TargetFinder: Privacy Preserving Target Search through loT
Cameras

Youssef Khazbak
The Pennsylvania State University
University Park, Pennsylvania 16802
ymk11l1l@psu.edu

Tianxiang Tan
The Pennsylvania State University
University Park, Pennsylvania 16802
txt51@psu.edu

ABSTRACT

With the proliferation of IoT cameras, it is possible to use crowd-
sourced videos to help find interested targets (e.g., crime suspect,
lost child, lost vehicle, etc.) on demand. Due to the ubiquity of IoT
cameras such as dash mounted cameras and phone camera, the
crowdsourced videos have much better spatial coverage compared
to only using surveillance cameras, and thus can significantly im-
prove the effectiveness of target search. However, this may raise
privacy concerns when workers (owners of IoT cameras) are pro-
vided with photos of the target. Also, the videos captured by the
workers may be misused to track bystanders. To address this prob-
lem, we design and implement TargetFinder, a privacy preserving
system for target search through IoT cameras. By exploiting homo-
morphic encryption techniques, the server can search for the target
on encrypted information. We also propose techniques to allow
the requester (e.g., the police) to receive images that include the
target, while all other captured images of the bystanders are not
revealed. Moreover, the target’s face image is not revealed to the
server and the participating workers. Due to the high computation
overhead of the cryptographic primitives, we develop optimiza-
tion techniques in order to run our privacy preserving protocol
on mobile devices. A real-world demo and extensive evaluations
demonstrate the effectiveness of TargetFinder.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; « Com-
puter systems organization — Sensors and actuators; » Human-
centered computing — Ubiquitous and mobile computing systems
and tools; « Networks — Mobile networks;

KEYWORDS

Privacy preserving, crowdsourcing, on-demand, target search, IoT
cameras, worker selection.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoTDI °19, April 15-18, 2019, Montreal, QC, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6283-2/19/04...$15.00
https://doi.org/10.1145/3302505.3310083

Junpeng Qiu
Facebook
Menlo Park, California 94025
qjpchmail@gmail.com

Guohong Cao
The Pennsylvania State University
University Park, Pennsylvania 16802
gxc27@psu.edu

ACM Reference Format:

Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao. 2019.
TargetFinder: Privacy Preserving Target Search through IoT Cameras. In
International Conference on Internet-of-Things Design and Implementation
(IoTDI ’19), April 15-18, 2019, Montreal, QC, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3302505.3310083

1 INTRODUCTION

The ubiquity of IoT cameras such as dash mounted cameras, drone
cameras, Google glass, and phone cameras, has enabled many useful
applications such as law enforcement [29], traffic monitoring [25]
etc. One potential application is related to finding interested targets
(e.g., crime suspect, lost child, lost vehicle, etc.), where videos can be
crowdsourced on demand from the public to help search for targets
in real time. Currently, police use surveillance cameras for target
search. However, surveillance cameras often have limited coverage
due to deployment cost. On-demand crowdsourcing can signifi-
cantly enhance the effectiveness of target search. For example, after
a crime or a terrorist event, police can create a crowdsourcing task
to search for the suspects/targets with information such as pho-
tos of the targets or other biometric information. The on-demand
crowdsourcing system assigns mobile users (workers) to search for
targets. Then workers enable their IoT cameras to capture their
surrounding area, upload some photos or video clips to the server,
and in return receive payments. Based on the crowdsourced videos
or photos, the police can find the targets’ locations or moving tra-
jectories, etc.

However, such system may raise privacy concerns. First, to locate
the target, workers may be provided with photos of the target, and
then crowdsourced videos can be processed locally on the workers’
device using content-based techniques [33] to filter out parts of
the videos that do not contain the target. Although this design
works well if the target is a lost child, a wanted criminal or terrorist,
it may raise privacy concerns in many other cases. For example,
during police investigation, the identity of the targets should not
be released. Hence, providing workers with photo of the target may
create privacy issues and may even compromise the investigation.
Second, IoT cameras capture videos/photos in public places which
can be misused to track bystanders. Such tracking can be a major
concern for unwilling bystanders who feel that their privacy is
being violated.

Although the problem of preserving the privacy of bystanders
has been studied for surveillance cameras [24, 30, 32], most of

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

them have been proposed for fixed infrastructure where the pri-
vacy preserving algorithm is run on powerful servers to detect
bystanders and hide their faces. Some other researchers [8, 39]
consider content-based modification of captured images or video
frames, guided by a privacy policy to preserve individual privacy
preferences. However, they assume that each capturing device is
associated with a trusted cloudlet located close to that device to
run computation intensive tasks, which may not always be possible
especially for users with strong privacy requirements. Moreover,
none of them considers the problem of target search, and do not
have the requirement of preserving the privacy of targets as well
as the privacy of bystanders. Preserving the privacy of the target is
also hard, since the requester (e.g., the police) may not even want
to release the photo of the target to the server, which is honest but
curious and has the incentive to reveal the target or bystanders
information in order to infer sensitive information about them. As a
result, offloading the processing of captured images or video frames,
which may contain sensitive information, to the server may not
work well. Then, how to process these images or video frames on
resource limited mobile devices in a privacy preserving manner
becomes a challenge.

In this paper, we design and implement TargetFinder, a privacy
preserving system for target search through IoT cameras. In Tar-
getFinder, we propose efficient image processing techniques that
can run on mobile devices, which allow the task requester (e.g., po-
lice) and the workers to process images and videos locally on their
mobile devices to extract target’s face information and bystanders’
face information. To preserve the privacy of the target and the
bystanders, we propose to encrypt the target’s face information
and the bystander’s face information before sending them to the
server. By exploiting homomorphic encryption techniques [10], the
server can search for the target on encrypted information. After
matching the target face to the detected faces, oblivious transfer
[12] is applied to allow a requester to receive images that include
the target, while all other captured images of the bystanders are not
revealed. Moreover, the target’s face image is not revealed to the
server and the participating workers. Due to the high computation
overhead of the cryptographic primitives, we develop optimiza-
tion techniques in order to run our privacy preserving protocol on
mobile devices.

In summary, the contributions of this paper are as follows.

e We design and build an on-demand target search system
called TargetFinder, which uses videos crowdsourced from
IoT cameras to help search for the target.

e We propose a privacy preserving protocol for target search,
which preserves the privacy of the target and the bystanders.
To speed up the protocol running time, several optimization
techniques are designed and evaluated.

e We have implemented a prototype of TargetFinder, and
demonstrate its effectiveness based on real experiments.

The rest of the paper is organized as follows. In Section 2, we
present the system overview. The system design and implemen-
tation are described in Section 3. In Section 4, we evaluate the
system performance. Section 5 describes related work and Section
6 concludes the paper.

Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao

3

Database

Server

Task Manager

J Privacy Preserving Target Search L

Feature vector
of Target face

Feature vectors
of captured faces|

Feature Facial feature vectors
Extraction

Face Y- >

. ’ sy s
reprocessing =

Frame
Selection

Face Detection

Task Information

g1

f — [
[2] L | e Al

Worker

Target photo

Mobile|Application

Requester

Figure 1: The TargetFinder system.

2 SYSTEM OVERVIEW

In this section, we first present the system overview and then
introduce the threat model. Finally, we describe the basic idea of
our privacy preserving protocol.

