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A B S T R A C T

We study the isometric conical deformation of an inextensible elastic sheet in response to a distributed external
loading that is normal to the deformed sheet. The sheet is planar in the reference configuration and it deforms
into a cone with a flower-shaped cross-section under load. These deformed configurations are distinguished
by the number of lobes. We focus on the geometry and energetics of various lobed-cones in the deformed
configuration and discuss their relative stability. First, we assume that the displacements are small which leads
to linear governing equations for the curvature that we solve analytically to yield sinusoidal solutions. Then,
we relax this restriction on the magnitude of the displacement which leads to nonlinear governing equations,
which we again solve analytically using Jacobi elliptic functions which are periodic but not sinusoidal. We
show that the sinusoidal solution can be recovered in the limit that the external loads are small.

1. Introduction

Interest in the mechanics of elastic sheets stems partly from their
diverse engineering applications in structural design [1,2], and partly
from the observation that the analysis of relatively unremarkable phys-
ical phenomena, such as crumpling of paper and draping of textiles,
is rooted in ideas from differential geometry and elasticity [3,4]. A
common theme that spans the study of elastic sheets and their appli-
cations is that small strains can cause relatively large deformations,
resulting in nonlinear governing equations. These can be linearized,
provided certain restrictions on strains, displacements, and curvatures
are satisfied [1,2].

The kinematics of elastic sheets is conventionally described in terms
of the deformation of a midplane. For a sheet described by convected
coordinates (𝜉1, 𝜉2, 𝑧), where 𝑧 is along the thickness, Kirchhoff’s hy-
pothesis [1,2] relates the linearized strains 𝐸𝛼𝛽 at any point (𝜉1, 𝜉2, 𝑧)
in the sheet to the strains 𝐸̄𝛼𝛽 of the corresponding point (𝜉1, 𝜉2, 0) on
the midplane such that,

𝐸𝛼𝛽 (𝜉1, 𝜉2, 𝑧) = 𝐸̄𝛼𝛽 (𝜉1, 𝜉2) + 𝑧 𝜅𝛼𝛽 (𝜉1, 𝜉2) + 𝑂(𝑧2),

where 𝛼, 𝛽 = 1, 2, and 𝜅𝛼𝛽 are the curvatures. This decomposition is
fundamental to the study of the mechanics of elastic plates [5].

For thin sheets subjected to amenable boundary conditions, the
in-plane strains 𝐸̄𝛼𝛽 are negligible, and the sheet deforms by out-of-
plane bending, quantified by the curvatures 𝜅𝛼𝛽 . Amenable boundary
conditions are important because for certain boundary conditions that
involve pure stretching the in-plane strains are not negligible. Never-
theless, the scope of the description is enormous and includes various
interesting phenomena such as the buckling of a plane sheet in response
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to a compressive load, snap-through of a thin shell [1], packing of
flat sheets in a cylindrical confinement [3], crumpling of a paper [6],
and draping of a tablecloth [7]. When the in-plane strains are zero,
the deformed configuration of the sheet is isometric to the reference
configuration which implies that both the metric and the Gauss cur-
vature remain unchanged. We refer to such deformations as isometric
deformations. In these cases, since the in-plane strains are zero, the
corresponding stress conjugates are Lagrange multipliers and the elastic
energy consists of only the bending energy.

Although a bulk of scholarship has been devoted to studying isomet-
ric deformations, we mention only a few recent studies here and refer
the reader to [5,8] for an exhaustive review. Cerda and Mahadevan [9]
have successfully used an idealized inextensible elastic sheet model to
study the wrinkling patterns in the human skin. King et al. [10] studied
the wrinkling patterns in an elastic sheet from a similar perspective
and concluded that beyond a certain confinement symmetric wrinkling
is susceptible to a localized crumpling. At the micrometer scale, the
mechanics of lipid bilayer membranes [11–13] is governed by the
principle that the observed morphology minimizes the elastic bending
energy. Rim et al. [14] exploited this idea to compute equilibrium
configurations for a vesicle in cylindrical confinement to highlight how
the interplay between adhesion and confinement can result in highly
curved organelle shapes in various cells. Apart from this, differen-
tial growth of thin shells can result in many intricate morphologies
[15–17], which has extensive applications in understanding biological
shape evolution such as blooming flowers and curling leaves. Effi-
cient packing of flat sheets also has applications in origami inspired
structural design [18–20].
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Folding of a flat elastic sheet into a conical configuration is well
studied in the literature [3,5]. The deformed conical configuration
is isometric to the original flat sheet and has zero Gauss curvature
everywhere except at the apex. This concept has been used to study
gravity induced draping [7] and crumpling of paper [21]. A salient
aspect of conical deformations is the study of stress concentrations
around the apex of the cone. Near the apex, also referred to as a
singularity, the assumption that the sheet is inextensible breaks down;
the size and properties of this zone depend upon the packing fraction
of the sheet [4,6,22]. A common example of the stress and curvature
localization in an elastic sheet is in crumpling of a plane sheet of
paper [6,23]. An in-depth study of the creases and ridges in crumpled
paper is available in Blair and Kudrolli [23], but is beyond the scope
of this paper. Here we are interested in investigating the response of
a thin inextensible elastic sheet placed on a sharp end, subject to a
distributed external load (see Fig. 1). The sheet is flat in the reference
configuration. As the sheet deforms, it curls up on itself which results
in a 𝑞-lobed flower-shaped configuration as shown in Fig. 1. This is an
example of the well-studied isometric deformation [3,7] transforming a
flat sheet into a conical configuration while conserving the metric and
the Gauss curvature. Several ideas involving the general kinematics of
the conical deformation [3,4,7] and the derivation of the governing
equations using energy minimization principles [5,14] are based on
previous works. However, the live loading normal to the deformed
shape of the plate considered in this paper has not been described
elsewhere. We show that under such specialized external loads it is
possible to obtain analytical solutions for the shapes of conical plates
which are similar to the lobed shapes of buckled cylindrical shells. We
investigate the geometrical characteristics of various lobed configura-
tions. We examine the dependence of stress distribution on the radial
and angular coordinates. Finally, we compute the potential energy of
the various shapes and comment on their relative stability.

2. Approach

Our objective is to study the deformation of a thin developable elas-
tic sheet placed on a pointed end subjected to a distributed force 𝑝(𝑟, 𝜃),
as shown in Fig. 1. The sheet, planar in the reference configuration,
is described by a set of two convected coordinates, 𝑟 and 𝜃. In the
deformed configuration, the sheet is conical where each cross-section
is shaped like a 𝑞-lobed flower, as shown in Fig. 1. We investigate the
geometrical characteristics of the cone such as curvature, transverse
displacement 𝑤(𝑟, 𝜃), and shape of the cross-section, in the deformed
configuration.

