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Abstract
This paper presents the research challenges of designing a combined physical sensor- and social sensor-based information 
framework to collect heterogeneous flooding disaster data, and then to fuse those data and generate actionable understand-
ings. Our overall objective is to improve the response preparedness of critical infrastructures, contributing to the goal of 
smart and connected communities. We propose methods to model physical and social sensors, and open demographic data 
integration with regional knowledge, and to leverage these fused data for understanding impending events and conditions 
deleterious to lives and properties. In addition, the proposed system will predict the disaster events and provide knowledge-
based recommendations to inform emergency management personnel to enable the resilience of the smart and connected 
communities. Preliminary experiments for the framework are promising. Further work is needed to validate the framework 
in collaboration with the local emergency managers.

Keywords  Sensors · Flooding disaster resilience · Smart and connected communities · Emergency management · Flood 
vulnerability index

1 � Introduction and background

Although currently the coastal communities in United States 
get real-time notification from National Oceanic and Atmos-
pheric Administration (NOAA) weather radio alerts, they 
also rely heavily on forecasts from local media for disaster 
mitigation efforts. With respect to situational information, 

local eyewitness reports and social media (such as Facebook 
and Twitter) are also used in an ad hoc manner. City and 
county governments also have mass notification systems, 
which allow them to make phone calls to large areas with a 
recorded message. However, there is no intelligent and auto-
mated information and communication framework in place 
to send the right message out quickly and to the majority 
of the affected people. Effectively combining the data from 
multiple sources, such as physical sensor data, social sensor 
data, and geo-model prediction products, will produce the 
most complete and high-quality information available. As a 
flooding condition develops, this information can go out as 
mass messages to everyone signed up for alerts though social 
media or phones, so they can respond appropriately to the 
emergency situation.

This paper explores the research challenges of design-
ing an information framework that couples physical sensors 
with the social sensors to collect heterogeneous flooding 
disaster data, and then to fuse that data and generate action-
able understandings. The goal is to improve the response 
preparedness of critical infrastructures, contributing to the 
goals of smart and connected communities.

In this paper, we explore methods to fuse social sensor 
data, physical sensor data, and open demographic data with 
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regional knowledge, and leverage the fused data for under-
standing and predicting impending disaster events. The pro-
posed framework provides knowledge-based recommenda-
tions to inform county and city emergency managers. These 
recommendations will be validated by collaborating with 
emergency officials and participating in their functional 
exercises.

The proposed work contributes to the literature in the fol-
lowing ways: (a) it advances the research on design of com-
putational frameworks for integrating heterogeneous streams 
of uncertain data (including social sensor data, weather data, 
and environmental sensor data) into actionable situations. 
(b) These actionable situations will serve in a generic mod-
eling framework that allows community emergency manage-
ment professionals to model situations of interest and raise 
alerts based on the vulnerability index generated in real time. 
(c) Numerical weather prediction (NWP) in coastal environ-
ments suffers a lack of adequate ground-truth observational 
data to realistically initialize the geo-models and validate 
their results. The physical sensor and social sensor modeling 
suite proposed in the framework allows for more accurate 
detection and prediction of disastrous weather events and 
their interactions occurring in the complex coastal environ-
ment. (d) The utility of this model suite will help advance 
the science of coastal and marine systems, especially with 
respect to the novel attempt to extract STTPoint (spatiotem-
poral-thematic-point) human activity information collected 
from social media to improve numerical geo-models.

Rest of the manuscript is organized as follows. Sec-
tion 2 describes the related work in the literature. Section 3 
describes the research objectives. The proposed framework 
is presented in Sect. 4. And Sect. 5 discusses the research 
challenges. Section 6 shows the preliminary experimental 
results. Section 7 recommends future works. Finally, the 
summary and conclusion are presented in the Sect. 8.

