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ABSTRACT

With the proliferation of IoT cameras, it is possible to use crowd-

sourced videos to help find interested targets (e.g., crime suspect,

lost child, lost vehicle, etc.) on demand. Due to the ubiquity of IoT

cameras such as dash mounted cameras and phone camera, the

crowdsourced videos have much better spatial coverage compared

to only using surveillance cameras, and thus can significantly im-

prove the effectiveness of target search. However, this may raise

privacy concerns when workers (owners of IoT cameras) are pro-

vided with photos of the target. Also, the videos captured by the

workers may be misused to track bystanders. To address this prob-

lem, we design and implement TargetFinder, a privacy preserving

system for target search through IoT cameras. By exploiting homo-

morphic encryption techniques, the server can search for the target

on encrypted information. We also propose techniques to allow

the requester (e.g., the police) to receive images that include the

target, while all other captured images of the bystanders are not

revealed. Moreover, the target’s face image is not revealed to the

server and the participating workers. Due to the high computation

overhead of the cryptographic primitives, we develop optimiza-

tion techniques in order to run our privacy preserving protocol

on mobile devices. A real-world demo and extensive evaluations

demonstrate the effectiveness of TargetFinder.
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1 INTRODUCTION

The ubiquity of IoT cameras such as dash mounted cameras, drone

cameras, Google glass, and phone cameras, has enabled many useful

applications such as law enforcement [29], traffic monitoring [25]

etc. One potential application is related to finding interested targets

(e.g., crime suspect, lost child, lost vehicle, etc.), where videos can be

crowdsourced on demand from the public to help search for targets

in real time. Currently, police use surveillance cameras for target

search. However, surveillance cameras often have limited coverage

due to deployment cost. On-demand crowdsourcing can signifi-

cantly enhance the effectiveness of target search. For example, after

a crime or a terrorist event, police can create a crowdsourcing task

to search for the suspects/targets with information such as pho-

tos of the targets or other biometric information. The on-demand

crowdsourcing system assigns mobile users (workers) to search for

targets. Then workers enable their IoT cameras to capture their

surrounding area, upload some photos or video clips to the server,

and in return receive payments. Based on the crowdsourced videos

or photos, the police can find the targets’ locations or moving tra-

jectories, etc.

However, such systemmay raise privacy concerns. First, to locate

the target, workers may be provided with photos of the target, and

then crowdsourced videos can be processed locally on the workers’

device using content-based techniques [33] to filter out parts of

the videos that do not contain the target. Although this design

works well if the target is a lost child, a wanted criminal or terrorist,

it may raise privacy concerns in many other cases. For example,

during police investigation, the identity of the targets should not

be released. Hence, providing workers with photo of the target may

create privacy issues and may even compromise the investigation.

Second, IoT cameras capture videos/photos in public places which

can be misused to track bystanders. Such tracking can be a major

concern for unwilling bystanders who feel that their privacy is

being violated.

Although the problem of preserving the privacy of bystanders

has been studied for surveillance cameras [24, 30, 32], most of
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them have been proposed for fixed infrastructure where the pri-

vacy preserving algorithm is run on powerful servers to detect

bystanders and hide their faces. Some other researchers [8, 39]

consider content-based modification of captured images or video

frames, guided by a privacy policy to preserve individual privacy

preferences. However, they assume that each capturing device is

associated with a trusted cloudlet located close to that device to

run computation intensive tasks, which may not always be possible

especially for users with strong privacy requirements. Moreover,

none of them considers the problem of target search, and do not

have the requirement of preserving the privacy of targets as well

as the privacy of bystanders. Preserving the privacy of the target is

also hard, since the requester (e.g., the police) may not even want

to release the photo of the target to the server, which is honest but

curious and has the incentive to reveal the target or bystanders

information in order to infer sensitive information about them. As a

result, offloading the processing of captured images or video frames,

which may contain sensitive information, to the server may not

work well. Then, how to process these images or video frames on

resource limited mobile devices in a privacy preserving manner

becomes a challenge.

In this paper, we design and implement TargetFinder, a privacy

preserving system for target search through IoT cameras. In Tar-

getFinder, we propose efficient image processing techniques that

can run on mobile devices, which allow the task requester (e.g., po-

lice) and the workers to process images and videos locally on their

mobile devices to extract target’s face information and bystanders’

face information. To preserve the privacy of the target and the

bystanders, we propose to encrypt the target’s face information

and the bystander’s face information before sending them to the

server. By exploiting homomorphic encryption techniques [10], the

server can search for the target on encrypted information. After

matching the target face to the detected faces, oblivious transfer

[12] is applied to allow a requester to receive images that include

the target, while all other captured images of the bystanders are not

revealed. Moreover, the target’s face image is not revealed to the

server and the participating workers. Due to the high computation

overhead of the cryptographic primitives, we develop optimiza-

tion techniques in order to run our privacy preserving protocol on

mobile devices.

In summary, the contributions of this paper are as follows.

• We design and build an on-demand target search system

called TargetFinder, which uses videos crowdsourced from

IoT cameras to help search for the target.

• We propose a privacy preserving protocol for target search,

which preserves the privacy of the target and the bystanders.

To speed up the protocol running time, several optimization

techniques are designed and evaluated.

• We have implemented a prototype of TargetFinder, and

demonstrate its effectiveness based on real experiments.

The rest of the paper is organized as follows. In Section 2, we

present the system overview. The system design and implemen-

tation are described in Section 3. In Section 4, we evaluate the

system performance. Section 5 describes related work and Section

6 concludes the paper.

Figure 1: The TargetFinder system.