The paper is divided into two parts:

• Part 1: Small deflections: In this part, we assume that the deflec-
tion angle (see Fig. 1) 𝛼 ≪ 1, which leads to linear governing
equations [3]. The loading 𝑝(𝑟, 𝜃) = 𝑝(𝑟) is axisymmetric and
independent of 𝜃. To get the deformation profiles, we minimize
the potential energy functional. Our key result here is that the
curvature of the cone in the deformed configuration is sinusoidal.

• Part 2: Finite deflections: This part aims to extend the work in part
1 to finite deflections (𝛼 ∼ 𝑂(1)), resulting in nonlinear governing
equations. Again, the loading 𝑝(𝑟, 𝜃) = 𝑝(𝑟) is axisymmetric and
independent of 𝜃. Here, the curvature of the cone in the deformed
configuration is described using Jacobi Elliptic functions [24],
which are periodic but not sinusoidal.

We assume that the elastic sheet is inextensible, hence the cone in
the deformed configuration is always isometric to a flat sheet. This
assumption has three key consequences: (i) the Gauss curvature of the
plate remains constant (= 0) during the deformation, (ii) no in-plane
extension takes place, hence the in-plane strains 𝜀𝑟𝑟, 𝜀𝜃𝜃 and 𝜀𝜃𝑟 are
zero, whereas the corresponding stress conjugates are indeterminate
Lagrange multipliers, and (iii) the elastic energy of the plate solely con-
sists of the bending energy. Where appropriate, we use geometrically
nonlinear shell theory [1,3,25].

3. Part 1: Small deflections

In this section, we solve the problem posed above for small de-
flection (𝛼 ≪ 1) by minimizing the potential energy functional for
the system. The first step is to compute the elastic energy of the
sheet. We proceed by assuming that the transverse displacement 𝑤 =
𝑟𝑔(𝜃) — characteristic of a conical deformation [5]. We compute the
curvatures, which are in turn used to compute the bending energy. Note
that the sheet is inextensible, hence there is no energetic contribution
from stretching. The second step is to account for the constraint of
inextensibility using Lagrange multipliers. The third step is to compute
the work done by external loading 𝑝(𝑟, 𝜃). These steps enable us to
compute the functional to be minimized. We calculate the variation of
the energy functional and set it to zero to get the governing equations
describing the deformation.

3.1. Analysis

We use curvilinear coordinates, 𝑟, 𝜃 where 0 < 𝑟 < 𝑅 and 0 < 𝜃 < 2𝜋
to parametrize the sheet in the undeformed configuration. We give the
symbols used in this section in Table 1. The displacement of the sheet
parallel to the fixed support is 𝑤(𝑟, 𝜃) and the profile is conical:

𝑤(𝑟, 𝜃) = 𝑟𝑔(𝜃). (1)

The curvature components 𝜅𝑟, 𝜅𝜃 and 𝜅𝑟𝜃 comprising the second funda-
mental form (see Ref. [3]) are obtained as follows [25]:

𝜅𝜃 = −
𝑤𝜃𝜃
𝑟2

−
𝑤𝑟
𝑟

= −1
𝑟
(𝑔′′ + 𝑔), 𝜅𝑟 = −𝑤𝑟𝑟 = 0,

𝜅𝑟𝜃 = −
𝑤𝑟𝜃
𝑟

+
𝑤𝜃
𝑟2

= 0.
(2)

Note that ()′ = 𝜕
𝜕𝜃 , ()

′′ = 𝜕2

𝜕𝜃2
and so on.

The next step is to compute the bending energy in terms of the
curvature 𝜅𝑟, 𝜅𝜃 and 𝜅𝑟𝜃 [3]. The elastic energy per unit reference area
of the sheet is 𝑒𝑏.

𝑒𝑏 =
1
2

(

𝑚𝑟𝜅𝑟 + 𝑚𝜃𝜅𝜃 + 𝑚𝑟𝜃𝜅𝑟𝜃
)

= 𝐵
2
(𝜅𝑟 + 𝜅𝜃)2

+ 𝐵(1 − 𝜈)(𝜅𝑟𝜃 − 𝜅𝑟𝜅𝜃) = 𝐵
(𝑔′′ + 𝑔)2

2𝑟2
,

(3)

where ℎ and 𝜈 are the thickness and Poisson ratio of the sheet respec-
tively, and, 𝐵 = 𝐸ℎ3

12(1−𝜈2) where 𝐸 is the Young’s modulus. We have to
integrate 𝑒𝑏 over the area of the elastic sheet (𝜀 < 𝑟 < 𝑅, 0 < 𝜃 < 2𝜋)
in the reference configuration to compute the total elastic energy 𝐸𝑏.
Here, 𝜀 is the size of the boundary layer for the singularity at the
center [4]. In the region 0 < 𝑟 < 𝜀, our assumptions that the sheet
is elastic and inextensible break down [4,5]. The elastic energy is,

𝐸𝑏 = ∫

𝑅

𝜀 ∫

2𝜋

0
𝑒𝑏 𝑟𝑑𝑟𝑑𝜃 = 1

2
𝐵 log 𝑅

𝜀 ∫

2𝜋

0
(𝑔′′ + 𝑔)2𝑑𝜃. (4)

The work done by external loads 𝑊𝑒𝑥𝑡 is,

𝑊𝑒𝑥𝑡 = ∫

𝑅

𝜀
𝑟𝑑𝑟∫

2𝜋

0
𝑑𝜃 𝑝(𝑟)𝑤(𝑟, 𝜃) = ∫

2𝜋

0
𝑔𝑑𝜃 ∫

𝑅

𝜀
𝑝(𝑟)𝑟2𝑑𝑟

= 𝑃 ∫

2𝜋

0
𝑔𝑑𝜃,

(5)

where 𝑃 = ∫ 𝑅𝜀 𝑝(𝑟)𝑟2𝑑𝑟.
To account for the inextensibility, the following constraint equation

involving 𝑔(𝑟, 𝜃) must be added to the potential energy functional (for
detailed derivation see Ref. [4]).

𝐼 = 1
2 ∫

2𝜋

0
𝑑𝜃 (𝑔′2 − 𝑔2) = 0. (6)

The physical meaning of the above equation is that the perimeter
of the locus of points at a fixed distance 𝑟 from the tip in the reference
configuration is 2𝜋𝑟, which is invariant under isometric deformations.

2



J. Singh and P.K. Purohit International Journal of Non-Linear Mechanics 114 (2019) 1–8

Fig. 1. We consider an elastic sheet, flat in the reference configuration parametrized by convected coordinates 𝑟 and 𝜃, subjected to a loading 𝑝(𝑟, 𝜃). We assume that the sheet
is inextensible and is supported at 𝑟 = 0 like an umbrella. In the deformed configuration, the sheet is a cone where each cross section looks like a 𝑞-lobed flower (𝑞 = 4 is shown
in the figure). Such conical deformation profiles are described using and out-of-plane displacement 𝑤 = 𝑟𝑔(𝜃). The paper is divided into two parts: small deflections, when 𝛼 ≪ 1
leading to linear governing equations, and finite deflections, when 𝛼 ∼ 𝑂(1), resulting in nonlinear governing equations.

