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Abstract

We analyze the recent STAR collaboration results on net-kaon fluctuations in the framework of the Hadron Resonance

Gas (HRG) model. Our purpose is to extract the freeze-out temperature and chemical potential as functions of the

collision energy. In our HRG model, we use the complete hadron spectrum from the latest PDG list. These results

are compared to the freeze-out parameters obtained from a combined analysis of net-electric charge and net-proton

fluctuations. At the highest collision energies, kaons need about 10-15 MeV higher freeze-out temperatures than the

light hadrons. Predictions for moment ratios of the net-Lambda multiplicity distribution are obtained along the freeze-

out lines. Lambda fluctuations are sensitive to the difference in the freeze-out temperatures observed in our analysis.
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1. Introduction

The Quark-Gluon Plasma (QGP), the phase of matter which permeated the universe just a few microsec-

onds after the Big Bang, is routinely being created in heavy-ion collision experiments currently taking place

at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).The transition from

color-neutral hadrons to quarks and gluons is an analytical crossover at low baryonic density, as shown in

first-principle, lattice QCD simulations [1, 2, 3].

After hadronization, the evolution of a heavy-ion collision is characterized by two important points:

the moment at which all inelastic collisions between hadrons cease (the chemical freeze-out), and the one

at which also elastic collisions cease (the thermal freeze-out). The freeze-out temperature and chemical

potential, {T f , µB f } can be obtained through thermal fits of particle yields and ratios [4, 5, 6, 7].At small

baryon densities, light hadrons seem to prefer a lower T f compared to strange hadrons [8, 9].

Fluctuations of conserved charges can be useful to clarify the issue, since they are more sensitive than

yields to the freeze-out parameters [10], and they can be calculated from first-principle lattice QCD simu-

lations [11, 12, 13, 14, 15, 16, 17] (for a recent review, see e.g. [18]). The fluctuations of net-protons [19],

net-charge [20], and net-kaons [21] have been recently published by the STAR collaboration. The net-proton
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Fig. 1. χK
1
/χK

2
calculated along the isentropic trajectories (pink band), compared to the experimental value for (M/σ2)K from [21]

(gray band) at different collision energies.

and net-charge fluctuations lead to a lower T f than the one quoted in the thermal fits [22], as pointed out in

a previous study in the Hadron Resonance Gas (HRG) model [23],

In our analysis [24], we calculate the net-kaon fluctuations in the HRG model and compare them to the

recent STAR data from the Beam Energy Scan [21]. We use the PDG2016+ list defined in [25], and take

into account resonance decays and the experimental cuts in rapidity and momentum. We find that kaons

need larger freeze-out temperatures, compared to the light hadrons. We also predict the values of the Λ

fluctuations, calculated at the freeze-out parameters of the kaons and of the light hadrons. The results show

a clear separation, which will hopefully be resolved by the forthcoming experimental results [26].

2. Results and conclusions

The net-kaon fluctuations are obtained in the HRG model through the following formula:
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were Pri→K± = Bri→K±ni(K
±) is the probability for a resonance i to decay into a charged kaon, Bri→K± is the

branching for the resonance i to decay into K± and ni(K
±) is the number of times particle i appears in the

channel K±. For n ≥ 2, cross-terms appear in the above equation.

We consider the ratio χK
1
/χK

2
in our analysis, since the experimental uncertainty, as well as effects of

non-thermal origin, are smaller in this case. In order to independently fit T f and µB f , we would need two

such ratios. For this reason, we calculate χK
1
/χK

2
along the isentropic trajectories from Ref. [27], obtained

from lattice QCD simulations for the Taylor reconstructed Equation of State at finite µB. In this way we take

into account the possibility that kaons can freeze-out at a different moment in the evolution of the system

at a given collision energy, related to the light particle freeze-out point by the conservation of S/NB. The

chemical potentials µS and µQ are fixed by imposing the experimental conditions
∑

i∈S ni(T, µB, µQ, µS ) = 0,
∑

i∈Q ni(T, µB, µQ, µS ) = 0.4
∑

i∈B ni(T, µB, µQ, µS ). The curves for χK
1
/χK

2
along the isentropes are shown in

Fig. 1 as functions of the temperature, in comparison to the experimental value. The authors of Ref. [28]

performed a fit of χK
1
/χK

2
and the strange anti-baryon over baryon yield ratios, in order to independently fit

T f and µB f , finding similar results to ours.

Fig. 2 shows T f and µB f that we obtain from our analysis, compared to the ones obtained previously

[23] through a combined fit of χ
p

1
/χ

p

2
and χ

Q

1
/χ

Q

2
at RHIC. The figure also shows the results of the thermal
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fits from the STAR collaboration at
√

s = 39 GeV [9], obtained fitting all measured ground-state yields

(which agrees with our freeze-out point from net-kaon fluctuations) and only protons, pions and kaons

(which agrees with the freeze-out point for light particles).
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Fig. 2. Freeze-out parameters from the Beam Energy Scan at RHIC. The red points were obtained from the combined fit of χ
p

1
/χ

p

2
and

χ
Q

1
/χ

Q

2
[23]. The gray bands are obtained from the fit of χK

1
/χK

2
in this work. Also shown are the freeze-out parameters obtained by

the STAR collaboration at
√

s = 39 GeV [9] from thermal fits to all measured ground-state yields (orange) and only to protons, pions

and kaons (blue).

Fig. 3 shows our predictions for χΛ
2
/χΛ

1
(left) and χΛ

3
/χΛ

2
(right) as functions of the collision energy,

calculated at T f and µB f for net-Kaons (red), and for light particles (blue). The separation between the two

scenarios will hopefully be resolved by the future experimental data.
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Fig. 3. Left: χΛ
2
/χΛ

1
as a function of

√
s. Right: χΛ

3
/χΛ

2
as a function of

√
s. In both panels, the red points are calculated at the T f and

µB f for net-Kaons, while the blue points are calculated at the values of T f and µB f for light particles from [23].

Our analysis shows a tension between the freeze-out parameters obtained, within the HRG model, from

a combined fit of χ
p

1
/χ

p

2
and χ

Q

1
/χ

Q

2
vs. χK

1
/χK

2
. This could be due to different effects. Lattice QCD indicates

that strange quarks might hadronize at a higher temperature [14], naturally leading to a higher chemical

freeze-out temperature as well. Interactions in the hadronic phase might be partially responsible for this

observation [29, 30, 31, 32, 33]. Future data on net-Λ fluctuations will help to clarify this issue.
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