for cross-correlators is analogous
to egs. (3.6)—(3.9):

. R U TR TN BN
X6 (f8) = XT% s + X + st A + ot i+ gxen i (3.10)
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Figure 4. Results for x&, xF, x& and an estimate for xyZ as functions of the temperature shown
together with the result of the toy model of section 3.2. The toy model reproduces much of the
features of the lattice result.

We truncated the expression at tenth order. The priors assume [x2°| < [xF°| and
IXB| < IxB°, as it is certainly true at high temperature and within the HRG model. The
prior distribution is wider than 1, we used the same mean and variance as in the channel
with no pg derivative.

When we use eq. (3.10) we take x7, x2%, x&° and x2° as correlated quartets for each
imaginary chemical potential and determine the three free coefficients of eq. (3.10). This
fitting procedure is repeated 1000 times with random X7BIS / X3B15 and Xégls / Xﬁs coefficients.
Again, using the Akaike weights we constrain the prior distribution. The resulting estimate
for X%S along with the fit coefficients are shown in figure 5. The posterior for XgBls is not
only noisy, but it is probably heavily contaminated by the higher orders that we did not
account for.

The other channels with higher g or pg derivatives are obtained analogously. These
are plotted in appendix A.

3.5 Error analysis

For a reliable comparison between experimental measurements and theoretical calculations,
the error estimate is an important ingredient. Our statistical error is estimated through
the jackknife method. For our systematic error there are several sources. We determine
our systematic error by the histogram method described in [45], where each analysis is
weighted with the Akaike information criteria. We include the influence of the number
of points in the pup direction, by either including or ignoring the data from our highest
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Figure 5. xP°, Xﬁs , XSBIS and an estimate for X%S as functions of the temperature. The red
curves are the HRG model results.

value of pup. A very important source for our systematic error is the influence of the higher
order contributions in pp. This effect was estimated by adding the higher order terms with
pre-factors €1 and €2 as described in section 3.3. We consider 1000 different € pairs and add
the different analyses to our histogram. The width of the histogram using Akaike weights
corresponding to the fit quality gives the systematic errors for the fit coefficients, and from
the same histogram we obtain the posterior distributions for €;. The physical quantities
that are constrained only by the posterior distribution are plotted with green symbols.
These histograms are built independently for each number (j and k) of pug and pg
derivatives. When calculating the systematics for the cumulant ratios (section 4) we need
to calculate different combinations of diagonal and non-diagonal fluctuations from the
available analyses. Though these fits (corresponding to the same temperature) are carried
out separately we keep track of the statistical correlation, by maintaining the jackknife

The correct propagation of systematic errors is a
Q

ensembles throughout the analysis.

more elaborate procedure. When ng coefficients are combined with different j, k pairs,
different histograms have to be combined. If we had only two variables to combine, each
of the 2000 first fit variants should be combined with each of the 2000 second fit variants
and use the product of the respective probability weights. Instead, we combine the fit
results by drawing ‘good’ fits by importance sampling from each histogram independently.

In this way, O(100) random combinations of ngQ

results already give convergence for
each discussed quantity and its error bar. For the results in this paper we used 1000 such
random combinations. This procedure assumes that between different j, k pairs the prior

distribution is uncorrelated.

— 10 —



4 Phenomenology at finite chemical potential

For a comparison with heavy ion collision experiments, the cumulants of the net-baryon dis-
tribution are very useful observables. The first four cumulants are the mean Mg, the vari-
ance 0129, the skewness Sp and the kurtosis xp. By forming appropriate ratios, we can can-
cel out explicit volume factors. However, the measured distributions themselves may still
depend on the volume, which one should take into account when comparing to experiments.

Heavy ion collisions involving lead or gold atoms at up > 0 correspond to the following
situation

(ng) =0 (ng) =0.4(ng) . (4.1)

For each T" and i pair, we have to first calculate g and jug that satisfy this condition. The
resulting 1o (pp) and ps(pp) functions, too, can be Taylor expandend [19, 20], introducing

1 djig
TN diB) =0
1 djs
Sj = *' dA ; (43)
Jt(diB) |, =0
We investigate three different ratios of cumulants:
Mp  xP(T.ihB) . B1 .3 B3
= —~ = [iprys + Apris. + ... (4.4)
7l AT T
Spoy  x5(T.iB) B0 | .o B2
= —— =153 + ATy + ... (4.5)
Mg XP(T.p) TP
B A~
X2 (T, i) Bo . .2 B2 , ~4 BA
KBOH = 43 == =1y + By + gy . (4.6)
X2 (Tu /“LB)
The pp-dependence of the Xf (T, ip) can again be written as a Taylor series:
BQS - BQS . BQS BQS BQS
Xi,jc,gk (ip) = Xz‘,jc?k (0) + g [Xz'-g,j,k(o) + Q1Xi,jQ 1.1(0) + 51X¢,ﬁk+1(0)}
L .o [ BQs BQS BQS
+ 5#23 [Xi+%7j7k(0) + Q%Xi,ﬁ_zyk(o) + S%Xi,jc?k+2(0)
BQS BQS BQS
+ 2(1151Xi,j%1,k+1(0) + 2Q1Xz‘—8,j+17k(0) + 281Xi+?7j,k+1(0)] +.... (47

The x coefficients that we determined in section 3 include derivatives up to sixth order,
and we have estimates for the eighth order, too. The fit coefficients corresponding to the
tenth order are likely to be contaminated by higher orders, that we did not include into
the ansatz. These ngs coefficients, however, are given for j 4+ k < 4, which is the highest

order that we used in pg and pg.
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This list of coefficients allows us to calculate the rg’k coefficients from equations (4.4),
(4.5) and (4.6). The results for the rg’k coefficients are shown in figures 6, 7 and 8. We
confirm the observation from ref. [23] that the coefficient Tﬁ’z has a similar temperature
dependence as r;ﬁz but it is ~ 3 times larger in magnitude.

For higher order coefficients, higher order derivatives in g and g are needed. The
direct simulations have a rapidly increasing error with the order of the derivative, and
very large statistics would be needed to improve our calculations at this point. Another
possibility would be to simulate new ensembles with finite g and pg and do a similar fit
as for the pp direction. This approach has been used in [27].

