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Mechanics of Irradiation-
Induced Structural Changes
in a Lipid Vesicle
Irradiation-induced oxidation of lipid membranes is implicated in diseases and has been
harnessed in medical treatments. Irradiation induces the formation of oxidative free radi-
cals, which attack double bonds in the hydrocarbon chains of lipids. Studies of the
kinetics of this reaction suggest that the result of the first stage of oxidation is a structural
change in the lipid that causes an increase in the area per molecule in a vesicle. Since
area changes are directly connected to membrane tension, irradiation-induced oxidation
affects the mechanical behavior of a vesicle. Here, we analyze shape changes of axisym-
metric vesicles that are under simultaneous influence of adhesion, micropipette aspira-
tion, and irradiation. We study both the equilibrium and kinetics of shape changes and
compare our results with experiments. The tension–area relation of a membrane, which
is derived by accounting for thermal fluctuations, and the time variation of the mechani-
cal properties due to oxidation play important roles in our analysis. Our model is an
example of the coupling of mechanics and chemistry, which is ubiquitous in biology.
[DOI: 10.1115/1.4042429]
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1 Introduction

Oxidative damage to lipids in cell membranes is increasingly
being implicated as a cause of cell death, diseases, and aging since
at least the early 1990s [1,2]. Controlled oxidative damage has
also been used in treatment of certain diseases by a procedure
called photodynamic therapy. The treatment induces oxidative
damage in diseased cells through the use of photosensitizer, light,
and oxygen in a proper combination [3,4]. The targets for oxida-
tion are poly-unsaturated lipids, or lipids with double-bonds in
their hydrocarbon chains [3–5]. Even though in experiments and
in photodynamic therapy reactive oxygen is produced using pho-
tosensitive molecules, these are also generated enzymatically and
through respiration [1] during normal life processes. As such,
much is known about the chemical changes to the lipid molecules
due to oxidation [1,5,6], but little attention has been paid to the
mechanics of lipid membranes subjected to irradiation-induced
oxidation. In particular, irradiation results in time-varying
mechanical properties of vesicles [7], yet there are no models that
account for this variation in vesicle mechanics.

Oxidative damage to lipids is known to proceed in two major
steps [4]. In the first step, oxidation of double bonds causes an
increase in the area per molecule of the lipid membrane by about
15–20% [5]. This is accompanied by a decrease of area expansion
modulus KA and an increase in thermal undulations [7]. In the sec-
ond step (whose effects are prominent if irradiation continues for
long periods), scission of the hydrocarbon chain may occur and
vesicle shrinkage occurs due to formation of pores [4]. The
kinetics of both these oxidation steps can be described as first-
order reactions [6] and the rate constants appearing in them have
been fitted to experimental data [4]. However, the mechanics of a
vesicle under simultaneous action of forces and irradiation
remains to be investigated even though it plays an important role
in cell membrane functions [8]. For example, membrane tension
is known to regulate exo- and endo-cytosis, actin network

assembly, and motility in live cells [9] and may also contribute to
cell growth [10]. Therefore, it is conceivable that changes in
membrane tension caused by irradiation-induced area increases
could affect cellular processes.

In this paper, we will build on previous experimental studies
and develop a model to analyze vesicle shapes and mechanics
under the action of forces and irradiation. Since adhesion and
micropipette aspiration are routinely used in experimental meas-
urements, we will focus on vesicle shapes in these assays. We will
analyze both equilibrium and kinetics of irradiation-induced shape
changes and take account of thermal fluctuations, which contrib-
ute significantly to membrane biophysical behavior [11]. We will
constrain our analysis to the first step of oxidation, which involves
structural changes that increase area and decrease elastic moduli,
and to axisymmetric vesicles since these are analytically tractable
[12–14]. The mechanics in the second step of oxidation is more
challenging and is not treated here since it involves lipid hydro-
carbon chain scission and pore formation, which are amenable to
molecular simulation. Our model connects vesicle shape, mechan-
ics, and kinetics of irradiation-induced structural changes within a
tractable analytical framework that can be used to interpret experi-
ments and generate falsifiable predictions. We are not aware of
any other models that accomplish this even though there are
detailed analyses of the kinetics of lipid oxidation [4,15], and a
multitude of papers that predict vesicle shape changes in response
to applied forces or other mechanical constraints [16–18]. In the
following, we consider (a) equilibrium shapes of vesicles under
the action of forces and irradiation-induced structural change in
Sec. 2, and (b) the kinetics of shape evolution due to loading and
irradiation-induced structural change in Secs. 3 and 4. We give a
brief conclusion in Sec. 5.

2 Equilibrium Shapes of Adhered Vesicles Under

Irradiation

2.1 Review of Equations to Compute Shapes of Adhered
Vesicles Under Applied Force. To see how area changes due to
irradiation enter into the computation of vesicle shape and
mechanics, we must first review the mechanics of adhered
vesicles. Consider a vesicle that is originally spherical with radius
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R0. The vesicle is surrounded by fluid (usually water for lipid
vesicles) that may contain osmolytes to control its volume [16].
When it adheres to a surface, it remains axisymmetric but might
not be spherical. Hence, the three-dimensional shape of the vesi-
cle can be described by a closed curve in two dimensions with an
axis of rotational symmetry [19]. Then, the pressure difference p
is related to the tension s and local mean curvature through the
Young–Laplace law

p ¼ 2sH ¼ sðj1 þ j2Þ (1)

where j1 is the meridional principal curvature, j2 is the principal
curvature along lines perpendicular to the meridians, and H ¼
j1 þ j2=2 is the mean curvature. In experiments, the deformation
of the vesicle happens in such a way as the volume remains fixed
(due to osmotic constraints), so the pressure difference p must
change and we will determine it using the Young–Laplace law
given earlier.

