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Abstract—We develop a framework for graph sparsification
and sketching, based on a new tool, short cycle decomposition –
a decomposition of an unweighted graph into an edge-disjoint
collection of short cycles, plus a small number of extra edges.
A simple observation gives that every graph G on n vertices
with m edges can be decomposed in O(mn) time into cycles
of length at most 2 logn, and at most 2n extra edges. We
give an m1+o(1) time algorithm for constructing a short cycle
decomposition, with cycles of length no(1), and n1+o(1) extra
edges. Both the existential and algorithmic variants of this
decomposition enable us to make progress on several open
problems in randomized graph algorithms.
1) We present an algorithm that runs in time m1+o(1)ε−1.5

and returns (1± ε)-approximations to effective resis-
tances of all edges, improving over the previous best of
Õ(min{mε−2, n2ε−1}). This routine in turn gives an algo-
rithm to approximate the determinant of a graph Lapla-
cian up to a factor of (1± ε) in m1+o(1)+n15/8+o(1)ε−7/4

time.
2) We show existence and efficient algorithms for con-

structing graphical spectral sketches – a distribution
over graphs H with about nε−1 edges such that for a
fixed vector x , we have x⊤LHx = (1± ε)x⊤LGx and
x⊤L+

Hx = (1±ε)x⊤L+
Gx with high probability, where L

is the graph Laplacian and L+ is its pseudoinverse. This
implies the existence of resistance-sparsifiers with about
nε−1 edges that preserve the effective resistances between
every pair of vertices up to (1± ε).

3) By combining short cycle decompositions with known
tools in graph sparsification, we show the existence of
nearly-linear sized degree-preserving spectral sparsifiers,
as well as significantly sparser approximations of Eulerian
directed graphs. The latter is critical to recent break-
throughs on faster algorithms for solving linear systems
in directed Laplacians.

The running time and output qualities of our spectral sketch
and degree-preserving (directed) sparsification algorithms are
limited by the efficiency of our routines for constructing short
cycle decompositions. Improved algorithms for short cycle
decompositions will lead to improvements for each of these
algorithms.

Keywords-graph sketching; graph sparsification, effective
resistance; short cycle decomposition;

Due to space constraints, most of the proofs are deferred to the full
version [1] available at http://arxiv.org/abs/1805.12051.

I. INTRODUCTION

Graph sparsification is a procedure that, given a graph
G, returns another graph H , typically with much fewer
edges, that approximately preserves some characteristics
of G. Graph sparsification originated from the study of
combinatorial graph algorithms related to cuts and flows [2],
[3]. Many different notions of graph sparsification have been
extensively studied, for instance, spanners [4] approximately
preserve pairwise distances, whereas cut-sparsification ap-
proximately preserves the sizes of all cuts [2]. Spielman and
Teng [5], [6] defined spectral sparsification, a notion that’s
strictly stronger than a cut-sparsification.
Spectral sparsifiers have found numerous applications to

graph algorithms. They are key to fast solvers for Laplacian
linear systems [5]–[8]. Recently they have been used as the
sole graph theoretic primitive in graph algorithms including
solving linear systems [9], [10], sampling random spanning
trees [11], [12], measuring edge centrality [13], [14], etc.
For an undirected, weighted graph G = (V,EG, wG), we

recall that the Laplacian of G, LG is the unique symmetric
V × V matrix such that for all x ∈ RV , we have

x⊤LGx =
∑

(u,v)∈EG

wG(u, v)(xu − xv)
2.

For two positive scalars a, b, we write a ≈ε b if e−εa ≤ b ≤
eεa. We say the graph H = (V,EH , wH) is an ε-spectral
sparsifier of G if,

∀x ∈ RV , x⊤LGx ≈ε x
⊤LHx. (1)

Restricting the above definition only to vectors x ∈ {± 1}V ,
one obtains cut sparsifiers. For a graph G with n vertices
and m edges, Spielman and Teng gave the first algorithm
for constructing spectral sparsifiers with Õ(nε−2) edges1.
Spielman and Srivastava [15] proved that one could construct
a sparsifier for G by independently sampling O(nε−2 log n)
edges with probabilities proportional to their leverage scores
in G. Finally, Batson, Spielman, and Srivastava [16] proved

1The Õ(·) notation hides poly(log n) factors.
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that one could construct sparsifiers with O(nε−2) edges,
and that this is optimal even for constructing sparsifiers
for the complete graph. Recently, Carlson et al. [17] have
proved a more general lower bound, proving that one needs
Ω(nε−2 log n) bits to store any data structure that can
approximately compute the sizes of all cuts in G.
Given the tight upper and lower bounds, it is natural

to guess at this point that our understanding of graph
sparsification is essentially complete. However, numerous
recent works have surprisingly brought to attention several
aspects that we do not seem to understand as yet.
1) Are our bounds tight if we relax the requirement in

Equation (1) to hold only for a fixed unknown x with
high probability? Andoni et al. [18] define such an
object to be a spectral sketch. They also construct a
data structure (not a graph) with Õ(nε−1) space that
is a spectral sketch for x ∈ {± 1}V , even though
Ω(nε−2) is a lower bound if one must answer cor-
rectly for all x ∈ {± 1}V . Building on their work,
Jambulapati and Sidford [19] showed how to construct
such data structures that can answer queries for any x
with high probability. A natural question remains open:
whether there exist graphs that are spectral sketches
with Õ(nε−1) edges?

