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Abstract

This paper presents the research challenges of designing a combined physical sensor- and social sensor-based information
framework to collect heterogeneous flooding disaster data, and then to fuse those data and generate actionable understand-
ings. Our overall objective is to improve the response preparedness of critical infrastructures, contributing to the goal of
smart and connected communities. We propose methods to model physical and social sensors, and open demographic data
integration with regional knowledge, and to leverage these fused data for understanding impending events and conditions
deleterious to lives and properties. In addition, the proposed system will predict the disaster events and provide knowledge-
based recommendations to inform emergency management personnel to enable the resilience of the smart and connected
communities. Preliminary experiments for the framework are promising. Further work is needed to validate the framework

in collaboration with the local emergency managers.

Keywords Sensors - Flooding disaster resilience - Smart and connected communities - Emergency management - Flood

vulnerability index

1 Introduction and background

Although currently the coastal communities in United States
get real-time notification from National Oceanic and Atmos-
pheric Administration (NOAA) weather radio alerts, they
also rely heavily on forecasts from local media for disaster
mitigation efforts. With respect to situational information,
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local eyewitness reports and social media (such as Facebook
and Twitter) are also used in an ad hoc manner. City and
county governments also have mass notification systems,
which allow them to make phone calls to large areas with a
recorded message. However, there is no intelligent and auto-
mated information and communication framework in place
to send the right message out quickly and to the majority
of the affected people. Effectively combining the data from
multiple sources, such as physical sensor data, social sensor
data, and geo-model prediction products, will produce the
most complete and high-quality information available. As a
flooding condition develops, this information can go out as
mass messages to everyone signed up for alerts though social
media or phones, so they can respond appropriately to the
emergency situation.

This paper explores the research challenges of design-
ing an information framework that couples physical sensors
with the social sensors to collect heterogeneous flooding
disaster data, and then to fuse that data and generate action-
able understandings. The goal is to improve the response
preparedness of critical infrastructures, contributing to the
goals of smart and connected communities.

In this paper, we explore methods to fuse social sensor
data, physical sensor data, and open demographic data with
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regional knowledge, and leverage the fused data for under-
standing and predicting impending disaster events. The pro-
posed framework provides knowledge-based recommenda-
tions to inform county and city emergency managers. These
recommendations will be validated by collaborating with
emergency officials and participating in their functional
exercises.

The proposed work contributes to the literature in the fol-
lowing ways: (a) it advances the research on design of com-
putational frameworks for integrating heterogeneous streams
of uncertain data (including social sensor data, weather data,
and environmental sensor data) into actionable situations.
(b) These actionable situations will serve in a generic mod-
eling framework that allows community emergency manage-
ment professionals to model situations of interest and raise
alerts based on the vulnerability index generated in real time.
(c) Numerical weather prediction (NWP) in coastal environ-
ments suffers a lack of adequate ground-truth observational
data to realistically initialize the geo-models and validate
their results. The physical sensor and social sensor modeling
suite proposed in the framework allows for more accurate
detection and prediction of disastrous weather events and
their interactions occurring in the complex coastal environ-
ment. (d) The utility of this model suite will help advance
the science of coastal and marine systems, especially with
respect to the novel attempt to extract STTPoint (spatiotem-
poral-thematic-point) human activity information collected
from social media to improve numerical geo-models.

Rest of the manuscript is organized as follows. Sec-
tion 2 describes the related work in the literature. Section 3
describes the research objectives. The proposed framework
is presented in Sect. 4. And Sect. 5 discusses the research
challenges. Section 6 shows the preliminary experimental
results. Section 7 recommends future works. Finally, the
summary and conclusion are presented in the Sect. 8.