2 � Related work

Work on understanding evolving situations has been under-
taken in multiple areas including pervasive/ubiquitous com-
puting [33], situation awareness [46], middleware systems 
[23, 24, 43–46], Geographic Information Systems (GIS) [36, 
37, 43–45], sensor networks [40, 46–49], active databases/
complex event processing [1], multimedia processing [35], 
data fusion [9], mobile information systems [19], web data 
mining [5, 18], social computing [10, 41], and mash-up com-
puting [4, 12]. Each area, however, has its own perspective 
[11, 27]. For example, the field of GIS has created multiple 
sophisticated tools for geo-physical data analysis. How-
ever, temporal aspects and personalized control have been 
oversighted in these efforts. Active Database and Complex 
Event Processing efforts on the other hand focus on real-time 

streaming data (e.g. stock prices [1]) but neglect the role of 
geo-space. Rather than identifying the similarities and dif-
ferences from each specific field, we focus on building upon 
and extending the efforts in all these areas. Specifically, our 
focus is on the aspects that have been rapidly changing in the 
last few years: (1) geo-temporal data; and (2) their real-time 
availability at a wide scale.

GIS and data science have been applied for remote sens-
ing [32], weather prediction [20], disease surveillance [31, 
42], and business location analysis [48]. Multiple sub-fields 
within GIS have also developed newer geo-spatial data mod-
els [15], geo-information retrieval techniques [29], spatial 
information processing techniques [43, 47], and integrated 
toolkits to visualize and analyze geo-temporal data [34]. 
However, processing real-time streaming data is still rare 
in this field, though expected to become more mainstream 
soon [28, 44]. There is also a growing trend to design tools 
and techniques to understand real-world situations. While 
mining search logs, weblogs [5, 45, 46] and microblogs 
[41] have been shown to be useful for predicting flu spread 
[18] and earthquakes [41], there is also a growing interest 
in defining generic frameworks that allow users to visualize 
and analyze their own data of interest [26, 39]. The proposed 
work advances the state-of-the-art in designing such generic 
frameworks with a specific focus on emergency recognition. 
Numerical geo-models play an important role in modern 
natural hazard forecasting. A coastal flooding is a complex 
weather event that involves the components of atmosphere, 
ocean, estuaries, and rivers. The following are examples 
of the widely used state-of-the-art geo-models that simu-
late and predict the above-mentioned components: (a) the 
atmospheric component of Weather Research and Forecast-
ing (WRF) [73]. The WRF modeling is a numerical weather 
prediction and simulation non-hydrostatic primitive equation 
model with comprehensive atmospheric physics parameteri-
zation schemes that are used worldwide to simulate and fore-
cast a wide range of weather events including hurricanes and 
severe rainfall events. (b) The oceanic of Regional Ocean 
Modeling System (ROMS) [72]. ROMS solves 3D primitive 
equations that are used widely to study how a given region of 
the ocean responds to physical forcing such as strong winds. 
This free surface model is suitable for simulating the SLR 
and hurricane caused the storm surge and inundation. (c) The 
surface wave model Simulating WAves Nearshore (SWAN) 
[8]. SWAN is a third-generation wave action model designed 
for coastal regions. It uses typical formulations for wave 
growth by wind, wave dissipation by white-capping, and 
four-wave nonlinear interactions (quadruplets or ‘‘quads’’). 
It also includes physical processes associated with shallow 
water such as bottom friction and depth-induced wave break-
ing. (d) Delft3D [13]. The Delft3D model simulates and pre-
dicts the flows, waves, sediment transports, morphological 
developments and ecological processes in estuaries, inlets, 
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lakes, and rivers. Three-dimensional unsteady flow and 
transport phenomena resulting from tidal and meteorologi-
cal forcing are simulated in Delft3D by solving the shallow-
water hydrostatic pressure equations.

These models sample the state of the fluid (air and water) 
at present time (initial condition) and numerically integrate 
the governing equations of fluid dynamics and thermody-
namics to predict the state of the fluid in a future time. An 
accurate initial condition is key to an accurate prediction. 
The process of incorporating observational data into the 
model initial condition is called data assimilation. Obser-
vational data routinely used by operational weather models 
include the radiosonde data (launched by weather balloons) 
and satellite data. In recent years, computing power has 
been increasing rapidly, but the observational data that can 
be used to initialize geo-models have lagged, especially for 
coastal areas, where the weather events are affected by the 
conditions of the ocean, whose observational stations are 
scarcer than on land. In this paper, we attempted to address 
this issue of inadequate observational data by adding the 
data extracted from a more diverse range of sources, includ-
ing social sensors.