2.1 TargetFinder Overview

TargetFinder helps locate targets using corwdsourced videos from
IoT cameras such as vehicle mounted cameras, Google glass, or
phone cameras. The videos can be processed at the IoT camera or
at the worker’s mobile device such as smartphones. As shown in
Figure 1, TargetFinder consists of a server and a mobile app that runs
on the requesters’ and workers’ mobile devices. A requester can be
someone who wants to pay for getting information about the target.
The requester creates a task about the target which includes some
information such as the task description, geographical information
such as possible locations of the target, and the photo of the target.
If privacy is not a concern, the photo of the target will be shown to
the workers. In this paper, we focus on tasks with privacy concerns,
and thus the photo will not be shown to the workers. The photo of
the target will be used by the privacy preserving algorithm so that
only matched video frames are sent to the requester to protect the
privacy of the target and the bystanders.

With the photo of the target, Face Detection, Face Preprocessing,
and Feature Extraction are executed to detect the target’s face and
extract its feature vector. On the worker side, after videos are cap-
tured, they are processed to select some video frames, referred to
as captured photos. Based on these captured photos, Face Prepro-
cessing, and Feature Extraction are executed to process faces, and
extract their feature vectors. Then the proposed Privacy Preserving
protocol is used for target search which preserves the privacy of
the target and the bystanders.

TargetFinder: Privacy Preserving Target Search through loT Cameras

On the server side, each task has a Task Manager which stores the
task information, tracks the progress of the task, selects participant
workers, and sends notifications to the selected workers. The Task
Manager notifies workers by pushing the task notification to their
mobile devices. This is implemented by using the Firebase Cloud
Messaging (FCM) service [6] provided by Google.

2.2 Threat Model

TargetFinder preserves the privacy of the target and bystanders by
considering the following threat model. The server is honest but
curious who has the incentive to reveal the target or bystanders
information in order to infer sensitive information about them.
The requesters and workers are assumed to follow the privacy
preserving protocol, but may try to learn extra information from
the received information. We assume that the requesters and the
server do not collude.

TargetFinder addresses the privacy concerns of the target and
the bystanders by employing cryptographic primitives to privately
match the target face to the captured faces. The requester only re-
ceives the matched photos that include the target, not other photos.
Moreover, the target information is not revealed to the server and
the participating workers such that only the requester knows the
identity of the target, and can discover his location.

2.3 Basic Idea of the Privacy Preserving
Solution

To search for the target in the captured images while preserving
the privacy of both the target and the bystanders, we propose the
following privacy preserving protocol. First, the requester gener-
ates a public and private key pair, and creates a task to search for
the target with the photo of the target. The feature vector of the
target is extracted, and encrypted using the requester’s public key.
Then, he sends the public key and the encrypted feature vector to
the server. The server selects and notifies participating workers,
and then broadcasts the public key to all selected workers. On the
worker side, images are processed, and feature vectors are extracted.
The extracted feature vectors are encrypted using the public key,
and sent back to the server. For each detected face, the server com-
putes the encrypted dot product of the following two vectors: the
encrypted feature vector of the detected face and that of the target.
The encrypted dot products are returned to the requester. Then, the
requester decrypts and selects photos that include the target based
on a predetermined threshold. Finally, the requester can initiate the
oblivious transfer protocol to retrieve the selected photos from the
server.

To compute the dot product on encrypted feature vectors, it is
required to do additions and multiplications over ciphertexts. While
partially homomorphic encryption is in general more efficient than
Somewhat-Homomorphic encryption (SHE) [10], it only allows
additions or multiplications on encrypted data, but not both at the
same time which is required for computing the dot product. Thus,
we use SHE based on ideal lattices [10] which allow the server to
compute the dot product on ciphertexts produced by the requester
and the workers. However, it has high computation overhead as it
does additions and multiplications over ciphertext represented by
ring of polynomials, which will be addressed in this paper.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

3 TARGETFINDER DESIGN AND
IMPLEMENTATION

In this section, we describe the design and implementation of Tar-
getFinder’s two major components: image processing and privacy
preserving target search. Image processing will be used in our pri-
vacy preserving protocol, and hence we first describe it.

3.1 Image Processing

In TargetFinder, face detection is executed first to detect faces in
every video frame. Then, frames with the most number of detected
faces are selected, and finally features are extracted from these
frames. The following describes the details of these techniques:
face detection, frame selection, face preprocessing, and feature
extraction.

Face Detection: The first step is to detect faces in images or
video frames. There are several face detection libraries available on
Android. For example, the Android SDK includes a face detection
API. However, it is not accurate and may miss the detection of many
faces. In TargetFinder, we use the face detection algorithm called
Haar feature-based cascade classifier from the OpenCV library [7].
It has much higher accuracy compared to the Android face detection
API, and allows flexible configurations with various parameters,
such as image scaling, minimum size of a face, etc..

Frame Selection: Extracting feature vectors of all detected faces
from all video frames takes a long time and enormous computa-
tional power. Moreover, there are usually minor changes between
consecutive video frames and the target will appear in many con-
secutive frames, and hence sampling video frames at a lower rate
works well on capturing the targets. Therefore, to remove the re-
dundancy, we select only one frame every second, and the frame
with the most number of detected face is selected. Based on the
computation capability of the IoT camera, more frames may be
selected. It is possible that frames can be better selected based on
other factors such as the face image quality. Since the focus of this
paper is the privacy preserving protocol, we will leave it as future
work.

Face preprocessing: For the selected frames, the faces are pre-
processed before extracting feature vectors. Preprocessing is needed
because the detected faces may have various sizes, positions, and
orientations which affect the results of the feature extraction algo-
rithm. In preprocessing, image grayscale conversion, resizing, and
face alignment are performed. The face alignment aligns the land-
marks of the face (e.g. eyes, nose and mouth) to appear at roughly
the same position in the final output images. In TargetFinder, we use
Dlib [5] to detect the face landmarks, and transform the landmarks
to the positions specified by the feature extraction algorithm.

Feature Extraction: There are several feature extraction al-
gorithms, such as Eigenfaces [38], and Light convolution neural
network (CNN) [40]. Eigenfaces represents a human face with a
set of eigen vectors, while Light CNN represents a human face
using a 256 dimensional feature vector extracted from a 29-layer
CNN. Light CNN has several advantages over other algorithms.
First, it can achieve a much higher face verification accuracy (i.e.,
99%). Moreover, the size of the Light CNN model is only 33MB,
much smaller than many other CNN models such as the VGG Net-
work [34] which is about 580MB. This makes it more suitable to be

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

run on smartphones. Thus, we use Light CNN for feature extraction,
and the Android ported Caffe deep learning framework [3, 16] is
used in our implementation to run Light CNN.

After extracting the feature vector of the target face and those
of the captured faces, the feature vector of target face is compared
with that of each detected face. The comparison is by computing
the dot product of the two vectors. If the dot product is above a
predetermined threshold, the detected face matches the target face.
In our system, such comparison is done privately as described in
Section 3.2 to preserve the privacy of the targets and the detected
faces.