2 Related work

Work on understanding evolving situations has been under-
taken in multiple areas including pervasive/ubiquitous com-
puting [33], situation awareness [46], middleware systems
[23, 24, 43-46], Geographic Information Systems (GIS) [36,
37, 43-45], sensor networks [40, 46—49], active databases/
complex event processing [1], multimedia processing [35],
data fusion [9], mobile information systems [19], web data
mining [5, 18], social computing [10, 41], and mash-up com-
puting [4, 12]. Each area, however, has its own perspective
[11, 27]. For example, the field of GIS has created multiple
sophisticated tools for geo-physical data analysis. How-
ever, temporal aspects and personalized control have been
oversighted in these efforts. Active Database and Complex
Event Processing efforts on the other hand focus on real-time
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streaming data (e.g. stock prices [1]) but neglect the role of
geo-space. Rather than identifying the similarities and dif-
ferences from each specific field, we focus on building upon
and extending the efforts in all these areas. Specifically, our
focus is on the aspects that have been rapidly changing in the
last few years: (1) geo-temporal data; and (2) their real-time
availability at a wide scale.

GIS and data science have been applied for remote sens-
ing [32], weather prediction [20], disease surveillance [31,
42], and business location analysis [48]. Multiple sub-fields
within GIS have also developed newer geo-spatial data mod-
els [15], geo-information retrieval techniques [29], spatial
information processing techniques [43, 47], and integrated
toolkits to visualize and analyze geo-temporal data [34].
However, processing real-time streaming data is still rare
in this field, though expected to become more mainstream
soon [28, 44]. There is also a growing trend to design tools
and techniques to understand real-world situations. While
mining search logs, weblogs [5, 45, 46] and microblogs
[41] have been shown to be useful for predicting flu spread
[18] and earthquakes [41], there is also a growing interest
in defining generic frameworks that allow users to visualize
and analyze their own data of interest [26, 39]. The proposed
work advances the state-of-the-art in designing such generic
frameworks with a specific focus on emergency recognition.
Numerical geo-models play an important role in modern
natural hazard forecasting. A coastal flooding is a complex
weather event that involves the components of atmosphere,
ocean, estuaries, and rivers. The following are examples
of the widely used state-of-the-art geo-models that simu-
late and predict the above-mentioned components: (a) the
atmospheric component of Weather Research and Forecast-
ing (WRF) [73]. The WRF modeling is a numerical weather
prediction and simulation non-hydrostatic primitive equation
model with comprehensive atmospheric physics parameteri-
zation schemes that are used worldwide to simulate and fore-
cast a wide range of weather events including hurricanes and
severe rainfall events. (b) The oceanic of Regional Ocean
Modeling System (ROMS) [72]. ROMS solves 3D primitive
equations that are used widely to study how a given region of
the ocean responds to physical forcing such as strong winds.
This free surface model is suitable for simulating the SLR
and hurricane caused the storm surge and inundation. (c) The
surface wave model Simulating WAves Nearshore (SWAN)
[8]. SWAN is a third-generation wave action model designed
for coastal regions. It uses typical formulations for wave
growth by wind, wave dissipation by white-capping, and
four-wave nonlinear interactions (quadruplets or ‘‘quads’’).
It also includes physical processes associated with shallow
water such as bottom friction and depth-induced wave break-
ing. (d) Delft3D [13]. The Delft3D model simulates and pre-
dicts the flows, waves, sediment transports, morphological
developments and ecological processes in estuaries, inlets,
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lakes, and rivers. Three-dimensional unsteady flow and
transport phenomena resulting from tidal and meteorologi-
cal forcing are simulated in Delft3D by solving the shallow-
water hydrostatic pressure equations.

These models sample the state of the fluid (air and water)
at present time (initial condition) and numerically integrate
the governing equations of fluid dynamics and thermody-
namics to predict the state of the fluid in a future time. An
accurate initial condition is key to an accurate prediction.
The process of incorporating observational data into the
model initial condition is called data assimilation. Obser-
vational data routinely used by operational weather models
include the radiosonde data (launched by weather balloons)
and satellite data. In recent years, computing power has
been increasing rapidly, but the observational data that can
be used to initialize geo-models have lagged, especially for
coastal areas, where the weather events are affected by the
conditions of the ocean, whose observational stations are
scarcer than on land. In this paper, we attempted to address
this issue of inadequate observational data by adding the
data extracted from a more diverse range of sources, includ-
ing social sensors.