For situation awareness, Ye et al., described the nature 
and characteristics of different complex situations and dis-
cussed the challenges of situation identification [51]. In 
addition, they reviewed the techniques most widely used in 
modeling and inferring situations from sensor data [51]. In 
a related work, A. Coronato and G. De Pietro [52] proposed 
situation calculus-based approach for the situation aware-
ness, whose outcome is to detect abnormal behaviors of 
cognitive impaired individuals when they are in situation-
aware smart spaces. Similarly, McCarthy proposed a formal 
theory-based software, that can decide actions based on situ-
ations [53]. In his report, McCarthy gave several examples 
of how the goals can be achieved based on deduction from 
situation descriptions [53]. In a related work, Coronato et al., 
proposed formal models to study their appropriateness for 
specifying and verifying socio-technical collective adaptive 
systems (CAS) in the wake of CAS heterogeneous parts’ 
complex and unexpected abnormal behavior [54]. Endsley 
proposed the concept of user-centered design in a book on 
situation awareness [55], which defines the concept of situ-
ation awareness (SA), how to determine SA requirements 
and how to automate it.

With respect to designing reflective neural networks 
(RNN) for metacognition and reflectivity, deep learning 
auto-encoders utilize a structure similar to the one presented 
in this paper. But their research application focuses on 
unsupervised learning of convolutional features for generic 
detection tasks [68, 71]. Anomaly detection has also been 
addressed through auto-encoders [69, 70]. One related work 
by Sun et al. proposes how metacognitive processes rep-
resented by the experimental data may be captured within 

a cognitive architecture [56]. Researchers from Nanyang 
Technological University, Singapore, have developed neu-
ral network-based metacognitive learning algorithms for 
the metacognitive learning framework [57, 59, 63, 66, 67]. 
Neural networks and metacognitive learning have been uti-
lized for applications such as traffic flow prediction [58], 
improved perturbation tolerance [61], human action recog-
nition [62], symbolic anomaly detection [64], autonomous 
robot control [65], and remaining useful life estimation [66]. 
Another related work by Yeh and Lo [60] present a neu-
ral network model that assesses automatically the learner 
metacognitive knowledge level by observing his/her online 
browsing behavior. As per our literature review, there is no 
particular work that applies RNN for metacognition from a 
disaster resilience application perspective.

3 � Research objectives

Based on the knowledge gaps discussed in the previous sec-
tion, our goal is to propose a framework to improve decision-
making for emergency management scenarios with heteroge-
neous data sources via a prototype of the disaster resilience 
information framework. Our specific objectives are to:

1.	 Define and design a novel framework to collect, repre-
sent, and fuse uncertain heterogeneous real-time disas-
ter-relevant data for situation recognition and prediction 
of future events.

2.	 Define and develop a current and near future Flood Vul-
nerability Index (FVI) for a given geographic area that 
is updated real time by the proposed framework.

3.	 Deploy, run pilot experiments, validate, and refine the 
above framework and FVI by working in close collabo-
ration with the city and county emergency management 
department.

4 � Proposed disaster resilience framework

Our proposed framework is as shown in Figs. 1 and 2. Fol-
lowing are some of the major components of the proposed 
framework.

Figure 1 shows the proposed framework for flooding 
event situation recognition. As shown in Fig. 1, the input to 
the framework comes from human sensor/actuator, device 
sensors and stored data. The core of the framework consists 
of spatiotemporal aggregation, situation detection opera-
tors and situation-based controllers. The output from the 
framework can be analyzed by analyst and the personalized 
response can be given back to human actuator.
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Figure 2 shows the workflow for situation recognition. 
As seen in Fig. 2, several raw data streams are aggregated 
to form STT data, which are then transformed to Emage.

The operations are then performed on Emage to define 
situations through symbolic representation [21].

4.1 � Input data from multiple sensors

Building toward generic cyber-physical situation awareness 
requires identification of different types of relevant data. 
Different data representation categories [50] have been pro-
posed in the past, each relevant to the usage context. We 

propose the following data types required for real-time geo-
physical situation recognition:

1.	 Stored data: this includes textual data, databases, audio, 
video content, sensor readings, and curated geographic 
data such as maps and cartographs.

2.	 Live sensor readings:

(a)	 Regional remote-sensing sensors: these are the 
sensor data whose coverage area is best repre-
sented as a geographic region such as satellite and 
radar observation.