2 SYSTEM OVERVIEW

In this section, we first present the system overview and then

introduce the threat model. Finally, we describe the basic idea of

our privacy preserving protocol.

2.1 TargetFinder Overview

TargetFinder helps locate targets using corwdsourced videos from

IoT cameras such as vehicle mounted cameras, Google glass, or

phone cameras. The videos can be processed at the IoT camera or

at the worker’s mobile device such as smartphones. As shown in

Figure 1, TargetFinder consists of a server and amobile app that runs

on the requesters’ and workers’ mobile devices. A requester can be

someone who wants to pay for getting information about the target.

The requester creates a task about the target which includes some

information such as the task description, geographical information

such as possible locations of the target, and the photo of the target.

If privacy is not a concern, the photo of the target will be shown to

the workers. In this paper, we focus on tasks with privacy concerns,

and thus the photo will not be shown to the workers. The photo of

the target will be used by the privacy preserving algorithm so that

only matched video frames are sent to the requester to protect the

privacy of the target and the bystanders.

With the photo of the target, Face Detection, Face Preprocessing,

and Feature Extraction are executed to detect the target’s face and

extract its feature vector. On the worker side, after videos are cap-

tured, they are processed to select some video frames, referred to

as captured photos. Based on these captured photos, Face Prepro-

cessing, and Feature Extraction are executed to process faces, and

extract their feature vectors. Then the proposed Privacy Preserving

protocol is used for target search which preserves the privacy of

the target and the bystanders.
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On the server side, each task has a Task Managerwhich stores the

task information, tracks the progress of the task, selects participant

workers, and sends notifications to the selected workers. TheTask

Manager notifies workers by pushing the task notification to their

mobile devices. This is implemented by using the Firebase Cloud

Messaging (FCM) service [6] provided by Google.

2.2 Threat Model

TargetFinder preserves the privacy of the target and bystanders by

considering the following threat model. The server is honest but

curious who has the incentive to reveal the target or bystanders

information in order to infer sensitive information about them.

The requesters and workers are assumed to follow the privacy

preserving protocol, but may try to learn extra information from

the received information. We assume that the requesters and the

server do not collude.

TargetFinder addresses the privacy concerns of the target and

the bystanders by employing cryptographic primitives to privately

match the target face to the captured faces. The requester only re-

ceives the matched photos that include the target, not other photos.

Moreover, the target information is not revealed to the server and

the participating workers such that only the requester knows the

identity of the target, and can discover his location.

2.3 Basic Idea of the Privacy Preserving
Solution

To search for the target in the captured images while preserving

the privacy of both the target and the bystanders, we propose the

following privacy preserving protocol. First, the requester gener-

ates a public and private key pair, and creates a task to search for

the target with the photo of the target. The feature vector of the

target is extracted, and encrypted using the requester’s public key.

Then, he sends the public key and the encrypted feature vector to

the server. The server selects and notifies participating workers,

and then broadcasts the public key to all selected workers. On the

worker side, images are processed, and feature vectors are extracted.

The extracted feature vectors are encrypted using the public key,

and sent back to the server. For each detected face, the server com-

putes the encrypted dot product of the following two vectors: the

encrypted feature vector of the detected face and that of the target.

The encrypted dot products are returned to the requester. Then, the

requester decrypts and selects photos that include the target based

on a predetermined threshold. Finally, the requester can initiate the

oblivious transfer protocol to retrieve the selected photos from the

server.

To compute the dot product on encrypted feature vectors, it is

required to do additions and multiplications over ciphertexts. While

partially homomorphic encryption is in general more efficient than

Somewhat-Homomorphic encryption (SHE) [10], it only allows

additions or multiplications on encrypted data, but not both at the

same time which is required for computing the dot product. Thus,

we use SHE based on ideal lattices [10] which allow the server to

compute the dot product on ciphertexts produced by the requester

and the workers. However, it has high computation overhead as it

does additions and multiplications over ciphertext represented by

ring of polynomials, which will be addressed in this paper.

3 TARGETFINDER DESIGN AND
IMPLEMENTATION

In this section, we describe the design and implementation of Tar-

getFinder’s two major components: image processing and privacy

preserving target search. Image processing will be used in our pri-

vacy preserving protocol, and hence we first describe it.

3.1 Image Processing

In TargetFinder, face detection is executed first to detect faces in

every video frame. Then, frames with the most number of detected

faces are selected, and finally features are extracted from these

frames. The following describes the details of these techniques:

face detection, frame selection, face preprocessing, and feature

extraction.

Face Detection: The first step is to detect faces in images or

video frames. There are several face detection libraries available on

Android. For example, the Android SDK includes a face detection

API. However, it is not accurate and may miss the detection of many

faces. In TargetFinder, we use the face detection algorithm called

Haar feature-based cascade classifier from the OpenCV library [7].

It has much higher accuracy compared to the Android face detection

API, and allows flexible configurations with various parameters,

such as image scaling, minimum size of a face, etc..

Frame Selection: Extracting feature vectors of all detected faces

from all video frames takes a long time and enormous computa-

tional power. Moreover, there are usually minor changes between

consecutive video frames and the target will appear in many con-

secutive frames, and hence sampling video frames at a lower rate

works well on capturing the targets. Therefore, to remove the re-

dundancy, we select only one frame every second, and the frame

with the most number of detected face is selected. Based on the

computation capability of the IoT camera, more frames may be

selected. It is possible that frames can be better selected based on

other factors such as the face image quality. Since the focus of this

paper is the privacy preserving protocol, we will leave it as future

work.