Adhesion changes the tension in the membrane and also causes
an increase in the area by 1–2% [20,21]. However, this area
change is not taken into account in most analyses of adhering
vesicles [13,17,19]. Typically, in experiments, the tension is in the
region where the fluctuations of the vesicle get pulled out to cause
the increase in area. Let A be the area of the membrane in the
absence of fluctuations and tension. Let Ared(s) represent the
amount by which the projected area is reduced below the area A
by thermal fluctuations at tension s and temperature T, then we
know that [19,22]

Ared 0ð Þ � Ared sð Þ
A

¼ kBT

8pKb
log 1 þ sA

p2Kb

� �
þ s
KA

(2)

where kB is the Boltzmann constant, Kb is the bending modulus of
the membrane, and KA is the stretching or area expansion
modulus.

Now, let us assume that the vesicle is adhered to a substrate and
a force F is exerted on it by a micropipette while it remains axi-
symmetric. F > 0 when the force is pushing the vesicle against
the substrate. If we make a cut perpendicular to the axis of the
vesicle where the radius is r(s) and the tangent angle to the con-
tour of the axisymmetric shape is /(s), s being a position parame-
ter along the arc length of the closed curve, then equilibrium
demands that

2psrðsÞsin/ðsÞ ¼ pr2ðsÞp� F (3)

The vesicle makes contact with the substrate over a circular region
of radius r1. The angle /1 at r¼ r1 depends on the adhesion
energy per unit area between the vesicle and the substrate. If C is
the adhesion energy per unit area, then

C ¼ sð1 � cos/1Þ (4)

which is known as the Young–Dupre equilibrium [17]. To get the
vesicle shape, we note that

dr

ds
¼ cos/ sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2/ sð Þ

q
;

dz

ds
¼ sin/ sð Þ (5)

where sin/ðsÞ is given by Eq. (3) in terms of r(s) and F, and z(s)
is the height of point s with z(0)¼ 0 at the equator of the vesicle.
We can therefore integrate the differential equation for r(s) and
get

r sð Þ ¼
ffiffiffi
2

p
s

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

2ps2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r
cos

ps

s

s
(6)

Now, we claim that the term j1þj2 in Eq. (1) is a constant. As
pointed out in standard texts in differential geometry [23], the

mean curvature j1 þ j2=2 equals a constant c0 for an axisymmet-
ric shape if and only if

d r
dz

ds

� �
ds

¼ c0

d r2ð Þ
ds

(7)

By using Eqs. (3) and (5), it is easy to show that Eq. (7) is equiva-
lent to

p

2s
¼ c0 (8)

which implies that j1 þ j2 ¼ p=s. Therefore, the Young–Laplace
law Eq. (1) is automatically satisfied on the nonadhered part of the
vesicle. Let s¼ s1 be such that r(s1)¼ r1 and /(s1)¼/1 at the bot-
tom of the vesicle where adhesion occurs. Then the expression for
s1 becomes

cos
ps1

s
¼

p2r2
1

2s2
� 1 � Fp

2ps2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r (9)

From Eq. (9), we get

s1 ¼ � s
p

cos�1

p2r2
1

2s2
� 1 � Fp

2ps2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r
0
BBB@

1
CCCA (10)

We must solve for sin/1 using the Young–Dupre equilibrium
Eq. (4)

sin/1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1 � C

s

� �2
s

¼ pr1

2s
� F

2pr1s
(11)

By using Eq. (11), r1 can be solved

r1 ¼ s
p

sin/1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2/1 þ

Fp

ps2

r !
(12)

At the top of the vesicle, r¼ r2. If s¼ s2 at the top of the vesicle,
then it can be determined using

s2 ¼ s
p

cos�1

p2r2
2

2s2
� 1 � Fp

2ps2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r
0
BBB@

1
CCCA (13)

It should be noted that 1 þ ðFp=2ps2Þ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðFp=ps2Þ

p
, which

implies that r2 6¼ 0 if F 6¼ 0. Integrating Eq. (5) for z(s), we get

z sð Þ ¼
ðs

0

sin/ sð Þ ds ¼
ðs

0

pr sð Þ
2s

� F

2psr sð Þ

� �
ds (14)

where r(s) is given by Eq. (6). We substitute for r(s) to get

z sð Þ ¼
1ffiffiffi
2

p
ðs

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

2ps2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r
sin2 ps

2s

s
ds

� Fp

2
ffiffiffi
2

p
ps2

ðs
0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

2ps2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r
sin2 ps

2s

s

(15)
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This can be reduced to

z sð Þ ¼
s
p

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r !ðps
2s

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2 sin2h

p
dh

� F

ps
1

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r ðps
2s

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2 sin2h

p (16)

where

m2 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r

1 þ Fp

2ps2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r � 1 (17)

Recognizing the incomplete elliptic integrals above, we write

z sð Þ ¼
s
p

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r !
E

ps

2s
jm

� �

� F

ps
1

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Fp

ps2

r F
ps

2s
jm

� �
(18)

where Eððps=2sÞjmÞ is the incomplete elliptic integral of the sec-
ond kind with modulus m and Fððps=2sÞjmÞ is the incomplete
elliptic integral of the first kind with modulus m. We use Eqs. (6)
and (18) to plot vesicle shapes later in this paper.