For situation awareness, Ye et al., described the nature
and characteristics of different complex situations and dis-
cussed the challenges of situation identification [51]. In
addition, they reviewed the techniques most widely used in
modeling and inferring situations from sensor data [51]. In
a related work, A. Coronato and G. De Pietro [52] proposed
situation calculus-based approach for the situation aware-
ness, whose outcome is to detect abnormal behaviors of
cognitive impaired individuals when they are in situation-
aware smart spaces. Similarly, McCarthy proposed a formal
theory-based software, that can decide actions based on situ-
ations [53]. In his report, McCarthy gave several examples
of how the goals can be achieved based on deduction from
situation descriptions [53]. In a related work, Coronato et al.,
proposed formal models to study their appropriateness for
specifying and verifying socio-technical collective adaptive
systems (CAS) in the wake of CAS heterogeneous parts’
complex and unexpected abnormal behavior [54]. Endsley
proposed the concept of user-centered design in a book on
situation awareness [55], which defines the concept of situ-
ation awareness (SA), how to determine SA requirements
and how to automate it.

With respect to designing reflective neural networks
(RNN) for metacognition and reflectivity, deep learning
auto-encoders utilize a structure similar to the one presented
in this paper. But their research application focuses on
unsupervised learning of convolutional features for generic
detection tasks [68, 71]. Anomaly detection has also been
addressed through auto-encoders [69, 70]. One related work
by Sun et al. proposes how metacognitive processes rep-
resented by the experimental data may be captured within

a cognitive architecture [56]. Researchers from Nanyang
Technological University, Singapore, have developed neu-
ral network-based metacognitive learning algorithms for
the metacognitive learning framework [57, 59, 63, 66, 67].
Neural networks and metacognitive learning have been uti-
lized for applications such as traffic flow prediction [58],
improved perturbation tolerance [61], human action recog-
nition [62], symbolic anomaly detection [64], autonomous
robot control [65], and remaining useful life estimation [66].
Another related work by Yeh and Lo [60] present a neu-
ral network model that assesses automatically the learner
metacognitive knowledge level by observing his/her online
browsing behavior. As per our literature review, there is no
particular work that applies RNN for metacognition from a
disaster resilience application perspective.

3 Research objectives

Based on the knowledge gaps discussed in the previous sec-
tion, our goal is to propose a framework to improve decision-
making for emergency management scenarios with heteroge-
neous data sources via a prototype of the disaster resilience
information framework. Our specific objectives are to:

1. Define and design a novel framework to collect, repre-
sent, and fuse uncertain heterogeneous real-time disas-
ter-relevant data for situation recognition and prediction
of future events.

2. Define and develop a current and near future Flood Vul-
nerability Index (FVI) for a given geographic area that
is updated real time by the proposed framework.

3. Deploy, run pilot experiments, validate, and refine the
above framework and FVI by working in close collabo-
ration with the city and county emergency management
department.

4 Proposed disaster resilience framework

Our proposed framework is as shown in Figs. 1 and 2. Fol-
lowing are some of the major components of the proposed
framework.

Figure 1 shows the proposed framework for flooding
event situation recognition. As shown in Fig. 1, the input to
the framework comes from human sensor/actuator, device
sensors and stored data. The core of the framework consists
of spatiotemporal aggregation, situation detection opera-
tors and situation-based controllers. The output from the
framework can be analyzed by analyst and the personalized
response can be given back to human actuator.
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Fig. 1 Proposed framework for situation (flooding event) recognition
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Figure 2 shows the workflow for situation recognition.  propose the following data types required for real-time geo-
As seen in Fig. 2, several raw data streams are aggregated  physical situation recognition:

to form STT data, which are then transformed to Emage.
The operations are then performed on Emage to define 1.
situations through symbolic representation [21].