Face preprocessing: For the selected frames, the faces are pre-

processed before extracting feature vectors. Preprocessing is needed

because the detected faces may have various sizes, positions, and

orientations which affect the results of the feature extraction algo-

rithm. In preprocessing, image grayscale conversion, resizing, and

face alignment are performed. The face alignment aligns the land-

marks of the face (e.g. eyes, nose and mouth) to appear at roughly

the same position in the final output images. In TargetFinder, we use

Dlib [5] to detect the face landmarks, and transform the landmarks

to the positions specified by the feature extraction algorithm.

Feature Extraction: There are several feature extraction al-

gorithms, such as Eigenfaces [38], and Light convolution neural

network (CNN) [40]. Eigenfaces represents a human face with a

set of eigen vectors, while Light CNN represents a human face

using a 256 dimensional feature vector extracted from a 29-layer

CNN. Light CNN has several advantages over other algorithms.

First, it can achieve a much higher face verification accuracy (i.e.,

99%). Moreover, the size of the Light CNN model is only 33MB,

much smaller than many other CNN models such as the VGG Net-

work [34] which is about 580MB. This makes it more suitable to be
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run on smartphones. Thus, we use Light CNN for feature extraction,

and the Android ported Caffe deep learning framework [3, 16] is

used in our implementation to run Light CNN.

After extracting the feature vector of the target face and those

of the captured faces, the feature vector of target face is compared

with that of each detected face. The comparison is by computing

the dot product of the two vectors. If the dot product is above a

predetermined threshold, the detected face matches the target face.

In our system, such comparison is done privately as described in

Section 3.2 to preserve the privacy of the targets and the detected

faces.

Performance Optimization: The extracted feature vectors are

used in the privacy preserving protocol. Such protocol is based on

cryptographic primitives which are computationally intensive, and

the running time depends on the dimension of the feature vectors.

To reduce the running time, we reduce the dimension of the 256-

dimensional feature vectors using principal component analysis

which linearly projects high dimensional data into a lower dimen-

sional space. The projection is done by multiplying original feature

vectors by a transformation matrix to transform the feature vectors

into b-dimensional space. To obtain the transformation matrix, we

first extract facial feature vectors, and then perform singular value

decomposition on the extracted vectors. The transformation matrix

is represented by the b most significant components. With such

dimensionality reduction, we can speed up the execution of the

cryptographic protocol with the cost of face recognition accuracy.

We study such tradeoff in the performance evaluations (Section 4)

to choose a reasonable b-dimensional space.

To improve the performance of image processing, we use multi-

thread to process multiple frames simultaneously. As the JNI code

of the Caffe framework is not thread-safe, we modify the code to

allow each thread to hold its own instance of the neural networks

for feature extraction. As the feature extraction is the most com-

putational intensive task, we use one thread to run face detection,

one thread for frame selection, and multiple threads to preprocess

faces and run multiple instances of Light CNN to extract feature

vectors in parallel.

3.2 Privacy Preserving Target Search

In this section, we first describe the cryptographic primitives and

then introduce our privacy preserving protocol for target search.

3.2.1 Cryptographic Primitives

Somewhat-Homomorphic encryption (SHE): SHE allows addi-

tions and multiplications over ciphertexts, while partially homo-

morphic encryption allows only addition or multiplication over

ciphertexts. Thus, by using SHE, the server can compute the vector

dot product on ciphertexts produced by the requester and the work-

ers. In TargetFinder, we use the SHE scheme based on ideal lattices

described in [10]. In the following, we describe its basic idea.

The plaintext m resides in the ring of polynomials with coef-

ficients in Zt , i.e., m ∈ Rt = Zt [x]/(x
d + 1), and the ciphertext

space is in Rp = Zp [x]/(x
d + 1). The parameters p and t are pos-

itive integers, where p > t > 1, and they define the upperbound

of the ciphertext and plaintext coefficients respectively. Let χ be

the error distribution in Rp , then the private key (sk) is obtained

by sampling s ← χ ; i.e., sk = s . To generate the public key, we

first sample uniformly at random a1 ← Rp , and sample small

error e ← χ . Then the public key is pk = [a0 = −(a1s + te),a1].
Given this public key and a messagem, the encryption is performed

by sampling u,д,h ← χ and outputs the following ciphertext:

c = [c0, c1] = [a0u + tд +m,a1u + th].
SHE allows additions and multiplications on ciphertexts. Given

two ciphertexts c = [c0, c1] and c′ = [c ′0, c
′
1], we can add them to

obtain a ciphertext cadd = [c0 + c
′
0, c1 + c

′
1]. Similarly, the product

of the two ciphertexts is cmlt = [c0c
′
0, c0c

′
1 + c

′
0c1, c1c

′
1]. The homo-

morphic multiplication increases the number of ring elements in

the ciphertext. Hence, the encrypted vector dot product returned

to requester includes one extra polynomial, i.e., cmlt = [c0, c1, c2],
and the decryption can be computed using the private key sk as

follows:m = (c0 + c1s + c2s
2)mod t .

k-out-of-nOblivious Transfer: Thek-out-of-n oblivious trans-
fer protocol, denoted OTkn , is a two party protocol that allows a

requester to privately choose k out of n images from the server. The

requester learns k images and nothing else, and the server learns

nothing about the chosen k images. In our implementation, we use

the OTkn scheme [12] which is as follows. A requester constructs

a k-degree polynomial function with roots equal to the selected

indices, and then hides this polynomial in another random k-degree
polynomial function. The masked polynomial coefficients are sent

to the server. Because of the random polynomial function, the server

cannot learn about the selected indices from the masked polynomial

coefficients, and it can only use such coefficients to encrypt the

images and send them back to the requester. Finally, the requester

can only decrypt images of the selected indices. All other n − k
images are unknown to the requester and cannot be decrypted.