2) What if we only want to preserve the effective
resistance2 between all pairs of vertices? Dinitz,
Krauthgamer, and Wagner [20] define such a graph H
as a resistance sparsifier of G, and show their existence
for regular expanders with degree Ω(n). They conjec-
ture that every graph admits an ε-resistance sparsifier
with Õ(nε−1) edges.

3) An ε-spectral sparsifier preserves weighted vertex de-
grees up to (1 ± ε). Do there exist spectral sparsi-
fiers that exactly preserve weighted degrees? Dinitz et
al. [20] also explicitly pose a related question – does
every dense regular expander contain a sparse regular
expander?

4) What about sparsification for directed graphs? The
above sparsification notions, and algorithms are difficult
to generalize to directed graphs. Cohen et al. [21] de-
veloped a notion of sparsification for Eulerian directed
graphs (directed graphs with all vertices having in-
degree equal to out-degree), and gave the first almost-
linear time algorithms3 for building such sparsifiers.
However, their algorithm is based on expander de-
composition, and isn’t as versatile as the importance
sampling based sparsification of undirected graphs [15].

2The effective resistance between a pair u, v is the voltage difference
between u, v if we consider the graph as an electrical network with every
edge of weight we as a resistor of resistance 1

we
, and we send one unit of

current from u to v.
3An algorithm is said to be almost-linear time if it runs in m1+o(1) time

on graphs with m edges.

Is there an easier approach to sparsifying Eulerian
directed graphs?

5) There is an ever-growing body of work on the al-
gorithmic applications of graph sparsification [22]–
[25]. Could the above improved guarantees lead to
even faster algorithms for some of these problems?
Two problems of significant interest include estimat-
ing determinants [11] and sampling random spanning
trees [11], [12], [26].

A. Our Contributions

In this paper, we develop a framework for graph sparsi-
fication based on a new graph-theoretic tool we call short
cycle decomposition. Informally, a short cycle decomposi-
tion of a graph G is a decomposition into a sparse graph,
and several cycles of short length. We use our framework
to give affirmative answers to all the challenges in graph
sparsification discussed in the previous section. Specifically:
1) We show that every graph G has a graph H with

Õ(nε−1) edges that is an ε-spectral-sketch for G.
The existence of such graphic spectral-sketches was
not known before. Moreover, we give an algorithm to
construct an ε-spectral-sketch with n1+o(1)ε−1 edges in
m1+o(1) time. In addition, H is also a spectral-sketch
for L+

G.

2) We show every graph G has an ε-resistance sparsi-
fier with Õ(nε−1) edges, affirmatively answering the
question raised by Dinitz et al. [20]. We also give
an algorithm to construct ε-resistance sparsifiers with
n1+o(1)ε−1 edges in m1+o(1) time.

3) We show that every graph has an ε-spectral sparsi-
fier with Õ(nε−2) edges that exactly preserves the
weighted-degrees of all vertices. It follows that every
dense regular expander contains a sparse (weighted)
regular expander. Before our work, it was not known
if there exist sparse degree-preserving sparsifiers (even
for cut sparsifiers).

4) We show that short cycle decompositions can be used
for constructing sparse spectral approximations for
Eulerian directed graphs under the notion of spectral
approximation given by Cohen et al. [21] for Eulerian
directed graphs (see Section III-B for definition). We
show that short-cycle decompositions are sufficient for
sparsifying Eulerian directed graphs, and prove that
every directed Eulerian graph has a spectral approxi-
mation with O(nε−2 log 4n) edges.

5) We build on our spectral-sketches, to give an algorithm
for estimating the effective resistances of all edges up to
a factor of (1 ± ε) in m1+o(1)ε−1.5 time. The previous
best results for this algorithm were Õ(mε−2) [15] and
Õ(n2ε−1) [19].
Incorporating this result into the work of Durfee et
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al. [12] gives an m1+o(1) + n15/8+o(1)ε−7/4 time algo-
rithm for approximating the determinant of a L (rather,
L after deleting the last row and column, which is the
number of spanning trees in a graph), up to a factor of
(1 ± ε). The previous best algorithm for this problem
ran in time Õ(n2ε−2) [11].

As a key component of all our results, we present effi-
cient algorithms for constructing short cycle decompositions.
From a bird’s eye view, the key advantage provided by short
cycle decompositions for all the above results, is that they
allow us to sample edges in a coordinated manner so to
preserve weighted vertex degrees exactly.

Definition 1. An (m̂, L)-short cycle decomposition of an
unweighted undirected graph G, decomposes G into several
edge-disjoint cycles, each of length at most L, and at most
m̂ edges not in these cycles.

The existence of such a decomposition with m̂(m,n) ≤
2n and L(m,n) ≤ 2 log n is a simple observation. We
repeatedly remove vertices of degree at most 2 from the
graph, along with their incident edges (removing at most
2n edges in total). If the remaining graph has no cycle of
length at most 2 log n, a breadth-first search tree of depth
log n starting from any remaining vertex will contain more
than n vertices, a contradiction. This can be implemented
as an O(mn) time algorithm to find a (2n, 2 log n)-short
cycle decomposition, which in turn implies a similar running
time for all the existential results above. Finding such
decompositions faster is a core component of this paper: we
give an algorithm that constructs an (n1+o(1), no(1))-short
cycle decomposition of a graph in m1+o(1) time.

