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Abstract. An efficient way to study the QCD phase diagram at small finite density is to
extrapolate thermodynamical observables from imaginary chemical potential. We present results
for fluctuations of baryon number to order (µB/T )

6. The results at real chemical potentials are
obtained through analytical continuation of simulations at imaginary chemical potentials. We
also calculate higher order fluctuations of strangeness and electric charge to obtain the Taylor
coefficients of the baryon number fluctuation with vanishing strangeness. We compare to the
STAR proton fluctuation data to characterize the chemical freeze-out in view of the lattice
results.

1. Introduction

When investigating Quantum Chromodynamics (QCD) an important but challenging goal is the
study of the phase diagram. At there chemical potential lattice QCD predicts a smooth crossover
between hadrons and the quark gluon plasma [1, 2, 3, 4, 5], taking place in the temperature
range T ' 145− 165 MeV. Due to the sign problem lattice QCD is unable to study the region
with final chemical potential.

With the advent of the second Beam Energy Scan (BESII) at the Relativistic Heavy Ion
Collider (RHIC), scheduled for 2019-2020, there is a renewed interest in the heavy ion community
towards the phases of QCD at moderate-to-large densities. A rich theoretical effort is being
developed in support of the experimental program; several observables are being calculated,
in order to constrain the existence and location of the QCD critical point and to observe it
experimentally.

Fluctuations of conserved charges (electric charge Q, baryon number B and strangeness
S) are important observables for the finite-density investigations. One possible way to extend
lattice results to finite density is to perform Taylor expansions of the thermodynamic observables
around chemical potential µB = 0 [6, 7, 8, 9, 10]: fluctuations of conserved charges are directly
related to the Taylor expansion coefficients of such observables. They allow for a comparison
between theoretical and experimental results to extract the chemical freeze-out temperature Tf

and chemical potential µBf as functions of the collision energy [11, 12, 13, 14]. The higher order
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fluctuations are also an important signature for the critical endpoint, as they give access to the
correlation length [8, 15, 16].

We present results for χB
2 to χB

6 in the temperature range 140 MeV ≤ T ≤ 220 MeV. Several
diagonal and non-diagonal fluctuations of conserved charges up to sixth-order are available in
our resent paper [17].

We simulate the lower-order fluctuations at imaginary chemical potential and extract the
higher order fluctuations as derivatives of the lower order ones at µB = 0. This method has
been successfully used in the past and proved to lead to a more precise determination of the
higher order fluctuations, compared to their direct calculation [18, 19, 20]. The latter requires
the evaluation of several terms and is affected by a signal-to-noise ratio which is decreasing
as a power law of the spatial volume V , with an exponent that grows with the order of the
susceptibility. Reliable results would therefore require extremely large volumes.

To connect to experimental results, we calculate the ratio of the cumulants of the net-baryon
number distribution as functions of temperature and chemical potential by means of their Taylor
expansion in powers of µB/T . This is possible by combining different diagonal and non-diagonal
fluctuations to obtain a result at the strangeness neutral point and with 〈nQ〉 = 0.4〈nB〉.

2. Lattice details

We use a tree-level Symanzik improved gauge action, with four times stout smeared staggered
fermions. We simulate 2 + 1+ 1 dynamical quarks where the light flavors are tuned in a way to
reproduce the physical pion and kaon mass and we set mc

ms
= 11.85 [21]. For the zero temperature

runs we use large volumes which full fill Lmπ > 4. The scale is determined via fπ. More Details
can be found in [22].

The maximal useful value of µB is µB = iπT because of the Roberge-Weiss transition [23].

We simulate at eight different values of µB given as: µ
(j)
B = iT jπ

8 for j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. The
analysis is done purely on a 483 × 12 lattice without continuum extrapolation. All simulations
are done at µQ = µS = 0.

3. Analysis for χB

We start with the analysis for χB
2 (T ), χ

B
4 (T ) and χB

6 (T ). Our goal is to calculate these quantities
at zero chemical potential, using the imaginary chemical potential data up to χ4

B(T, µ̂B). In this
work we extract these derivatives at a fixed temperature. Therefor the results for different
temperatures are completely independent.