Table 1: Table of notations

Parameter Description

pk SHE public key

sk SHE private key

d Degree of the polynomial

z Number of selected workers

ft Feature vector of the target

Fwi Extracted feature vectors of workerwi

q Dimension of the feature vector

n Number of images captured by selected workers

k Number of images selected by the requester

3.2.2 Privacy Preserving Target Search

Our privacy preserving protocol works as follows. First, the re-

quester generates a public and private key pair, and creates a task

to search for the target with the photo of the target. The feature

vector of the target is extracted, and encrypted using the requester’s

public key. Then, he sends the public key and the encrypted feature

vector to the server. The server selects and notifies participating

workers, and then broadcasts the public key to all selected work-

ers. On the worker side, after selecting video frames, the captured

photos (frames) are processed and feature vectors are extracted.

The extracted feature vectors are encrypted using the public key,
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Figure 2: Our privacy preserving protocol

and sent back to the server. For each detected face, the server com-

putes the encrypted dot product of the following two vectors: the

encrypted feature vector of the detected face and that of the target.

The encrypted dot products are returned to the requester. Then,

the requester decrypts and selects photos that include the target

based on a predetermined threshold. In case the target is found in

some photos, the requester initiates the oblivious transfer protocol

to retrieve these photos from the server. The used parameters are

summarized in Table 1.

Baseline protocol: A straightforward implementation of this

protocol incurs high computational overhead and high bandwidth

consumption for several reasons. First, a worker may capture mul-

tiple faces, and hence needs to encrypt several feature vectors. To

encryptm feature vectors with q dimensions,mq encryptions are

needed to generatemq encrypted polynomials. Second, the server

needs to compute encrypted dot products of the feature vectors. For

z selected workers, each withm feature vectors, zm dot product cal-

culations are required, and zm encrypted dot products, represented

by a polynomial of d coefficients, are returned to the requester.

Then, the requester needs to decrypt zm encrypted dot products.

This results in high computational overhead at the server and the

requester, and high bandwidth consumption between the requester

and the server.

Optimized protocol: To reduce the high computational over-

head of the baseline protocol, we propose the following optimiza-

tions. First, for a worker wi , the number of encryptions can be

reduced frommq to q as follows. Let matrix Fwi store them feature

vectors, each with q dimensions. To encrypt the feature vectors, we

first generate a polynomial from each row of the matrix, to have q
polynomials, each storingm feature values. Then, the requester’s

public key is used to encrypt the q polynomials. Thus, we only have

q encryptions.

Second, at the server, we pack the ciphertext to compute the dot

product in parallel for all zm feature vectors, hence reducing the

computational overhead. After computing the dot products, only a

single encrypted polynomial is returned to the requester and hence

reducing the bandwidth consumption. The requester decrypts it to

get a polynomial of degree d , where each coefficient represents a

dot product value. More specifically, the ciphertext is packed into

q polynomials. For a polynomial, each coefficient represents an
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element of different feature vector. Thus, to independently compute

the dot product of each feature vector with that of the target, we

need coefficient wise homomorphic operations. Polynomial addi-

tions are naturally coefficient wise, but polynomial multiplications

result in convolution product of the coefficients. To transform con-

volution products into coefficient wise products on rings, we use

the Number Theoretic Transform (NTT) which is a discrete Fourier

transform specifically for finite rings. To transform convolution

products on the encrypted polynomials into coefficient wise prod-

ucts on the plaintext polynomials, we apply an inverse-NTT to

plaintexts before encryption, and then an NTT to the plaintext

after decryption. These transformations do not affect polynomial

additions as they are linear transformations.

Third, encrypting/decrypting captured images with SHE in-

volves computations of many polynomials, and hence inefficient.

To address this problem, we use a hybrid approach, where images

are encrypted and decrypted using AES symmetric-key, and only

the short AES key is encrypted and decrypted using SHE.

Figure 2 shows the protocol, which is described as follows.

(1) The requester generates a SHE public and private key pair, de-

noted as pk and sk . Then, she extracts the feature vector of the
target with q dimensions, denoted by ft. Each element of the fea-

ture vector is represented by a polynomial of degreed as follows.

For each f ti , we have p
t
i =

∑d−1
j=0 f ti X

j . Inverse-NTT (NTT−1)

is applied to the polynomials and result is encrypted with pk,

i.e., cti = SHE.Enc(pk,NTT−1(pti )), and c
t = [ct0, ..., c

t
q−1]. Then,

pk, and ct are sent to the server.

(2) After notifying the participant workers, the server broadcasts

the public key pk and a random indexwi to each participating

worker.

(3) Worker wi extracts the matrix Fwi which represents the fea-

ture vectors of detected faces in the captured photos. Each

row of the matrix Fwi is represented by a polynomial, i.e.,

pwi

i =
∑m
j=0 F

wi

i j X
wi+j . Similar to the requester, the inverse-

NTT is applied to the polynomials and the result is encrypted

with pk; i.e., cwi

i = SHE.Enc (pk,NTT−1(pwi

i )). In addition, she

encrypts each captured image Ij
wi using AES symmetric key

ks as follows: v
wi

j = AES.Enc(ks , I
wi

j ), and encrypts ks using

pk, i.e. cwi

ks
= SHE.Enc(pk,ks ). Then she sends to the server the

following: cwi , vwi , cwi

ks
, and a matrix that maps each image to

its extracted feature vectors denoted by M.

(4) For each dimension i of the q dimensions of the feature vectors,

the server packs all z workers’ ciphertexts by adding them, i.e.

cwi =
∑z−1
j=0 c

w j

i . Then it computes all encrypted dot products in

parallel as follows: cprod =
∑q−1
i=0 c

t
i .c

w
i , and sends cprod and

M to the requester.