Organization: We first define a few necessary prelim-
inaries in Section II. Due to space constraints, we only
give an overview of our results in this paper (Section III),
and refer the reader to the full version [1] for a detailed
exposition. Section III is further divided into the following
parts: We start with degree-preserving spectral sparsifiers in
Section III-A, and then outline the algorithm for sparsifica-
tion of Eulerian directed graphs (Section III-B). Next, we
sketch the construction of spectral-sketches and resistance
sparsifiers in Section III-C, followed by our algorithm for
estimating effective resistances for all edges in Section III-D.
Finally, we outline our almost-linear time algorithm for
constructing a short cycle decomposition in Section III-E.

II. PRELIMINARIES

A square symmetric n × n matrix M is positive semi-
definite (PSD), denoted M ≽ 0, if for all x ∈ Rn, we
have x⊤Mx ≥ 0. For two matrices M 1,M 2, we write
M 1 ≽ M 2 if for all x ∈ Rn,x⊤M 1x ≥ x⊤M 2x , or
equivalently M 1 −M 2 ≽ 0.

For ε ≥ 0, and two positive real numbers a, b, we write
a ≈ε b to express e−εa ≤ b ≤ eεa. Observe that a ≈ε b if

b ≈ε a. For two PSD matrices M 1,M 2, we write M 1 ≈ε

M 2 if for all x ∈ Rn,x⊤M 1x ≈ε x⊤M 2x .

Fact 1. For any PSD M 1,M 2,M3 and ε1, ε2 ≥ 0, if we
have M 1 ≈ε1 M 2 and M 2 ≈ε2 M3, then M 1 ≈ε1+ε2

M3.

For two graphs G1, G2, we often abuse notation to write
G1 ≽ G2 to mean LG1 ≽ LG2 and G1 ≈ε G2 to mean
LG1 ≈ε LG2.
For any PSD matrix M , we let M+ denote the Moore-

Penrose pseudoinverse ofM . Thus, ifM has an eigenvalues
0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn, with unit-norm eigenvectors
v1, v2, . . . , vn respectively, we have M =

∑
i λiviv⊤i ,

and M+ =
∑

λi>0
1
λi
viv⊤i . Similarly, we have M

1/2 =∑
i

√
λiviv⊤i , and M

+/2=
∑

λi>0
1√
λi
viv⊤i .

Our notion of approximation is preserved under inverses:

Fact 2. For any PSD M 1 and M 2, and any error ε > 0,
we have M 1 ≈ε M 2 if and only if M+

1 ≈ε M
+
2 .

For any u, we let χu denote the vector such that the uth

coordinate is 1, and all other coordinates are 0. We let χuv =
χu−χv. For any edge e = (u, v) in a connected graph G, the
effective resistance of e is defined as Reff(e) = χ⊤

uvL
+
Gχuv.

For a directed graph G⃗, its directed Laplacian LG⃗, can be
defined as

∑
e=u→v χ

⊤
uvχu.

All logarithms throughout the paper are with base 2.
Unless mentioned, we assume that our input graph G has
m edges and n vertices. Throughout the paper, we consider
graphs with positive integral weights on the edges. Whenever
we say the weights are poly bounded, we assume they are
bounded by nO(1). The expression with high-probability
means with probability larger than 1− 1

nΩ(1) .

III. OVERVIEW

There are 4 major approaches to date towards graph spar-
sification: expander partitioning [6], [18], [19], importance
sampling [2], [15], [27], potential function based [16], [28]–
[30], and spanners based, which use sampling via matrix
concentration [31]–[33]. A survey of these approaches can
be found in [24].
We present a framework for graph sparsification built on

short cycle decomposition that merges several ideas from
the importance-sampling and spanners based approaches.
Before giving an overview of the results in our paper, we
first present an alternative algorithm for the classic graph
sparsification result of Spielman and Srivastava [15]. This
will be quite useful since our algorithms for construct-
ing degree-preserving sparsifiers and sparsifying Eulerian
directed graphs are immediately built on the following
algorithm, and degree-preserving sparsification is a key idea
underlying all our remaining results.
Say we have a graph G(V,E,w) with m edges and n

edges. We start by expressing LG =
∑

e∈E weLe, where
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for edge e = (u, v), Le = χuvχ⊤
uv. We can re-write this as

Π =
∑

e

weL
+/2
G LeL

+/2
G ,

where Π is the projection orthogonal to the all ones vector.
Given a subset of edges E′ ⊆ E, we draw a random graphH
as follows, independently for every edge e ∈ E′, we include
it in H with probability 1/2 and weight 2we. Otherwise, we
delete the edge e. All edges e ∈ E \ E′ are included in H
with weight we. Observe that the expectation of LH is LG.

It follows from standard concentration results for sums
of matrix random variables that if for each edge e in E′,

the norm
∥∥∥weL

+/2
G LeL

+/2
G

∥∥∥ is bounded (up to constants) by
ε2

logn , then with high probability, LH ≈ε LG.