Performance Optimization: The extracted feature vectors are
used in the privacy preserving protocol. Such protocol is based on
cryptographic primitives which are computationally intensive, and
the running time depends on the dimension of the feature vectors.
To reduce the running time, we reduce the dimension of the 256-
dimensional feature vectors using principal component analysis
which linearly projects high dimensional data into a lower dimen-
sional space. The projection is done by multiplying original feature
vectors by a transformation matrix to transform the feature vectors
into b-dimensional space. To obtain the transformation matrix, we
first extract facial feature vectors, and then perform singular value
decomposition on the extracted vectors. The transformation matrix
is represented by the b most significant components. With such
dimensionality reduction, we can speed up the execution of the
cryptographic protocol with the cost of face recognition accuracy.
We study such tradeoff in the performance evaluations (Section 4)
to choose a reasonable b-dimensional space.

To improve the performance of image processing, we use multi-
thread to process multiple frames simultaneously. As the JNI code
of the Caffe framework is not thread-safe, we modify the code to
allow each thread to hold its own instance of the neural networks
for feature extraction. As the feature extraction is the most com-
putational intensive task, we use one thread to run face detection,
one thread for frame selection, and multiple threads to preprocess
faces and run multiple instances of Light CNN to extract feature
vectors in parallel.

3.2 Privacy Preserving Target Search

In this section, we first describe the cryptographic primitives and
then introduce our privacy preserving protocol for target search.

3.2.1 Cryptographic Primitives

Somewhat-Homomorphic encryption (SHE): SHE allows addi-
tions and multiplications over ciphertexts, while partially homo-
morphic encryption allows only addition or multiplication over
ciphertexts. Thus, by using SHE, the server can compute the vector
dot product on ciphertexts produced by the requester and the work-
ers. In TargetFinder, we use the SHE scheme based on ideal lattices
described in [10]. In the following, we describe its basic idea.

The plaintext m resides in the ring of polynomials with coef-
ficients in Z;, i.e, m € Ry = Z¢[x]/(x? + 1), and the ciphertext
space is in Ry = Z, [x]/(x? + 1). The parameters p and ¢ are pos-
itive integers, where p > t > 1, and they define the upperbound
of the ciphertext and plaintext coefficients respectively. Let y be
the error distribution in Ry, then the private key (sk) is obtained

Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao

by sampling s < y; i.e., sk = s. To generate the public key, we
first sample uniformly at random a; < R, and sample small
error e < y. Then the public key is pk = [ag = —(a;js + te),az].
Given this public key and a message m, the encryption is performed
by sampling u,g,h < y and outputs the following ciphertext:
¢ =[co,c1] = [aou + tg + m,aju + th).

SHE allows additions and multiplications on ciphertexts. Given
two ciphertexts ¢ = [co, ¢1] and ¢’ = [c(, ¢{], we can add them to
obtain a ciphertext caqq = [co + ¢, c1 + c7]. Similarly, the product
of the two ciphertexts is cyy¢ = [cocy, coc; + g1, c1¢q]. The homo-
morphic multiplication increases the number of ring elements in
the ciphertext. Hence, the encrypted vector dot product returned
to requester includes one extra polynomial, i.e., ¢yt = [co, ¢1, c2],
and the decryption can be computed using the private key sk as
follows: m = (¢ + c15 + co5%) mod t.

k-out-of-n Oblivious Transfer: The k-out-of-n oblivious trans-
fer protocol, denoted OTﬁ, is a two party protocol that allows a
requester to privately choose k out of n images from the server. The
requester learns k images and nothing else, and the server learns
nothing about the chosen k images. In our implementation, we use
the OTﬁ scheme [12] which is as follows. A requester constructs
a k-degree polynomial function with roots equal to the selected
indices, and then hides this polynomial in another random k-degree
polynomial function. The masked polynomial coefficients are sent
to the server. Because of the random polynomial function, the server
cannot learn about the selected indices from the masked polynomial
coefficients, and it can only use such coefficients to encrypt the
images and send them back to the requester. Finally, the requester
can only decrypt images of the selected indices. All other n — k
images are unknown to the requester and cannot be decrypted.

Table 1: Table of notations

Parameter Description
pk SHE public key
sk SHE private key
Degree of the polynomial

z Number of selected workers

ft Feature vector of the target

FWi Extracted feature vectors of worker w;
q Dimension of the feature vector
n Number of images captured by selected workers
k Number of images selected by the requester

3.2.2 Privacy Preserving Target Search

Our privacy preserving protocol works as follows. First, the re-
quester generates a public and private key pair, and creates a task
to search for the target with the photo of the target. The feature
vector of the target is extracted, and encrypted using the requester’s
public key. Then, he sends the public key and the encrypted feature
vector to the server. The server selects and notifies participating
workers, and then broadcasts the public key to all selected work-
ers. On the worker side, after selecting video frames, the captured
photos (frames) are processed and feature vectors are extracted.
The extracted feature vectors are encrypted using the public key,

TargetFinder: Privacy Preserving Target Search through loT Cameras

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

Requester

Server

Generate (pk,sk)
Compute p! = 27;01 £,
and ¢! = SHE Enc(pk, NTT~}(p})), for i =0,....n - 1

(1) pk, c*

Worker
(2) pk, w;
Compute p}" = ;":1)17,';".\'""+J‘.
and ¢! = SHE.Enc(pk, NTT~!(p!")), for i = 0,....,¢ = 1
Generate ky, and compute (IA‘ = SHE.Enc(pk, k)
compute 1'; = AES.EU(‘(I;,.IJ“’). for j=0,..,0-1

(3) e, vWi M™i, c};’:

Compute ¢ = Z;_l r:r’. fori=0,..,q-1

Compute ¢ppoq = DL

1 !
olci-cl’)

(4) Cprod: M

Compute pproq = NTT(SHE.Dec(sk, ¢prod)),
Pprod = Z;i;} a;z", select indices i’s whose a; > €

Use M to map i’s to {og,...,0s—1}

(5) Tuvoke OTE protocol
with parameters (g, h, G,)

Construct f'(z) = Z:;& b + 7,

and f(z) = i) ai’ +2°

Compute l; = g% h%, for i =0,...,s — 1
6)1

Compute ; = li..l" (gh)"",
and u; = AES.Enc(s;,v;), for i = 0,...,t — 1

Generate k; and compute ¢; = (gk",sirfi), fori=0,..,t-1

(7) c,u, e,

Compute s,;, = SU,jT];:Ti /gkalf(oi.)y
Compute k; = SHE.Dec(sk, c};’zd’),

and v; — ABS.Dec(sq,, Uo,),

and I,, = AES.Dec(ks,v;), for og,...,05_1

Figure 2: Our privacy preserving protocol

and sent back to the server. For each detected face, the server com-
putes the encrypted dot product of the following two vectors: the
encrypted feature vector of the detected face and that of the target.
The encrypted dot products are returned to the requester. Then,
the requester decrypts and selects photos that include the target
based on a predetermined threshold. In case the target is found in
some photos, the requester initiates the oblivious transfer protocol
to retrieve these photos from the server. The used parameters are
summarized in Table 1.

Baseline protocol: A straightforward implementation of this
protocol incurs high computational overhead and high bandwidth
consumption for several reasons. First, a worker may capture mul-
tiple faces, and hence needs to encrypt several feature vectors. To
encrypt m feature vectors with ¢ dimensions, mq encryptions are
needed to generate mq encrypted polynomials. Second, the server
needs to compute encrypted dot products of the feature vectors. For
z selected workers, each with m feature vectors, zm dot product cal-
culations are required, and zm encrypted dot products, represented
by a polynomial of d coeflicients, are returned to the requester.
Then, the requester needs to decrypt zm encrypted dot products.