After calculating the Taylor coefficients for S BU% /Mp and K 30129, we use these results
to extrapolate these quantities to finite chemical potential. They are shown in figure 9. In
the left panel, S BO’% /Mp is shown as a function of the chemical potential for different tem-
peratures. The Taylor expansion for this quantity is truncated at O(/:L2B). The black points
in the figure are the experimental results from the STAR collaboration from an analysis
of cumulant ratios measured at mid-rapidity, |y| < 0.5, including protons and anti-protons
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Figure 9. Spo2 /Mp (left panel) and kpo% (right panel) extrapolated to finite chemical potential.
The left panel is extrapolated up to O(fi%). In the right panel, the darker bands correspond to the
extrapolation up to O(fi%), whereas the lighter bands also include the O(fi%) term.

with transverse momenta 0.4 GeV < p; < 2.0GeV [46, 47]. The beam energies were trans-
lated to chemical potentials using the fitted formula of ref. [48]. Even if we do not quantita-
tively compare the lattice bands to the measurements to extract the freeze-out parameters,
as experimental higher order fluctuations might be affected by several effects of non-thermal
origin and our lattice results are not continuum extrapolated, we notice that the trend of
the data with increasing pp can be understood in terms of our Taylor expansion.

In the right panel, we show & Ba% as a function of pp /T for different temperatures. The
darker bands correspond to the extrapolation up to (9(/)23), whereas the lighter bands also
include the (9(/1‘}9) term. Also in this case, the black points are the experimental results from
the STAR collaboration with transverse momentum cut 0.4 GeV< p; < 2.0GeV [46, 47].
By comparing the two different truncations of the Taylor series we can conclude that, as
we increase the temperature, the range of applicability of our Taylor series decreases: while
at T' = 150 MeV the two orders agree in the whole pp/T range shown in the figure, at
T = 160 MeV the central line of the next-to-next-to-leading order (NNLO) bends upwards
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and is not contained in the next-to-leading order (NLO) band. This behaviour reflects
the pattern in the Taylor coefficients of figure 8. Notice that up to T = 155 MeV 7‘432’4
is consistent to zero, and already positive at 160 MeV or somewhat higher temperatures.
For temperatures where we have a small rff coefficient the NLO result is satisfactory. To
make the NNLO prediction precise substantially more computer time would be needed.

5 Conclusions and outlook

In this manuscript, we have calculated several diagonal and non-diagonal fluctuations of
electric charge, baryon number and strangeness up to sixth-order, in a system of 24141
quark flavors with physical quark masses, on a lattice with size 483 x 12. The analysis
has been performed simulating the lower order fluctuations at zero and imaginary chemical
potential up, and extracting the higher order fluctuations as derivatives of the lower order
ones at up = 0. The chemical potentials for electric charge and strangeness have both
been set to zero in the simulations. From these fluctuations, we have constructed ratios
of baryon number cumulants as functions of T" and ug, by means of a Taylor series which
takes into account the experimental constraints (ng) = 0 and (ng) = 0.4(np). These
ratios qualitatively explain the behavior observed in the experimental measurements by
the STAR collaboration as functions of the collision energy.

We focused on observables (baryon distribution, ratios of cumulants) that are less
sensitive to lattice artefacts. An obvious extension of our work will be the use of finer
lattices and a continuum extrapolation. The other extension is to use a two- or even
three-dimensional mapping of the space of the imaginary chemical potentials using non-
vanishing pg and pg. That would not only improve the ps— and ug—derivatives, but
would allow us to study the melting of states with various strangeness and electric charge
quantum numbers. Our first study in this direction using strangeness chemical potentials
was published in ref. [49].
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Figure 10. Results containing no electric charge derivative on the various correlators on our
483 x 12 lattice as functions of the temperature. Green data points denote our estimates for the
high orders, these were fitted using a prior distribution. The red curves are the HRG model results.

A Results for the correlators

In this appendix we present the non-diagonal fluctuations of conserved charges needed to
construct the cumulant ratios at finite chemical potential g, satisfying the constraints
(ng) =0 and (ng) = 0.4(npg).

Like we did for the diagonal XiB , we simulate lower order fluctuations at finite imaginary
chemical potential and extract the higher order fluctuations as derivatives of the lower order

ones at up = 0: in particular, we simulate various ij’%s with the appropriate values of j
and k and all possible values for 7 so that
i+7+k<4, (A1)

9% with i+ j + k < 6 and an estimate for i +j +k = 8

and sometimes even i + j + k = 10. By estimate (shown in green) we mean the posterior

and extract the corresponding

distribution that we get for the two highest orders when using priors, as discussed in the
main text. In total we need 15 channels to obtain all the necessary terms.

In the following plots we show these results organized by the number of charge deriva-
tives (j) in figures 10-14. It is notoriously difficult to calculate charge correlators using
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Figure 11. Results containing one electric charge derivative on the various correlators on our
483 x 12 lattice as functions of the temperature. Green data points denote our estimates for the
high orders, these were fitted using a prior distribution. The red curves are the HRG model results.

staggered fermions [28]. Correlators that are not protected by a baryon derivative are
affected by significant discretization errors. It is understood in the HRG model context
that discretization errors mostly affect the contributions from pions and kaons. Staggered
lattice effects introduce the highest relative errors for the lightest mesons. Luckily, how-
ever, quantities with such discretization effects come with a small pre-factor into the final
formulas of eqs.” (4.4)—(4.6). If we had a complete isospin symmetry (factor 0.5 between
(ng) and (np) in eq. (4.1)) then electric charge correlators would play no role at all in the
extrapolation of baryon fluctuations.
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Figure 12. Results containing two electric charge derivatives on the various correlators on our
483 x 12 lattice as functions of the temperature. Green data points denote our estimates for the
high orders, these were fitted using a prior distribution. The red curves are the HRG model
results. Charge correlators without baryon derivative (here X%S) are expected to have significant

discretization errors.
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B Statistics and lattice details

In table 1 we give the number of analyzed configurations per ensemble. The simulation

parameters and the details of the analysis are given in ref. [28].