Now, observe that
∥∥∥wuvL

+/2
G LuvL

+/2
G

∥∥∥ =

weχuvL
+
Gχuv = wuv Reff(u, v) (this is defined as the

leverage score of the edge uv). A simple trace argument
implies

∑
e we Reff(e) = n−1

m , and hence at least half the
edges satisfy we Reff(e) ≤ 2n

m . Letting these edges with
low leverage score be the set of edges E′ we toss random
coins for, we obtain that LH ≈√

2n
m logn

LG. Moreover, in
expectation, H has at most 3

4m edges.
We can repeat the above sparsification roughly O(log n)

times to go down to O(nε−2 log n) edges, at each step
sparsifying the graph just obtained. By Fact 1, the final
approximation error is given by the sum of the error at
each sparsification step. Since the number of edges is going
down geometrically, the error is increasing geometrically,
and hence is dominated by the error at the last step, yielding
that the final graph is an O

(√
2n logn

nε−2logn

)
= O(ε) spectral-

sparsifier for G.
In order to implement this algorithm efficiently, we need

to estimate effective resistances for the edges. For the
above algorithm, constant factor estimates of the effective
resistances suffice (at the cost of changing the constants
involved). Spielman and Srivastava [15] showed that one can
obtain constant factor estimates for all the edges together in
Õ(m) time, resulting in a complete running time of Õ(m)
for the above sparsification algorithm.

A. Degree Preserving Spectral Sparsification

Now, we adapt the above algorithm to leverage a short-
cycle decomposition of the graph. Short cycles permit us
to sample correlated edges in the graph while still keeping
each random sample small in spectral norm. We first use this
approach to construct degree-preserving spectral sparsifiers.
We first formally define a degree-preserving sparsifier.

Definition 2 (Degree-Preserving Sparsifier). A graph
H(V,E′) is said to be a degree-preserving ε-sparsifier of
G(V,E) if
1) for every x ∈ RV , we have, x⊤LGx ≈ε x⊤LHx, and

2) every vertex u ∈ V has the same weighted degree in G
and H, i.e.,

∑
v w

G
u,v =

∑
v w

H
u,v.

Given the above algorithm for usual graph sparsification,
the main obstacle is that at each sparsification step, the
weighted degrees are not preserved. This is where we require
our key tool, a short cycle decomposition, which we now
formally define.

Definition 3. For an undirected unweighted graph G(V,E),
we say that {C1, C2, . . .} is a an (m̂, L)-short cycle decom-
position, if C1, C2, . . . are edge-disjoint cycles in G, each
Ci is a cycle of length at most L, and |E \

⋃
i Ci| ≤ m̂.

Assuming that we have an efficient algorithm for con-
structing an (m̂, L)-short cycle decomposition of any given
graph, we show the following theorem.

Theorem 1. Given ε ∈ (0, 1], every undirected graphG with
poly-bounded weights has a degree-preserving ε-sparsifier
with O(nε−2 log 2 n) edges. The algorithm DEGREEPRE-
SERVINGSPARSIFY, given our short cycle decomposition
algorithm, takes in a graph G and runs in time m1+o(1)

and returns a degree-preserving ε-sparsifier of G with
n1+o(1)ε−2 edges.

The following is a brief description of our degree-
preserving sparsification algorithm.
Assume first that our graph G is an unweighted graph that

has been given to us as the union of disjoint cycles of even
length. We sample a random graph H as follows. For each
cycle independently, we index the edges in order start from
an arbitrary vertex, and perform the following correlated
sampling procedure: with probability 1/2, we keep only the
even indexed edges with weight 2, and with probability 1/2,
we keep only the odd indexed edges with weight 2 (see
Figure 1). Observe that H has half as many edges as G,
and has exactly the same weighted degrees as G. In order
to apply matrix concentration, we need to ensure that for
each cycle C, the norm

∥∥∥L
+/2
G LCL

+/2
G

∥∥∥ is at most ε2

logn ,
where LC is the Laplacian of the cycle C. This norm is
easily upper bounded by

∑
e∈C Reff(e).

If instead, G was any arbitrary unweighted graph, we
move all the edges with Reff ≥ 2n

m to H. Again, by
averaging, we still have at least m/2 edges remaining. Now,
we greedily pick a bi-partition of the vertices of G such
that at least half the remaining edges are crossing the cut.
We add all the non-crossing edges to H. Now, we utilize
an (m̂, L)-short cycle decomposition of G. Thus, all but m̂
edges of G are partitioned into cycles of length at most L.
Observe that all the cycle edges crossing the bi-partition,
at least must now be in even cycles, each with total Reff
bounded by 2nL

m . Now, independently for each cycle, we
pick even or odd edges with probability 1/2, and add them
to H with weight 2. Assuming m ≥ 8̂m, H has at most
15
16m edges, the same weighted degree as G, and with high
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p=1/2 p=1/2

Figure 1: Sampling alternate edges in short cycles for
degree-preserving sparsification. The thick edges are double
the weights of the thin edges.

probability H ≈√
2nL
m logn

G.

Note that re-framing original sparsification into an algo-
rithm for reducing the edges by a constant fraction is crucial
for this algorithm. We are only able to reduce the edges in a
cycle by half. Further, the cycle decomposition of the graph
will necessarily change with every iteration.
For starting with a weighted graph with poly-bounded

weights, we can use the binary representation of the edge
weight to split each edge into O(log n) edges, each with
a weight that’s a power of 2. Now, repeating the above
procedure as before, we can construct a degree-preserving ε-
sparsifier for G with roughly m̂ log n+ nε−2L log n edges.
Using the O(log n) length short-cycle decomposition, this
gives roughly nε−2 log 2 n edges.

