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Abstract

We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simu-
lations. In particular we calculate the baryon fluctuations up to % using simulations at imaginary chemical potentials.
We argue that they contain no hint of criticality.
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1. Introduction: Lee-Yang zeros and a toy study at N; = 4

The equation of state of QCD matter at u = 0 has been calculated with lattice QCD techniques [1, 2, 3].
Calculating the equation of state also for nonzero density is a difficult task, because of the sign and overlap
problems. The state-of-the-art at the moment for realistic lattices is to calculate Taylor coefficients of the
pressure [4, 5, 6, 7, 8] either by direct calculations at u = O or via fitting a Taylor ansatz to lattice simulation
results at zero and imaginary chemical potentials. There exist now lattice calculations of higher order
fluctuations Xg and )(183 for fine lattices, though the statistical error bars on Xg are still quite large. Itis a
natural and important question to ask, whether these recent lattice results show any remnants of criticality.
In this conference contribution we will examine this question in some detail.

The grand canonical partition function at finite volume in the latticce is a finite order polynomial in
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Since it is a polynomial, it is guaranteed to have roots, called the Lee-Yang zeros. It is also an even function
in u,, making the natural variable /‘121' The infinite volume limit of the Lee-Yang zeros gives important
information about the thermodynamics of a system. Here we concentrate on the Lee-Yang zero closest to
zero, and call it ,uiy. If we have a nonzero infinite volume limit of Im yﬁY we have an analytic crossover.
In this case Im ,uiY can be thought of as a measure of the strength of the crossover. For a genuine phase
transition, we expect the infinite volume limit of the Lee-Yang zero to be real. For any finite volume, the
convergence radius of the Taylor expansion of the pressure in /12 is given by the distance of the closest
Lee-Yang zero to y, = 0.
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Fig. 1. Analysis of the Fischer zeros for the N; = 4 unimproved staggered action. On the left is the imaginary part of the closest
Fischer zero as a function of the quark chemical potential for the 123 x 4 lattice. On the center is the infinite volume extrapolation
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on a 123 x 4 lattice. One can see that the ratio estimators are in the same ballpark as the critical endpoint estimate

For coarse lattices, there exists algorithms to search for the Lee-Yang zeros, or the analogous zeros in
gauge coupling parameter 3, called the Fischer-zeros S.y. In 2004, such a study led to an estimate of the
QCD critical end point on a coarse N; = 4 unimproved staggered lattice [9, 10]. We have repeated the old
study, but with a factor of 50 higher statistics and an exact algorithm and found a result very much consistent
with the old one. The result on the Fischer zeros on a 123 x 4 lattice, the infinite volume extrapolation at
tq/T = 0.2 and the comparison with the ratio estimators for the convergence radius can be seen in Fig. 1.
Here the convergence radius estimates from the ratio estimators are in the same ballpark as the critical point
estimate from the analysis of S.y.

The algorithms calculating the Fischer or Lee-Yang zeros are prohibitively expensive for more realistic
lattices, there the only information available is the first few coefficients of the Taylor series.

2. Ratio estimators for fine staggered lattices

We know present our results for the ratio estimators for a fine N, = 12 4stout-improved staggered lattice.
The 4stout action was introduced in [13]. The details of the lattice calculation of the baryon fluctuations are
explained in [8]. Here, we only give a brief description of some features relevant for our discussion. The
calculation uses simulations at imaginary chemical potentials [11, 12], where the value of the fluctuations
)(f , )(g, )(f and )(f is calculated. We then fit to these values with a Taylor ansatz of the pressure truncated at
tenth order: ' : |

(T 1) = po(T) + 5003 (1) - i+ xg (D) - pip + -+ 5xi0(T) - iy, @

The fit is performed with a Bayesian procedure, where the higher order fluctuations ,\(g and Xﬁ) have a prior.
This prior allows for the HRG prediction but does not prefer it, it also allows for the coefficients to grow
faster than in the HRG, which could be interpreted as a signal for critical behavior. More precisely, in
the HRG we have x5 ., /x5 = 1 and therefore the ratio estimator for the susceptibility x5 grow as ri =
2n(2nfl))(§”
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grow like X;';;z ~ n?. We instead see for the first few coefficients a result consistent with HRG.
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Fig. 2. Ratio estimators of the susceptibility r’;n = )(57" on an N; = 12 4stout-improved staggered lattice.
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3. A closer look at the lattice results for N, = 12

To shed some light on the previous result consider the following toy model. Start with some parametriza-
tion of the curve )(lf /up as a function of T at ¢ = 0. Assume that the only difference in the physics at finite
p is a shift in this curve in the T direction. The inflection point of this curve is one possible definition of T,
so shift this curve by using the curvature « of the cross-over line found in the literature. This gives a model
prediction of )(f for any finite u, and by differentiation at zero chemical potential, it also gives predictions
of x%, x& and x§. Comparison of this toy model with the actual lattice data is shown in Fig. 2.
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Fig. 3. Comparison of the simple toy model described in the text, with the actual lattices simulations.

The discussion of this toy model suggests the following non-trivial consequence for modeling: In order
to reproduce the lattice data on Xg, )(f , Xg and XsB at the present accuracy all a model has to do is to reproduce
)(g and the curvature of the cross-over line «, without the crossover getting stronger already at low values of
the chemical potential. As long as these conditions are met, the features of the higher order baryon number
susceptibilities will be automatically reproduced.

Among other things, this discussion suggests that near and above T, the curvature of the crossover
implies r§ < r} and r} > r}, a feature clearly visibly on the lattice data at T = 165MeV. Here the closest
Lee Yang zero most likely has a large imaginary part, and the ratio estimator is not expected to give a good
estimate of the radius of convergence.

As the existence of x implies 7} > r} near or slightly above T, while the HRG r} < r}, by continuity,
there must be a temperature 7. < T, where rj = r’g. This is an apparent convergence in the first few ratio
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estimators, that however does not imply anything about criticality, and when the statistical errors get small
enough to see T, one should be careful not to misinterpret this apparent convergence.

An other explicit example of a model reproducing the lattice data on baryon fluctuations, but having no
critical point is found in [14, 15]. Obviously, this does not necessarily mean that there is no critical point,
just that if it exists than at the current levels of statistical uncertainty, the lattice results are not sensitive to it.

In summary, if a critical point is close to zero chemical potential, one may see it in a fast convergence of
radius of convergence estimators, this might be what is happening for N, = 4. On the other hand, apparent
convergence does not imply a critical point. In fact, we argued that even in the case with no CEP, the ratios
r’j and r’g will show apparent convergence somewhere below 7. For our fine lattice (N, = 12 4stout) the
sign structure of ng and Xg near T is consistent with only a « and no criticality. At lower temperatures the
data quickly become compatible with the HRG model, showing no traces of criticality. Finally we note that
none of these observations can be converted into a rigorous bound for the convergence radius of the Taylor
series.
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