(b)	 Point sensors:

Fig. 1   Proposed framework for situation (flooding event) recognition

Fig. 2   Workflow for situation 
recognition
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	 I.	 In situ device: these are the physical sensor data 
whose coverage area is best represented as a 
geographic point such as weather station.

	 II.	 Human: these are ‘abstract sensors’ who report 
observations as a single point. Human reports, 
such as tweets, tend to be more semantic and 
biased.

4.2 � Data representation

A data representation needs to be identified that can inte-
grate information coming from different information 
sources, each of which might have been created by a differ-
ent agency with a different original purpose. The framework 
focuses on data representation with space, time and theme, 
which is grounded in the real world. Space and time are con-
sidered as fundamental axes for designing different aspects 
of the framework (including data representation, operators, 
and building blocks). This draws upon the basic nature of the 
physical world and builds on the concepts from the fields of 
GIS, cartography, satellite sensing, and location-based com-
puting [38]. All incoming data of interest can be converted 
to and represented in a common STT (space, time, theme) 
format: STTPoint = <geo-coordinate, time-coordinate, 
(theme, value)>. All point sensors observe a particular value 
for an application-relevant attribute (theme) at a certain spa-
tiotemporal coordinate. This representation can be used to 
capture data ranging from traffic speeds, to air quality level, 
twitter mentions, and crime reports. Region sensors record 
values for a theme from a spatiotemporal region, but they 
can be considered as a collection of STTPoints observed ‘in 
a batch’. For example, a satellite observed geo-image can be 
considered as a set of pixels (STTPoints) observed together. 
Hence, the regional observations can be used to derive val-
ues for points within its coverage.

The framework considers E-mages [47, 48] and E-mage 
Streams [17] as its data model. An E-mage is a grid-like 
data structure, each cell of which captures a value associ-
ated with a particular application theme (e.g. temperature, 
number of flu cases) at a spatiotemporal coordinate. The 
use of a grid is based on the understanding that grids are the 
fundamental data structure used by humans to understand 
and analyze spatial data (e.g. maps, satellite images). They 
also capture the semantics and the notion of spatial neigh-
borhood very elegantly, and geography-driven-joints [2, 3] 
between data streams reduce to simple overlaying of grids. 
The 2D data grid in an E-mage is akin to an image, and 
this allows for repurposing of a rich collection of image and 
video processing operators such as segmentation and aggre-
gation for analyzing the spatiotemporal data [47, 49]. Such 
a representation also aids easy visualization and provides an 
intuitive query and mental model. A flow of E-mages forms 

an E-mage Stream, which serves as the primary data model 
or data representation in the proposed framework. For com-
putational purposes, continuous and ordinal values can also 
be normalized into a stream of numeric values.

4.3 � Recognizing the current situation

Computationally, the translation of raw data to actionable 
insights requires the use of various concept recognition tech-
niques. In the past, different approaches such as object rec-
ognition, scene recognition, and event detection have shown 
to be useful for different problems (e.g. detecting a ‘tree’ 
within an image, or a ‘packet drop’ within a network chan-
nel). However, they focused only on a single media object, 
media type, observation location, or timeframe. Today, with 
the growth in the internet of things, social media and plan-
etary-scale sensing, there is an inherent need to assimilate 
spatiotemporally distributed heterogeneous data streams into 
actionable information. Consequently, the concepts such as 
objects, scenes, and events need to be extended to recognize 
situations (e.g. epidemics, flashfloods). Based on a survey 
of prevalent definitions across multiple domains [47–49], 
and our focus on spatiotemporal data, we define a situation 
as: “an actionable abstraction of observed spatiotemporal 
descriptors.” In the above definition, the expression descrip-
tors illustrate the emphasis on a computationally recogniz-
able concept, e.g. via statistical analysis of some attributes. 
Similarly, spatiotemporal reiterates our focus on real-world 
observations. As a computational concept, situations focus 
only on observable (via human/device sensors) aspects 
of the world, and need to be actionable abstractions, i.e. 
those that are explicitly defined by human domain experts 
to support decisions and actions. Examples of such situa-
tions include beautiful days/hurricanes/wildfires/flooding, 
traffic (jams/smooth/normal), economic recessions/booms. 
Heterogeneous sensor streams can be combined to derive 
actionable situations as shown in Fig. 3. The unified STT 
format employed (level 1) records the data originating from 
any spatiotemporal bounding box using its numeric value. 
Aggregating such data results in two-dimensional data 
grids (level 2). At each level, the data can also be charac-
terized for analytics. The situational descriptor (level 3) is 
defined by the user as a function of different spatiotemporal 
characteristics.