4.1 Input data from multiple sensors
Building toward generic cyber-physical situation awareness
requires identification of different types of relevant data.

Different data representation categories [50] have been pro-
posed in the past, each relevant to the usage context. We
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Stored data: this includes textual data, databases, audio,
video content, sensor readings, and curated geographic
data such as maps and cartographs.

Live sensor readings:

(a) Regional remote-sensing sensors: these are the
sensor data whose coverage area is best repre-
sented as a geographic region such as satellite and
radar observation.

(b) Point sensors:
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I. Insitu device: these are the physical sensor data
whose coverage area is best represented as a
geographic point such as weather station.

II. Human: these are ‘abstract sensors’ who report
observations as a single point. Human reports,
such as tweets, tend to be more semantic and
biased.

4.2 Datarepresentation

A data representation needs to be identified that can inte-
grate information coming from different information
sources, each of which might have been created by a differ-
ent agency with a different original purpose. The framework
focuses on data representation with space, time and theme,
which is grounded in the real world. Space and time are con-
sidered as fundamental axes for designing different aspects
of the framework (including data representation, operators,
and building blocks). This draws upon the basic nature of the
physical world and builds on the concepts from the fields of
GIS, cartography, satellite sensing, and location-based com-
puting [38]. All incoming data of interest can be converted
to and represented in a common STT (space, time, theme)
format: STTPoint = <geo-coordinate, time-coordinate,
(theme, value)>. All point sensors observe a particular value
for an application-relevant attribute (theme) at a certain spa-
tiotemporal coordinate. This representation can be used to
capture data ranging from traffic speeds, to air quality level,
twitter mentions, and crime reports. Region sensors record
values for a theme from a spatiotemporal region, but they
can be considered as a collection of STTPoints observed ‘in
a batch’. For example, a satellite observed geo-image can be
considered as a set of pixels (STTPoints) observed together.
Hence, the regional observations can be used to derive val-
ues for points within its coverage.

The framework considers E-mages [47, 48] and E-mage
Streams [17] as its data model. An E-mage is a grid-like
data structure, each cell of which captures a value associ-
ated with a particular application theme (e.g. temperature,
number of flu cases) at a spatiotemporal coordinate. The
use of a grid is based on the understanding that grids are the
fundamental data structure used by humans to understand
and analyze spatial data (e.g. maps, satellite images). They
also capture the semantics and the notion of spatial neigh-
borhood very elegantly, and geography-driven-joints [2, 3]
between data streams reduce to simple overlaying of grids.
The 2D data grid in an E-mage is akin to an image, and
this allows for repurposing of a rich collection of image and
video processing operators such as segmentation and aggre-
gation for analyzing the spatiotemporal data [47, 49]. Such
a representation also aids easy visualization and provides an
intuitive query and mental model. A flow of E-mages forms

an E-mage Stream, which serves as the primary data model
or data representation in the proposed framework. For com-
putational purposes, continuous and ordinal values can also
be normalized into a stream of numeric values.

4.3 Recognizing the current situation

Computationally, the translation of raw data to actionable
insights requires the use of various concept recognition tech-
niques. In the past, different approaches such as object rec-
ognition, scene recognition, and event detection have shown
to be useful for different problems (e.g. detecting a ‘tree’
within an image, or a ‘packet drop’ within a network chan-
nel). However, they focused only on a single media object,
media type, observation location, or timeframe. Today, with
the growth in the internet of things, social media and plan-
etary-scale sensing, there is an inherent need to assimilate
spatiotemporally distributed heterogeneous data streams into
actionable information. Consequently, the concepts such as
objects, scenes, and events need to be extended to recognize
situations (e.g. epidemics, flashfloods). Based on a survey
of prevalent definitions across multiple domains [47-49],
and our focus on spatiotemporal data, we define a situation
as: “an actionable abstraction of observed spatiotemporal
descriptors.” In the above definition, the expression descrip-
tors illustrate the emphasis on a computationally recogniz-
able concept, e.g. via statistical analysis of some attributes.
Similarly, spatiotemporal reiterates our focus on real-world
observations. As a computational concept, situations focus
only on observable (via human/device sensors) aspects
of the world, and need to be actionable abstractions, i.e.
those that are explicitly defined by human domain experts
to support decisions and actions. Examples of such situa-
tions include beautiful days/hurricanes/wildfires/flooding,
traffic (jams/smooth/normal), economic recessions/booms.
Heterogeneous sensor streams can be combined to derive
actionable situations as shown in Fig. 3. The unified STT
format employed (level 1) records the data originating from
any spatiotemporal bounding box using its numeric value.
Aggregating such data results in two-dimensional data
grids (level 2). At each level, the data can also be charac-
terized for analytics. The situational descriptor (level 3) is
defined by the user as a function of different spatiotemporal
characteristics.

