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Abstract. We calculate the net-kaon mean-over-variance in the hadron resonance gas model
and compare it to the experimental data by the STAR collaboration. We show that it is not
possible to match the experimental values using the freeze-out parameters obtained from a
combined fit of net-proton and net-electric charge mean-over-variance. At the highest collision
energies, kaons need about 10-15 MeV higher freeze-out temperatures than the light hadrons.
We also predict the variance-over-mean and skewness-times-variance for net-Λ particles at the
light and strange chemical freeze-out parameters. It turns out that these Λ fluctuations are
sensitive to the difference in the freeze-out temperatures observed in our analysis.

1. Introduction

Relativistic heavy ion collisions, currently taking place at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC), are routinely creating a new phase of matter, the
Quark-Gluon Plasma (QGP), which permeated the universe just a few microseconds after the
Big Bang. First principle simulations of the theory of strong interactions (QCD) on a discretized
lattice show that the transition from hadronic degrees of freedom to the QGP is an analytical
crossover at low baryonic density [1, 2, 3].

After hadronization, it is possible to define two important points in the evolution of a heavy-
ion collision: the chemical freeze-out, at which all inelastic collisions between the hadrons cease
(the chemical composition of the system is fixed at this point), and the thermal freeze-out, at
which also elastic collisions cease (the particle spectra are fixed at this point). The measured
particle yields and fluctuations carry information about the chemical freeze-out. Thermal fits of
particle yields and ratios allow us to extract the freeze-out temperature and chemical potential,
{Tf , µBf} [4, 5, 6, 7, 8]. It was pointed out that, at small baryon densities, there is a tension
between the yields of light particles versus strange particles [9]: it appears that light hadrons
prefer a lower Tf compared to strange hadrons. A similar effect was observed at RHIC [10].

Additional information can be gained by studying fluctuations of conserved charges:
fluctuations are more sensitive than yields to the freeze-out parameters [11], and they can
be calculated from first-principle lattice QCD simulations [12, 13, 14, 15, 16, 17, 18], thus
providing a valuable tool to investigate this issue further (for a recent review, see e.g. [19]). The
STAR collaboration recently published experimental measurements for the energy dependence
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of the fluctuations of net-protons [20], net-charge [21], and net-kaons [22]. Experimentally,
one can only measure charged particles, so that K0’s, π0’s, and neutrons are not included in
these measurements. A previous study in the Hadron Resonance Gas (HRG) model with all
experimental effects, such as acceptance cuts in pT and rapidity and isospin randomization
[23], found that the net-proton and net-charge fluctuations indicate a lower chemical freeze-out
temperature than the one quoted in the thermal fits [24].

In our analysis [25], we calculate the net-kaon fluctuations in the HRG model, taking into
account resonance decays and with the same experimental cuts in rapidity and momentum, and
compare them to the recent STAR data from the Beam Energy Scan [22]. We find that, even
when using the most up-to-date particle data list as an input for the model, the kaons need
larger freeze-out temperatures, compared to the light hadrons. We also predict the values of the
Λ fluctuations, calculated in the HRG model at the freeze-out parameters of the kaons and of
the light hadrons. The results show a clear separation, which can hopefully be resolved by the
forthcoming experimental results.

2. Results and conclusions

We calculate the net-kaon fluctuations using the following formula:
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Here Pri→K± = Bri→K±ni(K
±) is the probability for a resonance i to decay into a charged

kaon where Bri→K± is the branching for the resonance i to decay into K± and ni(K
±) is the

number of times particle i appears in the channel K±. We use the same acceptance cuts as
described in [22]. Notice that, for n ≥ 2, there are cross-terms appearing in the above equation.

Since the experimental error-bar is smaller for lower order fluctuations, and the possible
sources of non-thermal fluctuations should have a negligible effect in this case, we consider only
the ratio of net-kaon mean over variance χK

1 /χK
2 in our analysis. Since we need two quantities

to independently fit Tf and µBf , we calculate χ
K
1 /χK

2 along the isentropic trajectories from Ref.
[26], obtained using Lattice QCD results for the Taylor reconstructed QCD phase diagram at
finite µB. These isentropes were determined by starting from the chemical freeze-out points for
light hadrons from Ref. [23], calculating S/NB at those points, and imposing that the ratio
is conserved on the corresponding trajectory. In this way we take into account the possibility
that kaons can freeze-out at a different moment in the evolution of the system at a given
collision energy, related to the light particle freeze-out point by the conservation of S/NB. The
strangeness and electric charge chemical potentials are fixed by imposing the following conditions
to match the experimental situation

∑

i∈S

ni(T, µB, µQ, µS) = 0

∑

i∈Q

ni(T, µB, µQ, µS) = 0.4
∑

i∈B

ni(T, µB, µQ, µS) . (2)

This procedure allows us to determine both {Tf , µBf} for kaons. The curves for χK
1 /χK

2 as
functions of the temperature, calculated along the isentropes, are shown in Fig. 1. They are
compared to the experimental values for the same quantity, from which the chemical freeze-out
temperature can be determined. In a recent paper [27], Bluhm and Nahrgang performed a fit of
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