4.4 � Prediction of future events

The fused data from the previous steps with the unified STT 
format can be fed to our existing prediction geo-models as 
their initial conditions. This prediction output along with 
the current situational data can be used by the city planners 
and emergency management professionals in a planning con-
text. The unique fused data collected from a diverse range 
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of sources, including physical sensor and social sensor data, 
will help the model more accurately describe the initial state 
of the situation, therefore, allowing the geo-models to gener-
ate more accurate flood prediction [6].

The framework allows for detection of abnormal situ-
ations based on models of situations of interest, which 
are encoded into the system. Following [17], we propose 
to work with domain experts to define what an abnormal 
situation (e.g. flood level 3) means in terms of the different 
data sources available. The high-level situation of interest 
construct (e.g. flood level 3) is broken down into smaller, 
more directly assessable features (e.g. water level, number 
of people affected) in an iterative manner until each of the 
features identified can be measured directly via an avail-
able data source (e.g. water sensor, census data). Once the 
situation of interest has been modeled it can be converted 
into a “standing query” that runs over the incoming data 
streams using an implementation engine such as EventShop 
described in [17]. An alternate formulation of the above 
approach is to encode a normal situation (e.g. no flooding) as 
the standing query and any time the output changes beyond 
a range an alert can raised indicating an abnormal situation. 
Last, it is possible to encode the standing query in terms 
of dynamic properties which are indicative of the impend-
ing change in the situation to allow for future predictions. 
For instance, if the rate of water accumulation per minute 
exceeds a threshold than future flooding situations can also 
be detected using the system.

The existing prediction modeling framework is an atmos-
phere–ocean–wave–river-coupled geo-model to predict 

hazardous weather events affecting a coastal community. 
Data sources for these models are the real-time data obtained 
from the sensors, either physical sensors or human sensors, 
related to rainfall-inducing weather events. The flooding 
events considered include those induced by tropical and 
extratropical cyclones. These coastal weather events and 
their impacts interact with each other to form a complex 
system. We have developed a flexible, efficient, and power-
ful parallel coupler [7]. The coupler has been used to cou-
ple WRF, ROMS, SWAN and Delft3D models to form a 
powerful geo-model for coastal hazardous flooding events. 
The coupled geo-model framework is shown in Fig. 3. As 
shown in Fig. 3, in this coupled geo-model, WRF provides 
the atmospheric forcing to ROMS and SWAN; in return, 
ROMS and SWAN feedback the upper ocean states to WRF 
as a part of its surface condition. The ROMS and SWAN 
domain grids cover a relatively large area to allow more 
realistic representation of the ocean circulation patterns. A 
higher resolution Delft3D model grid is nested in ROMS 
and SWAN domain grid, receiving its lateral boundary 
condition (LBC) from ROMS and SWAN. Delft3D uses a 
flexible finite element mesh grid to more realistically rep-
resent the complex topography and bathometry in estuar-
ies, inlets, lakes, and rivers. The coastal flooding prediction 
will be produced by this coupled geo-model. Some fused 
data, (e.g. pressure, humidity, temperature, wind speed and 
direction), in STTPoint format, will be assimilated into the 
geo-model to improve its initial condition’s accuracy, using 
data assimilation methods such as three/four-dimensional 
variational assimilation method (3D/4D-VAR) or Ensemble 