The determination of the p derivatives follows the lines of refs. [7, 28]. We calculate
four quantities per configuration and per quark mass

4= ddujlog(detM )4 = ft M Mj, (B.1)
B; = (d,uj) log(det M, )1/4 itr <M]"'M]71 _ M]’-M].*lMJ{M]ﬂ) 7 (B.2)
) = oy os(det 20)1 1 = Jor (M{MT —aMJA; M0

o ). 59
Dj = (dp:) log(det M;)/4 = zlltr (MJ’-’M],—l —AMM MM — 3MYM MY M

mar—Larar—1as ar—1
+12M) M MM MM

rar=Iarar=asar—1asas—1
—6M M MM MM MM ) (B.4)

Here M; is the fermion matrix corresponding to the j-th quark mass in the system. M’
and M" indicate the first and higher order derivatives with respect to the quark chemical
potential. For this simple staggered action higher order derivatives are equal to lower order
ones, M"" = M’ and M"" = M" by construction. These traces are calculated using the
standard stochastic method, by calculating the effect of the matrices on random sources.
At finite (imaginary) chemical potentials we used 4 x 256 Gaussian random sources for the
light quarks and 4 x 128 sources for the strange quarks. The analysis was accelerated by
calculating 256 eigenvectors of the Dirac operator first. These eigenvectors were then fed
into an Eig-CG algorithm.

Using the isospin symmetry (m, = my), the ABCD traces can be used to calculate
the y“% derivatives with the following formulas:

uds

X200 =
uds

X110 =

+(Bu) + (A7) — (Au)” (B:5
+H{AD) — (Au)? (B.6
X6 = +(Auds) — (Ag)(Ay) (B.7
X660 = +(Cu) + 3{AuBu) + (A (B.8
+( (B.9

+(

+(

uds

X210 = u

+(A,B
AuAuA8> - <A5><A’l2t> —2 AU> (AUA8> + 2<

u

uds
X120 =

uds

)+ (A
)+

X111 =



X465 = +(Du) + 3(BuBu) + 4(AuCy) + 6(AZB,) + (A})
— 4(Cu)(Au) — 3(By)? — 6(By){A%) — 12(A,) (A, By)

— 4(A)(AD) — 3(AuAu)(A2) + 12(Bu)(Ay)”
+12(A4)%)(A%) — 6(Au)* (B.12)
X415 = +(AuCu) + 3(ALBu) + (A3) — (Cu)(Au) — 3(Bu)(A)
— 6(Au)(AuBu) — 4(Ay)(AD) — 3(A2)(A2)
+6(Bu) (Au)? + 12(A,) (Au) (A2) — 6(A,) (B.13)
X555 = +(B2) + 2(A%Bu) + (A4) — (Bu)® — 2(Bu)(A2)

— A(Ay)(AyBy) — 4(Ay) (A3) — 3(A2)(A2)

+ 4(Bu) (Au)(Au) + 12(Ay) (A} (AZ) — 6(Ay)* (B.14)
Xo5 = 1 (Au By Ag) + (A3 A,) — (A)(AuBy) — (ANAS) — (By)(AuAs) — (BuA,)(Ay)

— 3(Au) (AL As) — 3(AuAL) (A7) + 2(As) (Bu)(Au) + 6{A)(Au) (A7)

+6(A) (AL Ag) — 6(A)(A,) (B.15)

U

If the listed products of the A, B, C, D traces are calculated as products of the stochastic
estimators, a bias could be introduced. Thus, in products different random vectors have to
be used in each factor. Alternatively, the expectation value of the bias has to be subtracted.
The last step is to express the derivatives in terms of up, pg and pg in eq. (2.2) using
egs. (2.1), which is a straightforward exercise.

C Data tables

For the reproducibility of this work we tabulate the raw data at two temperatures of this
study in tables 3-6. We have chosen one temperature below deconfinement (140 MeV) and
one above (170 MeV), near the peak of the higher order baryon fluctuations.

For T = 140 MeV we used the parameters: 8 = 3.7420, am,q = 0.00185777, ams =
0.0519023 and am. = 0.615042. For T' = 170 MeV we had S = 3.8236, am,q = 0.00151761,
amg = 0.0420951 and am. = 0.498827. For a complete list of the simulation parameters
see ref. [28]. In all cases we used the p = 0.125 smearing parameters in four levels of stout
smearing in the fat links of the standard staggered action. For the gluon fields we employed
the tree-level improved Symanzik action.

In table 2 we illustrate the correlations between the mean baryon, electric charge and
strangeness. Black dots means 100% correlation, red dot stands for perfect anti-correlation.
The strong correlations can be understood by the relation

P2 +xi =0 (C.1)

which is exactly satisfied by our data. This relation follows from the isospin symmetric
setting of our simulations with m, = my and pu,, = pg for the v and d quarks.
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T [MeV] | jg=0]|ap=04|4a5=08|ap=12|4a=16|a5=20|pgp=24| oy =27
135 17871 1647 2680 4377 2375 3449 2622 2008
140 22624 1625 3583 2975 3499 5321 3129 3211
145 17195 2439 5255 4468 3191 2846 4959 4117
150 18429 2048 3404 10115 6450 5665 3211 3254
155 17494 1624 4735 4938 3911 7813 3670 3485
160 12688 1607 4459 4831 3382 3917 4831 4990
165 18472 1935 4976 8113 8466 4984 5235 4321
170 14417 1987 2704 8820 8053 8023 5916 3273
175 12018 2034 2006 4748 3878 11330 6178 5583
180 12446 2104 2089 5424 4514 6057 5910 4466
185 14184 2151 2138 3112 3086 5934 7733 3767
190 13741 1693 3395 4395 8140 10410 4201 3844
195 15013 1758 3643 5334 8420 9707 3884 4003
200 14974 2300 2262 5999 10709 5033 5496 4203
205 7788 2126 2125 5951 5873 8294 3087 4333
210 4014 1957 1949 12174 6649 3543 2999 3146
215 2506 1783 7056 2268 2244 1711 1674 2090
220 9172 1810 3548 4264 5498 1754 1717 2163

Table 1. Statistics of our simulations on the 482 x 12 lattice. We list the number of stored and
analyzed gauge configurations. These configurations were separated by ten Rational Hybrid Monte
Carlo updates.