When F¼ 0, from Eqs. (12) and (9), we see that

r1 ¼ 2s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C
s

� C2

s2

s
(19)

cos
ps1

s
¼ 2

2C
s

� C2

s2

� �
� 1 (20)

Hence, the shape of the adhered vesicle is described by

r sð Þ ¼
2s
p

cos
ps

2s
(21)

z sð Þ ¼ 2s
p

sin
ps

2s
(22)

s1 ¼ �sgn cos/1ð Þ s
p

cos�1 4C
s

� 2C2

s2
� 1

� �
(23)

s2 ¼ s
p

cos�1 p2r2
2

2s2
� 1

� �
(24)

Now, let us consider the case of a spherical vesicle of radius R0

about to adhere to a substrate. The vesicle is a spherical section of
radius R after adhesion and its shape is given by Eqs. (21)–(24).
Then the volume is easily computed

V ¼ 1

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

2

q
þ cos/1R

� �

� R2 sin2/1 þ r2
2 þ

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

2

q
þ cos/1R

� �2
 !

(25)

where R ¼ 2s=p is derived from the Young–Laplace law Eq. (1).
Similarly, the surface area of the spherical section can be
computed

Asp ¼ 2pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

2

q
þ cos/1R

� �
(26)

The area of the circular portion in contact with the substrate is
pR2 sin2/1. Let A0 be the contour area when the vesicle is a per-
fect sphere. Then we have A0 ¼ Aredð0Þ þ 4pR2

0. If the changes in
area are due to stretching out of thermal fluctuations, then
Aredð0Þ ¼ A0ðkBT=8pKbÞlogðA0=b

2Þ [19]. Hence, we can compute
A0 through

4pR2
0 ¼ A0 1 � kBT

8pKb
log

A0

b2

� �
(27)

where b¼ 1 nm is intermolecular spacing [19].

2.2 Application to an Adhered Vesicle. We will now use the
ideas above to estimate the adhesion energy per unit area, C, from
experimental data. In an experiment conducted by Aoki et al.
[24], the radius of a dipalmitoylphosphatidylcholine giant unila-
mellar vesicle after adhesion is estimated to be R¼ 1.73� 10�5 m
(using the scale bar in Fig. 1(c) of Ref. [24]). We will take stretch-
ing modulus KA¼ 230 mN�m�1 and bending modulus
Kb¼ 21kBT¼ 21� 4.1 pN�nm at T¼ 300 K as typical values for
dipalmitoylphosphatidylcholine vesicles [7,19]. Then, A0 can be
numerically solved from Eq. (27). We assume there is no thermal
fluctuation in the part of the vesicle attached to the substrate. Let
At denote the contour area of the fluctuating part of the vesicle (At

would be the area at T¼ 0), then we have
At ¼ A0 � pR2 sin2/1 � pr2

2. Under tension s, Ared (s) can be
computed through

AredðsÞ ¼ At � 2pRð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

2

q
þ cos/1RÞ (28)

At present, /1, R0, and s are all unknown. They will be deter-
mined by the Young–Dupre equilibrium Eq. (4), tension area rela-
tion, and volume constraints, respectively, through

At kBT

8pKb
log

At

b2
� At þ 2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

2

q
þ cos/1R

� �
At

¼ kBT

8pKb
log 1 þ sAt

p2Kb

� �
þ s
KA

(29)

Fig. 1 Computed vesicle shapes before (solid line) and after
(dashed line) irradiation for parameters in Aoki et al. [24]. These
shapes are in qualitative agreement with shapes in Ref. [24] val-
idating our model.
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4

3
pR3

0 ¼ 1

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

2

q
þ cos/1R

� �

� R2 sin2/1 þ r2
2 þ

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

2

q
þ cos/1R

� �2
 !

(30)

Here, we take r2¼ 0 since there is no pipette or adhering surface
on the top of the vesicle. Now, Eqs. (29), (30), and (4) are three
equations for three unknowns R0, s, and /1 if the adhesion energy
per unit area C is given. However, C is not immediately known
from the experiments of Aoki et al. [24] who report that r1=R0 lies
between 0.5 and 0.7 when there is no irradiation. Using this infor-
mation, R0, s, and /1 can be numerically computed by choosing
r1=R0 to be in this range and combining with Eqs. (29) and (30).
Then, C is estimated from Eq. (4). We find that C is between
10�10 N/m and 10�7 N/m. Other experimental and theoretical
works [20,25] estimate that C mostly lies between 10�5 N/m and
10�2 N/m. Trial and error reveals that the estimated C is quite sen-
sitive to changes in r1=R0. To make progress, we take
C¼ 2.53� 10�5 N/m, which corresponds to r1=R0 � 0:8 for
experiments in Ref. [24]. The uncertainty in C is probably also the
reason why Sankhagowit et al. [4] measure changes in area using
optical traps rather than adhesion.