Fig. 3   Diagram of the coupled 
geo-model. STT data are 
assimilated into the coupled 
geo-model and help improve 
the disastrous weather and flood 
prediction, which, in turn, help 
increase people’s awareness and 
preparedness, thus to reduce the 
susceptibility
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Kalman Filter (ENKF). Other data (e.g. flooded area, flood 
water level, rainfall, cloudiness, etc.) can be used to early 
validate the geo-model prediction. The fused social sen-
sor data and the geo-model prediction are used to calculate 
the FVI index. Vulnerability is defined here as the extent 
of harm that can be expected under certain conditions of 
exposure, susceptibility, and resilience. More specifically, 
Vulnerability = Exposure + Susceptibility − Resilience [16, 
25]. The FVI we calculate is dynamical in the sense that 
it varies for different locations and for different weather 
events. Exposure is mostly the coastal infrastructure, prop-
erty, and people that could be affected by the impending 
flood events; susceptibility is the exposure’s likelihood of 
being harmed by the floods, including the people’s aware-
ness and preparedness for the impending floods. Resilience 
is the coastal community’s capability of enduring the flood 
events. In this study, the FVI is calculated based on the: (1) 
geo-model’s prediction of where and when the floods may 
occur (therefore, the infrastructure, property and people that 
may become exposed to the impending flooding events) and 
(2) fused data from the Level 2 (Emage) and Level 3 (Situ-
ations) showing the exposed’s awareness of and prepared-
ness for the impending flooding. The coupled geo-model 
will be used mainly to address exposure and susceptibility 
by: (1) providing more accurate and timelier flood prediction 
to identify the exposure, and (2) increasing people’s aware-
ness and preparedness, thus reducing the susceptibility. The 
FVI can be incorporated into the disaster information frame-
work and made available in real time to the decision-makers, 
emergency managers, and public to improve preparedness 
and help mitigate the disasters, such as flooding.

5 � Research challenges

The proposed approach opens up a number of newer research 
challenges. Following are few of them.

5.1 � Handling data uncertainty

Incoming data may have associated uncertainty with it, 
which, if ignored, can lead to imprecise or invalid conclu-
sions. The data structures thus need to support data repre-
sentation with uncertainty and define relevant spatiotempo-
ral operations. To tackle these challenges, we need to take 
inspiration from the literature in statistics, pattern recogni-
tion, and machine learning, which often represent uncertain 
data as vectors whose univariate and multivariate distribu-
tions are defined to model different types of uncertainties. 
In many applications, owing to the central limit theorem 
[30], a Gaussian distribution is a reasonable distribution to 
model uncertainties such as measurement errors or spati-
otemporal correlations in data. Operations such as sampling, 

evaluation, conditioning, and marginalization have also been 
defined for such Gaussian distributions. Similarly, matrix 
transforms on multivariate Gaussian’s have well-defined 
analytical forms. We need to bring these well-established 
concepts from the field of pattern recognition, and extend 
and adapt them in a spatiotemporal data processing frame-
work. We propose to define a distribution Emage or dEmage 
to represent a spatiotemporal Gaussian distribution, i.e. we 
define dEmage as (e;Σe), where e is an underlying Emage 
with the mean values and Σe is the covariance matrix associ-
ated with e. Here, e captures the spatial and temporal struc-
tures, whereas Σe captures the uncertainty information. 
Linear spatiotemporal operations such as sum, mean, and 
weighted mean can be expressed as matrix transformations 
on the underlying multivariate Gaussian distribution [22]. 
Having the ability to represent uncertain data, we can imple-
ment several complex operations such as Kalman filtering 
and other data assimilation approaches where uncertain rep-
resentations are needed. This allows us the ability not only 
to determine present situations from observations but also 
to make predictions for future.

5.2 � Modeling situations working with domain 
experts

The first step toward detecting situations is to represent 
them. Modeling situations before building applications in 
hardware and software is important as it allows application 
designers to focus on ‘the big-picture’ without getting into 
implementation details, encourages goal-driven (rather than 
availability driven) thinking [14], promotes reuse of com-
ponents across applications, and renders explicit require-
ment list (e.g. sensors/data sources needed, computation 
rate required, spatiotemporal resolution required). Hence, 
the framework needs to provide a generic way for differ-
ent domain experts to externalize their mental model of the 
situation of interest [47, 48]. While situations of interest 
(SOI) can vary significantly, there exist certain common ele-
ments that are required to model all the situations discussed 
in the previous section. Generically, the situations can be 
recognized by transforming heterogeneous data into a com-
mon representation, extracting features from it, and using 
those features to classify it. This allows us to identify the 
generic operations required for situation recognition. Simi-
larly, while situations can be vague and ill-defined to start 
with (e.g. what constitutes an ‘epidemic’), all computational 
concepts can be made more concrete by following a simple 
methodology: iteratively splitting down a vague concept 
into its more tractable constituents. As shown in Fig. 4, the 
value of a modeling approach lies in its expressive power 
and usability in designing multiple applications. We build 
upon our prior work on situation modeling [45, 46], and 
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validate and refine the modeling approach by working with 
domain experts.