T/MeV | j=1 j=2 i=3 j=4 j=5 i=6 i=7

|
KRR

140

170

Table 2. Visualization of the correlation matrix for %, X? and y7 for different temperatures

and ug) = iT%r for j € {0,1,2,3,4,5,6,7}. Black squares mean correlation, red squares mean
anti-correlation, grey and less bright red correspond to smaller correlations.
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obs j=0 j=1 j=2 j=3
xids - 0.018 £0.003  0.032£0.001  0.044 £ 0.001
X525 | 0.04840.001  0.047+0.006  0.030+0.002  0.018 & 0.002
X539 - 0.034£0.025  0.039+£0.009  0.039 = 0.010
X251 0.05240.014  —0.00140.093 —0.043+0.038 —0.017 £ 0.045
Xo3s - 0.004£0.001  0.009 £ 0.000  0.012 = 0.000
X229 | 0.01340.000  0.013+0.002  0.008£0.001  0.005 =+ 0.001
X3S - 0.007 £0.007  0.011+0.003  0.012 = 0.003
X225 1 0.01440.005  —0.0214+0.048  0.009+0.016  0.004 & 0.020
Xood? | 0.244+0.001  0.245+0.003  0.230+0.001  0.220 % 0.001
Tl - 0.018£0.007  0.026+0.002  0.039 =+ 0.003
X225 | 0.04240.003  0.0344+0.021  0.021+0.009  0.015+0.008
X3S - 0.015+£0.006  0.022+0.002  0.035 = 0.002
X325 1 0.03740.002  0.030+0.014  0.026+0.007  0.019 =+ 0.007
Xod? | 0.295+0.004  0.300+0.030  0.268+0.010  0.259 +0.011
X3S - —0.009 £ 0.002 —0.015+0.000 —0.020 = 0.001
Xinp? | —0.022+0.000 —0.021+0.004 —0.014+0.001 —0.008 £ 0.001
xont? - —0.020 £0.012  —0.016 £0.004 —0.015 = 0.004
Xa?% | —0.024 +£0.006 —0.0214+0.048  0.009+0.016  0.004 & 0.020
xo2® | 0.1364+0.000 0.136+0.003  0.125+0.001  0.117+0.001
Bas - 0.022+£0.009  0.018+0.003  0.024 =+ 0.002
X295 1 0.03140.003  0.035+0.032  0.01240.010  0.000 = 0.011
Xond? - —0.027£0.009 —0.028 £0.002 —0.042 = 0.002
X025 | —0.050 +£0.002  —0.051 +0.027 —0.027 +0.008 —0.003 + 0.007
xoZ® | 0.1974+0.003  0.203+0.025  0.162+0.008  0.126 & 0.008
X895 | 0.057+0.000  0.0574+0.001  0.05540.000  0.055 % 0.000
xo3e - 0.001£0.003  0.001£0.001  0.004 % 0.001
X295 | 0.00340.002  0.007+0.012  0.011£0.004  0.002 = 0.006
Xoor” - —0.005 £ 0.004 —0.008 £ 0.001  —0.012 = 0.001
3% | —0.014+0.001  —0.016 £0.011  —0.005 4+ 0.003 —0.003 % 0.003
X89S - —0.003 £ 0.002 —0.005+0.001 —0.009 = 0.001
X295 | —0.009 +0.001  —0.008 +0.006 —0.008 +0.002 —0.001 + 0.003
X525 | 0.0694+0.001  0.076+0.010  0.061+0.002  0.060 & 0.002
Xo?® | 0.0544+0.001  0.057+0.011  0.053+0.003  0.056 & 0.003
xo2® | 0.07340.001  0.076+0.007  0.067+0.002  0.062 & 0.002

Table 3. Raw data at T'= 140 MeV and ug) = Z'T%r for j € {0,1,2,3}.
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obs j=4 ji=5 ji=6 j=1
X525 | 0.04740.001  0.046+0.001  0.035+0.002  0.018 £ 0.001
X225 | 0.00240.004  —0.0154+0.003 —0.042 +0.005 —0.041 4 0.004
Xod? | 0.022+0.016  0.028+0.011  0.046+0.023  0.007 = 0.020
X251 0.00540.070  —0.058 +0.065 —0.105+0.113 —0.135+0.113
Xe2® | 0.01340.000  0.01240.000  0.009+0.000  0.005 % 0.000
X12% | 0.001+0.001  —0.005+0.001 —0.01140.001 —0.012 £ 0.001
X225 | 0.0074+0.004  0.00640.003  0.014+0.007  0.001 % 0.006
X225 | —0.000 +£0.033  0.0274+0.026  0.053+0.048  0.063 & 0.048
Xood? | 0.204+0.001  0.189+0.001  0.176+0.001  0.167 +0.001
X225 10,036 +£0.003  0.0334+0.002  0.031+0.003  0.012+0.003
X225 | 0.0054+0.010  —0.021+0.011 —0.044 +0.017 —0.048 +0.013
Xo2® | 0.03340.002  0.0314+0.002  0.027+0.003  0.012 +0.002
X325 1 0.007 +£0.007  —0.01540.008 —0.036 +0.011 —0.037 & 0.009
xo2® | 0.22340.009  0.18140.007  0.159+0.010  0.138 +0.010
Xo2S | ~0.021+£0.001  —0.021 +0.001 —0.016 +0.001 —0.008 % 0.001
Xo2% | —0.000 +0.002  0.0064+0.001  0.01940.002  0.018 & 0.002
Xa?® | —0.007 +£0.008  —0.01540.005 —0.018 +0.010 —0.006 + 0.009
Xa%% | —0.000 £0.033  0.0274+0.026  0.053+0.048  0.063 = 0.048
xo2® | 0.1054+0.001  0.096+0.001  0.083+0.001  0.080 = 0.001
X025 | 0.02040.005  0.0254+0.003  0.022+0.005  0.009 & 0.005
X295 | —0.002+0.018 —0.021 +0.013 —0.050 +0.026 —0.050 = 0.021
X% | —0.040 +£0.003 —0.042+0.002 —0.035 4+ 0.003 —0.016 + 0.003
B2 1 0.00440.012  0.021+0.009  0.057+0.016  0.053+0.011
XoZ® | 0.09940.010  0.0754+0.008  0.030+0.013  0.024 % 0.009
Xo9% | 005240000  0.0514+0.000  0.0514+0.001  0.049 +0.001
X225 | 0.00740.002  0.005+0.001  0.002+0.003  0.002 £ 0.003
X295 | —0.001+0.009  0.00340.008  0.001+0.013  0.007 & 0.014
X2 | =0.010 £0.001  —0.010 +0.001  —0.009 + 0.001 —0.004 =+ 0.001
X295 | —0.000 +£0.004  0.007+0.003  0.014+0.006  0.017 = 0.005
X895 | —0.010 £0.001  —0.009 +0.001 —0.006 & 0.001 —0.003 = 0.001
X295 | 0.00140.005 —0.00040.004 0.003+0.006  0.002 = 0.006
Xo25 | 0.050+£0.003  0.0434+0.002  0.040 +0.003  0.033 & 0.002
Xo2® | 0.04940.003  0.0504+0.003  0.055+0.004  0.051 +0.003
Xo2® | 0.05140.003  0.0484+0.002  0.04340.004  0.039 +0.003