(5) The requester decrypts cprod and applies NTT to get a poly-

nomial with a dot product for each coefficient, i.e., pprod =

NTT(SHE.Dec(sk, cprod )). The feature vectors with dot product

value larger than a threshold ϵ , matches that of the target, and

will be selected. Then she usesM to find the indices of the images

containing these feature vectors, denoted as {σ0, ...,σk−1}. To
securely retrieve these k images, she initiates oblivious transfer

protocolOT kn with the server with system parameters (д,h,Gr ).

(6) The requester constructs a polynomial function of degree k :

f ′(x) =
∑k−1
i=0 bix

i + xk , where f ′(i) = 0, iff i ∈ {σ0, ...,σk−1}.

Then she generates a randompolynomial f (x) =
∑k−1
i=0 aix

i+xk

which is used to compute l = [l0, ..., lk−1], where li = дaihbi .
Then she sends l to the server.

(7) For each image i , the serve computes ri = l0l
i
1...l

ik−1

k−1
(дh)i

k
,

generates a secret key ki , and encrypts the image using a hybrid

approach. The hybrid approach first encrypts the image using

AES encryption key si , i.e., ui = AES.Enc(si ,vi ), and encrypts

si using the public key, i.e., ci = (дki , sir
ki
i ). The server sends

the following to the requester: the encrypted images u, the

encrypted symmetric keys c and the encrypted symmetric keys

cks .

Finally, for every index in {σ0, ...,σk−1}, the requester can get

the symmetric key sσi by computing sσi = sσi r
kσi
σi /дkσi f (σi ). The

selected images uσi can be decrypted with the symmetric keys sσi ,
cwi

ks
, and the SHE private key sk .

3.2.3 Privacy Analysis

In this section, we present an analysis of our privacy preserving

protocol in order to show its effectiveness in preserving the privacy

of the target and the bystanders.

The SHE scheme relies on the hardness of the Ring Learning

with Errors problem [23], and hence provides strong security guar-

antee. Thus, the server with a SHE public key can not learn the

feature vectors of the target and bystanders from the ciphertext. In

addition, the SHE scheme provides semantic security which means

that it is not computationally possible to know if two different

ciphertexts are obtained from the same plaintext. Therefore, the

server cannot learn extra information from the requester and work-

ers’ encrypted feature vectors. Moreover, the server cannot infer

target location, although it knows workers’ locations where cap-

tured photos are taken. This is because the server does not know

the dot product values, i.e. the server does not know which photos

may include the target. If it knows such information, it can infer

which worker captures the target, and hence can know the target

location.TargetFinder was presented under the assumption that

the sever is honest-but-curious, however, with some minor modi-

fications, it can be resistant to some active attacks performed by

the server. In the case where server is malicious, it can perform

man-in-the-middle attack in order to obtain the feature vectors

of bystanders. The server can perform the attack by constructing

SHE public and private keys, and provides the constructed public

key instead of requester’s SHE public key to workers. In this case,

server can decrypt workers’ encrypted feature vectors. However,

this attack can be detected by allowing workers to communicate to

requester to check that requester’s SHE public key was not altered.

In our system, a requester with SHE public and private key can

decrypt any SHE ciphertext. The requester is given only encrypted

dot product results, and hence cannot use it to infer feature vec-

tors of bystanders. Moreover, using oblivious transfer protocol, the

requester can learn only the matched photos, and not any other

photos. In the case where requester is malicious, he can manipulate

the photo selection threshold. By lowering the threshold, he can

allow the selection of many photos that may not contain the target,
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and hence breach the bystanders privacy. However, we assume

requesters follow the protocol correctly.

Finally, in TargetFinder, workers do not receive any target infor-

mation, and they do not know whether the captured photos include

the target as the requested photos by the requester are unknown

to them. Hence, they cannot learn the identity of the target and

cannot discover his location.

3.2.4 Implementation Issues

In order to implement SHE on smartphone, we port the Java Lat-

tice Based Cryptography (jLBC) [1] library to Android. However,

the jLBC library runs very slow on Android which severely affects

the performance. SHE requires polynomial additions and multipli-

cations. In jLBC, the addition of two polynomials of degree d can

be done in O(d) time, but the multiplication of two polynomials

takes O(d2) time, which is too long.

We propose the following optimizations to speed up the SHE

implementation. First, we speed up polynomial multiplications by

implementing NTT to reduce the time complexity from O(d2) to
O(d logd). Although the NTT algorithm can be found in [11, 27],

we implement it in Java and port it to Android. Second, we use

the BigInteger implementation from OpenJDK 9.0, which has a

major improvement on the speed of multiplication of BigInteger
numbers. To further speed up SHE, we use multiple threads to

encrypt multiple polynomials simultaneously.

To implement the oblivious transfer protocol on smartphone,

we compute the coefficients of the polynomial with roots equal to

the selected indices using the Efficient Java Matrix Library (EJML),

and use the Bouncy Castle [2] cryptographic library for the AES

implementation.

On the server side, we implement SHE in C++ and use the NTT-

based Fast Lattice library (NFLlib) [9]. We implement the oblivious

transfer protocol and use the MPI library provided by libgcrypt [4]

for both big integer and prime number operations. We use the AES

implementation in libgcrypt.

4 PERFORMANCE EVALUATIONS

In this section, we use a real world demo to show how TargetFinder

works, and evaluate the performance of the two major components:

image processing and privacy preserving target search.