B. Sparsification of Eulerian Directed Graphs
Now, we can take a very similar approach to sparsifying

Eulerian directed graphs. This is a primitive introduced
in [21], and is at the core of recent developments in
fast solvers for linear systems in directed Laplacians [21],
[34], [35]. In contrast to undirected graphs, it has been
significantly more challenging to give an appropriate notion
of approximation for directed graphs. For a directed graph
G⃗, its directed Laplacian, LG⃗, can be defined as

LG⃗(u, v) :=

⎧
⎪⎨

⎪⎩

out-degree of u if u = v,

−weight(v → u)
if u ̸= v and
v → u is an edge.

Cohen et al. [34] showed that for the purpose of solving
linear systems in Eulerian directed graphs, one such useful
notion is to say H⃗ ε-approximates G⃗ if

∥∥∥L
+/2
G (LH⃗ − LG⃗)L

+/2
G

∥∥∥ ≤ ε,

where G is the undirectification of G, i.e., the underlying
undirected graph of G⃗ with edge-weights halved. In the case
where G⃗ is Eulerian, LG = 1

2 (LG⃗ + L⊤
G⃗
).

The key obstacle in sparsifying Eulerian directed graphs
is to sample directed subgraphs H⃗ that are Eulerian since
independent sampling cannot provide us with such precise
control on the degrees. The work of Cohen et al. [34] fixed
this locally by modifying the diagonal in LH⃗ in order to
make the sampled graph Eulerian. This approach induces an
error in LH⃗ of the order of εDG⃗ where D is the diagonal
out-degree matrix for G⃗. In order for this error to be small

p=1/2 p=1/2

Figure 2: Sampling edges along a random direction in short
cycles for sparsification of Eulerian directed graphs. The
thick edges are double the weights of the thin edges.

relative to LG⃗, G⃗ must be an expander. Hence, the need of
expander partitioning in their approach.
However, as we saw above, a short cycle decomposition

allows us to perform correlated sampling on edges with
precise control on the degrees. For sampling directed graphs,
consider a single cycle where the edges may have arbitrary
direction (see Figure 2). With probability 1/2, we sample the
edges in clockwise-direction, and with probability 1/2, we
sample the edges in the anti-clockwise direction. In either
case, we double the weights of the sampled edges. Observe
that for each vertex, the difference between the outgoing and
incoming degrees is preserved exactly. Hence, if we started
with an Eulerian directed graph, we end up with an Eulerian
directed graph. Moreover, in expectation, we only keep half
the edges of the cycle.
We can now basically follow the algorithm for degree-

preserving sparsification. We treat the graph as undirected
for all steps except for sampling edges from a cycle. In
particular, the cycle decomposition is found in the corre-
sponding undirected graph. Using the above approach for
sampling edges from each cycle, we can sample an Eulerian
directed graph, that has a constant fraction fewer edges
in expectation. Since the matrices involved are no longer
symmetric, we invoke concentration bounds for rectangular
matrices to obtain

∥∥∥L
+/2
G (LH⃗ − LG⃗)L

+/2
G

∥∥∥ ≤ O

(√
nL3log n

m

)
.

Now, repeating this sparsification procedure, and observ-
ing that this notion of approximation error also composes,
we obtain an Eulerian directed graph H⃗ that ε-approximates
G⃗ with roughly m̂ log n+nε−2L3log n edges. Again, using
the naive cycle decomposition, this is O(nε−2 log 4n) edges.

Theorem 2. Given ε ∈ (0, 1], for every Eulerian directed
graph G⃗, we can find in Õ(mn) time an Eulerian directed
graph H⃗ with O(nε−2 log 4n) edges, that ε-approximates
G⃗.

This shows the existence of sparsifiers for Eulerian graphs
with fewer edges than the nearly-linear sized ones con-
structed in Cohen et al. [34]. More importantly, it shows that
approaches based on importance sampling, which work well
on undirected graphs, can work in the more general directed
settings as well. However, the high costs of computing short
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cycle decompositions in this paper means this does not lead
to faster asymptotic running times in the applications – we
believe this is an interesting direction for future work.

C. Graphical Spectral Sketches and Resistance Sparsifiers

We define a graphical spectral sketch as follows:

Definition 4 (Graphical Spectral Sketch). Given a graph
G(V,E), a distribution H over random graphs H(V,E′) is
said to be a graphical ε-spectral sketch for G, if for any fixed
x ∈ RV , with high probability, over the sample H ∼ H, we
have x⊤LGx ≈ε x⊤LHx .

For constructing graphical spectral sketches, we closely
follow the approach of Jambulapati and Sidford [19] and
Andoni et al. [18]. However, to construct sketches which
are graphical, we use an approach similar to the degree-
preserving sparsification algorithm. Our result is as follows:

Theorem 3. Given ε ∈ (0, 1], every undirected graphG with
n vertices and m edges has a graphical ε-spectral sketch of
G with Õ(nε−1) edges. The algorithm SPECTRALSKETCH,
given G, runs in time m1+o(1), and with high probability
returns a graphical ε-spectral sketch of G with n1+o(1)ε−1

edges. In addition, both these graphical sketches satisfy4 that
for any fixed x ∈ Rn, with high probability over the sample
H ∼ H, we have x⊤L+

Gx ≈ε x⊤L+
Hx .