Table 4. Raw data at T = 140MeV and 1)) = iTZ for j € {4,5,6,7}.
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obs j=0 j=1 j=2 ji=3
xids - 0.067£0.001  0.130£0.002  0.181 £ 0.001
X35 1 017340001 0.163+0.003  0.147+0.004  0.112 +0.002
Xond? - 0.029+£0.011  0.079+0.011  0.113 % 0.009
Xa2% | 0.069+0.011  0.045+0.045  0.096 +0.045  0.108 £ 0.039
Xord? - 0.011£0.000  0.022+0.000  0.031 % 0.000
X025 | 0.02040.000  0.0274+0.001  0.026+0.001  0.022 £ 0.000
X3S - 0.004+0.002  0.012+0.002  0.015 + 0.002
X225 1 0.007+0.002  —0.058+0.031 —0.054 4 0.030 —0.055 + 0.025
Xo2® | 047440001  04714+0.002 0456 +£0.002  0.434+0.001
Tl - 0.020+0.003  0.048+0.003  0.068 + 0.002
Xopd% | 0.04940.002  0.052+0.009  0.0614+0.008  0.071 40.007
Xoud? - 0.011+£0.002  0.027£0.002  0.038 £ 0.001
B2 1 0.02540.001  0.02040.005  0.037+0.005  0.045 + 0.004
Xod? | 0.249+0.004  0.260+0.015  0.286+0.015  0.302 = 0.008
Xo2s - —0.045+0.001  —0.086 +0.001 —0.119 % 0.001
Xid® | =0.115+0.001  —0.110 £0.002 —0.096 4+ 0.003 —0.069 + 0.002
X3S - —0.020 +0.008  —0.055 4+ 0.008  —0.082 + 0.006
Xao2% | =0.055+0.007 —0.058 £ 0.031  —0.054 4+ 0.030 —0.055 + 0.025
Xood? | 0.411+0.001  0.405+0.003  0.3814+0.004  0.339 = 0.002
Bas - 0.034+0.008  0.083+0.008  0.121 + 0.005
X251 0.0934+0.006  0.1114+0.029  0.0834+0.027  0.077 £ 0.020
XS - —0.0714+0.009 —0.160 +0.011  —0.226 + 0.005
Xipd? | —0.195+0.006 —0.214+0.030 —0.166 +0.028 —0.142 + 0.020
Xo® | 0.600+0.008  0.605+0.038  0.551+0.034  0.486 + 0.022
Xo9% | 0.148+0.000  0.148+0.001  0.14240.001  0.135 +0.001
xo3e - 0.007£0.001  0.014+0.001  0.019 +0.001
Xo3% | 001940001 0.0274+0.003  0.014+0.004  0.011 =+ 0.004
Xoor” - —0.013£0.002 —0.029 £ 0.002 —0.042 = 0.001
3% | —0.034+£0.001  —0.035+0.005 —0.034+0.005 —0.035 =+ 0.004
x9S - —0.018 £0.001  —0.038 +0.002 —0.053 & 0.001
X027 | —0.051+0.001 —0.0514+0.003 —0.04140.003 —0.033 = 0.003
Xo2% | 012040002 0.12040.008  0.135+0.008  0.131 =+ 0.004
Xe?® | 0.083+0.002  0.08240.005  0.089+0.006  0.085 + 0.003
Xo 2% | 0.203+0.002  0.195+0.006  0.19340.007  0.172 £ 0.003

