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Abstract—Spatially-variant photonic crystals (SVPCs) are a 
new concept in photonics that provide new optical properties and 
an extraordinary means for multiplexing functions and 
incorporating bio-inspired randomness and materials. In the 
present work, planar SVPCs based on self-collimation are 
investigated.  
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I. INTRODUCTION 
Photonic crystals are periodic structures that control light in 

ways that are analogous to how electrons are controlled in 
semiconductors [1].  They can exhibit optical band gaps which 
have been used to inhibit spontaneous emission [2], form all-
dielectric mirrors [1][3][4], form waveguides [5][6], and more 
[7].  They can also exhibit useful dispersion properties that have 
been used for superprisms [8], negative refraction [9], dispersion 
compensation [10], and more [11].  The present research is 
mostly based on the self-collimation effect where light is forced 
to propagate along an axis of the lattice regardless of angle of 
incidence [12].  Inside of self-collimating photonic crystals, 
beams do not diverge and remain collimated indefinitely.  Self-
collimation has been used for interferometry [13], beam splitters 
[14],  ring-resonator filters [15], and more. 

In recent years, a technique was presented that could bend, 
twist, and otherwise spatially-vary the geometric properties of a 
periodic structure while minimizing unintentional deformations 
to the unit cells [16][17].  For optical and electromagnetic 
applications, it is critical to avoid unintentional deformations as 
these weaken or erase the properties of the photonic crystal.  In 
the present work, spatially-variant photonic crystals (SVPCs) 
based on self-collimation have been developed and explored as 
a new mechanism for controlling light [18].  This prior research 

has shown that SVPCs can exhibit extraordinary control and 
manipulate light very abruptly. 

II. GENERATING SPATIALLY-VARIANT LATTICES 

A. Spatially-Variant Planar Gratings 
A planar grating is described by its average refractive index 

navg, index contrast Δn, and grating vector according to 
Eq. (1), where  is position. 

   (1) 

The grating vector  defines the period and orientation of 
the grating.  When the grating is spatially varied, the grating 
vector becomes a function of position and Eq. (1) fails to 
properly calculate the grating. To mitigate this, an intermediate 
parameter is introduced called the grating phase Φ.  The grating 
phase is related to the grating vector through Eq. (2), which is 
the key equation behind spatial variance. 

   (2) 

After solving Eq. (2) for the grating phase, the planar grating 
is calculated according to  

   (3) 

In this equation, the average refractive index and index 
contrast parameters have also been made a function of position.  
In this manner, all of the attributes of a planar grating can be 
spatially varied. 

An example of a spatially-variant planar grating is shown in 
Fig. 1. The  function, illustrated in Fig. 1(a), contains a region 
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in the shape of the state of Florida. Inside this region, the grating 
period is 2.0 and the orientation of the grating is 45° with respect 
to the x-axis. Outside of this region, the grating period is set to 
1.0 and the orientation is perpendicular to the x-axis. The analog 
grating computed using this  function is shown in Fig. 1(b). 
Note that the grating remains smooth and continuous even 
though the grating vector  changes rather abruptly inside of 
the Florida region.  

        

Fig. 1: a) Example  function. b) Spatially-variant grating 
computed using the given  function.  

B. Spatially-Variant Lattices 
To spatially vary a lattice, the lattice is first decomposed into 

a set of planar gratings, each of the planar gratings are 
individually spatially varied, and the results are added to form 
the overall lattice.  To calculate the set of planar gratings, the 
unit cell is expanded into a Fourier series along its reciprocal 
lattice vectors , , and  according to Eq. (4) and (5). 

   (4) 

   (5) 

The Fourier coefficients ap,q,r are complex numbers that 
quantify the amplitude and offset of each of the planar grating 
components.  V is the volume of the unit cell.  The total range of 
possible things to spatially vary becomes apparent when the 
Fourier series parameters are also made functions of position.  
When this is done, Eq. (4) becomes 

   (6) 

Using Eq. (6) it becomes possible to spatially vary all of the 
attributes while still generating an overall lattice that is smooth, 
continuous, defect-free and that minimizes unintentional 
deformations to the unit cells.  Attributes that can be spatially 
varied include the orientation of the unit cells, lattice spacing, 
lattice symmetry, fill factor, pattern within the unit cell, and 
more.  In fact, Eq. (6) ensures all of these can be spatially varied 
at the same time and all in unique patterns. 

The ability to spatially vary multiple attributes of a lattice 
simultaneously is demonstrated in Fig. 2. In this example, the 
spatially varied attributes are: lattice spacing, orientation of the 
unit cells, and fill factor. Each of these inputs are spatially varied 
in a unique way and the overall lattice remains smooth. 
Continuous, and defect free as expected. 

 
Fig. 2: a) Inputs to spatially vary the lattice. b) Lattice with 

three parameters spatially varied simultaneously and in unique 
patterns.   

C. Incorporating Randomness 
Profound perfection can be found in nature’s imperfections.  

This is particularly true of periodic structures observed in nature, 
which leverage randomness to provide more omnidirectional 
behavior [19], greater immunity to damage and deformations, 
identification of friend/foe, and likely many things we have yet 
to discover.  In electromagnetic and photonic systems, 
randomness has been shown to provide wide band gaps [19] and 
to suppress side lobes of array antennas and frequency selective 
surfaces [20].  Random scatter has also been used for optical 
cloaking [21].  