4.4 Prediction of future events

The fused data from the previous steps with the unified STT
format can be fed to our existing prediction geo-models as
their initial conditions. This prediction output along with
the current situational data can be used by the city planners
and emergency management professionals in a planning con-
text. The unique fused data collected from a diverse range

@ Springer



Journal of Reliable Intelligent Environments (2019) 5:3-15
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of sources, including physical sensor and social sensor data,
will help the model more accurately describe the initial state
of the situation, therefore, allowing the geo-models to gener-
ate more accurate flood prediction [6].

The framework allows for detection of abnormal situ-
ations based on models of situations of interest, which
are encoded into the system. Following [17], we propose
to work with domain experts to define what an abnormal
situation (e.g. flood level 3) means in terms of the different
data sources available. The high-level situation of interest
construct (e.g. flood level 3) is broken down into smaller,
more directly assessable features (e.g. water level, number
of people affected) in an iterative manner until each of the
features identified can be measured directly via an avail-
able data source (e.g. water sensor, census data). Once the
situation of interest has been modeled it can be converted
into a “standing query” that runs over the incoming data
streams using an implementation engine such as EventShop
described in [17]. An alternate formulation of the above
approach is to encode a normal situation (e.g. no flooding) as
the standing query and any time the output changes beyond
arange an alert can raised indicating an abnormal situation.
Last, it is possible to encode the standing query in terms
of dynamic properties which are indicative of the impend-
ing change in the situation to allow for future predictions.
For instance, if the rate of water accumulation per minute
exceeds a threshold than future flooding situations can also
be detected using the system.