The energy functional to be minimized is,

𝐹 [𝑔] = 𝐸𝑏 −𝑊𝑒𝑥𝑡 − 𝜆𝐼, (7)

where 𝜆 is the Lagrange multiplier. Next, we compute the variation of
the functional 𝛿𝐹 and set it to zero.

𝛿𝐸𝑏 = 𝐵 log 𝑅
𝜀

[

(𝑔′′ + 𝑔)𝛿𝑔′|2𝜋0 − (𝑔′′′ + 𝑔′)𝛿𝑔|2𝜋0

+ ∫

2𝜋

0
𝑑𝜃 (𝑔𝐼𝑉 + 𝑔′′)𝛿𝑔 + ∫

2𝜋

0
𝑑𝜃 (𝑔 + 𝑔′′)𝛿𝑔

]

.
(8)

𝑔 and its derivatives are continuous at 𝜃 = 0, 2𝜋, which obliterates the
boundary terms. Hence,

𝛿𝐸𝑏 = 𝐵 log 𝑅
𝜀 ∫

2𝜋

0
𝑑𝜃 (𝑔𝐼𝑉 + 2𝑔′′ + 𝑔)𝛿𝑔. (9)

Similarly,

𝛿𝐼 = −∫

2𝜋

0
𝑑𝜃 (𝑔 + 𝑔′′)𝛿𝑔, 𝛿𝑊𝑒𝑥𝑡 = 𝑃 ∫

2𝜋

0
𝑑𝜃 𝛿𝑔. (10)

Plugging Eqs. (9) and (10) into Eq. (7) gives,

0 = 𝛿𝐹 = ∫

2𝜋

0
𝑑𝜃

[

𝐵 log 𝑅
𝜀
(𝑔𝐼𝑉 + 2𝑔′′ + 𝑔) + 𝜆(𝑔′′ + 𝑔) − 𝑃

]

𝛿𝑔. (11)

This gives us our governing equation for the conical plate.

𝑔𝐼𝑉 + (2 + 𝛽)𝑔′′ + (1 + 𝛽)𝑔 − 𝑃∕𝑎 = 0, (12)

where 𝑎 = 𝐵 log 𝑅
𝜀 , 𝛽 = 𝜆∕𝑎. The solution to the above equation is,

𝑔(𝜃) = 𝐴 cos 𝑞𝜃 + 𝐵 sin 𝑞𝜃 + 𝐶 sin 𝜃 +𝐷 cos 𝜃 + 𝑃
𝑞2𝑎

. (13)

where 𝑞 =
√

1 + 𝜆
𝑎 , and 𝐴,𝐵, 𝐶,𝐷 are constants. Note that the above

solution is valid only for small displacements. Our next task to find
𝐴,𝐵, 𝐶,𝐷, 𝑘 and 𝜆, which is accomplished by using: (i) periodicity of
𝑔, (ii) fixing the origin such that 𝑑𝜅𝜃∕𝑑𝜃 = 0, and (iii) inextensibility
of the sheet (Eq. (6)). Since the solution is continuous at 𝜃 = 0, 2𝜋 and
periodic with a period of 2𝜋, cos 𝑞𝜃 = cos 𝑞(𝜃+2𝜋) which implies 𝑞 ∈ 𝑍
must be an integer. We substitute Eq. (13) in Eq. (2) to calculate the
curvature.

𝜅𝜃 = −
𝑔′′ + 𝑔
𝑟

= 1
𝑟
(𝐴(𝑞2 − 1) cos 𝑞𝜃 + 𝐵(𝑞2 − 1) sin 𝑞𝜃 − 𝑃

𝑞2𝑎
). (14)

Without loss of generality assume 𝜅′ = 0 at 𝜃 = 0. This gives 𝐵 = 0.
Next, substitute the expression for 𝑔(𝜃) in the inextensibility constraint
(Eq. (6)), which gives,

𝐴 = 𝑃
𝑞2𝑎

√

2
𝑞2 − 1

. (15)

Table 1
Some symbols used in Section 3 for ready reference.
Symbol Description

𝐵 𝐸ℎ3

12(1−𝜈2 )
𝜆 Lagrange multiplier corresponding to the inextensibility constraint
𝑅 Outer radius of the sheet
𝜀 Size of the boundary layer around the singularity
𝑎 𝐵 log 𝑅

𝜀

𝑞 𝑞 =
√

1 + 𝜆∕𝑎, number of folds
𝛽 𝜆∕𝑎
𝑃 ∫ 𝑅

𝜀 𝑝(𝑟)𝑟2𝑑𝑟
()′ 𝜕∕𝜕𝜃

This expression gives the amplitude of the folds in terms of the number
of folds 𝑞. Notice that this form precludes the values 𝑞 = 0, 1 since
the amplitude blows up. We now calculate the potential energy (PE)
to determine the number of folds [3]:

𝑃𝐸 = 𝑈𝑏 −𝑊𝑒𝑥𝑡 = −𝜋𝑃
2

𝑞2𝑎
. (16)

Now 𝑞 is an integer, but 𝑞 ≠ 0, 1 because the amplitude in Eq. (15) blows
up, hence the global minimum of the potential energy occurs at 𝑞 = 2.
Thus, 𝑞 = 2 is energetically favorable. However, if we somehow force
the sheet to be in a configuration described by 𝑞 > 2 the amplitude is
given by Eq. (15).

4. Part 2: Finite deflections

In this section, we solve the problem posed in Section 3 for finite
displacements i.e. 𝛼 ∼ 𝑂(1) (see Fig. 1). We assume that our inextensible
sheet is planar in the reference configuration. Here too, we focus
on conical configurations isometric to a planar sheet. The sheet is
parametrized by a set of two convected coordinates 𝑟 and 𝜃, as shown
in Fig. 2.

We aim to investigate isometric conical solutions of the form
𝑤(𝑟, 𝜃) = 𝑟𝑔(𝜃) in case of finite displacements. We substitute 𝑤 = 𝑟𝑔(𝜃)
in the nonlinear von-Kármán plate equations [1] and determine the
nature of the external force 𝑝(𝑟, 𝜃) that would admit a conical solution.