This results in high computational overhead at the server and the
requester, and high bandwidth consumption between the requester
and the server.

Optimized protocol: To reduce the high computational over-
head of the baseline protocol, we propose the following optimiza-
tions. First, for a worker w;, the number of encryptions can be
reduced from mgq to q as follows. Let matrix F*i store the m feature
vectors, each with g dimensions. To encrypt the feature vectors, we
first generate a polynomial from each row of the matrix, to have ¢
polynomials, each storing m feature values. Then, the requester’s
public key is used to encrypt the g polynomials. Thus, we only have
q encryptions.

Second, at the server, we pack the ciphertext to compute the dot
product in parallel for all zm feature vectors, hence reducing the
computational overhead. After computing the dot products, only a
single encrypted polynomial is returned to the requester and hence
reducing the bandwidth consumption. The requester decrypts it to
get a polynomial of degree d, where each coeflicient represents a
dot product value. More specifically, the ciphertext is packed into
q polynomials. For a polynomial, each coefficient represents an

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

element of different feature vector. Thus, to independently compute
the dot product of each feature vector with that of the target, we
need coefficient wise homomorphic operations. Polynomial addi-
tions are naturally coefficient wise, but polynomial multiplications
result in convolution product of the coefficients. To transform con-
volution products into coefficient wise products on rings, we use
the Number Theoretic Transform (NTT) which is a discrete Fourier
transform specifically for finite rings. To transform convolution
products on the encrypted polynomials into coefficient wise prod-
ucts on the plaintext polynomials, we apply an inverse-NTT to
plaintexts before encryption, and then an NTT to the plaintext
after decryption. These transformations do not affect polynomial
additions as they are linear transformations.

Third, encrypting/decrypting captured images with SHE in-
volves computations of many polynomials, and hence inefficient.
To address this problem, we use a hybrid approach, where images
are encrypted and decrypted using AES symmetric-key, and only
the short AES key is encrypted and decrypted using SHE.

Figure 2 shows the protocol, which is described as follows.

(1) The requester generates a SHE public and private key pair, de-
noted as pk and sk. Then, she extracts the feature vector of the
target with g dimensions, denoted by ft. Each element of the fea-
ture vector is represented by a polynomial of degree d as follows.
For each fit , we have pf = Z]”.l;()l fith .Inverse-NTT (NTT™1)
is applied to the polynomials and result is encrypted with pk,
ie., ci’ = SHE.Enc(pk,NTT_l(pf)), and ¢t = [cé, e cf]_l]. Then,

pk, and c! are sent to the server.

After notifying the participant workers, the server broadcasts

the public key pk and a random index w; to each participating

worker.

(3) Worker w; extracts the matrix F*i which represents the fea-
ture vectors of detected faces in the captured photos. Each
row of the matrix F"i is represented by a polynomial, i.e.,
plwi = Zj”i 0 F;;iX Wit/ Similar to the requester, the inverse-

NTT is applied to the polynomials and the result is encrypted

with pk; i.e., c;”i = SHE.Enc (pk,NTT_I(plwi). In addition, she

encrypts each captured image I;"/using AES symmetric key

—
S
~

ks as follows: v}”" = AES.Enc(ks, I}”"), and encrypts kg using
pk, ie. c;:;" = SHE.Enc(pk, ks). Then she sends to the server the
following: c%i, vVi, c]zi, and a matrix that maps each image to
its extracted feature vectors denoted by M.

For each dimension i of the g dimensions of the feature vectors,
the server packs all z workers’ ciphertexts by adding them, i.e.

e = Z;;g c:.wj . Then it computes all encrypted dot products in

—~
N
=

parallel as follows: ¢;,0q = Z?:_ol cl.t.clw, and sends ¢,0q and
M to the requester.

(5) The requester decrypts c,,oq and applies NTT to get a poly-
nomial with a dot product for each coefficient, i.e., pproq =
NTT(SHE Dec(sk, ¢;,04))- The feature vectors with dot product
value larger than a threshold €, matches that of the target, and
will be selected. Then she uses M to find the indices of the images
containing these feature vectors, denoted as {oy, ..., o1 }. To
securely retrieve these k images, she initiates oblivious transfer
protocol OT,I,‘ with the server with system parameters (g, h, G,).

Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao

6) The requester constructs a polynomial function of degree k:
q poly g
f(x) = Z{F_l bix' + xF, where f'(@)=0,iff i € {00, ..., Op_1}-

=0
Then she generates a random polynomial f(x) = Z{:Ol k

which is used to compute 1 = [l, ..., l_;], where [; = g% hb:.
Then she sends 1 to the server.

(7) For each image i, the serve computes r; = lol{-...l;'f:l1 (gh)ik,
generates a secret key k;, and encrypts the image using a hybrid
approach. The hybrid approach first encrypts the image using
AES encryption key s;, i.e., u; = AES.Enc(s;, v;), and encrypts

aix'+x

s; using the public key, i.e., ¢; = (gki,sirfi). The server sends
the following to the requester: the encrypted images u, the
encrypted symmetric keys ¢ and the encrypted symmetric keys

Cks~

Finally, for every index in {0y, ..., 0x_1 }, the requester can get
ko, .

the symmetric key s5, by computing sg; = sq;74, " / gk"if (9i) The

selected images u,; can be decrypted with the symmetric keys sq,,

c]?\i, and the SHE private key sk.
3.2.3 Privacy Analysis

In this section, we present an analysis of our privacy preserving
protocol in order to show its effectiveness in preserving the privacy
of the target and the bystanders.

The SHE scheme relies on the hardness of the Ring Learning
with Errors problem [23], and hence provides strong security guar-
antee. Thus, the server with a SHE public key can not learn the
feature vectors of the target and bystanders from the ciphertext. In
addition, the SHE scheme provides semantic security which means
that it is not computationally possible to know if two different
ciphertexts are obtained from the same plaintext. Therefore, the
server cannot learn extra information from the requester and work-
ers’ encrypted feature vectors. Moreover, the server cannot infer
target location, although it knows workers’ locations where cap-
tured photos are taken. This is because the server does not know
the dot product values, i.e. the server does not know which photos
may include the target. If it knows such information, it can infer
which worker captures the target, and hence can know the target
location.TargetFinder was presented under the assumption that
the sever is honest-but-curious, however, with some minor modi-
fications, it can be resistant to some active attacks performed by
the server. In the case where server is malicious, it can perform
man-in-the-middle attack in order to obtain the feature vectors
of bystanders. The server can perform the attack by constructing
SHE public and private keys, and provides the constructed public
key instead of requester’s SHE public key to workers. In this case,
server can decrypt workers’ encrypted feature vectors. However,
this attack can be detected by allowing workers to communicate to
requester to check that requester’s SHE public key was not altered.

In our system, a requester with SHE public and private key can
decrypt any SHE ciphertext. The requester is given only encrypted
dot product results, and hence cannot use it to infer feature vec-
tors of bystanders. Moreover, using oblivious transfer protocol, the
requester can learn only the matched photos, and not any other
photos. In the case where requester is malicious, he can manipulate
the photo selection threshold. By lowering the threshold, he can
allow the selection of many photos that may not contain the target,

TargetFinder: Privacy Preserving Target Search through loT Cameras

and hence breach the bystanders privacy. However, we assume
requesters follow the protocol correctly.