2.3 Shapes of Adhered Vesicles Before and After Irradiation
With Zero Force. Once the three unknowns R0, s, and /1 have
been solved, we can plot the shape of an adhered vesicle using
Eqs. (21)–(24). Next, we must account for increases in vesicle sur-
face area caused by irradiation. Let A be the area after irradiation,
which can be represented as

A ¼ A0 � a ða > 1Þ (31)

In Ref. [24], the maximum surface area ratio is a¼ 1.1801, 1.1878,
1.1936 under irradiation powers 1/4, 1/32, 1, respectively. Here, 1
represents maximum radiation intensity and we refer the reader to
Aoki et al. [24] for quantitative details. We take a¼ 1.1878 in Eq.
(31) as an example. We are not aware of measurements of Kb as a
vesicle suffers oxidation. However, Boal and Boal [19] point out
that Kb is proportional to KA, or Kb¼ fKA where f is a constant
depending on the bilayer thickness. The bilayer thickness is deter-
mined by the length of the hydro-carbon chains in the lipid tails,
which does not change in the first step of oxidation before chain
scission happens. Hence, from the known values of KA after irradia-
tion is completed, we can estimate the Kb of oxidized vesicles.
Using KA¼ 80 mN�m�1 [7] after irradiation for DOPC, the corre-
sponding Kb¼ 7.3 kBT. Note that A0 is dependent on Kb through Eq.
(27); hence, it will change when Kb is changed. Then, with C known
from Sec. 2, we can solve for the new values of R, /1, and s in the
adhered vesicle after irradiation. Accordingly, the adhered vesicle
shapes before and after irradiation can be plotted using Eqs.
(21)–(24). The shapes are shown in Fig. 1. In both situations (with
and without irradiation), the shapes of the vesicle adhering to the
substrate under no force in the experiments of Aoki et al. [24] are
qualitatively described by our model.

2.4 Shapes of Adhered Vesicles Under Tensile and
Compressive Forces After Irradiation. Tensile forces are exerted
on adhered vesicles (with known mechanical properties) to estimate
the adhesion energy density C on various substrates [13], while
compressive forces are exerted on cells to estimate membrane ten-
sion [9]. The changes of vesicle (or cell) shape under these circum-
stances can be measured and used to estimate C, s, etc. In a
previous work, Lin and Freund [17] studied the shapes of an adhered
vesicle under pulling force in the absence of irradiation. Our goal
here is to determine how shapes change when both pulling force
and irradiation are applied. Following the assumptions of Brochard-
Wyart and deGennes [13], we consider a vesicle bound on one side

to a pipette with fixed pipette radius r2¼ 0.2 R0 and constant contact
angle /1¼p/4. The height of the cylindrical portion of the vesicle
in the pipette, h, is adjustable [26]. For convenience, we assume the
top of the vesicle is flat and that there is no thermal fluctuation in
the part of the vesicle inside the pipette and the part that is adhered.
When F 6¼ 0, the constraint equations are only the tension–area rela-
tion and volume constraint. Since C is given and /1 is fixed, s can
easily be obtained from Eq. (4). Thus, Eqs. (29) and (30) are, respec-
tively, replaced by

At
kBT

8pKb
log

At

b2
� At�2p

ðs2

s1

r sð Þds
 !

At
¼ kBT

8pKb
log 1þ sAt

p2Kb

� �
þ s
KA

(32)

4

3
pR3

0 � pr2
2h¼

s3

p3
p 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Fp

ps2

r !3 ð ps2
2s

ps1
2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 sin2h

p� �3

dh

�Fs
p2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Fp

ps2

r !ð ps2
2s

ps1
2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 sin2h

p
dh

(33)

where the area of the fluctuating part of the vesicle At in Eq. (32)
is replaced by

At ¼ A� ðpr2
1 þ pr2

2 þ 2pr2hÞ (34)

Recall that r2 is the radius of the flat region of the vesicle inside
the pipette. We have two equations, Eqs. (32) and (33), for two
unknowns p and h, which can be solved numerically.

Once we solve for p and h, we can plot the shapes of the vesicle
for both F< 0 (tensile force causing detachment) and F> 0 (com-
pressive force causing adhesion). In Fig. 2(b), we plot the shapes
when a tensile force F is applied. The corresponding contact radii
are plotted in Fig. 2(a). Similarly, in Fig. 3, we plot the shapes
and the corresponding contact radii when a compressive force F is
applied. The predictions in these figures can be tested with routine
micropipette experiments. For F< 0, there are three important
points A1, B1, and C1, where A1 represents the start of the detach-
ment process when the contact radius is maximum, B1 represents
the state of maximum achievable detachment force, which is
Fcr � 0:43 pR2

0 compared to Fcr � 0:30 pR2
0 in the case

without irradiation studied by Lin and Freund [17]. Since the non-
dimensional initial contact radius r1/R0 � 0.7 in our work is
slightly larger than the one r1/R0 � 0.6 in Ref. [17], it requires
stronger force to detach the vesicle from the substrate after

Fig. 2 (a) Prediction of dependence of dimensionless contact
radius r1/R0 on dimensionless pulling force F /pR2

0 under irradi-
ation. (b) Prediction of shapes during detachment. In (b), the
height of the vesicle inside the pipette is not fully shown to
focus on vesicle shapes. The heights inside the pipette at
A1, B1, C1 are, respectively, hA1

/R0 5 3:73; hB1
/R0 5 3:65;

hC1
/R0 53:89. The nonmonotonic dependence of r1 on F is simi-

lar to Lin and Freund [17].
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irradiation that increases contact area. In addition, C1 represents
the state when detachment is about to occur. As pointed out by
Lin and Freund [17], the vesicle is in stable equilibrium from A1

to B1 while from B1 to C1, it is not. As for F> 0, we found that
the pressure difference and contact area monotonically increase as
the compressive force increases, as expected.

3 Kinetics of Attachment of Vesicle Under Irradiation

So far, we have gained some understanding of how vesicle
shapes and mechanics can be modulated by adhesion, applied
forces, and irradiation. Our methods can be used to estimate diffi-
cult to measure quantities (i.e., pressure difference, adhesion
energy, tension) when other experimental observables (i.e., con-
tact radius, vesicle height sucked into pipette) are measured under
various applied forces and irradiation intensities. Next, we hope to
garner some insights into the kinetics of processes, such as adhe-
sion and oxidation, that happen simultaneously in experiments.