The algorithm described above provides an extraordinary 
means to incorporate randomness into SVPCs.  It is possible to 
introduce any level of randomness to each attribute of the lattice 
independently while still generating an overall lattice that is 
smooth, continuous, and free of unintentional defects. Fig. 3 
shows an example of this. The lattice in Fig. 3(a) has a 90° bend 
and is otherwise uniform. In Fig. 3(b), this same structure is 
presented, but with some randomness incorporated into the 
orientation, period, and fill factor maps. As can be seen, the 
lattice is aperiodic, randomized, and yet remains smooth, 
continuous, and free of defects.   
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Fig. 3: a) Uniform lattice with a 90° bend. b) Same 

structure but with some randomness incorporated into the 
orientation, period, and fill factor parameters. 

III. IMPLEMENTATION AND POSSIBLE APPLICATIONS 
In this section we summarize our work [22] and present our 

results for planar SVLs with high and low  structures1. We 
then present an approach to transform our algorithms to HPC 
platforms. 

A. Current Research and Results 
Fig. 4 shows the steps we took to simulate the propagation 

of an EM wave impinging on a SVL structure.  

STEP 1: Define the unit cell structure. The unit cell, outlined 
by the dashed lines, is made of silicon ( ), has a lattice 
spacing of , and consists of sheets with thickness  and rods of 
radius . We analyzed different variants of this structure, 
changing the values of , , and  each time. We also looked at 
unit cells with different geometries, including triangles, circles, 
squares, and random geometries, but found this structure to be 
the best for self-collimation. 

 
Fig. 4: Design workflow for self-collimating photonic 

crystals. 

1   is the refractive index contrast and is determined by getting the absolute difference 
between the refractive index of the material that the unit cell is made of and the material 
surrounding it.  is considered high and is considered low. 

STEP 2: Analyze the unit cell using the plane wave 
expansion method (PWEM). Through PWEM, we calculate the 
dispersion surfaces which describe the spatial dispersion of the 
lattice at a specific frequency.  

STEP 3: Generate the iso-frequency contours (IFC) by 
finding the intersection between constant frequency planes and 
the dispersion surfaces. Self-collimation occurs where the IFC 
is flat over some span of wave vectors β and over some band of 
frequencies ωn.  

 
Fig. 5: Performance metrics for self-collimation. 

STEP 4: Optimize the unit cell for self-collimation using the 
following metrics [23]: strength metric ( ), fractional bandwidth 
( ), and acceptance angle ( ), as shown in Fig. 5. The 
figure of merit is calculated directly from these performance 
metrics: . 

STEP 5: Simulate an EM wave impinging on the structure 
using the finite-difference frequency-domain (FDFD) method. 
For this work, we demonstrate the self-collimation effect by 
varying the orientation of the unit cells in the lattice to form a 90 
degree bend as shown in Fig. 6(b). Simulations were performed 
for both low and high  cases. The structure is the same in both 
cases, but with slightly different dimensions. The high  
lattice, with a higher , performs better for self-collimation. 
In the FDFD simulation, this is conveyed through  less scattering 
at the input and output faces of the lattice, as well as along the 
bend.  

 
Fig. 6: Optimized unit cells for self-collimation. (a) Planar, 

low   structure. (b) Beam propagation through the SVL with 
low  . (c) Planar, high   structure. (d) Beam propagation 

through the SVL with high . 
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B. Possible Applications and Way Forward 
The simulations provide insights into the self-collimation 

phenomenon that will enable new device functionality over a 
broad spectral range.  Harnessing these qualities in photonic 
crystals can provide advanced features in a variety of 
applications:  decreased size and cost of scene projection 
systems, improved performance collimators and collecting 
optics, broadband optics with very wide acceptance angles, 
improved emitter and detector efficiencies, compressive sensing 
applications, radical system miniaturization through 
multiplexing and light couplers for integrated photonics. 

Current computational limitations hinder the design of larger 
scale, higher complexity devices2.  Simulation of planar 20×20 
and 100×100 lattices require approximately 30 minutes and 24 
hours respectively to execute using the current MATLAB 
scripting.  The corresponding memory footprint for the larger 
lattice is greater than 20 GB.  Consequently, large lattices with 
a substantial number of parametric variations (unit cell shapes, 
materials, wavelengths, incidence angles, etc.) are prohibitive.  
Increasing the structural dimensions of the photonic crystals to 
two or three will be practically impossible. 

In order to enhance the quality and size of simulations, the 
current MATLAB script used is undergoing migration to C/C++ 
using optimized linear algebra libraries for implementation on 
high performance computing (HPC) platforms.  Further 
improvements to efficiency are expected as multiple 
simultaneous simulation configurations will be performed on 
multiple cores or a complex configuration can be executed using 
multiple cores.  All modifications for HPC will also preserve the 
heterogeneous system execution capability utilizing both CPUs 
and GPUs. 
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2 The system is a dual quad core Xeon processors @ 3.47 GHz and 96GB RAM. 
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