4.1 Experimental Setup

We implement the TargetFinder mobile app on Android, and de-

velop a Sinatra application on the server. The server is run on a

desktop with an Intel i7 processor and 32 GB RAM, and the mobile

app is deployed on LG Nexus 5X and Samsung Galaxy S8 smart-

phones. Figure 3 shows the user interface of TargetFinder.

The following parameters are used in our privacy preserving

protocol. For SHE, parameters are chosen to ensure at least 128-bit

security. The polynomials are of degree d = 4096, with coefficients

of size log2 p = 124 bits, and the plaintext feature elements are of

size log2 t = 23 bits. For the oblivious transfer protocol,Gr is set to

be the group of quadratic residues modulo a safe prime r , and all

operations are modulom. r andm are set to 1024 bit. For the AES

encryption, we use a symmetric key of size 128 bit.

(a) Task Creation (b) Task Notification

Figure 3: TargetFinder User Interface.

Table 2: Details of the datasets

Dataset
Number Number Category Number

name of tasks of images of faces

Campus 8 447

With target 71

Without target 479

Total 550

Mall 8 460

With target 67

Without target 876

Total 943

Downtown 8 492

With target 74

Without target 1171

Total 1245

All 24 1399

With target 212

Without target 2526

Total 2738

We recruited 11 graduate students and 3 undergraduates to use

our TargetFinder mobile app. Students use our mobile app to take

videos/images when they stand still or sit in any public place, and

there is no significant difference from normal smartphone users. In

many cases, the bystanders do not know whether the workers are

taking videos/images, or just reading news. Three datasets were

collected based on the following three location areas: university

campus, shopping mall and downtown. At each location area, eight

tasks are created. For each task, we record all interactions between

the workers and the TargetFinder app. When a worker starts record-

ing a video, Frame Selection is used to select the frame with the

highest number of detected faces. When the video recording fin-

ishes, all selected video frames (with resolution of 1920 × 1080)

are uploaded to the server. We manually label the faces into two

categories: targets’ faces and irrelevant faces. Those labeled faces

are used as the ground-truth for our experiments. The details of

the three datasets are provided in Table 2.



IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada Youssef Khazbak, Junpeng Qiu, Tianxiang Tan, and Guohong Cao

Figure 4: A real world demo

4.2 Worker Selection

In TargetFinder, the selection of workers to perform the task is

a challenge. There may be a large number of candidate workers

around the searching area and asking all of them to perform the

task has high cost. Hence, we design a worker selection scheme

that selects a subset of workers to complete the task.

TargetFinder asks a requester to provide some information about

the target such as possible target locations and the probability of

the target being at each location. Such information can be obtained

based on application knowledge. For example, in law enforcement,

the police know the possible locations that the suspect will appear.

In our system, a worker covers a square area centered at his lo-

cation, where points closer to the center have higher probability

of being covered, i.e., less likely to be occluded. Thus, the worker

coverage and target location are represented by a discrete proba-

bility distributions. In TargetFinder, each task has a budget which

is the maximum payment that a requester is willing to pay for the

task, and each worker receives a payment after executing the task.

The described worker selection problem can be easily proved to be

NP-hard. Specifically, the 0-1 Knapsack problem can be reduced to

the worker selection problem.

Hence, we propose a greedy algorithm to solve the following

optimization problem: how to select a limited number of workers to

maximize the probability of finding the target. Initially, we consider

all workers that are located within the target area. Workers are

ordered by their probability of finding the target, and the worker

with the highest probability is selected. Then all remaining workers

are reconsidered to select the next worker. Specifically, we consider

each candidate worker along with the already selected worker to

calculate their total probability of finding the target, and the one

with the highest total probability is selected. It is important to jointly

consider the remaining workers and the already selected worker

because their coverage can overlap. The selection process continues

until the payment needed for the selected workers exceeds the total

payment, or no more worker is left.

4.3 A Real-World Demo

Figure 4 illustrates how TargetFinder works. A task is created by

a requester who wants to search for her friend on the university

campus, and she is willing to pay at most $40 for this task. She has

a photo of her friend, and she also knows that he may be located in

one of the following locations on campus: student center, library,

and cafe. By default, her friend’s photo is considered as sensitive

information that should be protected. To help search for the target,

she provides extra information about the target; i.e., a guy wearing

glasses.

After the server receives the task, it selects three workers: A,

B, and C, based on our worker selection algorithm. As shown the

Figure 4, Worker A is located in the cafe, Worker B is located in

front of the library, and Worker C is inside the student center.
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(a) OpenCV (b) Android SDK

Figure 5: Precision and recall of different face detection approaches on different image resolutions

After selecting these workers, the server notifies them by pushing

a notification to their mobile devices.

After receiving notifications, the workers accept the task, open

the camera interface provided by TargetFinder mobile app, and

starts capturing videos of their surrounding area. Workers A and B

completed the task at 2 : 13 PM, while Worker C completed the task

at 2 : 14 PM. Then, the privacy preserving target search protocol is

run to search the target from the captured photos (selected video

frames). Four matched photos are found that include the target

face. These matched photos are received by the requester at 2 : 16

PM. Note that the workers and the server cannot see these photos

since they are encrypted, and the requester can only see these four

matched photos, not other captured photos.

As a comparison, Figure 4 also shows that the random worker

selection algorithm is used to select three workers: A’, B’, and C’.

As can be seen, these workers are not close to the target. Therefore,

their captured images do not include the target and they can not

find the target.

4.4 Performance of Image Processing

In this subsection, we evaluate the performance of image processing,

which has three main components: face detection, face preprocess-

ing, and feature extraction.

As shown in Table 3, to process a single image with one face on

a Nexus phone, the average running time is 0.486 + 0.172 + 0.826 =

1.484s.