5.3 � Assimilation of the fused data 
into a geo‑physical prediction model

It is a challenge to assimilate fused data into the geo-
model to improve its initial condition. The social sen-
sor data, for example, those extracted from tweets, may 
have a wide range of uncertainties and qualities. How to 
address the uncertainty and quality through quality control 
procedures may become a major challenge in the process 
of assimilating these types of data into the coupled geo-
model framework. While the findings from Research Chal-
lenge 1 guide us in dealing with uncertainty, the raw data 
should also be filtered and quality controlled. To tackle 
these issues, we first need to identify and eliminate the 
outliers via unsupervised machine-learning techniques. 
Similarly, conflicting data would be identified by evaluat-
ing their statistical distributions to predict their quality and 
usefulness. Second, vast amounts of data, especially those 
extracted from social media, may be non-numerical types 
of data. Because the 3D/4D-VAR and ENKF methods can 
only take numerical data input, these non-numerical social 
media data need to be converted into numerical STTPoint 
format before being used as an input to the weather pre-
diction model, which is challenging. Because most of 
the social media posts such as twitter have imbedded 
GIS information, they can be filtered according to their 

geo-locations. And the information contained in the text 
or graphics in a social media post can thus be associated 
with the geo-physical process for that location. For exam-
ple, when a tweet posted from New York city contains 
the text of “floods” or photos of flooded streets, it can be 
used as a binary numerical data “flooded = True” to ini-
tialize or early validate the geo-physical forecast model 
for that location. It is recognized that the colossal volume 
of the social media data, in millions per minute, makes it 
impossible to process in real time by traditional methods. 
However, in recent years, advances in artificial intelligence 
(AI), machine learning (ML) and natural language pro-
cessing (NLP) start to provide a promising new approach 
to tackle this challenge. For instance, Jongman et al. [74] 
found that the flood-related Twitter activity, when com-
bined with disaster response organizations and the Global 
Flood Detection System (GFDS) satellite flood signal, can 
help disaster relief organizations “gain a quicker under-
standing of the location, the timing, as well as the causes 
and impacts of floods.” To leverage these new advances, 
United Nations Office for the Coordination of Humanitar-
ian Affairs developed the Artificial Intelligence for Digital 
Response (AIDR) (http://aidr.qcri.org/) to uses supervised 
machine learning and artificial intelligence to tag thou-
sands of social media messages per minute. These struc-
tured data are then ready for use in dashboards, maps, or 
other analytics programs to help generate useful informa-
tion during crisis hazard events from images and com-
ments contained in social media data.

Fig. 4   Workflow of situation modeling approach
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6 � Experimental results

In our experimentation, we collected the tweets related to 
Hurricane Irma and Fig. 5 shows the spatial distribution 
heat map of the collected Hurricane Irma-related tweets. 

The coupled geo-model prediction framework has been 
used to forecast a wide variety of disastrous weather events 
and their impacts in the South Carolina coastal regions. 
The good agreement, as shown in Fig. 6, between the mod-
eled and the observed water level changes during tropical 
storm Ana (2015) suggest the effectiveness of the cou-
pled geo-model in predicting disastrous weather events 
and their impacts on the coastal community. While the 
preliminary experimental results for the existing coupled 
geo-model framework are promising, our objective in this 
paper is to improve its predictive accuracy by adding the 
fused data, including those from the social sensors, as an 
input to be assimilated into the model’s initial conditions, 
such that the emergency responders are better positioned 
to provide emergency relief.