We follow the development in Cerda and Mahadevan [4]. The first
von Karman equation is:

𝐵𝛥2𝑤 − 𝜎𝑟𝑟
𝜕2𝑤
𝜕𝑟2

− 2
𝑟
𝜎𝑟𝜃(

𝜕
𝜕𝑟

− 1
𝑟
) 𝜕𝑤
𝜕𝜃

− 1
𝑟2
𝜎𝜃𝜃(

𝜕2𝑤
𝜕𝜃2

+ 𝑟 𝜕𝑤
𝜕𝑟

) = 𝐹𝑁 , (17)

where 𝜎𝜃𝜃 , 𝜎𝑟𝜃 and 𝜎𝑟𝑟 are the indeterminate in-plane stresses, 𝛥 =
𝜕2

𝜕𝑟2
+ 1

𝑟
𝜕
𝜕𝑟 + 1

𝑟2
𝜕2

𝜕𝜃2
, 𝐵 = 𝐸𝑡3

12(1−𝜈2) and 𝐹𝑁 is the normal force per unit

3
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Fig. 2. The sheet is parametrized by convected coordinates 𝑟 and 𝜃 as shown in Fig. 1. At every point (𝑟, 𝜃), we define a right-handed orthonormal frame [𝐮, 𝐭,𝐧]. Here, 𝐮 is the
unit vector pointing from tip to the point (𝑟, 𝜃), 𝐭 is another unit vector tangent to the deformed surface perpendicular to 𝐫, and 𝐧 is normal to the deformed surface. The external
loading of the form 𝑏𝑛 = − 𝑃

𝑟3
𝐧. The position vector of the point (𝑟, 𝜃) in the deformed surface is 𝐫(𝑟, 𝜃) = 𝑟𝐮(𝜃). We show the forces and moments on the two faces defined by 𝐮

and 𝐭, for an infinitesimal area 𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜃, which after some algebraic manipulation leads to our governing equations (Eq. (25)). A complete derivation is available in Cerda and
Mahadevan [3].

area. Substituting 𝑤 = 𝑟𝑔(𝜃) in Eq. (17) we get,

𝑔𝐼𝑉 + (2 −
𝜎𝜃𝜃𝑟2

𝐵
)𝑔′′ + (1 −

𝜎𝜃𝜃𝑟2

𝐵
)𝑔 =

𝐹𝑁 𝑟3

𝐵
. (18)

The governing equation for small displacement is 𝑔𝐼𝑉 + (2+ 𝛽)𝑔′′ + (1+
𝛽)𝑔 = 𝑃∕𝑎 (Eq. (12)). Comparing both the equations gives

𝛽 = −
𝜎𝜃𝜃𝑟2

𝐵
, 𝐹𝑁 = 𝑃

𝑟3
. (19)

We show in the following that we can indeed find analytical solutions
for the shape of the sheet if the external force decays as 1∕𝑟3. We give
an energy argument to justify the 1∕𝑟3 assumption in the Appendix.

4.1. Analysis

Let 𝐫(𝑟, 𝜃) denote the position vector of the point (𝑟, 𝜃) on the sheet
in the deformed configuration. We give the symbols used in this section
in Table 2. For a conical profile,

𝐫(𝑟, 𝜃) = 𝑟𝐮(𝜃), (20)

where 𝐮(𝜃) is the unit vector pointing from the tip (or the apex of the
cone) to (𝑟, 𝜃). Next, we compute the gradient vectors 𝐠𝑟 =

𝜕𝐫
𝜕𝑟 = 𝐮 and

𝐠𝜃 =
𝜕𝐫
𝜕𝜃 = 𝑟𝐮′ = 𝑟𝐭 in the deformed configuration [3], where ()′ denotes

𝜕()
𝜕𝜃 . The normal to the sheet in the deformed configuration is defined as
𝐧 = 𝐮× 𝐮′ (see Fig. 2 for the geometry). This set up is used to calculate
the components of the first fundamental form 𝑔𝑟𝑟, 𝑔𝑟𝜃 and 𝑔𝜃𝜃 , and the
second fundamental form 𝑏𝑟𝑟, 𝑏𝑟𝜃 and 𝑏𝜃𝜃[25],

𝑔𝑟𝑟 = 𝐠𝑟.𝐠𝑟 = 1, 𝑔𝑟𝜃 = 𝐠𝑟.𝐠𝜃 = 0, 𝑔𝜃𝜃 = 𝐠𝜃 .𝐠𝜃 = 𝑟2, (21)

and,

𝑏𝑟𝑟 = −𝐧. 𝜕
2𝐫
𝜕𝑟2

= 0, 𝑏𝑟𝜃 = −𝐧. 𝜕
2𝐫

𝜕𝑟𝜕𝜃
= −𝐧.𝐮′ = 0,

𝑏𝜃𝜃 = −𝐧. 𝜕𝐫
𝜕𝜃2

= −𝑟𝐮.𝐮′′ = 𝑟𝜅.
(22)

In the above, 𝜅 = −𝐮.𝐮′′. The normal curvatures for the sheet 𝜅𝑟𝑟, 𝜅𝑟𝜃 ,
and 𝜅𝜃𝜃 comprising the second fundamental form (see Ref. [3]) are
computed as follows [25]:

𝜅𝑟 =
𝑏𝑟𝑟
𝑔𝑟𝑟

= 0, 𝜅𝜃 =
𝑏𝜃𝜃
𝑔𝜃𝜃

= 𝜅
𝑟
, 𝜅𝑟𝜃 =

𝑏𝑟𝜃
𝑔𝑟𝜃

= 0. (23)

Table 2
Some symbols used in Section 4 for ready reference.
Symbol Description

()′ 𝜕∕𝜕𝜃
g𝑟 , g𝜃 Gradient vectors for the surface in the deformed state.
𝐵 𝐸ℎ3

12(1−𝜈2 )
𝑔𝑟𝑟 , 𝑔𝜃𝜃 , 𝑔𝑟𝜃 Components of metric tensor
𝜅𝑟 , 𝜅𝜃 , 𝜅𝑟𝜃 Curvatures for the sheet
𝜅 𝑟𝜅𝜃
𝑏𝑛 = 𝑃∕𝑟3 External force acting normal to the elastic sheet
𝑝 𝑃∕𝐵
𝑊 ,𝑄,𝑚, 𝑦1 , 𝑦3 , 𝜅0 Parameters in the solution to 𝜅 Eq. (32)
𝐾(𝑘) Denotes the complete elliptic function
[u, t,n] Orthonormal frame at the point 𝑟, 𝜃.
𝑁𝑟𝑟 , 𝑁𝜃𝜃 , 𝑄𝑟 , 𝑄𝜃 Contact forces
M𝜃 ,M𝑟 Contact moments

𝜅𝜃 , 𝜅𝑟 and 𝜅𝑟𝜃 are related linearly to the moments in the sheet 𝑚𝑟, 𝑚𝜃
and 𝑚𝑟𝜃 [3]:

𝑚𝑟 = 𝐵(𝜅𝑟 + 𝜈𝜅𝜃) = 𝐵𝜈 𝜅
𝑟
, 𝑚𝜃 = 𝐵(𝜅𝜃 + 𝜈𝜅𝑟) = 𝐵 𝜅

𝑟
,

𝑚𝑟𝜃 = 𝐵(1 − 𝜈)𝜅𝑟𝜃 = 0,
(24)

where 𝜈 is the Poisson ratio, 𝐸 is the Young’s modulus, and 𝐵 = 𝐸ℎ3

12(1−𝜈2) .