Table 5. Raw data at T'= 170 MeV and ug) = Z'T%r for j € {0,1,2,3}.
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obs j=4 ji=5 ji=6 j=1
2% | 021340001 022540002  0.18040.003  0.109 + 0.005
Xo35 1 0.055+0.004  —0.0344+0.008 —0.1434+0.012 —0.245 + 0.021
X2 | 0.1804+0.016  0.3424+0.057  0.3344+0.065  0.174+0.168
Xud? | 0.167+0.093  0.588+0.408 —0.698+0.415 0.223 + 1.184
Xor2? | 0.038+0.000  0.041+0.000  0.034+0.001  0.021 % 0.001
D25 | 0.01340.001  —0.003 +0.001  —0.026 +0.002 —0.046 + 0.004
X225 1 0.02940.003  0.065+0.011  0.071+0.012  0.036 & 0.032
X525 | —0.101+0.064 —0.329+0.244 047840268 —0.135 +0.739
X2 | 0.39940.001  0.3594+0.001  0.298+0.001  0.257 & 0.002
X225 10,099 +0.003  0.1354+0.006  0.139+0.006  0.094 & 0.008
X225 | 0.080+£0.013  0.1194+0.039  —0.045+0.034 —0.174 4 0.066
X2 | 0.0584+0.001  0.080+0.003  0.085+0.003  0.059 + 0.004
X325 1 0.050 £0.006  0.075+0.017  —0.0124+0.015 —0.121 +0.033
Xod? | 0.326+0.009  0.354+0.012  0.290+0.010  0.184 +0.013
Xo25 | —0.137+£0.001 —0.143+0.001 —0.112+0.002 —0.067 = 0.003
Xo2® | —0.030 +£0.003  0.028+0.006  0.091+0.008  0.153+0.013
Xa?® | =0.123+0.011  —0.2124+0.036 —0.191+0.043 —0.102 4+ 0.104
Xod® | —0.101+0.064 —0.3294+0.244 047840268 —0.135 % 0.739
Xood? | 0.282+0.003  0.214+0.004  0.13440.005  0.070 = 0.009
o251 0.1654+0.009  0.228+0.026  0.197+0.029  0.118+ 0.064
X295 | 0.10440.050  0.2134+0.161  —0.362+0.178 —0.043 + 0.464
Xo2® | —0.287 +£0.009 —0.340 +0.020 —0.286 +0.020 —0.179 % 0.040
X025 | —0.13140.045 —0.1264+0.113  0.352+0.123  0.258 & 0.299
Xoni” | 0.414+0.045  0.268+0.084 —0.21240.093 —0.302 % 0.206
X095 | 0.12640.001 012140001  0.1134+0.002  0.112+0.002
X295 | 0.02140.002  0.008+0.006  0.003+0.008  0.008 & 0.020
X225 | 0.00140.008 —0.058+0.043  0.058 +0.049  —0.089 & 0.142
X% | =0.057 £0.002  —0.074 +0.003 —0.07140.004 —0.047 + 0.004
X295 | —0.039 +£0.008 —0.049+0.021  0.038£0.020  0.084 & 0.036
X595 | —0.061+0.002 —0.056 +0.004 —0.044 4+ 0.005 —0.030 & 0.013
XP2% | —0.014+0.005 0.0444+0.025 —0.005+0.033  0.107 £ 0.090
X625 | 0.13340.006  0.12940.013  0.069+0.011  0.039 & 0.020
Xt | 0.0834+0.004  0.06940.008  0.100+0.010  0.133+0.019
Xod? | 0142+0.005  0.071+0.016  0.070+0.022 —0.022 % 0.056

Table 6. Raw data at T = 170 MeV and ug) = iT%T for j € {4,5,6,7}.

— 95—




Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

1]

Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The Order of the quantum
chromodynamics transition predicted by the standard model of particle physics, Nature 443
(2006) 675 [hep-lat/0611014] [INSPIRE].

Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The QCD transition temperature: Results with
physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-1at/0609068|
[INSPIRE].

Y. Aoki et al., The QCD transition temperature: results with physical masses in the
continuum limit II., JHEP 06 (2009) 088 [arXiv:0903.4155] iNSPIRE].

WUPPERTAL-BUDAPEST collaboration, S. Borsanyi et al., Is there still any T, mystery in
lattice QCD? Results with physical masses in the continuum limit 111, JHEP 09 (2010) 073
[arXiv:1005.3508] [INSPIRE].

T. Bhattacharya et al., QCD Phase Transition with Chiral Quarks and Physical Quark
Masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] INSPIRE].

A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D
85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

C.R. Allton et al., The QCD thermal phase transition in the presence of a small chemical
potential, Phys. Rev. D 66 (2002) 074507 [hep-1at/0204010] [INSPIRE].

C.R. Allton et al., Thermodynamics of two flavor QCD to sizth order in quark chemical
potential, Phys. Rev. D 71 (2005) 054508 [hep-1at/0501030] [INSPIRE].

R.V. Gavai and S. Gupta, QCD at finite chemical potential with siz time slices, Phys. Rev. D
78 (2008) 114503 [arXiv:0806.2233] INSPIRE].

MILC collaboration, S. Basak et al., QCD equation of state at non-zero chemical potential,
PoS (LATTICE2008) 171 (2008) [arXiv:0910.0276] [INSPIRE].

O. Kaczmarek et al., Phase boundary for the chiral transition in (2+1)-flavor QCD at small
values of the chemical potential, Phys. Rev. D 83 (2011) 014504 [arXiv:1011.3130]
[INSPIRE].

Z. Fodor and S.D. Katz, A New method to study lattice QCD at finite temperature and
chemical potential, Phys. Lett. B 534 (2002) 87 [hep-1at/0104001] [INSPIRE].

P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from
imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [INSPIRE].

M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys.
Rev. D 67 (2003) 014505 [hep-1at/0209146] [INSPIRE].

Z. Fodor and S.D. Katz, Lattice determination of the critical point of QCD at finite T and
mu, JHEP 03 (2002) 014 [hep-1at/0106002] InSPIRE].

Z. Fodor and S.D. Katz, Critical point of QCD at finite T and mu, lattice results for physical
quark masses, JHEP 04 (2004) 050 [hep-1lat/0402006] [INSPIRE].

— 96 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://arxiv.org/abs/hep-lat/0611014
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0611014
https://doi.org/10.1016/j.physletb.2006.10.021
https://arxiv.org/abs/hep-lat/0609068
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0609068
https://doi.org/10.1088/1126-6708/2009/06/088
https://arxiv.org/abs/0903.4155
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4155
https://doi.org/10.1007/JHEP09(2010)073
https://arxiv.org/abs/1005.3508
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3508
https://doi.org/10.1103/PhysRevLett.113.082001
https://arxiv.org/abs/1402.5175
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5175
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1103/PhysRevD.85.054503
https://arxiv.org/abs/1111.1710
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1710
https://doi.org/10.1103/PhysRevD.66.074507
https://arxiv.org/abs/hep-lat/0204010
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0204010
https://doi.org/10.1103/PhysRevD.71.054508
https://arxiv.org/abs/hep-lat/0501030
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0501030
https://doi.org/10.1103/PhysRevD.78.114503
https://doi.org/10.1103/PhysRevD.78.114503
https://arxiv.org/abs/0806.2233
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2233
https://doi.org/10.22323/1.066.0171
https://arxiv.org/abs/0910.0276
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.0276
https://doi.org/10.1103/PhysRevD.83.014504
https://arxiv.org/abs/1011.3130
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3130
https://doi.org/10.1016/S0370-2693(02)01583-6
https://arxiv.org/abs/hep-lat/0104001
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0104001
https://doi.org/10.1016/S0550-3213(02)00626-0
https://arxiv.org/abs/hep-lat/0205016
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0205016
https://doi.org/10.1103/PhysRevD.67.014505
https://doi.org/10.1103/PhysRevD.67.014505
https://arxiv.org/abs/hep-lat/0209146
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0209146
https://doi.org/10.1088/1126-6708/2002/03/014
https://arxiv.org/abs/hep-lat/0106002
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0106002
https://doi.org/10.1088/1126-6708/2004/04/050
https://arxiv.org/abs/hep-lat/0402006
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0402006

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo and K. Zambello, Curvature of the
pseudocritical line in QCD: Taylor expansion matches analytic continuation, Phys. Rev. D
98 (2018) 054510 [arXiv:1805.02960] [INSPIRE].