First, we define an expander:
The key idea in [19] and [18] is to focus on an expander

G, and for each vertex u with degree du, sample ε−1

edges incident at u and add them to H after scaling its
weight by duε (if du ≤ ε−1, we add all the edges of u
to H), for a total of nε−1 edges. Firstly, observe that this
means that we will have vertices where the degree changes
by

√
ε−1. This is not good enough to preserve x⊤LGx

up to (1 ± ε) even for the vectors x ∈ {χu}u∈V . They
get around this by explicitly storing the diagonal degree
matrix DG of G using O(n) extra space. For a fixed vector
x , they consider the estimator x⊤DGx − x⊤AHx . Its
expectation is easily seen to be x⊤LGx . They prove that
its standard deviation is bounded by ε ·O(x⊤DGx ). For an
expander with conductance φ, Cheeger’s inequality (see [1,
Lemma 6.5]) gives that ε · x⊤DGx = ε ·O(φ−2x⊤LGx ).

In order to construct an estimator for general graphs, they
invoke expander partitioning [6], which guarantees that in
any graph G, we can find disjoint vertex induced pieces
G, such that each piece is contained in an expander (a
well-connected subgraph, formally defined in [1, Section
6.2]), and at least half the edges are contained within
such pieces. Applying this O(log n) times recursively, and
combining the above estimators for each piece, Jambulapati
and Sidford [19] obtain an estimator with standard deviation
ε · Õ(x⊤LGx ).

4L+ denotes the Moore-Penrose pseudo-inverse of L.

The above sketch is not a graph since sampling edges does
not preserve degrees exactly. Hence, our degree-preserving
sparsification algorithm presents a natural approach to con-
vert it into a graphical sketch. We aim to reduce the edge
count by a constant factor without incurring too much
variance in the quadratic form (and then repeat this process
O(log n) times). We apply expander decomposition, and
within each piece, add all edges incident on vertices with
degree at most Õ(ε−1L) to H. On the remaining graph,
as before, we find a bi-partition, a cycle decomposition,
and independently pick odd/even edges in the cycles with
double the weight. This reduces the number of edges by a
constant factor. Since we preserve weighted degrees exactly,
an analysis similar to the above gives that for a fixed
vector x the standard deviation in x⊤LHx is bounded by
ε ·Õ(x⊤LGx ). Repeating this process O(log n) times gives
us a graph H with Õ(m̂+ nε−1L) edges. Averaging Õ(1)
such sketches, and applying concentration bounds, we obtain
a graphical ε-spectral sketch of G.
The fact that we have a graph allows us to reason about

the quadratic form of its inverse x⊤L+
Hx . We first argue

that H is an
√
ε-spectral sparsifier of G by showing that the

probabilities that we sample edges to formH are good upper
bounds of (appropriate rescalings of) effective resistances.
This follows because any edge e incident to vertices with
degrees at least ε−1 that are contained in an expander
with expansion at least φ has effective resistance at most
O(φ−2ε).

A simple, but somewhat surprising argument ( [1,
Lemma 6.8]) gives that if H is a graphical ε-spectral sketch,
and a

√
ε-spectral sparsifier, then for any fixed vector x, with

high probability, it also preserves the inverse quadratic form
of G, i.e., x⊤L+

Hx ≈O(ε) x
⊤L+

Gx .
Picking x ∈ {χuv|u, v ∈ V }, and taking union bound,

we obtain that with high probability, for all u, v ∈ V,
RG

eff(u, v) ≈O(ε) RH
eff(u, v). This means that H is a

resistance-sparsifier for G with high probability. Again, the
naive cycle decomposition gives the existence of resistance-
sparsifiers with Õ(nε−1) edges.

Corollary 1 (Resistance Sparsifiers). For ε ∈ (0, 1], every
undirected graph G on n vertices has a resistance sparsifier
with Õ(nε−1) edges. The algorithm SPECTRALSKETCH,
given G, runs in time m1+o(1), and with high probability
returns a resistance sparsifier of G with n1+o(1)ε−1 edges.

D. Estimating Effective-Resistances

The effective resistance of an edge is a fundamental
quantity. It and its extensions have a variety of connections
in the analysis of networks [36], [37], combinatorics [38],
[39] and the design of better graph algorithms [26], [40],
[41].
While the effective resistance of an edge uv can be

computed to high accuracy using linear system solvers,
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doing so for all edges leads to a quadratic running time.
On the other hand, the many algorithmic applications of
resistances have motivated studies on efficient algorithms
for estimating all resistances. There have been two main ap-
proaches for estimating effective resistances to date: random
projections [15], [27] or recursive invocations of sparsified
Gaussian elimination [11]. Both of them lead to running
times of Õ(mε−2) for producing 1 ± ε estimates of the
resistances of all m edges of a graph.
A recent result by Musco et al. [42] demonstrated the

unlikelihood of high accuracy algorithms (with ε−c de-
pendency for some small c) for estimating the resistances
of all edges. On the other hand, the running time of a
determinant estimation algorithm for Laplacians by Durfee
et al. [12] hinges on this ε dependency. The running time
bottleneck of this algorithm is the estimation of effective
resistances of Õ(n1.5) edges, but to an multiplicative error
of ε = n−0.25. Both methods for estimating resistances
described above [11], [15] give running times of Õ(n2) in
this setting. Practical studies involving the random projection
method for estimating resistances [37], [43] also demonstrate
the log nε−2 factor in the runtime of such methods translates
to solving 103 linear systems for a 10% error. Such high
overhead has been a major limitation in applying effective
resistances to analyzing networks.
A key advantage of our graph sketches and resistance

sparsifiers is that because the resulting objects remain as
graphs, they can be substituted into the intermediate states of
the sparsified Gaussian elimination approach for computing
graph sparsifiers [11]. They give a reduction from computing
effective resistances to computing approximate Schur com-
plements, which are partial states of Gaussian elimination.
Incorporating our spectral sketches in place of generic graph
sparsification algorithms with ε−2 dependencies gives our
main algorithmic result.