Finally, in TargetFinder, workers do not receive any target infor-
mation, and they do not know whether the captured photos include
the target as the requested photos by the requester are unknown
to them. Hence, they cannot learn the identity of the target and
cannot discover his location.

3.2.4 Implementation Issues

In order to implement SHE on smartphone, we port the Java Lat-
tice Based Cryptography (jJLBC) [1] library to Android. However,
the jLBC library runs very slow on Android which severely affects
the performance. SHE requires polynomial additions and multipli-
cations. In jJLBC, the addition of two polynomials of degree d can
be done in O(d) time, but the multiplication of two polynomials
takes O(d?) time, which is too long.

We propose the following optimizations to speed up the SHE
implementation. First, we speed up polynomial multiplications by
implementing NTT to reduce the time complexity from O(d?) to
O(dlogd). Although the NTT algorithm can be found in [11, 27],
we implement it in Java and port it to Android. Second, we use
the BigInteger implementation from OpenJDK 9.0, which has a
major improvement on the speed of multiplication of BigInteger
numbers. To further speed up SHE, we use multiple threads to
encrypt multiple polynomials simultaneously.

To implement the oblivious transfer protocol on smartphone,
we compute the coefficients of the polynomial with roots equal to
the selected indices using the Efficient Java Matrix Library (EJML),
and use the Bouncy Castle [2] cryptographic library for the AES
implementation.

On the server side, we implement SHE in C++ and use the NTT-
based Fast Lattice library (NFLIlib) [9]. We implement the oblivious
transfer protocol and use the MPI library provided by libgerypt [4]
for both big integer and prime number operations. We use the AES
implementation in libgerypt.

4 PERFORMANCE EVALUATIONS

In this section, we use a real world demo to show how TargetFinder
works, and evaluate the performance of the two major components:
image processing and privacy preserving target search.

4.1 Experimental Setup

We implement the TargetFinder mobile app on Android, and de-
velop a Sinatra application on the server. The server is run on a
desktop with an Intel i7 processor and 32 GB RAM, and the mobile
app is deployed on LG Nexus 5X and Samsung Galaxy S8 smart-
phones. Figure 3 shows the user interface of TargetFinder.

The following parameters are used in our privacy preserving
protocol. For SHE, parameters are chosen to ensure at least 128-bit
security. The polynomials are of degree d = 4096, with coefficients
of size log, p = 124 bits, and the plaintext feature elements are of
size log, t = 23 bits. For the oblivious transfer protocol, G, is set to
be the group of quadratic residues modulo a safe prime r, and all
operations are modulo m. r and m are set to 1024 bit. For the AES
encryption, we use a symmetric key of size 128 bit.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

ON{ T .4 51%&2:11PM

2:11PM | Wed, March 7 <&

< New Task E = =) [e]

Title Find a guy wearing glasses ® TargetFinder 2:11 PM ~

You have a new task from TargetFinder

Descri ption Student center, library and cafe Capture a guy wearing glasses
LOCATION DISTRIBUTION
%,
o Set target location distribution
S UNIYATSIty +

s
SEE DETAILS ACCEPT REJECT
Google

NOTIFICATION SETTINGS CLEAR ALL

Budget

o
)

CREATE CANCEL

(a) Task Creation

Emergency calls only

(b) Task Notification

Figure 3: TargetFinder User Interface.

Table 2: Details of the datasets

Number | Number Category Number
Dataset .
name of tasks | of images of faces
With target 71
Campus 8 447 Without target 479
Total 550
With target 67
Mall 8 460 Without target 876
Total 943
With target 74
Downtown 8 492 Without target 1171
Total 1245
With target 212
All 24 1399 Without target 2526
Total 2738

We recruited 11 graduate students and 3 undergraduates to use
our TargetFinder mobile app. Students use our mobile app to take
videos/images when they stand still or sit in any public place, and
there is no significant difference from normal smartphone users. In
many cases, the bystanders do not know whether the workers are
taking videos/images, or just reading news. Three datasets were
collected based on the following three location areas: university
campus, shopping mall and downtown. At each location area, eight
tasks are created. For each task, we record all interactions between
the workers and the TargetFinder app. When a worker starts record-
ing a video, Frame Selection is used to select the frame with the
highest number of detected faces. When the video recording fin-
ishes, all selected video frames (with resolution of 1920 X 1080)
are uploaded to the server. We manually label the faces into two
categories: targets’ faces and irrelevant faces. Those labeled faces
are used as the ground-truth for our experiments. The details of
the three datasets are provided in Table 2.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

: @ Ta:ﬂ,.g;

t=2:13PM

Random worker selection: A', B, C'
g t=2:11PM

i : @ Target
P S,
: ®

e u 1
- o \ ; .-cB : 3
Task creation [o >

t=2:11PM o E
g e -9

Greedy worker selection: A, B, C
t=2:11PM

s
s

t=2:13PM

—

Worker A' completed

Worker A completed the task Worker B completed the task Worker C completed the task

Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao

i—>» Target not found

the task Worker B' completed the task Worker C' completed the task

t=2:14PM t=2:15PM

-
[msier z

t=2:13PM t=2:14PM

i

Four images from worker C are privately selected and transferred to the requester
t=2:16 PM

Figure 4: A real world demo

4.2 Worker Selection

In TargetFinder, the selection of workers to perform the task is
a challenge. There may be a large number of candidate workers
around the searching area and asking all of them to perform the
task has high cost. Hence, we design a worker selection scheme
that selects a subset of workers to complete the task.

TargetFinder asks a requester to provide some information about
the target such as possible target locations and the probability of
the target being at each location. Such information can be obtained
based on application knowledge. For example, in law enforcement,
the police know the possible locations that the suspect will appear.
In our system, a worker covers a square area centered at his lo-
cation, where points closer to the center have higher probability
of being covered, i.e., less likely to be occluded. Thus, the worker
coverage and target location are represented by a discrete proba-
bility distributions. In TargetFinder, each task has a budget which
is the maximum payment that a requester is willing to pay for the
task, and each worker receives a payment after executing the task.
The described worker selection problem can be easily proved to be
NP-hard. Specifically, the 0-1 Knapsack problem can be reduced to
the worker selection problem.

Hence, we propose a greedy algorithm to solve the following
optimization problem: how to select a limited number of workers to
maximize the probability of finding the target. Initially, we consider
all workers that are located within the target area. Workers are

ordered by their probability of finding the target, and the worker
with the highest probability is selected. Then all remaining workers
are reconsidered to select the next worker. Specifically, we consider
each candidate worker along with the already selected worker to
calculate their total probability of finding the target, and the one
with the highest total probability is selected. It is important to jointly
consider the remaining workers and the already selected worker
because their coverage can overlap. The selection process continues
until the payment needed for the selected workers exceeds the total
payment, or no more worker is left.