We use the force balance and moment balance equations for the
sheet derived by Cerda and Mahadevan [3]:

𝜕𝐅𝜃
𝜕𝜃

+
𝜕(𝑟𝐅𝑟)
𝜕𝑟

+ 𝑟𝐊 = 0,

𝜕𝐌𝜃
𝜕𝜃

+
𝜕(𝑟𝐌𝑟)
𝜕𝑟

+ 𝑟(𝐭 × 𝐅𝜃 + 𝐮 × 𝐅𝑟) = 0.
(25)

Here, 𝐅𝜃 and 𝐅𝑟 denote the force per unit length on the cross section
defined by 𝜃 =constant and 𝑟 = constant, respectively. 𝐌𝜃 and 𝐌𝑟 are
defined similarly. 𝐊 is the loading per unit reference area. In the [𝐮, 𝐭,𝐧]
orthonormal frame,

𝐌𝜃 = 𝐧 × (𝑚𝜃𝜃𝐭 + 𝑚𝑟𝜃𝐮) = 𝐵 𝜅
𝑟
𝐮, 𝐌𝑟 = 𝐧 × (𝑚𝑟𝑟𝐮 + 𝑚𝑟𝜃𝐭) = −𝜈𝐵 𝜅

𝑟
𝐭,

𝐅𝜃 = 𝑁𝜃𝜃(𝑟, 𝜃)𝐭 +𝑄𝜃(𝑟, 𝜃)𝐧, 𝐅𝑟 = 𝑄𝑟(𝑟, 𝜃)𝐧 +𝑁𝑟𝑟(𝑟, 𝜃)𝐮,
𝐊 = 𝑏𝑛𝐧.

(26)

4
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Since, [𝐮, 𝐭,𝐧] constitutes a right handed coordinate system, it follows
that [3],

𝐮′ = 𝐭, 𝐭′ = −𝜅𝐧 − 𝐮, 𝐧′ = 𝜅𝐭. (27)

We substitute Eqs. (26) and (27) back into the equilibrium equations
(Eq. (25)), and get the following equations:
𝜕𝑁𝜃𝜃
𝜕𝜃

+ 𝜅𝑄𝜃 = 0, (𝑎)
𝜕(𝑟𝑁𝑟𝑟)
𝜕𝑟

−𝑁𝜃𝜃 = 0, (𝑏)

𝜕𝑄𝜃
𝜕𝜃

+
𝜕(𝑟𝑄𝑟)
𝜕𝑟

−
𝜕(𝑟𝑁𝜃𝜃)
𝜕𝑟

+ 𝑟𝑏𝑛 = 0, (𝑐)
(28)

and

𝑄𝜃 =
𝐵𝜅′

𝑟2
, 𝑄𝑟 = −𝐵𝜅

𝑟2
. (29)

Eliminating 𝑄𝜃 and 𝑄𝑟 using Eq. (29) from Eq. (28)(a) gives 𝑁 ′
𝜃𝜃 +

𝜅𝐵𝜅′∕𝑟2 = 0. Integrating the equation yields 𝑁𝜃𝜃 = −𝐵(𝜅2∕2𝑟2 + 𝜕𝜓(𝑟)
𝜕𝑟 ),

for some function 𝜓(𝑟). Substituting this expression for 𝑁𝜃𝜃 and 𝑄𝜃 and
𝑄𝑟 from Eq. (29) into Eq. (28)(c), we get 𝐵

[

𝜅′′+𝜅3∕2
]

+𝐵𝜅(1+ 𝑟2 𝜕𝜓𝜕𝑟 )+

𝑟3𝑏𝑛(𝑟) = 0. From Eq. (19), we know that 𝑏𝑛 =
𝑃
𝑟3
. Hence our governing

equation for 𝜅 is,

𝐵
[

𝜅′′ + 𝜅3∕2
]

+ 𝐵𝜅(1 + 𝑟2
𝜕𝜓
𝜕𝑟

) + 𝑃 = 0, (30)

which can be rewritten as
[

𝐵
𝜅 (𝜅

′′ + 𝜅3∕2) + 𝑃
𝜅

]

= −𝐵(1 + 𝑟2 𝜕𝜓𝜕𝑟 ). The
RHS is a function of 𝑟 while the LHS is a function of 𝜃. This enables us
to separate variables, wherein both sides are equal to a constant. Let
(1 + 𝑟2 𝜕𝜓𝜕𝑟 ) = 𝜎, then,

𝜅′′ + 𝜅3∕2 − 𝜎𝜅 + 𝑝 = 0, (31)

where 𝑝 = 𝑃
𝐵 . This nonlinear differential equation can be solved (eq. 1

in [26]). We begin by integrating the equation to obtain,

𝜅′2

2
+ 𝜅4

8
− 𝜎𝜅2

2
+ 𝑝𝜅 = 𝐶, (32)

where 𝐶 is the constant of integration. We fix the origin such that 𝜅′ = 0
and 𝜅 = 𝜅0 at 𝜃 = 0. We can then eliminate 𝐶 and introduce another
constant 𝜅0 which has a physical meaning. To integrate Eq. (32), we
change the variable to 𝑦 = 1

𝜅0−𝜅
, then,

∫

∞

𝑦

1
√

𝑦3 + 𝑄
𝑊 𝑦2 + 𝜅0

𝑊 𝑦 − 1
4𝑊

= ∫

0

𝑠

√

𝑊 𝑑𝜃, (33)

where,

𝑊 = 𝜅30 − 2𝜎𝜅0 + 2𝑝, 𝑄 = −3𝜅20∕2 + 𝜎. (34)

Hence, 𝑊 +2𝜅0𝑄+2𝜅30 = 2𝑝. At this stage, 𝑝 is known while 𝑊 , 𝑄 and
𝜅0 are the unknowns. Let 𝑦3 +

𝑄
𝑊 𝑦2 + 𝜅0

𝑊 𝑦 − 1
4𝑊 = (𝑦 − 𝛼)[(𝑦 − 𝑚)2 + 𝑛2]

.
Then, the solution to Eq. (31) can be expressed in the form of Jacobi

elliptic functions as follows,

𝜅(𝜃) = 𝜅0 −
1 − cn

(

−
√

𝑊 (𝑦1−𝑦3)
√

2
𝜃||
|

√

𝑚−𝑦3
𝑦1−𝑦3

)

𝑦1 − 𝑦3cn
(

−
√

𝑊 (𝑦1−𝑦3)
√

2
𝜃||
|

√

𝑚−𝑦3
𝑦1−𝑦3

)

, (35)

where 𝑦1 and 𝑦3 are the roots of 𝑦2 − 2𝛼𝑦 + 2𝑚𝛼 − (𝑚2 + 𝑛2), cn(𝑥|𝑘)
is a Jacobi Elliptic function [24]. The constants 𝜅0, 𝑊 and 𝑄 can be
expressed in terms of 𝑚, 𝑦1 and 𝑦3.

