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Abstract

We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simu-

lations. In particular we calculate the baryon fluctuations up to χB
8

using simulations at imaginary chemical potentials.

We argue that they contain no hint of criticality.
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1. Introduction: Lee-Yang zeros and a toy study at Nt = 4

The equation of state of QCD matter at μ = 0 has been calculated with lattice QCD techniques [1, 2, 3].

Calculating the equation of state also for nonzero density is a difficult task, because of the sign and overlap

problems. The state-of-the-art at the moment for realistic lattices is to calculate Taylor coefficients of the

pressure [4, 5, 6, 7, 8] either by direct calculations at μ = 0 or via fitting a Taylor ansatz to lattice simulation

results at zero and imaginary chemical potentials. There exist now lattice calculations of higher order

fluctuations χB
6

and χB
8

for fine lattices, though the statistical error bars on χB
8

are still quite large. It is a

natural and important question to ask, whether these recent lattice results show any remnants of criticality.

In this conference contribution we will examine this question in some detail.

The grand canonical partition function at finite volume in the latticce is a finite order polynomial in

eμq/T :

Z(μ2
q, T ) =

+N3
s
∑

N=−N3
s

ZN(T )eN3μq/T (1)
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Since it is a polynomial, it is guaranteed to have roots, called the Lee-Yang zeros. It is also an even function

in μq, making the natural variable μ2
q. The infinite volume limit of the Lee-Yang zeros gives important

information about the thermodynamics of a system. Here we concentrate on the Lee-Yang zero closest to

zero, and call it μ2
LY

. If we have a nonzero infinite volume limit of Im μ2
LY

we have an analytic crossover.

In this case Im μ2
LY

can be thought of as a measure of the strength of the crossover. For a genuine phase

transition, we expect the infinite volume limit of the Lee-Yang zero to be real. For any finite volume, the

convergence radius of the Taylor expansion of the pressure in μ2
q is given by the distance of the closest

Lee-Yang zero to μq = 0.
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Fig. 1. Analysis of the Fischer zeros for the Nt = 4 unimproved staggered action. On the left is the imaginary part of the closest

Fischer zero as a function of the quark chemical potential for the 123 × 4 lattice. On the center is the infinite volume extrapolation

for μq/T = 0.2. On the right are the ratio estimators for the pressure r
p
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on a 123 × 4 lattice. One can see that the ratio estimators are in the same ballpark as the critical endpoint estimate

from the analysis of the Fischer zeros, indicated by an arrow on the right.

For coarse lattices, there exists algorithms to search for the Lee-Yang zeros, or the analogous zeros in

gauge coupling parameter β, called the Fischer-zeros βLY . In 2004, such a study led to an estimate of the

QCD critical end point on a coarse Nt = 4 unimproved staggered lattice [9, 10]. We have repeated the old

study, but with a factor of 50 higher statistics and an exact algorithm and found a result very much consistent

with the old one. The result on the Fischer zeros on a 123 × 4 lattice, the infinite volume extrapolation at

μq/T = 0.2 and the comparison with the ratio estimators for the convergence radius can be seen in Fig. 1.

Here the convergence radius estimates from the ratio estimators are in the same ballpark as the critical point

estimate from the analysis of βLY .

The algorithms calculating the Fischer or Lee-Yang zeros are prohibitively expensive for more realistic

lattices, there the only information available is the first few coefficients of the Taylor series.

2. Ratio estimators for fine staggered lattices

We know present our results for the ratio estimators for a fine Nt = 12 4stout-improved staggered lattice.

The 4stout action was introduced in [13]. The details of the lattice calculation of the baryon fluctuations are

explained in [8]. Here, we only give a brief description of some features relevant for our discussion. The

calculation uses simulations at imaginary chemical potentials [11, 12], where the value of the fluctuations

χB
1
, χB

2
, χB

3
and χB

4
is calculated. We then fit to these values with a Taylor ansatz of the pressure truncated at

tenth order:

p(T, μB) = p0(T ) +
1

2!
χB

2 (T ) · μ2
B +

1

4!
χB

4 (T ) · μ4
B + · · · +

1

10!
χB

10(T ) · μ10
B (2)

The fit is performed with a Bayesian procedure, where the higher order fluctuations χB
8

and χB
10

have a prior.