4.3 A Real-World Demo

Figure 4 illustrates how TargetFinder works. A task is created by
a requester who wants to search for her friend on the university
campus, and she is willing to pay at most $40 for this task. She has
a photo of her friend, and she also knows that he may be located in
one of the following locations on campus: student center, library,
and cafe. By default, her friend’s photo is considered as sensitive
information that should be protected. To help search for the target,
she provides extra information about the target; i.e., a guy wearing
glasses.

After the server receives the task, it selects three workers: A,
B, and C, based on our worker selection algorithm. As shown the
Figure 4, Worker A is located in the cafe, Worker B is located in
front of the library, and Worker C is inside the student center.

TargetFinder: Privacy Preserving Target Search through loT Cameras

B Detection precision
[Detection recall

o
o

Precision & Recall
I
»

640 x 360 960 x 540 1280 x 7201920 x 1080
Imaae resolution

(a) OpenCV

Precision & Recall

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

1.0

I Detection precision
I Detection Recall

640 x 360 960 x 540 1280 x 7201920 x 1080
Image resolution

(b) Android SDK

Figure 5: Precision and recall of different face detection approaches on different image resolutions

After selecting these workers, the server notifies them by pushing
a notification to their mobile devices.

After receiving notifications, the workers accept the task, open
the camera interface provided by TargetFinder mobile app, and
starts capturing videos of their surrounding area. Workers A and B
completed the task at 2 : 13 PM, while Worker C completed the task
at 2 : 14 PM. Then, the privacy preserving target search protocol is
run to search the target from the captured photos (selected video
frames). Four matched photos are found that include the target
face. These matched photos are received by the requester at 2 : 16
PM. Note that the workers and the server cannot see these photos
since they are encrypted, and the requester can only see these four
matched photos, not other captured photos.

As a comparison, Figure 4 also shows that the random worker
selection algorithm is used to select three workers: A’, B’, and C’.
As can be seen, these workers are not close to the target. Therefore,
their captured images do not include the target and they can not
find the target.

4.4 Performance of Image Processing

In this subsection, we evaluate the performance of image processing,
which has three main components: face detection, face preprocess-
ing, and feature extraction.

As shown in Table 3, to process a single image with one face on
a Nexus phone, the average running time is 0.486 + 0.172 + 0.826 =
1.484s.

Table 3: Running time of image processing

Detection | Preprocessing | Feature Extraction
(ms) (ms) (ms)
Nexus 486 172 826
S8 92.4 137 440
4.4.1 Face detection. Table 4 shows how the performance of the

face detection can be affected by different image resolutions. In
order to get the measurements, we scale the images of the datasets
into different resolutions, and measure the average running time

on images with different resolutions. As can be shown, when the
image resolution increases, the running time increases.

Table 4: Running time of face detection on images with dif-
ferent resolutions

Image resolutions | Nexus (ms) | S8 (ms)
640 X 360 331 16.7
960 X 540 354 28.7
1280 x 720 370 48
1920 X 1080 486 92.4

Figure 5 shows the precision and recall of different face detection
approaches on our dataset, where Precision = true positives/(true
positives + false positives), and Recall = true positives/(true pos-
itives + false negatives). Although both precision and recall are
important, it is hard to achieve both. For our application, missing a
target (false negatives) is much worse, and then recall is more im-
portant. However, the recall of Android SDK is too low compared to
that of openCV, thus we choose openCV in TargetFinder. As shown
in the figure, as the image resolution increases, more faces can be
detected, but the number of false positives increases faster than the
number of true positives, and hence the precision decreases and
the recall increases.

4.4.2 Feature extraction. Figure 6a compares the performance of
Light CNN and Eignfaces. In the comparison, both approaches are
used to extract feature vector of the target face and that of the
captured faces. The extracted feature vectors are used to run face
recognition to identify the target face in the captured faces. As
shown in Figure 6a, Light CNN significantly outperforms Eignfaces.
With true positive of 95%, the false positive of Light CNN is only
0.02%, but it is about 70.0% for Eigenfaces. Thus, we choose Light
CNN in TargetFinder.

Figure 6b illustrates the effect of feature vector dimension on
the performance of face recognition. when the true positive rate
is set to be 0.99, the false positive rate for 64-dimension vectors
and 32-dimension vectors are 0.08 and 0.25 respectively. Thus, we
choose 64-dimension feature vector in TargetFinder.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao

1.007
1.0 ra 1.0
[0.95 ﬁ
g 08 £0.90 908
£ i 0.85 £
206 z 206
=] = 2
S £0.80 a
a 0.4 o c 0.4 — 20x20
() ‘2 ° —
f—j' =073 —— 256-dimension Vector E 40x40
02 i 0.70 —— 64-dimension Vector 0.2 —— 60x60
I;.ght ENN —— 32-dimension Vector e ?ggSgoo
—— Eigenfaces 0.65 "
001 : : ‘ ‘ : 00 02 06 08 10 001 : ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(a) Light CNN and Eigenfaces.

False Positive Rate

(b) Feature vectors with different dimension (c) Light CNN with different face image size

Figure 6: The performance of face recognition.

Table 5: Performance of SHE (per feature vector)

Protocol | Phone Key generation | Encryption | Decryption | NTT | NTT!
(ms) (ms) (ms) (ms) | (ms)
Baseline Nexus 6995 106960 2250 180 183
S8 315.7 36416 650 84 96
Optimized Nexus 6995 2139.2 2241 180 183
S8 315.7 728.32 642 84 96

Table 6: Performance of oblivious transfer protocol

Requester Server
K n Nexus S8
Setup | Dec. | Setup | Dec. Enc.
(ms) | (ms) | (ms) | (ms) | (ms)
2 100 9.9 85 6.5 50 560.7
10 | 100 28.2 2135 11.7 82.71 637.7
10 | 500 | 28.2 | 213.5 11.7 82.71 3381
100 | 500 173 1226 | 70.78 | 260.63 | 53035.5
Table 7: Performance of AES
Smartphone
Imagfa Nexus P S8 Server
resolution

Enc. | Dec. Enc. Dec. Enc.
(ms) | (ms) | (ms) | (ms) | (ms)
640 X 360 38 439 37.1 39.3 1.75
960 X 540 81.3 85.9 70.8 73.6 3.78
1280 X 720 | 145.1 | 155.3 | 113.7 | 121.7 6.72
1920 X 1080 | 315.5 | 398.2 | 245.35 | 261 16.17

Figure 6¢ shows the impact of face image size on the ROC curve
of face recognition. We select face images larger than 100 x 100, and
downsample them into sizes of 100 x 100, 80 X 80, 60 X 60, 40 X 40
and 20 X 20. Then all face images are resized to 128 x 128, which
is the input image size of the Light CNN. As shown in the figure,
the accuracy of face recognition is similar when the image size is
larger than or equal to 40 X 40. However, the accuracy significantly
drops when the face image size changes from 40 x 40 to 20 X 20,
for example, with the true positive rate of 90%, the false positive

rate increases from 16.02% to 41.2%. Thus, the parameters in our
face detection are tuned to only allow faces with image size equal
to or larger than 40 X 40 to be detected.

4.5 Performance of the Privacy Preserving
Target Search

In this section, we evaluate the computation and communication
overhead of our privacy preserving protocol.