𝜅0 =
2𝑚 − 𝑦1𝑦3

𝑦1+𝑦3
2𝑚(𝑦1 + 𝑦3) − 2𝑦1𝑦3

, 𝑊 =
(𝑦1 + 𝑦3)𝜅0 − 0.5
𝑚(𝑦1 + 𝑦3)2

,

𝑄 = −𝑊
(

2𝑚 +
𝑦1 + 𝑦3

2

)

.

(36)

Now, we have four unknown parameters 𝑦1, 𝑦3, 𝜅0 and 𝑚 in the
solution (Eq. (35)). We need four equations to evaluate them which
are as follows:

Fig. 3. Conical geometry of the elastic plate in the deformed configuration. Here
𝐮 = sin 𝛽 cos 𝜂 𝐱̂ + sin 𝛽 sin 𝜂 𝐲̂ + cos 𝛽 𝐳̂, 𝐞𝜃 = cos 𝜂 𝐱̂ + sin 𝜂 𝐲̂. Now 𝐭 = 𝐮′ = cos𝜙𝐞𝜃 ,
also 𝐧 = 𝐮 × 𝐭 = − sin𝜙 𝐱̂ + cos𝜙 𝐲̂. These equalities lead to the geometric relations in
Eq. (41).

Fig. 4. Plot of curvature 𝜅 vs 𝜃 for 𝑞 = 2, 3, and 4 lobed configurations using
Eq. (35). Notice that the solutions are periodic but not sinusoidal as in case of small
displacements.

1. Algebraic relation between 𝑊 , 𝑄 and 𝜅0: This relation can be got
from Eq. (34).

𝑊 + 2𝜅0𝑄 + 2𝜅30 = 2𝑝. (37)

𝑝 = 𝑃∕𝐵 is the applied loading. Then, we use 𝑊 = (𝑦1+𝑦3)𝜅0−0.5
𝑚(𝑦1+𝑦3)2

and 𝑄 = −𝑊
(

2𝑚+ 𝑦1+𝑦3
2

)

from Eq. (36) to eliminate 𝑊 and 𝑄.

2. Continuity of the curvature 𝜅: The Jacobi elliptic function cn(𝑥|𝑘)
is periodic: cn(𝜃|𝑘) = cn(𝜃 + 4𝑞𝐾(𝑘)|𝑘) where 𝐾(𝑘) is the com-
plete elliptic integral of first kind and 𝑞 is an integer. To ensure
the continuity of the curvature, we impose 𝜅(2𝜋) = 𝜅0 = 𝜅(0).
We will eventually see that 𝑞 denotes the number of folds in the
sheet. Hence,
√

𝑊 (𝑦1 − 𝑦3)
2

2𝜋 = 4𝑞𝐾
(

√

𝑚 − 𝑦3
𝑦1 − 𝑦3

)

. (38)

Using 𝑊 = (𝑦1+𝑦3)𝜅0−0.5
𝑚(𝑦1+𝑦3)2

from Eq. (36) gives

2(4𝑞𝐾)2

(𝑦1 − 𝑦3)(2𝜋)2
−

(𝑦1 + 𝑦3)𝜅0 − 0.5
𝑚(𝑦1 + 𝑦3)2

= 0. (39)

5
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Fig. 5. We integrate Eq. (35) to get the deformed shapes for 𝑞 = 2, 3, and 4 lobed configurations. 𝑝 = −3.5 for two lobed solution, 𝑝 = −9.0 for three lobed solution, and 𝑝 = −16.0
for four lobed solution. The top plots show the shape of the deformed plate. The bottom plots show the deformed shape of the circle 𝑟 = 1.

Fig. 6. The plots for 𝑁𝜃𝜃 = −𝑁𝑟𝑟 = − 𝐵
𝑟2
( 𝜅

2

2
+ 3𝜅20

2
+𝑄 − 1) for 𝑞 = 2, 3, and 4 lobed configurations for various values of loading 𝑝.

3. Algebraic relation between 𝑦1, 𝑦3, 𝑚 and 𝜅0: This relation is ob-
tained from Eq. (36).

𝜅0 =
2𝑚 − 𝑦1𝑦3

𝑦1+𝑦3
2𝑚(𝑦1 + 𝑦3) − 2𝑦1𝑦3

. (40)

4. Azimuthal symmetry : This condition relates to the symmetry of
the deformed shape of the elastic sheet. Consider the elastic
sheet shown in Fig. 3, the angles 𝜂, 𝛽, and 𝜃 describe the conical
profile such that 𝐮 = sin 𝛽 cos 𝜂 𝐱̂ + sin 𝛽 sin 𝜂 𝐲̂ + cos 𝛽 𝐳̂, where
𝐱̂, 𝐲̂, 𝐳̂ are unit vectors in a lab frame (see Fig. 2). The following
relations can be computed by using the conical geometry [3], as
shown in Fig. 3,

𝛽′ = − sin𝜙,

𝜂′ =
cos𝜙
sin 𝛽

,

𝜙′ = 𝜅 − cot 𝛽 cos𝜙.

(41)

For a 𝑞-lobed solution, the three boundary conditions necessary
to solve the above system are 𝛽(0) = 𝛽(2𝜋∕𝑞), 𝜙(0) = 𝜙(2𝜋∕𝑞),
and 𝜂(0) = 0. The fourth condition required to evaluate the four
constants 𝑦1, 𝑦3, 𝑚 and 𝜅0 is,

𝜂(2𝜋∕𝑞) = 2𝜋∕𝑞. (42)

We need to solve the four equations (37), (39), (40), and (42) to
evaluate our four unknown constants 𝑦1, 𝑦3, 𝑚 and 𝜅0. We solve them
numerically in MATLAB using Newton’s method.

4.2. Results

In this section, we present the results for the geometry, stresses, and
elastic energy for 𝑞 = 2, 3, and 4 lobed configurations, and comment
briefly on their relative stability.

We plot the curvature 𝜅(𝜃) vs 𝜃 for 𝑞 = 2, 3, and 4 lobed configu-
rations in Fig. 4. We integrate the curvature 𝜅 to compute the actual
shapes of the deformed sheets for various lobes, shown in Fig. 5. We
would like to understand these different shapes from the perspective of
elastic energy and stresses.

