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Abstract. An efficient way to study the QCD phase diagram at small finite density is to
extrapolate thermodynamical observables from imaginary chemical potential. We present results
for fluctuations of baryon number to order (up/T)®. The results at real chemical potentials are
obtained through analytical continuation of simulations at imaginary chemical potentials. We
also calculate higher order fluctuations of strangeness and electric charge to obtain the Taylor
coefficients of the baryon number fluctuation with vanishing strangeness. We compare to the
STAR proton fluctuation data to characterize the chemical freeze-out in view of the lattice
results.

1. Introduction

When investigating Quantum Chromodynamics (QCD) an important but challenging goal is the
study of the phase diagram. At there chemical potential lattice QCD predicts a smooth crossover
between hadrons and the quark gluon plasma [1, 2, 3, 4, 5], taking place in the temperature
range 1" ~ 145 — 165 MeV. Due to the sign problem lattice QCD is unable to study the region
with final chemical potential.

With the advent of the second Beam Energy Scan (BESII) at the Relativistic Heavy Ion
Collider (RHIC), scheduled for 2019-2020, there is a renewed interest in the heavy ion community
towards the phases of QCD at moderate-to-large densities. A rich theoretical effort is being
developed in support of the experimental program; several observables are being calculated,
in order to constrain the existence and location of the QCD critical point and to observe it
experimentally.

Fluctuations of conserved charges (electric charge ), baryon number B and strangeness
S) are important observables for the finite-density investigations. One possible way to extend
lattice results to finite density is to perform Taylor expansions of the thermodynamic observables
around chemical potential ug =0 [6, 7, 8, 9, 10]: fluctuations of conserved charges are directly
related to the Taylor expansion coefficients of such observables. They allow for a comparison
between theoretical and experimental results to extract the chemical freeze-out temperature T’
and chemical potential 155 as functions of the collision energy [11, 12, 13, 14]. The higher order
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fluctuations are also an important signature for the critical endpoint, as they give access to the
correlation length [8, 15, 16].

We present results for x to XGB in the temperature range 140 MeV < T < 220 MeV. Several
diagonal and non-diagonal fluctuations of conserved charges up to sixth-order are available in
our resent paper [17].

We simulate the lower-order fluctuations at imaginary chemical potential and extract the
higher order fluctuations as derivatives of the lower order ones at up = 0. This method has
been successfully used in the past and proved to lead to a more precise determination of the
higher order fluctuations, compared to their direct calculation [18, 19, 20]. The latter requires
the evaluation of several terms and is affected by a signal-to-noise ratio which is decreasing
as a power law of the spatial volume V', with an exponent that grows with the order of the
susceptibility. Reliable results would therefore require extremely large volumes.

To connect to experimental results, we calculate the ratio of the cumulants of the net-baryon
number distribution as functions of temperature and chemical potential by means of their Taylor
expansion in powers of pp/T. This is possible by combining different diagonal and non-diagonal
fluctuations to obtain a result at the strangeness neutral point and with (ng) = 0.4(np).

2. Lattice details
We use a tree-level Symanzik improved gauge action, with four times stout smeared staggered
fermions. We simulate 2 + 1 + 1 dynamical quarks where the light flavors are tuned in a way to
reproduce the physical pion and kaon mass and we set % = 11.85 [21]. For the zero temperature
runs we use large volumes which full fill Lm, > 4. The scale is determined via f;. More Details
can be found in [22].

The maximal useful value of up is up = inT because of the Roberge-Weiss transition [23].
We simulate at eight different values of g given as: ,ug) = iT%7r for 7 € {0,1,2,3,4,5,6,7}. The
analysis is done purely on a 483 x 12 lattice without continuum extrapolation. All simulations
are done at g = pus = 0.

3. Analysis for \?

We start with the analysis for x5 (T'), x2(T) and x&(T). Our goal is to calculate these quantities
at zero chemical potential, using the imaginary chemical potential data up to X%(T ,fip). In this
work we extract these derivatives at a fixed temperature. Therefor the results for different
temperatures are completely independent.

We consider the ensembles at a fixed temperature 7'. For each value of imaginary up # 0 we
determine P, x&, X9],3 and x? from simulation, while for ug = 0 only x¥ and xF can be used,
since P and x¥ are odd functions of up and therefore equal to zero.