3.1 Oxidation Kinetics and Corresponding Area Increase.
In this section, we study a palmitoyloleoylphosphatidylcholine
(POPC) vesicle with radius R0¼ 0.75� 10�5 m under irradiation
at constant intensity. In the experiment conducted by Weber et al.
[7], the top of the vesicle is sucked into a micropipette with radius
r2 ¼ 0.47lm and the constant membrane tension is fixed at
0.7 mN�m�1. Since there is no adhesion, the contact radius r1¼ 0.

Sankhagowit et al. [4] illustrated that oxidation has two stages
where OX1 is an oxidized lipid which is the product of the first
reaction and it occupies more membrane area than nonoxidized
DOPC and OX2 is the product of the second reaction, which occu-
pies less surface area than DOPC. For simplicity, we assume only
OX1 appears during the irradiation and the model built for DOPC
could be applied to POPC, since both have double bonds. Also,
the bending modulus of POPC is about 20.7 kBT at room tempera-
ture T¼ 303 K [27] that is not too different from the bending
modulus of DOPC. The second reaction, which involves OX2, is
known to be slower than that involving OX1 and its effects
(decrease in area) are seen when irradiation is continued for a
long time [4]. We will confine our analysis to only the early stages
of irradiation when area increases are seen. Sankhagowit et al. [4]
gives the formula to compute the concentration of OX1

COX1ðtÞ ¼ 1 � e�k1t (35)

where k1 scales roughly as I1=2 where I is the radiation intensity or
radiation power. Let AOX1 be the area per lipid of OX1 relative to
that of POPC (i.e. APOPC ¼ 1, AOX1 > 1). Then the surface area
increment S(t) can be expressed as

SðtÞ ¼ APOPCð1 � COX1Þ þ AOX1COX1 � 1

¼ ðAOX1 � 1Þð1 � e�k1tÞ (36)

When the irradiation time is sufficiently long, the surface area will
reach maxt�0 S(t) and then not change. This requires that
AOX1 ¼ maxt�0SðtÞ þ 1. In order to be consistent with the experi-
mental data in Fig. 3(a) of Weber et al. [7], we need to set
AOX1¼ 1.1388, k1¼ 0.1979 s�1, as shown in Fig. 4(a) by the orange
line (passing through the experimental data). Note that the value of
k1 used here is in the same range as that reported by Sankhagowit
et al. [4]. The good fit of the orange curve to the experimental data
from Ref. [7] shows that our assumption of confining attention to the
first step of oxidation is justified. Now, Eqs. (32) and (33) can be
used again to solve the two unknowns p, h. In order to do so, we
need to (a) set r1¼ 0, r2¼ 4.7lm in Eq. (34), (b) in Eq. (31) the sur-
face area should be a function of time A(t)¼A0� (1þ S(t)), where
A0 can be solved numerically from Eq. (27) based on vesicle initial
radius R0¼ 0.75� 10�5 m, (c) S(t) is given in Eq. (36) and (d) the
mechanical moduli KA and Kb vary with time as discussed later.

Weber et al. [7] point out that the stretching modulus of vesicles,
KA, varies as irradiation progresses. Ordinarily, the mechanical prop-
erties of homogeneous vesicles are constants, but the appearance of
an oxidized phase during irradiation decreases KA. This oxidized
phase appears everywhere on the vesicle since irradiation is applied
globally; hence, KA is taken to be independent of position. Since the
fraction of the oxidized phase increases with time, the modulus KA

decreases with time. We use the information in Fig. 5 of Ref. [7] to
treat KA as a function of irradiation time
t : KA ¼ 230 mNm�1 � 1:6 mNm�1s�1 � t; 0 � t � 50 s. Since Kb

is proportional to KA, the variation of Kb with time can be estimated
if the initial Kb¼ 20.7 kBT for the POPC vesicle before irradiation
is known. Note that Kb plays an important role at low tensions,
while KA weighs in at high tension s> 10�4 N/m. This can be
understood from the fact that in the low tension regime, the log
term dominates in Eq. (2) since ðs=KAÞ � ðkBT=8 pKbÞ
logð1 þ ðsAt=p2KbÞÞ, while at high tension, the thermal fluctua-
tions are pulled out and the area increases linearly with tension as
dictated by KA. The result for the predicted pressure difference p/p0

as irradiation progresses is shown in Fig. 4(b) and the result for the
predicted pipette height h/h0 is shown in Fig. 4(a). Note that the
h=R0 values for s¼ 0.7 mN m�1 are similar to the insets in
Fig. 3(a) of Ref. [7] where h/R0 is between 1 and 2 suggesting that
our analysis is reasonable.

3.2 Ordinary Differential Equation Model of Contact
Radius Increase Without Irradiation. Now, we study the
dynamics of an initially spherical vesicle (with initial contact
radius rinit

1 ¼ 10 nm and initial radius R0¼ 1.68� 10�5 m consist-
ent with the experiment in Ref. [24]) adhering to the substrate in

Fig. 3 (a) Prediction of dependence of dimensionless contact
radius r1/R0 on dimensionless pushing force F /pR2

0 and
dependence of dimensionless pressure difference p/p0 on
F /pR2

0 under irradiation where p0 is the pressure difference in
the absence of force. (b) Prediction of shapes during compres-
sion. In (b), the height of the vesicle in the pipette is not fully
shown to focus on vesicle shapes. The heights inside the pip-
ette at A2, B2, C2 are, respectively, hA2

/R0 5 3:73;hB2
/R0 53:49;

hC2
/R0 52:96.