Let us compute the stresses𝑁𝜃𝜃 and𝑁𝑟𝑟 in the sheets. From Eq. (28),
we get 𝑁𝜃𝜃 = −𝐵(𝜅2∕2𝑟2 + 𝜕𝜓(𝑟)

𝜕𝑟 ), which in terms of 𝑊 ,𝑄 and 𝜅0 is,

𝑁𝜃𝜃 = −𝐵
𝑟2
(𝜅2

2
+

3𝜅20
2

+𝑄 − 1
)

. (43)

We plot 𝑟2𝑁𝜃𝜃∕𝐵 in Fig. 6 for 𝑞 = 2, 3, and 4 lobed solutions, and find
that it is periodic in 𝜃. The amplitude of the oscillation increases as
the magnitude of the external force 𝑝 increases. Furthermore, we can
compute 𝑁𝑟𝑟 from Eq. (28), 𝑁𝑟𝑟 =

𝐵
𝑟2

(

𝜅2

2 +
3𝜅20
2 +𝑄−1

)

= −𝑁𝜃𝜃 . Hence,
the behavior of 𝑁𝑟𝑟 is similar to 𝑁𝜃𝜃 .

Next we compute the potential energy 𝑃𝐸 of for 𝑞 = 2, 3 and 4 lobed
shapes, which consists of the elastic energy 𝐸𝑏, and the work done by
the external loading 𝑊𝑒.

𝑃𝐸 = 𝐸𝑏 −𝑊𝑒. (44)

6
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Fig. 7. Potential energy (𝑃𝐸) of the elastic sheet versus the loading. The two lobed
solution has lowest potential energy. A similar trend was observed in case of small
displacements (Section 3). Self contact occurs for a two lobed solution at 𝑝 = −4.7, for
a three lobed solution at 𝑝 = −21.3, and for a four lobed solution at 𝑝 = −60.05.

Using Eqs. (3) and (4) we get,

𝐸𝑏 =
𝐵
2
ln 𝑅
𝜀 ∫

2𝜋

0
𝜅2𝑑𝜃 (45)

The work done by external loading 𝑊𝑒 is,

𝑊𝑒 = 𝑃 ln 𝑅
𝜀 ∫

𝑡

0
𝑑𝑡∫

2𝜋

0
𝑑𝜃 (𝜂̇𝛽′ − 𝜂′𝛽̇) sin 𝛽, (46)

where 𝜂̇ = 𝑑𝜂
𝑑𝑡 . A derivation for the above result is given in the

Appendix. We plot the 𝑃𝐸 versus 𝑝 = 𝑃∕𝐵 in Fig. 7 for 𝑞 = 2, 3
and 4 lobed configurations. In Section 3, where we assumed small
displacements, we concluded that as the number of lobes increases
the potential energy of the elastic sheet increases (Eq. (16)), which,
as Fig. 7 demonstrates, holds true for large displacements as well. The
self contact for 2, 3 and 4 lobed configurations occurs at 𝑝 = −4.7,−21.3
and −60.0, respectively.

Finally, we show that, as the external force 𝑝 → 0, the solution to
the curvature for large displacements in the form of elliptic functions
(Eq. (35)) is equivalent to the sinusoidal solution obtained by assuming
small displacements (Eq. (14)). We plot the variation of the parameters
𝑦1, 𝑦3, 𝑚 and 𝜅0 in Eq. (35) with the external load 𝑝 in Fig. 8. We observe
that as, 𝑝 → 0, 𝑦3, 𝑚, 𝜅0 → 0, 𝑚 − 𝑦3 > 0, and 𝑦1 → ∞. Using
these trends, we conclude that

√

𝑚−𝑦3
𝑦1−𝑦3

→ 0. Hence from Eq. (38) and
Ref. [24],

𝐾
(

√

𝑚 − 𝑦3
𝑦1 − 𝑦3

)

→
𝜋
2
,

√

𝑊 (𝑦1 − 𝑦3)
2

=
4𝑞𝐾
2𝜋

→ 𝑞,

cn
(

√

𝑊 (𝑦1 − 𝑦3)
2

𝜃|
√

𝑚 − 𝑦3
𝑦1 − 𝑦3

)

→ cos 𝑞𝜃.

Hence,

𝜅(𝜃) = 𝜅0 −
1 − cn

(

−
√

𝑊 (𝑦1−𝑦3)
√

2
𝜃||
|

√

𝑚−𝑦3
𝑦1−𝑦3

)

𝑦1 − 𝑦3cn
(

−
√

𝑊 (𝑦1−𝑦3)
√

2
𝜃||
|

√

𝑚−𝑦3
𝑦1−𝑦3

)

→ 𝛼1 + 𝛼2 cos 𝑞𝜃. (47)

where, 𝛼1 ≈ 𝜅0 − 1
𝑦1
and 𝛼2 ≈ 1

𝑦1
. Furthermore, 𝛼1, 𝛼2 → 0 as 𝑝 → 0,

which matches with Eq. (14).

5. Conclusion

We investigated the deformations of a flat inextensible elastic sheet
subjected to an external distributed load which acts in the direction
normal to the sheet in the deformed configuration. The deformed
shape of the sheet is a characteristic 𝑞− lobed conical shape with
zero Gauss curvature everywhere except at the apex, which is a sin-
gularity. In Section 3, we assumed that the displacements are small.
Consequently, the curvature of the sheet is sinusoidal in the angular
convected coordinate 𝜃. We found that for a given load, 𝑞 = 2 lobed
configuration has the lowest potential energy, and as the number of
lobes increases, the potential energy also increases. In Section 4, we
allow for arbitrarily large displacements, thus the governing equations
for the curvature are nonlinear. Nevertheless, we found an analytical
solution in the form of Jacobi elliptic functions. We observe that in
this case, the curvature and stresses are periodic but not sinusoidal. In
this case too, the 2-lobed solution has the lowest potential energy, but
it reaches self-contact at a small load. Finally, we showed that in the
limit of small loads our solution for the curvature in the form of Jacobi
elliptic function for large displacements (Eq. (35)) is equivalent to the
sinusoidal solution obtained for the small displacements (Eq. (14)).
Although, our analysis is valid only if the external load decays as 1∕𝑟3,
the analytical solutions can be useful benchmarks for computational
methods aimed at calculating shapes of highly deformed elastic sheets.
Some ideas in our solutions may also be utilized to compute shapes of
sheets under periodic (in 𝜃) external loading.
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Appendix A. Computation of work done by external loading

We compute the work done by external loading 𝑃
𝑟3
𝐧 required in

Eq. (44). Let us introduce a time variable 𝑡, such that the elastic sheet
is in the reference configuration at 𝑡 = 0 and deforms as 𝑡 increases.
The position vector of the point (𝑟, 𝜃) in the deformed configuration is
𝐫 = 𝑟𝐮(𝜃, 𝑡), where

𝐮 = sin 𝛽 cos 𝜂 𝐱̂ + sin 𝛽 sin 𝜂 𝐲̂ + cos 𝛽 𝐳̂, (A.1)