We make the ansatz for the pressure:

XG(fiB) = co + cofids + cafily + e + sl + crofily s (1)

where the Taylor expansion coefficients c,, are related to the baryon number fluctuations x2 by:
nle, = Xf . Our data do not allow for an independent determination of cg and c19. Nevertheless,
in order to have some control over these terms we make the assumption

g | S (2)
Ixtol S X7 (3)
or in terms of the ¢, coefficients
8leg < 4dley

10lc1g < 4ley.
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Figure 1. Results for x5, xB, xZ and an estimate for x2 as functions of the temperature,
obtained from the single-temperature analysis. We plot X8 in green to point out that its
determination is guided by a prior, which is linked to the Xf observable by Eq. (4). The red
curve in each panel corresponds to the Hadron Resonance Gas (HRG) model result.

We can then rewrite our ansatz as

41 41
XS (i) = co + cofily + cafiy + cofi% + —caEafif5 - (4)

8! 10!
where ¢; and ey are drawn randomly from a normal distribution with mean -1.25 and variance
2.75. We use the same distribution for all temperatures. For a detailed discussion of the choice
of parameters see [17].

For this ansatz we calculate the following derivatives, which are the actually simulated lattice
observables:

C4€1MB +

xP(jip) = 2cafip + desfily + 6egfihy + i'0461u3 + 3:0462,u3 (5)
B (ip) = 2c0 + 12c4f% + 3006/LB + 6'C4€1MB + ;1:0462u3 (6)

X5 (i) = 24cafip + 120csfi% + 5,6461#;; + i; caeafly (7)
X2 (iB) = 24cy + 360cei%; + cacrfify + 4'(‘452/LB (8)

6!
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We perform a correlated fit for the four measured observables, thus obtaining the values of co,
c4 and cg for each temperature, and the corresponding x%, x¥ and XGB . We repeat the fit for
1000 random draws for €; and e5. The result is weighted using the Akaike Information Criterion
[24]. Through these weights we get a posterior distribution from the prior distribution. Our
final estimate for XsB represents this posterior distribution. We do not show the posterior for
Xﬁ), which is mostly noise.

These results are shown in Fig. 1, together with an estimate of xZ, related to x¥ by Eq. (4).

4. Cumulants
For a comparison with heavy ion collision experiments the cumulants of the net baryon
distribution are a useful tool. The first four cumulants are the mean Mp, the variance 0]23,
the skewness Sp and the kurtosis kp. By forming appropriate ratios, we can cancel out explicit
volume factors. However the measured distributions themselves may still depend on the volume,
which one should take into account, when comparing to experiments.

Heavy ion collisions with lead or gold take place with at up > 0, (ng) = 0 and (ng) = 0.4(npg).
Since our simulations are done at us = g = 0 and pp # 0 we have to do some calculations
to arrive at the same observables that are measured in experiments (see for example [25]). We

investigate three different rations of cumulants and write each as a Taylor expansion:

Mg  x{(TiiB) . B1, -3 B3
—= = Ty, + Qpris + ... 9
0_% X2B(T,,LLB) 12 B'12 ( )

Spoy  x8(T,iB) B0, -2 B2
= —= =1+ QBT + ... 10
MB XlB(T7 ,U/B) 31 HUBT31 ( )

B ~

o _xXe(T\iB) _ B0, .2 B2
KpBop = — =Ty T UBTH + ... 11
B XQB(T7 /-LB) 42 B'42 ( )
The pup dependence of the X? (T, ip) can be again written in terms of the Taylor expansion:

BQS A BQS . BQS BQS BQS
O3 ) = XPEE0) + g [XES5400) + @25 4(0) + s 3, (0)] (12)
L.o [ BQS BQS BQS
+ 5t YB35 4(0) + 520, 0) + a3 0) (13)
BQS BQS BQS
+QQ131Xi,Ja1,k+1(O) + 251Xi-§,j+1,k(0) + QQ1Xi+%,j,k+1(O)} + ... (14)
(15)
with
1 djig
1 djis

S; = — = -(0 17
1= 1 (dpsp ()

We can now use the constrains (ng) = 0 and (ng) = 0.4(np) which can be rewritten as
XF=04x7, X =0 (18)

to determine rg’k coefficients form the equations 9, 10 and 11. However we now need to know

not only the behaviour of the X? but also of derivatives with respect to pg and pg. For now our
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Figure 2. Taylor expansion coefficients for Mp — M as functions of the temperature:

B x5 (T:ip)
7“{32’1 (left panel) and Tg’s (right panel).

simulations are restricted to ensembles with finite 1p. Therefore the pg and ug derivatives have
to be calculated directly and without the support from the fit that we used in the up direction.
Wi . Q.5 . . . . ) .
e calculate various x; Tk with the appropriate values of j and k£ and all possible values for i

so that
i+j+k<A4 (19)

For each group of fluctuations with the same j and & we perform a fit analogous to the procedure
described in section 3. This is sufficient to determine the first to rg’k coefficients for all three
observables. The results are shown in figure 2, 3 and 4. For higher order coefficients, higher
order derivatives in pg and pug are needed. The direct measurements have a rapidly increasing
error with each derivative and very large statistics would be needed to improve our calculations
in that manner. Another possibility would be add ensembles with finite pg and pg and do a
similar fit as for the up direction. This approach has been used in [19].

5. Error Analysis
For a reliable comparison between experimental measurements and theoretical calculations, the
error estimate is an important ingredient. Our statistical error is estimated through the jackknife
method. For our systematic error there are several sources. We determine our systematic error
by the histogram method described in [26], where each analysis is weighted with the Akaike
information criteria. We include the influence of the number of points in the up direction, by
either including or ignoring the data from our highest value of up. A very important source for
our systematic error is the influence of the higher order contributions in pp. This effect was
estimated by adding the higher order terms with pre-factors €; and €2 as described in Section 3.
We consider 1000 different e pairs and add the different analyses to our histogram. The width of
the histogram using Akaike weights corresponding to the fit quality gives the systematic errors
for the fit coefficients, and from the same histogram we obtain the posterior distributions for €.
The physical quantities that are constrained only by the posterior distribution are plotted with
green symbols.

These histograms are built independently for each number (j and k) of 15 and pg derivatives.
When calculating the systematic for the cumulants (see section 4) we need to calculate different
combinations from the available analyses. We will always take the fluctuations from the same
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Figure 3. Taylor expansion coefficients for 5595 _ Xi(T”fB ) as functions of the temperature:
MB Xl (THU‘B)
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Figure 4. Taylor expansion coefficients for ko

2

as functions of the temperature:

rﬁ’o (left panel) Tff (middle panel), Tff (right panel). The latter is not obtained independently,
but by means of the prior ansatz (see text): for this reason, we plot it in green.

channel from the same analysis. However we have 15 channels and 2000 analyses in each resulting
in 2000'® combinations, which would be a very large computational effort. Instead we determine
1000 different combinations via important sampling:

(i) For each channel we draw a random number r from a uniform distribution between zero
and one

(ii) We add the normalized weights from our 2000 different analyses to the sum s > r with the
nth analysis

(iii) We take for this combination the nth analysis and proceed to the next channel

In this way, O(100) random combinations of ngQ results already give convergence for each
discussed quantity and its error bar. For the results in this paper we used 1000 such random
combinations. This procedure assumes that between different j, k pairs the prior distribution is
uncorrelated.
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Figure 5. Spo%/Mp (left panel) and kpo% (right panel) extrapolated to finite chemical

potential. The left panel is extrapolated up to (9(,&23). In the right panel, the darker bands
correspond to the extrapolation up to O(ji%), whereas the lighter bands also include the O(ji%)
term.

6. Conclusion

We have calculated the baryon number fluctuation as well as several diagonal and non-diagonal
fluctuations of electric charge, baryon number and strangeness up to sixth-order on a 483 x 12
lattice. The analysis has been performed simulating the lower order fluctuations at eight different
values of zero and imaginary chemical potential up, and extracting the higher order fluctuations
as derivatives of the lower order ones at up = 0. The chemical potentials for electric charge
and strangeness have both been set to zero in the simulations. From these fluctuations, we
have constructed ratios of baryon number cumulants as a functions of 7" and pp, by means of a
Taylor series which takes into account the experimental constraints (ng) = 0 and (ng) = 0.4(np).
These ratios qualitatively explain the behavior observed in the experimental measurements by
the STAR collaboration as functions of the collision energy.
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