Fig. 4 (a) Prediction of dependence of dimensionless pipette
height h/R0 (left y-axis) on irradiation time t. The orange line is a
fit of Eq. (36) to the experimental data of Weber et al. [7] for frac-
tional change in vesicle area (right y-axis) as function of time.
(b) Prediction of dependence of dimensionless pressure differ-
ence p/p0 on irradiation time t. (See online for color version.)
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the absence of irradiation (a¼ 1). In this context, we do not con-
sider a pipette for aspiration on the top (h¼ 0, r2¼ 0, F¼ 0). Note
that SðtÞ ¼ 0;8t � 0 when there is no irradiation. As there is no
applied force, the vesicle remains spherical in the unadhered
region. Let R(t) denote the radius of the spherical cap at time t.
Then, At(0)¼A0, and AtðtÞ ¼ A0 � ð1 þ SðtÞÞ � pR2ðtÞ sin2/1ðtÞ.
From Ref. [20], we know that the tension s is determined by

s ¼ p2Kb

a2
0

exp � 8pKb

kBT
�

� �
(37)

where a2
0 is the surface area of a lipid molecule with linear size a0

� 0.8 nm, and � ¼ ðAtðtÞ � 2pR2ðtÞð1 þ cos/1ÞÞ=ð2pR2ðtÞð1 þ
cos/1ÞÞ denotes the area strain of the membrane, which is the
proportion of the surface area stored in the undulations. Note that
Eq. (37) is very close to the inverse formula of Eq. (8.74) in Ref.
[19], which is valid in the low tension regime. The constraint for
fixed volume Eq. (32) at time t can be rewritten as

4

3
pR3

0 ¼ pR tð Þ3 2

3
þ cos/1 tð Þ � cos3/1 tð Þ

3

� �
(38)

Thus, R(t) can be expressed as a function of contact angle /1(t)

R tð Þ ¼ 2R0

4 þ 6 cos/1 tð Þ � 2 cos3/1 tð Þ
� �1

3

(39)

If we know the contact radius r1(t) at time t, then we should have
RðtÞsin/1ðtÞ ¼ r1ðtÞ. Substituting this into Eq. (39), we have

r1 tð Þ
2R0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos2/1 tð Þ

p
4 þ 6 cos/1 tð Þ � 2 cos3/1 tð Þ
� �1

3

(40)

Thus, r1(t) is monotonically decreasing as cos/1(t) is increasing
and we can find an implicit relation as

cos/1ðtÞ ¼ f1ðr1ðtÞÞ (41)

Substituting this into Eq. (41), we have

R tð Þ ¼ 2R0

4 þ 6f1 r1 tð Þð Þ � 2f 3
1 r1 tð Þð Þ

� �1
3

¢f2 r1 tð Þð Þ (42)

then At(t) can be written as

AtðtÞ ¼ A0 � ð1 þ SðtÞÞ � pf 2
2 ðr1ðtÞÞð1 � f 2

1 ðr1ðtÞÞÞ¢f3ðr1ðtÞ; tÞ
(43)

Substituting Eqs. (41)–(43) into the tension–area relation Eq. (37),
we have

s¼ p2Kb

a2
0

exp �8pKb

kBT
� f3 r1 tð Þ; tð Þ � 2pf 2

2 r1 tð Þð Þ 1þ f1 r1 tð Þð Þð Þ
2pf 2

2 r1 tð Þð Þ 1þ f1 r1 tð Þð Þð Þ

 !

¢f4 r1 tð Þ; tð Þ (44)

Also, from Ref. [20], we know the contact radius r1 propagates
toward the Young–Dupre equilibrium Eq. (4) at a rate

_r1 tð Þ ¼ C� 1 � cos/1 tð Þ
� �

s

g0cs
(45)

where g0 � 10�3 Pa�s denotes the viscosity of the aqueous medium
[28], and cs denotes surface drag coefficient ranging from hydrody-
namic limit (cs � 1), through the membrane friction dominated
range (cs � 103), up to surface inhomogeneity governed values (cs
� 106) [20]. In our work, we study the membrane friction domi-
nated range (cs � 103) used in Ref. [20]. Dragging Eqs. (41) and
(44) into Eq. (45), the contact radius rate _r1ðtÞ has the form

_r1 tð Þ ¼ C� 1 � f1 r1 tð Þð Þð Þf4 r1 tð Þ; tð Þ
g0cs

(46)

Although there is no analytic solution for Eq. (46), numerical
results can be obtained using a fourth-order Runge–Kutta method.
In Fig. 5(a) we plot the evolution of contact radius by solving
the ordinary differential equation (ODE) Eq. (46) for a vesicle
with initial contact radius rinit

1 ¼ 10 nm, initial radius
R0¼ 1.68� 10�5 m and bending modulus Kb¼ 21 kBT under the
adhesion energy per unit area C¼ 2.53� 10�5 N/m. Equilibrium
is reached at time t*¼ 0.56 s. Our estimate for t* agrees with a
recent theoretical work [20]. Next, we study the effect of C on t*.
We choose C¼ 2.53� 10�4 N/m, C¼ 2.53� 10�5 N/m, and
C¼ 2.53� 10�6 N/m corresponding to t	�4; t

	
�5; t

	
�6 (with initial

contact radius rinit
1 ¼ 10 nm). The results for the evolution of r1(t)

are shown in Fig. 5(b). We can see that
t	�4 
 10�2 s; t	�5 
 10�1 s; t	�6 
 100 s. As expected, increasing
C increases the speed at which the vesicle finishes its adhesion on
the substrate and reaches equilibrium.