Theorem 4. Given any undirected graph G with n vertices,
and m edges, and any t vertex pairs and error ε > 0,
we can with high probability compute ε-approximations to
the effective resistances between all t of these pairs in
O(m1+o(1) + (n+ t)no(1)ε−1.5) time.

This is the first routine for estimating effective resistances
on sparse graphs that obtain an ε dependence better than
ε−2. In the dense case an Õ(n2ε−1) result was shown by
Jambulapati and Sidford [19], but it relies on Ω(n) linear
systems solves, one per column of the matrix.
We obtain this result via two key reductions:
1) The recursive approximate Gaussian elimination ap-

proach from [11] utilizes the fact that effective re-
sistances are preserved under Gaussian eliminations.
As this recursion has depth O(log n), our guarantees
for ε-spectral sketches imply that it suffices to work
with sketches of such graphs produced by Gaussian
elimination. However, Schur complement of very sparse

graphs such as the degree n star may have Ω(n2)
edges. Even if we eliminate an independent set of size
Θ(n), each with roughly average degrees in our spectral
sketches with nε−1 edges, we will end up with at
least nε−2 edges. Thus, we need to directly compute
spectral sketches of Schur complements without first
constructing the dense graph explicitly.

2) The work of Kyng et al. [10] builds fast solvers for
Laplacian systems via approximate Cholesky factoriza-
tion. As a key step, they reduce computing approxi-
mating Schur complements to implicitly sparsifying a
sum of product weighted cliques 5. Assuming we start
with a spectral-sketch, we know that the graph has total
degree no(1)ε−1, this implies that the total number of
vertices involves in these product weighted cliques is
ε−1n. Thus, our goal becomes designing an algorithm
for implicitly building spectral sketches of product-
weighted cliques with a total of n1+o(1)ε−1 vertices that
run in time n1+o(1)ε−(2−c) for some constant c > 0.

Our algorithm works with these weighted cliques in time
dependent on their representation, which is the total number
of vertices, rather than the number of edges. We do so
by working with bi-cliques as the basic unit, instead of
edges. Our algorithm then follows the expander-partitioning
based scheme for producing spectral sketches, as in previous
works on graph sketches with ε−1 type dependencies [18],
[19]. This requires showing that this representation as bi-
cliques interacts well with both weights and graph partitions.
Then on each well-connected piece, we sample no(1)ε−0.5

matchings from each bi-clique.
This results in each vertex in the bi-clique representation

contributing no(1)ε−0.5 edges to the intermediate sketch.
As we are running such routines on the output of spectral
sketches, the total number of vertices in these cliques is
no(1)ε−1, giving a total edge count of n1+o(1)ε−1.5. On
this graph, we can now explicitly compute another spectral
sketch of size n1+o(1)ε−1.
An additional complication is computing an expander

decomposition using [1, Lemma 6.7] requires examining all
the edges of a graph, which in our case is cost-prohibitive.
We resolve this by computing these decompositions on a
constant error sparse approximation of this graph instead.
Incorporating this spectral sketch of Schur complements

back into [12] gives the first sub-quadratic time algorithm
for estimating the determinants of a graph Laplacian with
the last row and column removed. This value has a variety
of natural interpretations including the number of random
spanning trees in the graph. Note that while the determinant
may be exponentially large, the result in [12] is stable with
variable-precision floating point numbers.

5A product weighted clique has a weight vector w with the u, v edge
having weight wuwv .
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Corollary 2. Given any graph Laplacian L on n vertices
and m edges, and any error 0 < ε < 1/2, we can produce
an 1± ε estimate to det(L−n), the determinant of L with the
last row/column removed, in time m1+o(1)+n15/8+o(1)ε−7/4.

Note that the removal of the last row / column is necessary
and standard due to L being low rank. Details on this
algorithm, and the specific connections with [12] are in
[1, Appendix B]. We remark that this algorithm however
does not speed up the random spanning tree generation
portion of [12] due to it relying on finer variance bounds that
require sampling Õ(n2) edges. That spanning tree sampling
algorithm however, is superseded by the recent breakthrough
result by Schild [26].

E. Almost-Linear Time Short Cycle Decomposition

The bottleneck in the performances of all algorithms out-
lined above is the computation of short cycle decompositions
(Definition 1). The simple existence proof from Section I-A
can be implemented to find a short cycle decomposition in
O(mn) time (see [1, Section 8] for pseudo-code and proof).

Theorem 5. The algorithm NAIVECYCLEDECOMPOSI-
TION, given an undirected unweighted graph G, returns a
(2n, 2 log n)-short cycle decomposition of G in O(mn) time.

While the above algorithm gives us near-optimal length
and number of remaining edges6, we were unable to obtain
an almost-linear time algorithm using shortest-path trees.
The main obstacle is that updating shortest-path trees is
expensive under edge deletions.