The existing prediction modeling framework is an atmos-
phere—ocean—wave-river-coupled geo-model to predict
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hazardous weather events affecting a coastal community.
Data sources for these models are the real-time data obtained
from the sensors, either physical sensors or human sensors,
related to rainfall-inducing weather events. The flooding
events considered include those induced by tropical and
extratropical cyclones. These coastal weather events and
their impacts interact with each other to form a complex
system. We have developed a flexible, efficient, and power-
ful parallel coupler [7]. The coupler has been used to cou-
ple WRF, ROMS, SWAN and Delft3D models to form a
powerful geo-model for coastal hazardous flooding events.
The coupled geo-model framework is shown in Fig. 3. As
shown in Fig. 3, in this coupled geo-model, WRF provides
the atmospheric forcing to ROMS and SWAN; in return,
ROMS and SWAN feedback the upper ocean states to WRF
as a part of its surface condition. The ROMS and SWAN
domain grids cover a relatively large area to allow more
realistic representation of the ocean circulation patterns. A
higher resolution Delft3D model grid is nested in ROMS
and SWAN domain grid, receiving its lateral boundary
condition (LBC) from ROMS and SWAN. Delft3D uses a
flexible finite element mesh grid to more realistically rep-
resent the complex topography and bathometry in estuar-
ies, inlets, lakes, and rivers. The coastal flooding prediction
will be produced by this coupled geo-model. Some fused
data, (e.g. pressure, humidity, temperature, wind speed and
direction), in STTPoint format, will be assimilated into the
geo-model to improve its initial condition’s accuracy, using
data assimilation methods such as three/four-dimensional
variational assimilation method (3D/4D-VAR) or Ensemble
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Kalman Filter (ENKF). Other data (e.g. flooded area, flood
water level, rainfall, cloudiness, etc.) can be used to early
validate the geo-model prediction. The fused social sen-
sor data and the geo-model prediction are used to calculate
the FVI index. Vulnerability is defined here as the extent
of harm that can be expected under certain conditions of
exposure, susceptibility, and resilience. More specifically,
Vulnerability = Exposure + Susceptibility — Resilience [16,
25]. The FVI we calculate is dynamical in the sense that
it varies for different locations and for different weather
events. Exposure is mostly the coastal infrastructure, prop-
erty, and people that could be affected by the impending
flood events; susceptibility is the exposure’s likelihood of
being harmed by the floods, including the people’s aware-
ness and preparedness for the impending floods. Resilience
is the coastal community’s capability of enduring the flood
events. In this study, the FVI is calculated based on the: (1)
geo-model’s prediction of where and when the floods may
occur (therefore, the infrastructure, property and people that
may become exposed to the impending flooding events) and
(2) fused data from the Level 2 (Emage) and Level 3 (Situ-
ations) showing the exposed’s awareness of and prepared-
ness for the impending flooding. The coupled geo-model
will be used mainly to address exposure and susceptibility
by: (1) providing more accurate and timelier flood prediction
to identify the exposure, and (2) increasing people’s aware-
ness and preparedness, thus reducing the susceptibility. The
FVI can be incorporated into the disaster information frame-
work and made available in real time to the decision-makers,
emergency managers, and public to improve preparedness
and help mitigate the disasters, such as flooding.

5 Research challenges

The proposed approach opens up a number of newer research
challenges. Following are few of them.

5.1 Handling data uncertainty

Incoming data may have associated uncertainty with it,
which, if ignored, can lead to imprecise or invalid conclu-
sions. The data structures thus need to support data repre-
sentation with uncertainty and define relevant spatiotempo-
ral operations. To tackle these challenges, we need to take
inspiration from the literature in statistics, pattern recogni-
tion, and machine learning, which often represent uncertain
data as vectors whose univariate and multivariate distribu-
tions are defined to model different types of uncertainties.
In many applications, owing to the central limit theorem
[30], a Gaussian distribution is a reasonable distribution to
model uncertainties such as measurement errors or spati-
otemporal correlations in data. Operations such as sampling,

evaluation, conditioning, and marginalization have also been
defined for such Gaussian distributions. Similarly, matrix
transforms on multivariate Gaussian’s have well-defined
analytical forms. We need to bring these well-established
concepts from the field of pattern recognition, and extend
and adapt them in a spatiotemporal data processing frame-
work. We propose to define a distribution Emage or dEmage
to represent a spatiotemporal Gaussian distribution, i.e. we
define dEmage as (e;Xe), where e is an underlying Emage
with the mean values and Ze is the covariance matrix associ-
ated with e. Here, e captures the spatial and temporal struc-
tures, whereas Xe captures the uncertainty information.
Linear spatiotemporal operations such as sum, mean, and
weighted mean can be expressed as matrix transformations
on the underlying multivariate Gaussian distribution [22].
Having the ability to represent uncertain data, we can imple-
ment several complex operations such as Kalman filtering
and other data assimilation approaches where uncertain rep-
resentations are needed. This allows us the ability not only
to determine present situations from observations but also
to make predictions for future.