3.3 Ordinary Differential Equation Model of Contact Radius
Increase With Irradiation. Figure 5(a) suggests that t* is about
0.56 s, which implies that the kinetics of the vesicle adhesion on
the substrate is much faster (at least for large enough C) than the
kinetics of the irradiation, which is hundreds of seconds in Ref.
[24] and tens of seconds in Ref. [4]. This shows that the vesicle
will completely finish adhesion on the substrate and reach equilib-
rium as soon as the irradiation is applied. As a consequence, we
can separate these two kinetics and only consider the kinetics of
irradiation induced oxidation. Here, we consider the three irradia-
tion powers used in Ref. [24]. Let S1, S2, S3 be the surface area
increment under irradiation powers 1, 1/4, 1/32, respectively.
Then, in order to fit the model in Eqs. (35) and (36), we need to
set k1¼ 0.0427, 0.0066, 0.0017 and AOX1¼ 1.1936, 1.1801,
1.1878 under the irradiation power 1, 1/4, 1/32, respectively. The
model in Sec. 3.2 can be used here except that we need to replace
S(t)¼ 0 by S1(t), S2(t), S3(t). Then, the contact radius r1(t) at time t
can be determined through the Young–Dupre equilibrium Eq. (4)

C ¼ f4ðr1ðtÞ; tÞ � ð1 � f1ðr1ðtÞÞÞ (47)

The results are plotted in Fig. 6(a), which shows that higher irradi-
ation power leads to quicker completion of area increase. The k1

values we found above increase with increasing radiation power,
as expected [4]. The curves in Fig. 6(a) qualitatively capture the
experimental results in Ref. [24] as shown in the inset; a quantita-
tive match may require that we account for the kinetics of OX2.
As an alternative, we have used linear interpolation to construct
continuous functions for S1, S2, S3 based on discrete data extracted

Fig. 5 (a) Prediction of time evolution of contact radius r1 in
the absence of irradiation. (b) Comparison between different C
for the time of vesicle finishing adhesion on substrate in the
absence of irradiation. See online for color version.
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from Ref. [24] and performed the exercise above to get better
agreement with the experimental data (not shown here). In
Fig. 6(b), we predict that the tension s decreases as irradiation
progresses. Intuitively, the decrease in tension is expected since
the vesicle area increases while its volume is held fixed. Also,
experimental evidence [4] shows an increase in thermal fluctua-
tions of the vesicles after irradiation, which is consistent with a
reduction in tension. Such a decrease in tension could lead to
functional changes in live cells [9]. For example, it has been
shown that artificially decreasing membrane tension in fibroblasts
increases the rate of cell spreading and lamellipodial extension and
stimulates new lamellipodial extensions [29]. Although it has long
been known that oxidative damage can cause cell death and diseases
[1], changes in cell behavior due to irradiation-induced changes in
membrane tension have not been tested in experiments. If such
experiments are performed in live cells, then insights from our analy-
sis can inform models for the evolution of cell membrane tension.

4 Kinetics of Detachment of Vesicle After Irradiation

Finally, it is important to study the kinetics of detachment of
vesicles from substrates because it represents a stage in cellular
processes such as endo- and exo-cytosis, immune response, and
cell–tissue interaction [30]. Here, our goal is to determine how
irradiation-induced area changes can change the kinetics of
detachment.

4.1 Critical Force to Cause Detachment. We consider a
detachment process in which the dissociation of bonded
ligand–receptor pairs is considered after irradiation has occurred.
Following the model in Ref. [17] and Boulbitch [30], we use q1,
which is a number per unit area, to denote the local concentration
of free ligands in the substrate. Similarly, we use qr to denote the
concentration of free receptors in the vesicle wall. Let qlr denote
the concentration of bonded ligand-receptor pairs. Also, let kþ be
the association rate constant, k– be the dissociation rate constant.
We assume that qlr ¼ qð0Þlr is constant everywhere. Here, qð0Þlr is
the density of bonded ligand-receptor pairs at equilibrium. Then,
the following local rate equation is given by [17]:

dqlr

dt
¼ kþq1qr � k�q

0ð Þ
lr (48)

where the dissociation rate k– is given by [31]

k� fð Þ ¼ k 0ð Þ
� exp

af

kBT

� �
(49)

where a is the length on the order of 0.1 nm and f is the force on a
single bond. We also assume that the vesicle is in equilibrium
adhesive contact with the substrate in the absence of detachment
force [17]. Then the LHS of Eq. (48) should vanish, and we have

kð0Þ� qð0Þlr ¼ kþq1qr (50)

Substituting this into Eq. (48), we get

k� fð Þ ¼ kþq1qr
q 0ð Þ
lr

exp
af

kBT

� �
(51)

Lin and Freund [17] supposed the applied force on each stretched
bond is uniform: f ¼ FðtÞ=2pr1ðtÞb0q

ð0Þ
lr , where r1(t) is the radius

of the adhesion zone at time t and b0 � 10 nm is the width of
bending zone. Then they show that

dr1

dt
¼ b0kþq1qr

q 0ð Þ
lr

1 � exp
F tð Þa

2pb0r1 tð Þq 0ð Þ
lr kBT

 !" #
(52)