This prior allows for the HRG prediction but does not prefer it, it also allows for the coefficients to grow

faster than in the HRG, which could be interpreted as a signal for critical behavior. More precisely, in

the HRG we have χB
2n+2
/χB

2n
= 1 and therefore the ratio estimator for the susceptibility χB

2
grow as r

χ
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≡
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∣

∣

∣
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∣
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∣

1/2

=
√

2n(2n − 1). To have a finite radius of convergence on therefore needs the coefficients to

grow like
χB

2n+2

χB
2n

∼ n2. We instead see for the first few coefficients a result consistent with HRG.
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Fig. 2. Ratio estimators of the susceptibility r
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on an Nt = 12 4stout-improved staggered lattice.

3. A closer look at the lattice results for Nt = 12

To shed some light on the previous result consider the following toy model. Start with some parametriza-

tion of the curve χB
1
/μB as a function of T at μ = 0. Assume that the only difference in the physics at finite

μ is a shift in this curve in the T direction. The inflection point of this curve is one possible definition of Tc,

so shift this curve by using the curvature κ of the cross-over line found in the literature. This gives a model

prediction of χB
1

for any finite μ, and by differentiation at zero chemical potential, it also gives predictions

of χB
4
, χB

6
and χB

8
. Comparison of this toy model with the actual lattice data is shown in Fig. 2.
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Fig. 3. Comparison of the simple toy model described in the text, with the actual lattices simulations.

The discussion of this toy model suggests the following non-trivial consequence for modeling: In order

to reproduce the lattice data on χB
2
, χB

4
, χB

6
and χB

8
at the present accuracy all a model has to do is to reproduce

χB
2

and the curvature of the cross-over line κ, without the crossover getting stronger already at low values of

the chemical potential. As long as these conditions are met, the features of the higher order baryon number

susceptibilities will be automatically reproduced.

Among other things, this discussion suggests that near and above Tc, the curvature of the crossover

implies r
χ

2
< r
χ

4
and r

χ

4
> r
χ

6
, a feature clearly visibly on the lattice data at T = 165MeV. Here the closest

Lee Yang zero most likely has a large imaginary part, and the ratio estimator is not expected to give a good

estimate of the radius of convergence.

As the existence of κ implies r
χ

4
> r
χ

6
near or slightly above Tc, while the HRG r

χ

4
< r
χ

6
, by continuity,

there must be a temperature T∗ < Tc where r
χ

4
= r

χ

6
. This is an apparent convergence in the first few ratio
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estimators, that however does not imply anything about criticality, and when the statistical errors get small

enough to see T∗ one should be careful not to misinterpret this apparent convergence.

An other explicit example of a model reproducing the lattice data on baryon fluctuations, but having no

critical point is found in [14, 15]. Obviously, this does not necessarily mean that there is no critical point,

just that if it exists than at the current levels of statistical uncertainty, the lattice results are not sensitive to it.

In summary, if a critical point is close to zero chemical potential, one may see it in a fast convergence of

radius of convergence estimators, this might be what is happening for Nt = 4. On the other hand, apparent

convergence does not imply a critical point. In fact, we argued that even in the case with no CEP, the ratios

r
χ

4
and r

χ

6
will show apparent convergence somewhere below Tc. For our fine lattice (Nt = 12 4stout) the

sign structure of χB
6

and χB
8

near Tc is consistent with only a κ and no criticality. At lower temperatures the

data quickly become compatible with the HRG model, showing no traces of criticality. Finally we note that

none of these observations can be converted into a rigorous bound for the convergence radius of the Taylor

series.
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