5.2 Modeling situations working with domain
experts

The first step toward detecting situations is to represent
them. Modeling situations before building applications in
hardware and software is important as it allows application
designers to focus on ‘the big-picture’ without getting into
implementation details, encourages goal-driven (rather than
availability driven) thinking [14], promotes reuse of com-
ponents across applications, and renders explicit require-
ment list (e.g. sensors/data sources needed, computation
rate required, spatiotemporal resolution required). Hence,
the framework needs to provide a generic way for differ-
ent domain experts to externalize their mental model of the
situation of interest [47, 48]. While situations of interest
(SOI) can vary significantly, there exist certain common ele-
ments that are required to model all the situations discussed
in the previous section. Generically, the situations can be
recognized by transforming heterogeneous data into a com-
mon representation, extracting features from it, and using
those features to classify it. This allows us to identify the
generic operations required for situation recognition. Simi-
larly, while situations can be vague and ill-defined to start
with (e.g. what constitutes an ‘epidemic’), all computational
concepts can be made more concrete by following a simple
methodology: iteratively splitting down a vague concept
into its more tractable constituents. As shown in Fig. 4, the
value of a modeling approach lies in its expressive power
and usability in designing multiple applications. We build
upon our prior work on situation modeling [45, 46], and
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Fig.4 Workflow of situation modeling approach

validate and refine the modeling approach by working with
domain experts.

5.3 Assimilation of the fused data
into a geo-physical prediction model

It is a challenge to assimilate fused data into the geo-
model to improve its initial condition. The social sen-
sor data, for example, those extracted from tweets, may
have a wide range of uncertainties and qualities. How to
address the uncertainty and quality through quality control
procedures may become a major challenge in the process
of assimilating these types of data into the coupled geo-
model framework. While the findings from Research Chal-
lenge 1 guide us in dealing with uncertainty, the raw data
should also be filtered and quality controlled. To tackle
these issues, we first need to identify and eliminate the
outliers via unsupervised machine-learning techniques.
Similarly, conflicting data would be identified by evaluat-
ing their statistical distributions to predict their quality and
usefulness. Second, vast amounts of data, especially those
extracted from social media, may be non-numerical types
of data. Because the 3D/4D-VAR and ENKF methods can
only take numerical data input, these non-numerical social
media data need to be converted into numerical STTPoint
format before being used as an input to the weather pre-
diction model, which is challenging. Because most of
the social media posts such as twitter have imbedded
GIS information, they can be filtered according to their
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geo-locations. And the information contained in the text
or graphics in a social media post can thus be associated
with the geo-physical process for that location. For exam-
ple, when a tweet posted from New York city contains
the text of “floods” or photos of flooded streets, it can be
used as a binary numerical data “flooded = True” to ini-
tialize or early validate the geo-physical forecast model
for that location. It is recognized that the colossal volume
of the social media data, in millions per minute, makes it
impossible to process in real time by traditional methods.
However, in recent years, advances in artificial intelligence
(AI), machine learning (ML) and natural language pro-
cessing (NLP) start to provide a promising new approach
to tackle this challenge. For instance, Jongman et al. [74]
found that the flood-related Twitter activity, when com-
bined with disaster response organizations and the Global
Flood Detection System (GFDS) satellite flood signal, can
help disaster relief organizations “gain a quicker under-
standing of the location, the timing, as well as the causes
and impacts of floods.” To leverage these new advances,
United Nations Office for the Coordination of Humanitar-
ian Affairs developed the Artificial Intelligence for Digital
Response (AIDR) (http://aidr.qcri.org/) to uses supervised
machine learning and artificial intelligence to tag thou-
sands of social media messages per minute. These struc-
tured data are then ready for use in dashboards, maps, or
other analytics programs to help generate useful informa-
tion during crisis hazard events from images and com-
ments contained in social media data.
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6 Experimental results

In our experimentation, we collected the tweets related to
Hurricane Irma and Fig. 5 shows the spatial distribution
heat map of the collected Hurricane Irma-related tweets.

The coupled geo-model prediction framework has been
used to forecast a wide variety of disastrous weather events
and their impacts in the South Carolina coastal regions.
The good agreement, as shown in Fig. 6, between the mod-
eled and the observed water level changes during tropical
storm Ana (2015) suggest the effectiveness of the cou-
pled geo-model in predicting disastrous weather events
and their impacts on the coastal community. While the
preliminary experimental results for the existing coupled
geo-model framework are promising, our objective in this
paper is to improve its predictive accuracy by adding the
fused data, including those from the social sensors, as an
input to be assimilated into the model’s initial conditions,
such that the emergency responders are better positioned
to provide emergency relief.