Table 3: Running time of image processing

Detection Preprocessing Feature Extraction

(ms) (ms) (ms)

Nexus 486 172 826

S8 92.4 137 440

4.4.1 Face detection. Table 4 shows how the performance of the

face detection can be affected by different image resolutions. In

order to get the measurements, we scale the images of the datasets

into different resolutions, and measure the average running time

on images with different resolutions. As can be shown, when the

image resolution increases, the running time increases.

Table 4: Running time of face detection on images with dif-

ferent resolutions

Image resolutions Nexus (ms) S8 (ms)

640 × 360 331 16.7

960 × 540 354 28.7

1280 × 720 370 48

1920 × 1080 486 92.4

Figure 5 shows the precision and recall of different face detection

approaches on our dataset, where Precision = true positives/(true

positives + false positives), and Recall = true positives/(true pos-

itives + false negatives). Although both precision and recall are

important, it is hard to achieve both. For our application, missing a

target (false negatives) is much worse, and then recall is more im-

portant. However, the recall of Android SDK is too low compared to

that of openCV, thus we choose openCV in TargetFinder. As shown

in the figure, as the image resolution increases, more faces can be

detected, but the number of false positives increases faster than the

number of true positives, and hence the precision decreases and

the recall increases.

4.4.2 Feature extraction. Figure 6a compares the performance of

Light CNN and Eignfaces. In the comparison, both approaches are

used to extract feature vector of the target face and that of the

captured faces. The extracted feature vectors are used to run face

recognition to identify the target face in the captured faces. As

shown in Figure 6a, Light CNN significantly outperforms Eignfaces.

With true positive of 95%, the false positive of Light CNN is only

0.02%, but it is about 70.0% for Eigenfaces. Thus, we choose Light

CNN in TargetFinder.

Figure 6b illustrates the effect of feature vector dimension on

the performance of face recognition. when the true positive rate

is set to be 0.99, the false positive rate for 64-dimension vectors

and 32-dimension vectors are 0.08 and 0.25 respectively. Thus, we

choose 64-dimension feature vector in TargetFinder.
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(a) Light CNN and Eigenfaces. (b) Feature vectors with different dimension (c) Light CNN with different face image size

Figure 6: The performance of face recognition.

Table 5: Performance of SHE (per feature vector)

Protocol Phone
Key generation Encryption Decryption NTT NTT−1

(ms) (ms) (ms) (ms) (ms)

Baseline
Nexus 6995 106960 2250 180 183

S8 315.7 36416 650 84 96

Optimized
Nexus 6995 2139.2 2241 180 183

S8 315.7 728.32 642 84 96

Table 6: Performance of oblivious transfer protocol

k n

Requester
Server

Nexus S8

Setup Dec. Setup Dec. Enc.

(ms) (ms) (ms) (ms) (ms)

2 100 9.9 85 6.5 50 560.7

10 100 28.2 213.5 11.7 82.71 637.7

10 500 28.2 213.5 11.7 82.71 3381

100 500 173 1226 70.78 260.63 53035.5

Table 7: Performance of AES

Image
Smartphone

Server

resolution
Nexus S8

Enc. Dec. Enc. Dec. Enc.

(ms) (ms) (ms) (ms) (ms)

640 × 360 38 43.9 37.1 39.3 1.75

960 × 540 81.3 85.9 70.8 73.6 3.78

1280 × 720 145.1 155.3 113.7 121.7 6.72

1920 × 1080 315.5 398.2 245.35 261 16.17

Figure 6c shows the impact of face image size on the ROC curve

of face recognition. We select face images larger than 100×100, and

downsample them into sizes of 100 × 100, 80 × 80, 60 × 60, 40 × 40

and 20 × 20. Then all face images are resized to 128 × 128, which

is the input image size of the Light CNN. As shown in the figure,

the accuracy of face recognition is similar when the image size is

larger than or equal to 40 × 40. However, the accuracy significantly

drops when the face image size changes from 40 × 40 to 20 × 20,

for example, with the true positive rate of 90%, the false positive

rate increases from 16.02% to 41.2%. Thus, the parameters in our

face detection are tuned to only allow faces with image size equal

to or larger than 40 × 40 to be detected.

4.5 Performance of the Privacy Preserving
Target Search

In this section, we evaluate the computation and communication

overhead of our privacy preserving protocol.

4.5.1 Computational Overhead. Table 5 shows the running time of

the major operations of the privacy preserving protocol. As shown

in the table, the optimized protocol outperforms the baseline proto-

col in encrypting and decrypting the feature vectors. For example,

on S8, the optimized protocol encrypts the feature vectors with

running time of 728.32 ms per feature vector, whereas the baseline

protocol encrypts the feature vectors with running time of 36416 ms

per feature vector. The optimized protocol is more efficient, because

it packs the feature vectors into much less number of polynomials

compared to the basic protocol.

Table 6 shows the computation time of the oblivious transfer

protocol, where n is the number of images captured by the se-

lected workers, and k is the number of images selected by the

requester. The setup operation includes constructing and hiding

the k-degree polynomial function. As k increases, the computation

time increases, because the setup, encryption and decryption op-

erations depend on k . We also observe that the computation time

on S8 is less than that on Nexus, because S8 has higher processing

and memory capabilities. Based on our data collection experiments,

k is in the range of 2 − 10 images. Thus, the computational time

of our protocol on the server side may be up to 3381 ms, which is

acceptable in our system.
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Table 7 shows the computational time of AES on images with

different resolutions. For different image resolutions, the computa-

tional time varies. By increasing the image resolution, the compu-

tational time increases. Compared to SHE, the computational time

of AES is quite small which motivates our design choice of using

AES scheme to encrypt and decrypt long images data.