We first follow the model in Ref. [17] to consider the case
when the pulling force is suddenly applied and remains constant
during the unbinding process, i.e., F(t)¼F, t> 0. Evans and
Ritchie [32] have pointed out that detachment will occur under
any level of pulling force if it is held for sufficient time. There-
fore, we are interested in the dependence of the dimensionless
detachment time s* on the constant applied force F with and with-
out irradiation. Let b1 ¼ Fa=2pb0kBTq

ð0Þ
lr R1, where R1 is the

initial radius of the adhesion zone under irradiation. Following
[17], we use dimensionless variables s1 ¼ ðb0kþq1qrÞt=ðq

ð0Þ
lr R1Þ;

n1 ¼ r1=R1. Then, Eq. (52) becomes

dn1

ds1

¼ 1 � exp
b1

n1

� �
(53)

with the initial condition n1(0)¼ 1. Similarly, we can define b2,
s2, n2 and the ODE with respect to R2, which is the initial radius
of the adhesion zone in the absence of irradiation. It is not hard to
see that at a given F, b1¼Cb2 where C is a constant.

In Boulbitch [30], kþq1 is estimated to be 0.18� 105/s and in
Ref. [17] the receptor density on the substrate surface is about
qr¼ 1/lm2. In Ref. [33], kð0Þ� is estimated to be 0.95 s�1. From
Fig. 1, in Sec. 2.3, we know R1¼ 2.38� 10�5 m and
R2¼ 1.34� 10�5 m. Then, b1 and b2 should be in the range
4.30� 10�9<b1< 4.30� 10�6 and 7.64� 10�9< b2< 7.64
� 10�6, respectively, which corresponds to 0.5 pN<F< 500 pN
used by Lin and Freund [17]. In particular, for a given F,
b2=b1 � 1:78. We numerically integrate Eq. (52) using these
numbers and plot the result in Fig. 7(a) in which b¼ b1 is a
“reference dimensionless variable.” Within the force range men-
tioned above, the dependence of the dimensionless detachment
time s	1; s

	
2 (corresponding to dimensionless detachment time with

and without irradiation), respectively, on b1, b2 is

s	1 / b�1:00
1 ; s	2 / b�1:00

2 (54)

Since b1 and b2 are proportional to F, we have

s	 / F�1:00; ðF between 0:5 pN and 500 pNÞ (55)

Note that Eq. (55) holds for both cases (with and without irradia-
tion). The time to detachment will be higher after irradiation
because a larger area is adhered.

Now, we consider a time-dependent force at constant rate _F as
proposed by Lin and Freund [17]. Let FðtÞ ¼ _Ft, then Eq. (55)
can be rewritten as

dn
ds

¼ 1 � exp g
s
n

� �
(56)

Fig. 6 (a) Prediction of time evolution of contact radius r1 in
equilibrium as irradiation is progressing under three different
irradiation powers in Ref. [24]. The irradiation power affects
the rate constant k1, which increases as irradiation power
increases. The inset is a comparison between fitted functions
(solid line) and raw experimental data (dashed line) for surface
area increment function S(t) under three different irradiation
powers in Ref. [24] showing qualitative agreement. (b) Predic-
tion of time evolution of tension s as irradiation is progressing
under three different irradiation powers in Ref. [24]. See online
for color version.
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where g ¼ _Fa=ð2pb2
0kþq1qrkBTÞ. Using the values of these

parameters mentioned above, we have g ¼ 2:15 � 109 _F. As
pointed out by Prechtel et al. [25], the force rate _F in experiments
is estimated to be between 20 pN/s and 4 nN/s, which corresponds
to g between 0.043 and 8.6. Equation (56) can be integrated
numerically and the result is plotted in Fig. 7(b) as symbols. The
fitted line reveals that s	 � g�0:59. Let the real detachment time be
l*. We want to study the dependence of the dimensionless detach-
ment time s* on g and, accordingly, the dependence of the real
detachment time l* on the force rate _F with and without irradia-
tion. Recall that l* is proportional to s* and _F is proportional to
g. It follows from Fig. 7(b) that within the range 0.043< g< 8.6,
the dependence of the real detachment time l* on the force rate _F
can be approximated by a power law as l	 / ð _FÞ�0:59

. Since the
detachment force F	 ¼ _Fl	, this implies

F	 / ð _FÞ0:41
(57)

We note that Fig. 7(b) and Eq. (57) works for both cases (with and
without irradiation). The only difference comes from the real
detachment time l*. If we use l	1 to denote the detachment time
under irradiation and l	2 without irradiation, then we should have,
as expected, l	1=l

	
2 ¼ R1=R2 ¼ 1:78.

5 Conclusion

In this paper, we investigated the mechanics of a vesicle subject
to adhesion, micropipette aspiration, and irradiation simultane-
ously. We computed the shapes of the vesicles at equilibrium and
also studied the kinetics of competing processes such as adhesion
and irradiation-induced oxidation. An important aspect of our
computations is that thermal undulations of the lipid membrane
are taken into consideration so that they can be realistically com-
pared to adhesion and irradiation experiments. The time variation
of the mechanical moduli of irradiated vesicles is also taken into
account in our computations. As such, our results are in agreement
with several experimental papers on oxidation induced structural
changes in vesicles. For example, we predicted the kinetics of the
area increment of a lipid membrane sucked into a micropipette under
different irradiation powers and the dynamics of the contact radius
during adhesion, which are in agreement with experiments. We have
also made falsifiable predictions that can be tested in future experi-
ments. Our model may be extended to account for pore formation in
oxidized membranes, but we leave this to the future.
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