Fig. 8. Trends in the parameters in the curvature 𝜅(𝜃) = 𝜅0 −
1−cn

(

−
√

𝑊 (𝑦1−𝑦3 )
√

2
𝜃
|

|

|

√ 𝑚−𝑦3
𝑦1−𝑦3

)

𝑦1−𝑦3cn
(

−
√

𝑊 (𝑦1−𝑦3 )
√

2
𝜃
|

|

|

√ 𝑚−𝑦3
𝑦1−𝑦3

) (Eq. (35)) for 𝑞 = 3. Using these trends we show that as 𝑝 → 0, the above expression for

𝜅(𝜃) in the form of Jacobi elliptic functions is equivalent to the sinusoidal solution 𝜅(𝜃) = 𝑝
𝑘2
(
√

2(𝑘2 − 1) cos 𝑞𝜃 − 1) obtained by assuming small displacement (Eq. (14))
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as shown in Fig. 3. Now 𝛽 = 𝛽(𝜃, 𝑡) and 𝜂 = 𝜂(𝜃, 𝑡). The work done by
the external force 𝑝(𝑟, 𝜃) = 𝑃

𝑟3
𝐧 is computed as follows,

𝑊𝑒 = ∫

𝑡

0
𝑑𝑡
(

∫

𝑅

𝜀
𝑑𝑟∫

2𝜋

0
𝑟𝑑𝜃

𝑑(𝑟𝐮)
𝑑𝑡

. 𝑃
𝑟3
𝐧
)

= 𝑃 ln 𝑅
𝜀 ∫

𝑡

0
𝑑𝑡∫

2𝜋

0
𝑑𝜃 𝑑𝐮

𝑑𝑡
.𝐧,

(A.2)

We use Eq. (A.1) to compute 𝑑𝐮
𝑑𝑡 . Now 𝐭 = 𝑑𝐮

𝑑𝜃 and 𝐧 = 𝐮× 𝐭. Performing
these computations gives,
𝑑𝐮
𝑑𝑡
.𝐧 = sin 𝛽 (𝜂̇𝛽′ − 𝜂′𝛽̇), (A.3)

where ̇() = 𝑑
𝑑𝑡 and ()′ = 𝑑

𝑑𝜃 .

Appendix B. Boundedness of the potential energy

In this paper we assumed that the external load 𝑝(𝑟, 𝜃) is indepen-
dent of 𝜃, and furthermore 𝑝(𝑟) ∝ 1

𝑟3
, which results in a convenient

variable separation allowing us to solve the problem analytically. While
a facile reason for choosing 𝑝(𝑟) ∝ 1

𝑟3
is to simplify the problem, there

is a deeper insight involving the singularity at the apex of the 𝑑− cone.
Let 0 < 𝑟 < 𝜀 be the region around the apex where our assumption that
the sheet is inextensible is not valid. A cavalier approach to avoid the
singularity (as we have done in this paper) is to discard the isometric
solution when 0 < 𝑟 < 𝜀 as it leads to a logarithmic divergence of the
total elastic energy of the plate. To prevent this, the sheet stretches
near the apex when 0 < 𝑟 < 𝜀, violating the isometry. Under these
considerations, the total energy of the sheet 𝐸𝑝 is,

𝐸𝑝 = 𝐸𝜀<𝑟<𝑅 + 𝐸0<𝑟<𝜀,

where 𝐸𝜀<𝑟<𝑅 consists of only bending elastic energy in the region
𝜀 < 𝑟 < 𝑅, and 𝐸0<𝑟<𝜀 consists of both bending and stretching elastic
energy in the region 0 < 𝑟 < 𝜀. Minimizing 𝐸𝑝 leads to a scaling law
for 𝜀 that depends on the thickness of the sheet ℎ and outer radius
of the sheet 𝑅: 𝜀 ∼ ℎ1∕3𝑅2∕3 [27,28]. While this scaling law assures
that for a thin sheet (ℎ → 0), the size of the singularity 𝜀 → 0, it
leads to another conundrum — the elastic energy 𝐸𝑏 = 𝐵 ln 𝑅

𝜀 ∫ 2𝜋
0 𝜅2𝑑𝜃

diverges (Eq. (44) of the main text). To resolve this, we use Theorem
1 in Müller and Olbermann [22] which proves that the total energy
(bending + stretching) is bounded for deformations of the conical plate
that are determined entirely by those on the one-dimensional boundary
(as in our case and that in Cerda and Mahadevan [3]). However, Müller
and Olbermann [22] did not consider the potential energy from the
work done by external load. This is where our hypothesis that the
external load decays as 1∕𝑟3 is essential. Under this assumption the
contribution arising out of integration along the radial coordinate 𝑟
acts as multiplicative constant for the entire potential energy 𝑃𝐸 (see
below).

𝑃𝐸 = 𝐸𝑏 −𝑊𝑒

= 𝐵 ∫

𝑅

𝜀
𝑑𝑟∫

2𝜋

0
𝑟𝑑𝜃 𝜅2𝜃 − ∫

𝑡

0
𝑑𝑡
(

∫

𝑅

𝜀
𝑑𝑟∫

2𝜋

0
𝑟𝑑𝜃

𝑑(𝑟𝐮)
𝑑𝑡

. 𝑃
𝑟3
𝐧
)

= 𝐵 ∫

𝑅

𝜀
𝑑𝑟∫

2𝜋

0
𝑟𝑑𝜃 𝜅2

𝑟2
− ∫

𝑡

0
𝑑𝑡
(

∫

𝑅

𝜀
𝑑𝑟∫

2𝜋

0
𝑟𝑑𝜃

𝑑(𝑟𝐮)
𝑑𝑡

. 𝑃
𝑟3
𝐧
)

= ∫

𝑅

𝜀
𝑑𝑟1
𝑟

(

𝐵 ∫

2𝜋

0
𝑑𝜃 𝜅2 − 𝑃 ∫

𝑡

0
𝑑𝑡∫

2𝜋

0
𝑑𝜃 𝑑𝐮

𝑑𝑡
.𝐧
)

= 𝐶 ∫

𝑅

𝜀
𝑑𝑟1
𝑟

where 𝐶 =
(

𝐵 ∫ 2𝜋
0 𝑑𝜃 𝜅2 − 𝑃 ∫ 2𝜋

0 𝑑𝜃 ∫ 𝑡0 𝑑𝑡
𝑑𝐮
𝑑𝑡 .𝐧

)

is constant, just
as in Cerda and Mahadevan [3] in which there is no external load.
Note that this multiplicative decomposition happens only if the external
force 𝑝(𝑟) ∝ 1

𝑟3
. With a potential energy of this form Theorem 1 of

Müller and Olbermann [22] guarantees the existence of a minimizer
of the energy.
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