4.5.1 Computational Overhead. Table 5 shows the running time of
the major operations of the privacy preserving protocol. As shown
in the table, the optimized protocol outperforms the baseline proto-
col in encrypting and decrypting the feature vectors. For example,
on S8, the optimized protocol encrypts the feature vectors with
running time of 728.32 ms per feature vector, whereas the baseline
protocol encrypts the feature vectors with running time of 36416 ms
per feature vector. The optimized protocol is more efficient, because
it packs the feature vectors into much less number of polynomials
compared to the basic protocol.

Table 6 shows the computation time of the oblivious transfer
protocol, where n is the number of images captured by the se-
lected workers, and k is the number of images selected by the
requester. The setup operation includes constructing and hiding
the k-degree polynomial function. As k increases, the computation
time increases, because the setup, encryption and decryption op-
erations depend on k. We also observe that the computation time
on S8 is less than that on Nexus, because S8 has higher processing
and memory capabilities. Based on our data collection experiments,
k is in the range of 2 — 10 images. Thus, the computational time
of our protocol on the server side may be up to 3381 ms, which is
acceptable in our system.

TargetFinder: Privacy Preserving Target Search through loT Cameras

Table 7 shows the computational time of AES on images with
different resolutions. For different image resolutions, the computa-
tional time varies. By increasing the image resolution, the compu-
tational time increases. Compared to SHE, the computational time
of AES is quite small which motivates our design choice of using
AES scheme to encrypt and decrypt long images data.

Table 8: Communication Overhead of SHE (per 50 feature
vectors)

Requester Worker
Scheme | Upload | Download | Upload | Download
(KB) (KB) (KB) (KB)
Baseline 8060 9316 396940 124
Optimized 8060 202 8076 124

4.5.2 Communication Overhead. Table 8 shows the communica-
tion overhead of SHE. In the optimized protocol, workers upload
less amount of data compared to the baseline protocol, because
workers in the optimized protocol pack feature vectors in less num-
ber of polynomials which reduces the communication overhead. In
addition, the download data size is also reduced in the optimized
protocol. In the baseline protocol, for z workers each with m fea-
ture vectors, requesters need to download all the zm encrypted dot
products of size 9316KB. In the optimized protocol, requesters need
to download only one polynomial of 202KB, which includes the dot
products of all feature vectors.

Note that our optimized protocol is based on reducing the num-
ber of encryptions, packing the ciphertext, and using AES symmetric-
key for encryption/decryption of images. As these optimization
techniques do not include any approximations or changes on the
original plaintext, it has the same accuracy as the baseline protocol.

5 RELATED WORK

Recently, researchers have built systems to crowdsource photos
and videos from mobile devices such as Mediscope [18], GigaSight
[33], SmartPhoto [42, 43], VideoMec [41], FlierMeet [14], and Se-
cureFind [35]. With these mobile crowdsourcing systems, privacy
concerns are becoming more and more important, and researchers
have proposed privacy preserving techniques to mitigate such con-
cerns [19, 20, 22, 37]. To et al. [37] presented a framework to protect
the location privacy of the workers participating in crowdsourc-
ing tasks. In [22], a privacy preserving scheme was proposed to
hide workers’ identities by ensuring that the server cannot link
any submitted task to the reporting worker, or link multiple tasks
submitted by the same worker. In [35], the authors proposed a
privacy-preserving object-finding system via mobile crowdsourc-
ing. In their system, a unique Bluetooth tag is attached to every
valuable object such as personal asset, child, pet, or elderly, and it
is used to help workers to find the object. However, their solution
depends on special hardware, e.g., Bluetooth tags, which is not
possible in our system since the suspect will not wear such special
tags. Different from them, TargetFinder searches targets utilizing
efficient image processing techniques that can run on resource con-
strained devices while preserving the privacy of the target and the
bystanders.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

Preserving the privacy of bystanders has been studied for surveil-
lance cameras [13, 24, 30, 32]. In [30, 32], the authors proposed
privacy preserving solutions to hide faces of bystanders, while al-
lowing the detection of their actions and movements. In [24], the
authors consider more general case of hiding region of interests
which include privacy-sensitive information. However, most of
these solutions are proposed for fixed infrastructure where the
privacy preserving algorithm is run on powerful servers.

Researchers have considered content-based modification of cap-
tured images or video frames, guided by a privacy policy to preserve
individual privacy preferences [8, 39]. In [8], the authors proposed
I-Pic, a platform for privacy preserving image capture, which al-
lows users to respect each others’ individual privacy preferences,
while capturing photos. In I-Pic, captured images are automatically
modified according to the privacy choices of individuals captured.
When a user chooses to hide his face, I-Pic modifies the captured
image to blur that user’s face before sharing the image. In [39],
the authors proposes a mechanism for preserving the privacy of
bystanders in video streams by selectively blurring faces accord-
ing to specified policies. However, these works assume that each
capturing device is associated with a trusted cloudlet to run com-
putation intensive tasks, which may not always be available and
many users may not trust these cloudlet. Hence, offloading the
processing of captured images or video frames, which may contain
sensitive information, to the server/cloudlet may not work well.
Moreover, none of them considers the problem of target search, and
do not have the requirement of preserving the privacy of targets
and bystanders.

To enable efficient privacy preserving target search on mobile
devices, optimized image processing techniques are explored. Face
detection and face recognition have been studied for many years
in the computer vision community [21, 44]. Most of the state of art
algorithms [17, 26, 28, 31, 34] use CNN to improve the accuracy.
However, CNN models usually stress the mobile devices by occupy-
ing a large amount of memory space and taking much longer time
to execute. To address these issues, some researchers propose light
weight solutions such as Light CNN[40], and binarized neural net-
work (BNN) [15][36]. In BNN, the authors considered only binary
numbers for the weights in the neural network, so that the running
time and the memory requirement can be reduced, while the per-
formance is sacrificed. The authors in [40] proposed a Light CNN
model which is suitable for mobile devices. Although we use Light
CNN for extracting feature vectors, our goal is to combine it with
our privacy preserving protocol, and thus we have to optimize its
performance when combining with the cryptographic primitives.

6 CONCLUSIONS

In this paper, we presented the design, implementation, and evalu-
ation of TargetFinder, which can be applied for finding interested
targets (e.g., suspect) privately anytime and anywhere. We pro-
posed a privacy preserving protocol to protect the privacy of the
target and the bystanders, and proposed efficient image processing
techniques that can run on mobile devices. The proposed tech-
nique allows the requester (e.g., the police) to receive images of the
target, while all other captured images of the bystanders are not
revealed. Moreover, the target’s face image is not revealed to the

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

server and the participating workers. Due to the high computation
overhead of the cryptographic primitives, we proposed several opti-
mization techniques in order to run our privacy preserving protocol
on mobile devices. Through real world deployment and extensive
performance evaluations, we have demonstrated the effectiveness
of TargetFinder on privately locating targets through IoT cameras.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation
(NSF) under grants CNS-1526425 and CNS-1815465.

REFERENCES

(1]

2]
3]
4]
5]
6]

[10]

(1

[12

[13]

[14

[15

[16]

(7

[18]

[19]

[20

[
=

[22]

[23

[24]

2012. Java Lattice Based Cryptography Library. http://gas.dia.unisa.it/projects/
jlbe/index.html

2013. Bouncy Castle. https://www.bouncycastle.org/

2016. Caffe Android lib. https://github.com/sh1r0/caffe-android-lib

2017. Libgerypt. https://www.gnupg.org/software/libgerypt/index.html

2018. Dlib C++ library. http://dlib.net/
2018. Firebase Cloud Messaging.
cloud-messaging/

2018. OpenCV library. http://opencv.org/
Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Benen-
son, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu. 2016.
I-pic: A platform for privacy-compliant image capture. In ACM MobiSys.

Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier
Killijian, and Tancrede Lepoint. 2016. NFLlib: NTT-based fast lattice library. In
Cryptographers’ Track at the RSA Conference. Springer.

Zvika Brakerski and Vinod Vaikuntanathan. 2011. Fully homomorphic encryption
from ring-LWE and security for key dependent messages. In Annual cryptology
conference. Springer.

Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy,
Ray CC Cheung, Derek Pao, and Ingrid Verbauwhede. 2015. High-speed poly-
nomial multiplication architecture for ring-LWE and SHE cryptosystems. IEEE
Transactions on Circuits and Systems I: Regular Papers (2015).

Cheng-Kang Chu, Wen-Guey Tzeng, et al. 2008. Efficient k-out-of-n Oblivious
Transfer Schemes. Journal of Universal Computer Science (2008).

Liang Du, Meng Yi, Erik Blasch, and Haibin Ling. 2014. GARP-face: Balancing
privacy protection and utility preservation in face de-identification. In IEEE
International Joint Conference on Biometrics.

Bin Guo, Huihui Chen, Zhiwen Yu, Xing Xie, Shenlong Huangfu, and Daqing
Zhang. 2015. FlierMeet: a mobile crowdsensing system for cross-space pub-
lic information reposting, tagging, and sharing. IEEE Transactions on Mobile
Computing (2015).

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks. In Advances in neural information
processing systems.

Yanggqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
architecture for fast feature embedding. In ACM International Conference on
Multimedia.

Huaizu Jiang and Erik Learned-Miller. 2017. Face detection with the faster R-CNN.
In IEEE International Conference on Automatic Face & Gesture Recognition.
Yurong Jiang, Xing Xu, Peter Terlecky, Tarek Abdelzaher, Amotz Bar-Noy, and
Ramesh Govindan. 2013. Mediascope: selective on-demand media retrieval from
mobile devices. In ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN).

Youssef Khazbak and Guohong Cao. 2017. Deanonymizing mobility traces with
co-location information. In IEEE Conference on Communications and Network
Security (CNS).

Youssef Khazbak, Jingyao Fan, Sencun Zhu, and Guohong Cao. 2018. Preserving
Location Privacy in Ride-Hailing Service. In IEEE Conference on Communications
and Network Security (CNS).

Erik Learned-Miller, Gary B Huang, Aruni RoyChowdhury, Haoxiang Li, and
Gang Hua. 2016. Labeled faces in the wild: A survey. In Advances in face detection
and facial image analysis. Springer.

Qinghua Li and Guohong Cao. 2014. Providing efficient privacy-aware incentives
for mobile sensing. In IEEE International Conference on Distributed Computing
Systems (ICDCS).

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and
learning with errors over rings. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer.

Andrea Melle and Jean-Luc Dugelay. 2014. Scrambling faces for privacy protection
using background self-similarities. In IEEE International Conference on Image

https://firebase.google.com/docs/

Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao

[25

[26

[27

[29

[30

(31

(32]

@
=

(34]

[35

[36

[40

[41]

[42]

[43

[44]

Processing.

Emiliano Miluzzo, Nicholas D Lane, Kristof Fodor, Ronald Peterson, Hong Lu,
Mirco Musolesi, Shane B Eisenman, Xiao Zheng, and Andrew T Campbell. 2008.
Sensing meets mobile social networks: the design, implementation and evaluation
of the cenceme application. In ACM Conference on Embedded Networked Sensor
Systems (SenSys).

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. 2015. Deep Face
Recognition.. In Proceedings of the British Machine Vision.

Alberto Pedrouzo-Ulloa, Juan Ramén Troncoso-Pastoriza, and Fernando Pérez-
Gonzalez. 2017. Number theoretic transforms for secure signal processing. IEEE
Transactions on Information Forensics and Security (2017).

Hongwei Qin, Junjie Yan, Xiu Li, and Xiaolin Hu. 2016. Joint training of cas-
caded cnn for face detection. In IEEE Conference on Computer Vision and Pattern
Recognition.

Hang Qiu, Xiaochen Liu, Swati Rallapalli, Archith J Bency, Kevin Chan, Rahul
Urgaonkar, BS Manjunath, and Ramesh Govindan. 2018. Kestrel: Video Analytics
for Augmented Multi-Camera Vehicle Tracking. In IEEE IoTDIL.

Jeremy Schiff, Marci Meingast, Deirdre K Mulligan, Shankar Sastry, and Ken
Goldberg. 2009. Respectful cameras: Detecting visual markers in real-time to
address privacy concerns. In Protecting Privacy in Video Surveillance. Springer.
Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A unified
embedding for face recognition and clustering. In IEEE Conference on Computer
Vision and Pattern Recognition.

Andrew Senior, Sharath Pankanti, Arun Hampapur, Lisa Brown, Ying-Li Tian,
Ahmet Ekin, Jonathan Connell, Chiao Fe Shu, and Max Lu. 2005. Enabling video
privacy through computer vision. IEEE Security & Privacy (2005).

Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha, and
Mahadev Satyanarayanan. 2013. Scalable crowd-sourcing of video from mobile
devices. In ACM Proceeding of the international conference on Mobile systems,
applications, and services.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Jingchao Sun, Rui Zhang, Xiaocong Jin, and Yanchao Zhang. 2016. Securefind:
Secure and privacy-preserving object finding via mobile crowdsourcing. IEEE
Transactions on Wireless Communications (2016).

Surat Teerapittayanon, Bradley McDanel, and HT Kung. 2016. Branchynet: Fast
inference via early exiting from deep neural networks. In IEEE Pattern Recognition
(ICPR).

Hien To, Gabriel Ghinita, Liyue Fan, and Cyrus Shahabi. 2017. Differentially
private location protection for worker datasets in spatial crowdsourcing. IEEE
Transactions on Mobile Computing (2017).

Matthew A Turk and Alex P Pentland. 1991. Face recognition using eigenfaces.
In IEEE Conference on Computer Vision and Pattern Recognition.

Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh,
and Mahadev Satyanarayanan. 2017. A scalable and privacy-aware IoT service
for live video analytics. In ACM International Conference on Multimedia Systems
(MMsys).

Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. 2018. A light CNN for deep
face representation with noisy labels. IEEE Transactions on Information Forensics
and Security (2018).

Yibo Wu and Guohong Cao. 2017. VideoMec: a metadata-enhanced crowd-
sourcing system for mobile videos.. In ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN).

Yibo Wu, Yi Wang, and Guohong Cao. 2017. Photo crowdsourcing for area
coverage in resource constrained environments. In IEEE INFOCOM.

Yibo Wu, Yi Wang, Wenjie Hu, and Guohong Cao. 2016. Smartphoto: a resource-
aware crowdsourcing approach for image sensing with smartphones. IEEE
Transactions on Mobile Computing (2016).

Cha Zhang and Zhengyou Zhang. 2010. A survey of recent advances in face
detection. Technical Report MSR-TR-2010-66 (2010).