We have been working on developing EventShop as a
tool for integrating heterogeneous data for situation recog-
nition. This tool was put to test during hurricane Sandy,
which affected large parts of the United States and the Carib-
bean during Oct 2012. We used a combination of forecasted
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hurricane path, census, and Red Cross shelters to detect
the macro-risk level for each location in the United States.
Twitter messages mentioning certain hashtags as proxies
for personal concern and the system sent back messages to
users in risky situations, informing them of the nearest open
Red Cross shelter. Some of the tweets were re-tweeted, and
replied to by the users, indicating an interest in receiving and
sharing such information. Working with county officials, we
plan to extend the existing framework and results from the
preliminary results to generate real-time Flood Vulnerability
Index maps and send back personalized alerts to people in
the most vulnerable situations.

The ultimate product from this proposed framework is the
Flood Vulnerability Index (FVI) calculated based on “situ-
ations”, which are derived from the sensors’ spatiotemporal-
thematic-point (STT) data and their aggregated “Emage”,
and geo-physical model’s flood prediction, which also incor-
porated the STT data to enhance the model’s initial repre-
sentation. A prototype Flood Risk Index has been developed
and validated [75], in which the key factors that affect the
hurricane-induced storm surge and inundation in coastal
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Fig. 5 Heat map showing the spatial distribution of the collected Hurricane Irma-related tweets
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Fig. 6 Example of a predic-
tion of the water level changes
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After the storm surge height estimate is obtained, it can be
used to calculate the inundation area. The distance that the
water can inundate is given by / = 21 where a is the slope
% of the coastal topography. The inundation area, assuming
a semi-circle shape, is given by A = I2§. This prototype FVI
has the advantage of easy calculation. When the above-men-
tioned variables are obtained from the physical and social
sensors as STT and Emage, they can be used to quickly esti-
mate the situations, representing the storm surge height and
inundation extent in this framework, using the FVI
formula.

7 Future work recommendations

In the future, this work can be extended to measure and
understand the impacts of the extreme events through min-
ing of social and economic media, and to correlate these
“soft” impacts with physical impact measures. Understand-
ing social and economic impacts will inform local and state
governments, emergency management teams, and decision-
makers in planning for and responding to weather events.
As an example, the Flood Vulnerability Index described
in Section V needs to incorporate social-economic factors
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such as population and economy development level. The
combined application of artificial intelligence (AI), machine
learning (ML) and natural language process (NLP) will be a
key strategy to extract the flood related information from the
vast amount of real-time social media sensors.

The proposed framework can be extended with the
design and application of a social media analytics frame-
work designed for assessing post-storm social and economic
response. The framework can consist of multiple layers. For
example, the first layer could ingest physical storm impact
data from existing sensors and modeling sources. The sec-
ond layer could apply natural language processing to mine
social media (e.g., Twitter, Facebook) for social sentiment.
The third layer is analogous, applying similar techniques to
mine economic media sources (e.g., NYSE, NASDAQ) to
evaluate economic impacts. In each case, the datasets would
be geo-tagged to enable geo-spatial comparisons across
physical, social, and economic layers. Whether persistent
relationships exist, and whether those relationships can be
leveraged for prediction can be explored.
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8 Summary and conclusion

To address the resilience from the disaster situations, we
have proposed Flooding Disaster Resilience Information
Framework. The proposed research work builds an innova-
tive toolbox for emergency managers and increase the emer-
gency preparedness and resilience of the community. The
multiple sources of information utilized by the framework
will lead to more accurate emergency situation detection and
the most appropriate response actions in a timely manner,
which could save more lives, resources, and critical infra-
structures. While the preliminary results are encouraging,
the proposed framework also improves the efficacy of the
community officials in preparing for impending disasters,
as they will be able to model, test, and respond to situations
using multiple-source uncertain data streams without the
need for programming skills.
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