We consider the ensembles at a fixed temperature T . For each value of imaginary µB 6= 0 we
determine χB

1 , χ
B
2 , χ

B
3 and χB

4 from simulation, while for µB = 0 only χB
2 and χB

4 can be used,
since χB

1 and χB
3 are odd functions of µB and therefore equal to zero.

We make the ansatz for the pressure:

χB
0 (µ̂B) = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B + c8µ̂

8
B + c10µ̂

10
B , (1)

where the Taylor expansion coefficients cn are related to the baryon number fluctuations χB
n by:

n!cn = χB
n . Our data do not allow for an independent determination of c8 and c10. Nevertheless,

in order to have some control over these terms we make the assumption

|χB
8 | . χB

4 (2)

|χB
10| . χB

4 (3)

or in terms of the cn coefficients

8!c8 . 4!c4

10!c10 . 4!c4.
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We perform a correlated fit for the four measured observables, thus obtaining the values of c2,
c4 and c6 for each temperature, and the corresponding χB

2 , χ
B
4 and χB

6 . We repeat the fit for
1000 random draws for ε1 and ε2. The result is weighted using the Akaike Information Criterion
[24]. Through these weights we get a posterior distribution from the prior distribution. Our
final estimate for χB

8 represents this posterior distribution. We do not show the posterior for
χB
10, which is mostly noise.
These results are shown in Fig. 1, together with an estimate of χB

8 , related to χB
4 by Eq. (4).

4. Cumulants

For a comparison with heavy ion collision experiments the cumulants of the net baryon
distribution are a useful tool. The first four cumulants are the mean MB, the variance σ2

B,
the skewness SB and the kurtosis κB. By forming appropriate ratios, we can cancel out explicit
volume factors. However the measured distributions themselves may still depend on the volume,
which one should take into account, when comparing to experiments.

Heavy ion collisions with lead or gold take place with at µB > 0, 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉.
Since our simulations are done at µS = µQ = 0 and µB 6= 0 we have to do some calculations
to arrive at the same observables that are measured in experiments (see for example [25]). We
investigate three different rations of cumulants and write each as a Taylor expansion:

MB

σ2
B

=
χB
1 (T, µ̂B)

χB
2 (T, µ̂B)

= µ̂Br
B,1
12 + µ̂3

Br
B,3
12 + . . . (9)

SBσ
3
B

MB

=
χB
3 (T, µ̂B)

χB
1 (T, µ̂B)

= rB,0
31 + µ̂2

Br
B,2
31 + . . . (10)

κBσ
2
B =

χB
4 (T, µ̂B)

χB
2 (T, µ̂B)

= rB,0
42 + µ̂2

Br
B,2
42 + . . . (11)

The µB dependence of the χB
i (T, µ̂B) can be again written in terms of the Taylor expansion:

χBQS
i,j,k (µ̂B) = χBQS

i,j,k (0) + µ̂B

[

χBQS
i+1,j,k(0) + q1χ

BQS
i,j+1,k(0) + s1χ

BQS
i,j,k+1(0)

]

(12)

+
1

2
µ̂2
B

[

χBQS
i+2,j,k(0) + s21χ

BQS
i,j+2,k(0) + q21χ

BQS
i,j,k+2(0) (13)

+2q1s1χ
BQS
i,j+1,k+1(0) + 2s1χ

BQS
i+1,j+1,k(0) + 2q1χ

BQS
i+1,j,k+1(0)

]

+ . . . (14)

(15)

with

qj =
1

j!

djµ̂Q

(dµ̂B)j
(0) (16)

sj =
1

j!

djµ̂S

(dµ̂B)j
(0) (17)

We can now use the constrains 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉 which can be rewritten as

χQ
1 = 0.4χB

1 , χS
1 = 0 (18)

to determine rB,k
ij coefficients form the equations 9, 10 and 11. However we now need to know

not only the behaviour of the χB
i but also of derivatives with respect to µS and µQ. For now our
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