We have been working on developing EventShop as a 
tool for integrating heterogeneous data for situation recog-
nition. This tool was put to test during hurricane Sandy, 
which affected large parts of the United States and the Carib-
bean during Oct 2012. We used a combination of forecasted 

hurricane path, census, and Red Cross shelters to detect 
the macro-risk level for each location in the United States. 
Twitter messages mentioning certain hashtags as proxies 
for personal concern and the system sent back messages to 
users in risky situations, informing them of the nearest open 
Red Cross shelter. Some of the tweets were re-tweeted, and 
replied to by the users, indicating an interest in receiving and 
sharing such information. Working with county officials, we 
plan to extend the existing framework and results from the 
preliminary results to generate real-time Flood Vulnerability 
Index maps and send back personalized alerts to people in 
the most vulnerable situations.

The ultimate product from this proposed framework is the 
Flood Vulnerability Index (FVI) calculated based on “situ-
ations”, which are derived from the sensors’ spatiotemporal-
thematic-point (STT) data and their aggregated “Emage”, 
and geo-physical model’s flood prediction, which also incor-
porated the STT data to enhance the model’s initial repre-
sentation. A prototype Flood Risk Index has been developed 
and validated [75], in which the key factors that affect the 
hurricane-induced storm surge and inundation in coastal 
areas are identified as Δ� =

�
a
C
d
U2

m
L

�
w
hg

 , where Δ� is the storm 
surge height, �

a
 air density, �

w
 seawater density, C

d
 drag 

coefficient, U
m

 hurricane maximum wind speed, L the fetch 
of the wind field, h water depth, and g is gravity = 9.8 ms−2. 

Fig. 5   Heat map showing the spatial distribution of the collected Hurricane Irma-related tweets
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After the storm surge height estimate is obtained, it can be 
used to calculate the inundation area. The distance that the 
water can inundate is given by I = Δ�

�
 , where � is the slope 

Δy

Δx
 of the coastal topography. The inundation area, assuming 

a semi-circle shape, is given by A = I2
�

2
 . This prototype FVI 

has the advantage of easy calculation. When the above-men-
tioned variables are obtained from the physical and social 
sensors as STT and Emage, they can be used to quickly esti-
mate the situations, representing the storm surge height and 
inundation extent in this framework, using the FVI 
formula.

7 � Future work recommendations

In the future, this work can be extended to measure and 
understand the impacts of the extreme events through min-
ing of social and economic media, and to correlate these 
“soft” impacts with physical impact measures. Understand-
ing social and economic impacts will inform local and state 
governments, emergency management teams, and decision-
makers in planning for and responding to weather events. 
As an example, the Flood Vulnerability Index described 
in Section V needs to incorporate social-economic factors 

such as population and economy development level. The 
combined application of artificial intelligence (AI), machine 
learning (ML) and natural language process (NLP) will be a 
key strategy to extract the flood related information from the 
vast amount of real-time social media sensors.

The proposed framework can be extended with the 
design and application of a social media analytics frame-
work designed for assessing post-storm social and economic 
response. The framework can consist of multiple layers. For 
example, the first layer could ingest physical storm impact 
data from existing sensors and modeling sources. The sec-
ond layer could apply natural language processing to mine 
social media (e.g., Twitter, Facebook) for social sentiment. 
The third layer is analogous, applying similar techniques to 
mine economic media sources (e.g., NYSE, NASDAQ) to 
evaluate economic impacts. In each case, the datasets would 
be geo-tagged to enable geo-spatial comparisons across 
physical, social, and economic layers. Whether persistent 
relationships exist, and whether those relationships can be 
leveraged for prediction can be explored.

Fig. 6   Example of a predic-
tion of the water level changes 
(including both tidal and storm 
surge effects) (upper panel) 
during the landfall of tropical 
storm Ana in May 2015 and 
its validation with NOAA’s 
observational data at two-gauge 
stations (lower panel)
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8 � Summary and conclusion

To address the resilience from the disaster situations, we 
have proposed Flooding Disaster Resilience Information 
Framework. The proposed research work builds an innova-
tive toolbox for emergency managers and increase the emer-
gency preparedness and resilience of the community. The 
multiple sources of information utilized by the framework 
will lead to more accurate emergency situation detection and 
the most appropriate response actions in a timely manner, 
which could save more lives, resources, and critical infra-
structures. While the preliminary results are encouraging, 
the proposed framework also improves the efficacy of the 
community officials in preparing for impending disasters, 
as they will be able to model, test, and respond to situations 
using multiple-source uncertain data streams without the 
need for programming skills.
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