F. Karsch, Determination of Freeze-out Conditions from Lattice QCD Calculations, Central
Eur. J. Phys. 10 (2012) 1234 [arXiv:1202.4173] [NSPIRE].

A. Bazavov et al., Freeze-out Conditions in Heavy Ion Collisions from QCD
Thermodynamics, Phys. Rev. Lett. 109 (2012) 192302 [arXiv:1208.1220] [INSPIRE].

S. Borsanyi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti and K.K. Szabo, Freeze-out parameters:
lattice meets experiment, Phys. Rev. Lett. 111 (2013) 062005 [arXiv:1305.5161] [INSPIRE].

S. Borsanyi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti and K.K. Szabo, Freeze-out parameters
from electric charge and baryon number fluctuations: is there consistency?, Phys. Rev. Lett.
113 (2014) 052301 [arXiv:1403.4576] [INSPIRE].

C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress, Rept. Prog.
Phys. 81 (2018) 084301 [arXiv:1804.07810] [INSPIRE].

HoTQCD collaboration, A. Bazavov et al., Skewness and kurtosis of net baryon-number
distributions at small values of the baryon chemical potential, Phys. Rev. D 96 (2017) 074510
[arXiv:1708.04897] INSPIRE].

M.A. Stephanov, K. Rajagopal and E.V. Shuryak, Event-by-event fluctuations in heavy ion
collisions and the QCD critical point, Phys. Rev. D 60 (1999) 114028 [hep-ph/9903292]
[INSPIRE].

M. Cheng et al., The QCD equation of state with almost physical quark masses, Phys. Rev. D
77 (2008) 014511 [arXiv:0710.0354] INSPIRE].

J.N. Guenther et al., The QCD equation of state at finite density from analytical
continuation, Nucl. Phys. A 967 (2017) 720 [arXiv:1607.02493] [InSPIRE].

M. D’Elia, G. Gagliardi and F. Sanfilippo, Higher order quark number fluctuations via
imaginary chemical potentials in Ny =2+ 1 QCD, Phys. Rev. D 95 (2017) 094503
[arXiv:1611.08285] [iNSPIRE].

R. Bellwied et al., Fluctuations and correlations in high temperature QCD, Phys. Rev. D 92
(2015) 114505 [arXiv:1507.04627] INSPIRE].

A. Roberge and N. Weiss, Gauge Theories With Imaginary Chemical Potential and the
Phases of QCD, Nucl. Phys. B 275 (1986) 734 [INSPIRE].

V. Vovchenko, A. Pasztor, Z. Fodor, S.D. Katz and H. Stoecker, Repulsive baryonic
interactions and lattice QCD observables at imaginary chemical potential, Phys. Lett. B 775
(2017) 71 [arXiv:1708.02852] [INSPIRE].

J.I. Kapusta and C. Gale, Finite- Temperature Field Theory, second edition, Cambridge
University Press (2006).

A. Vuorinen, Quark number susceptibilities of hot QCD up to g**6 In g, Phys. Rev. D 67
(2003) 074032 [hep-ph/0212283] [INSPIRE].

O. Philipsen and C. Pinke, Nature of the Roberge- Weiss transition in Ny = 2 QCD with
Wilson fermions, Phys. Rev. D 89 (2014) 094504 [arXiv:1402.0838] [INSPIRE].

C. Czaban, F. Cuteri, O. Philipsen, C. Pinke and A. Sciarra, Roberge- Weiss transition in
Ny=2 QCD with Wilson fermions and N, = 6, Phys. Rev. D 93 (2016) 054507
[arXiv:1512.07180] [iNSPIRE].

— 97 -


https://doi.org/10.1103/PhysRevD.98.054510
https://doi.org/10.1103/PhysRevD.98.054510
https://arxiv.org/abs/1805.02960
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.02960
https://doi.org/10.2478/s11534-012-0074-3
https://doi.org/10.2478/s11534-012-0074-3
https://arxiv.org/abs/1202.4173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4173
https://doi.org/10.1103/PhysRevLett.109.192302
https://arxiv.org/abs/1208.1220
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1220
https://doi.org/10.1103/PhysRevLett.111.062005
https://arxiv.org/abs/1305.5161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5161
https://doi.org/10.1103/PhysRevLett.113.052301
https://doi.org/10.1103/PhysRevLett.113.052301
https://arxiv.org/abs/1403.4576
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4576
https://doi.org/10.1088/1361-6633/aabb97
https://doi.org/10.1088/1361-6633/aabb97
https://arxiv.org/abs/1804.07810
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.07810
https://doi.org/10.1103/PhysRevD.96.074510
https://arxiv.org/abs/1708.04897
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.04897
https://doi.org/10.1103/PhysRevD.60.114028
https://arxiv.org/abs/hep-ph/9903292
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9903292
https://doi.org/10.1103/PhysRevD.77.014511
https://doi.org/10.1103/PhysRevD.77.014511
https://arxiv.org/abs/0710.0354
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.0354
https://doi.org/10.1016/j.nuclphysa.2017.05.044
https://arxiv.org/abs/1607.02493
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.02493
https://doi.org/10.1103/PhysRevD.95.094503
https://arxiv.org/abs/1611.08285
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.08285
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevD.92.114505
https://arxiv.org/abs/1507.04627
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.04627
https://doi.org/10.1016/0550-3213(86)90582-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B275,734%22
https://doi.org/10.1016/j.physletb.2017.10.042
https://doi.org/10.1016/j.physletb.2017.10.042
https://arxiv.org/abs/1708.02852
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.02852
https://doi.org/10.1103/PhysRevD.67.074032
https://doi.org/10.1103/PhysRevD.67.074032
https://arxiv.org/abs/hep-ph/0212283
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0212283
https://doi.org/10.1103/PhysRevD.89.094504
https://arxiv.org/abs/1402.0838
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.0838
https://doi.org/10.1103/PhysRevD.93.054507
https://arxiv.org/abs/1512.07180
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07180

[35] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro and F. Sanfilippo, Roberge- Weiss
endpoint at the physical point of Ny =2+ 1 QCD, Phys. Rev. D 93 (2016) 074504
[arXiv:1602.01426] [INSPIRE].