Table 8: Communication Overhead of SHE (per 50 feature

vectors)

Scheme

Requester Worker

Upload Download Upload Download

(KB) (KB) (KB) (KB)

Baseline 8060 9316 396940 124

Optimized 8060 202 8076 124

4.5.2 Communication Overhead. Table 8 shows the communica-

tion overhead of SHE. In the optimized protocol, workers upload

less amount of data compared to the baseline protocol, because

workers in the optimized protocol pack feature vectors in less num-

ber of polynomials which reduces the communication overhead. In

addition, the download data size is also reduced in the optimized

protocol. In the baseline protocol, for z workers each withm fea-

ture vectors, requesters need to download all the zm encrypted dot

products of size 9316KB. In the optimized protocol, requesters need

to download only one polynomial of 202KB, which includes the dot

products of all feature vectors.

Note that our optimized protocol is based on reducing the num-

ber of encryptions, packing the ciphertext, and usingAES symmetric-

key for encryption/decryption of images. As these optimization

techniques do not include any approximations or changes on the

original plaintext, it has the same accuracy as the baseline protocol.

5 RELATEDWORK

Recently, researchers have built systems to crowdsource photos

and videos from mobile devices such as Mediscope [18], GigaSight

[33], SmartPhoto [42, 43], VideoMec [41], FlierMeet [14], and Se-

cureFind [35]. With these mobile crowdsourcing systems, privacy

concerns are becoming more and more important, and researchers

have proposed privacy preserving techniques to mitigate such con-

cerns [19, 20, 22, 37]. To et al. [37] presented a framework to protect

the location privacy of the workers participating in crowdsourc-

ing tasks. In [22], a privacy preserving scheme was proposed to

hide workers’ identities by ensuring that the server cannot link

any submitted task to the reporting worker, or link multiple tasks

submitted by the same worker. In [35], the authors proposed a

privacy-preserving object-finding system via mobile crowdsourc-

ing. In their system, a unique Bluetooth tag is attached to every

valuable object such as personal asset, child, pet, or elderly, and it

is used to help workers to find the object. However, their solution

depends on special hardware, e.g., Bluetooth tags, which is not

possible in our system since the suspect will not wear such special

tags. Different from them, TargetFinder searches targets utilizing

efficient image processing techniques that can run on resource con-

strained devices while preserving the privacy of the target and the

bystanders.

Preserving the privacy of bystanders has been studied for surveil-

lance cameras [13, 24, 30, 32]. In [30, 32], the authors proposed

privacy preserving solutions to hide faces of bystanders, while al-

lowing the detection of their actions and movements. In [24], the

authors consider more general case of hiding region of interests

which include privacy-sensitive information. However, most of

these solutions are proposed for fixed infrastructure where the

privacy preserving algorithm is run on powerful servers.

Researchers have considered content-based modification of cap-

tured images or video frames, guided by a privacy policy to preserve

individual privacy preferences [8, 39]. In [8], the authors proposed

I-Pic, a platform for privacy preserving image capture, which al-

lows users to respect each others’ individual privacy preferences,

while capturing photos. In I-Pic, captured images are automatically

modified according to the privacy choices of individuals captured.

When a user chooses to hide his face, I-Pic modifies the captured

image to blur that user’s face before sharing the image. In [39],

the authors proposes a mechanism for preserving the privacy of

bystanders in video streams by selectively blurring faces accord-

ing to specified policies. However, these works assume that each

capturing device is associated with a trusted cloudlet to run com-

putation intensive tasks, which may not always be available and

many users may not trust these cloudlet. Hence, offloading the

processing of captured images or video frames, which may contain

sensitive information, to the server/cloudlet may not work well.

Moreover, none of them considers the problem of target search, and

do not have the requirement of preserving the privacy of targets

and bystanders.

To enable efficient privacy preserving target search on mobile

devices, optimized image processing techniques are explored. Face

detection and face recognition have been studied for many years

in the computer vision community [21, 44]. Most of the state of art

algorithms [17, 26, 28, 31, 34] use CNN to improve the accuracy.

However, CNN models usually stress the mobile devices by occupy-

ing a large amount of memory space and taking much longer time

to execute. To address these issues, some researchers propose light

weight solutions such as Light CNN[40], and binarized neural net-

work (BNN) [15][36]. In BNN, the authors considered only binary

numbers for the weights in the neural network, so that the running

time and the memory requirement can be reduced, while the per-

formance is sacrificed. The authors in [40] proposed a Light CNN

model which is suitable for mobile devices. Although we use Light

CNN for extracting feature vectors, our goal is to combine it with

our privacy preserving protocol, and thus we have to optimize its

performance when combining with the cryptographic primitives.

6 CONCLUSIONS

In this paper, we presented the design, implementation, and evalu-

ation of TargetFinder, which can be applied for finding interested

targets (e.g., suspect) privately anytime and anywhere. We pro-

posed a privacy preserving protocol to protect the privacy of the

target and the bystanders, and proposed efficient image processing

techniques that can run on mobile devices. The proposed tech-

nique allows the requester (e.g., the police) to receive images of the

target, while all other captured images of the bystanders are not

revealed. Moreover, the target’s face image is not revealed to the
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server and the participating workers. Due to the high computation

overhead of the cryptographic primitives, we proposed several opti-

mization techniques in order to run our privacy preserving protocol

on mobile devices. Through real world deployment and extensive

performance evaluations, we have demonstrated the effectiveness

of TargetFinder on privately locating targets through IoT cameras.
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