Possible Approaches via Spanners: Another approach
is to try spanners. The existence of a short cycle decom-
position is a direct consequence of spanners. A key result
by Awerbuch and Peleg [45] for spanners states that every
unweighted graph G has a subgraph H with O(n) edges
such that for every edge in H \G, its end points are within
distance O(log n) in H . Thus, every edge in H \ G is in
a cycle of length O(log n). We can remove this cycle and
repeat.
Thus, another approach for generating this decomposi-

tion is by dynamic, or even decremental, spanners [46]–
[48]. While these data structures allow for poly(log n) time
per update, they are randomized, and crucially, only work
against oblivious adversaries. Thus, the update sequence
needs to fixed before the data structure samples its random-
ness. To the best of our understanding, in each of these
result, the choice of cycle edges depends upon the random-
ness. Thus, their guarantees cannot be used for constructing
short cycle decompositions. The only deterministic dynamic

6Consider the wheel graph with n−1
logn spokes, and replace each spoke

with a path of length log n. This graph has n vertices, (n− 1)
(
1 + 1

logn

)

edges, and girth of 2 log n + 1. Lubotzky, Philip, and Sarnak [44] con-
structed explicit Ramanujan graphs that are 4-regular (and hence have 2n
edges) and girth 4

3log3n ≥ 0 .84 log2n.

spanner algorithm we’re aware of is the work of Bodwin
and Krinninger [49]. However, it has overheads of at least√
n in the spanner size / running time.

Possible Approaches via Oblivious Routings: Another
possible approach of finding short cycles is via oblivious
routings: a routing of an edge e (that doesn’t use e)
immediately gives a cycle involving e. Since there exist
oblivious routings for routing all edges of G in G with small
congestion, the average length of a cycle cannot be too large.
Recent works, especially those related to approximate

maximum flow, have given several efficient constructions of
oblivious routing schemes [50]–[55]. However, such routings
only allow us to route a single commodity in nearly-
linear time. Using current techniques, routing Ω(n) arbitrary
demands on an expander with poly(log n) congestion seems
to requires n1.5 time. On the other hand, on more limited
topologies, it is known how to route each demand in sub-
linear time [56]. Such a requirement of only using local
information to route have been studied as myopic rout-
ing [57], but we are not aware of such results with provable
guarantees.

Our Construction: As an important technical part of
this paper, we give an almost-linear-time algorithm for
constructing a short cycle decomposition of a graph.

Theorem 6. The algorithm SHORTCYCLEDECOMPOSI-
TION, given an undirected unweighted graph G with n
vertices and m edges, returns a (n1+o(1), no(1))-short cycle
decomposition of G in m1+o(1) time.

Our construction of short cycle decomposition is inspired
by oblivious routings, and uses the properties of random
walks on expanders. This can be viewed as extending
previous works that utilize behaviors of electrical flows [54],
[58], but we take advantage of the much more local nature
of random walks. This use of random walks to port graphs
to fewer vertices is in part motivated by their use in the
construction of data structures for dynamically maintaining
effective resistances, involving a subset of the authors [59].
It also has similarities with the leader election algorithm for
connectivity on well-connected graphs in a recent indepen-
dent work by Assadi et al. [60].
Say we have an expander graph G with conductance φ.

We know random walks of length φ−2 log n mix well in G.
Choose a parameter k say n1/10, and pick the set S of n/k
vertices of largest degree (with total degree at least 2m/k).
For every edge e leaving S, starting from its other end point
u /∈ S, we take a O(φ−2 log n) step random walk. This
random walk hits S again with probability Ω(1/k). Thus, if
we pick k log n random walks, at least one of them will hit
S again with high probability. This is a short cycle in G/S

(G with S contracted to a single vertex). Since these are
independent random walks, Chernoff bounds imply that the
maximum congestion is Õ(kφ−2). Thus, we can greedily
pick a set of Ω̃(mφ4k−1) cycles of length Õ(φ−2) in G/S
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that are disjoint.
Now, we just need to connect these cycles within S. We

define a graph on the vertices of S, with one edge for every
cycle in G/S connecting the two end points in S, and recurse
on S. With 10 levels of recursion (since k = n1/10), and
using the naive cycle-decomposition for the base case, we
find a short cycle decomposition in this graph, and then can
expand it to a cycle decomposition in G using the cycles in
G/S . This should give cycles of length (φ−2 log n)10.
There is a key obstacle here: this approach really needs

expanders, not pieces contained in expanders, as in the
expander decomposition from Spielman and Teng [61].
Instead, we use a recent result of Nanongkai and Saranu-
rak [62] that guarantees the pieces are expanders, at the cost
of achieving φ = n−o(1), and a running time of m1+o(1).
A careful trade-off of parameters allows us to recurse for
no(1) iterations, resulting in an (n1+o(1), no(1))-short cycle
decomposition in m1+o(1) time.

IV. SUMMARY

We introduce a framework for graph sparsification based
on a short cycle decomposition. Short cycle decomposition
allows us to sample edges in a degree preserving manner,
which allows us to sparsify graphs while preserving the
original degree. This tool enables one to compute a number
of sparse graphs efficiently: graph sketches, resistance spar-
sifiers, degree-preserving sparsifiers, sparsifiers of Eulerian
graphs, and more. Critically, this allows one to compute
effective resistances on all edges in O(m1+o(1)ε−1.5) time.
Our result is the first of its kind to produce a graph that is
a resistance sparsifier with O

(
n1+o(1)/ε

)
edges.

Our algorithms build on the ideas introduced in [18], [19],
and a number of other previous works on Eulerian graph
sparsification, resistance sparsification, effective resistance
computation, determinant estimation, and more. Critically,
any improvement to our short-cycle decomposition algo-
rithm will achieve an improvement in all of our results
claimed in Section I-A.
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