[36] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro and F. Sanfilippo, Curvature of the
chiral pseudocritical line in QCD: Continuum extrapolated results, Phys. Rev. D 92 (2015)
054503 [arXiv:1507.03571] [INSPIRE].

[37] R. Bellwied et al., The QCD phase diagram from analytic continuation, Phys. Lett. B 751
(2015) 559 [arXiv:1507.07510] [InSPIRE].

[38] P. Cea, L. Cosmai and A. Papa, Critical line of 2+1 flavor QCD: Toward the continuum
limit, Phys. Rev. D 93 (2016) 014507 [arXiv:1508.07599] INSPIRE].

[39] A. Bazavov et al., The QCD Equation of State to O(u%) from Lattice QCD, Phys. Rev. D
95 (2017) 054504 [arXiv:1701.04325] [INSPIRE].

[40] C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel and G.P. Lepage, High-Precision ¢ and
b Masses and QCD Coupling from Current-Current Correlators in Lattice and Continuum
QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].

[41] N. Haque, J.O. Andersen, M.G. Mustafa, M. Strickland and N. Su, Three-loop pressure and
susceptibility at finite temperature and density from hard-thermal-loop perturbation theory,
Phys. Rev. D 89 (2014) 061701 [arXiv:1309.3968] [INSPIRE].

[42] N. Haque, A. Bandyopadhyay, J.O. Andersen, M.G. Mustafa, M. Strickland and N. Su,
Three-loop HTLpt thermodynamics at finite temperature and chemical potential, JHEP 05
(2014) 027 [arXiv:1402.6907] [INSPIRE].

[43] H.T. Ding, S. Mukherjee, H. Ohno, P. Petreczky and H.P. Schadler, Diagonal and
off-diagonal quark number susceptibilities at high temperatures, Phys. Rev. D 92 (2015)
074043 [arXiv:1507.06637] [INSPIRE].

[44] H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Automat. Contr.
19 (1974) 716.

[45] S. Diirr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224
[arXiv:0906.3599] [INSPIRE].

[46] STAR collaboration, X. Luo, Energy Dependence of Moments of Net-Proton and Net-Charge
Multiplicity Distributions at STAR, PoS(CP0D2014)019 (2015) [arXiv:1503.02558]
[INSPIRE].

[47] STAR collaboration, J. Thader, Higher Moments of Net-Particle Multiplicity Distributions,
Nucl. Phys. A 956 (2016) 320 [arXiv:1601.00951] [INSPIRE].

[48] A. Andronic, P. Braun-Munzinger and J. Stachel, Hadron production in central
nucleus-nucleus collisions at chemical freeze-out, Nucl. Phys. A 772 (2006) 167
[nucl-th/0511071] [INSPIRE].

[49] P. Alba et al., Constraining the hadronic spectrum through QCD thermodynamics on the
lattice, Phys. Rev. D 96 (2017) 034517 [arXiv:1702.01113] [INSPIRE].

[50] Jiilich Supercomputing Centre, JUQUEEN: IBM Blue Gene/Q Supercomputer System at the
Jilich Supercomputing Centre, JLSREF' 1 (2015) Al.

~ 98 —


https://doi.org/10.1103/PhysRevD.93.074504
https://arxiv.org/abs/1602.01426
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.01426
https://doi.org/10.1103/PhysRevD.92.054503
https://doi.org/10.1103/PhysRevD.92.054503
https://arxiv.org/abs/1507.03571
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.03571
https://doi.org/10.1016/j.physletb.2015.11.011
https://doi.org/10.1016/j.physletb.2015.11.011
https://arxiv.org/abs/1507.07510
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07510
https://doi.org/10.1103/PhysRevD.93.014507
https://arxiv.org/abs/1508.07599
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.07599
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.95.054504
https://arxiv.org/abs/1701.04325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.04325
https://doi.org/10.1103/PhysRevD.82.034512
https://arxiv.org/abs/1004.4285
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.4285
https://doi.org/10.1103/PhysRevD.89.061701
https://arxiv.org/abs/1309.3968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3968
https://doi.org/10.1007/JHEP05(2014)027
https://doi.org/10.1007/JHEP05(2014)027
https://arxiv.org/abs/1402.6907
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6907
https://doi.org/10.1103/PhysRevD.92.074043
https://doi.org/10.1103/PhysRevD.92.074043
https://arxiv.org/abs/1507.06637
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.06637
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1126/science.1163233
https://arxiv.org/abs/0906.3599
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3599
https://doi.org/10.22323/1.217.0019
https://arxiv.org/abs/1503.02558
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02558
https://doi.org/10.1016/j.nuclphysa.2016.02.047
https://arxiv.org/abs/1601.00951
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.00951
https://doi.org/10.1016/j.nuclphysa.2006.03.012
https://arxiv.org/abs/nucl-th/0511071
https://inspirehep.net/search?p=find+EPRINT+nucl-th/0511071
https://doi.org/10.1103/PhysRevD.96.034517
https://arxiv.org/abs/1702.01113
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.01113
http://dx.doi.org/10.17815/jlsrf-1-18

	Introduction
	Fluctuations and imaginary chemical potentials
	Analysis details
	Lattice setup
	Expected result for chi**(B)(8) 
	Correlated fit with priors
	Cross-correlators
	Error analysis

	Phenomenology at finite chemical potential
	Conclusions and outlook 
	Results for the correlators
	Statistics and lattice details
	Data tables

