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Abstract—Spatially-variant photonic crystals (SVPCs) are a
new concept in photonics that provide new optical properties and
an extraordinary means for multiplexing functions and
incorporating bio-inspired randomness and materials. In the
present work, planar SVPCs based on self-collimation are
investigated.
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I.  INTRODUCTION

Photonic crystals are periodic structures that control light in
ways that are analogous to how electrons are controlled in
semiconductors [1]. They can exhibit optical band gaps which
have been used to inhibit spontaneous emission [2], form all-
dielectric mirrors [1][3][4], form waveguides [5][6], and more
[7]. They can also exhibit useful dispersion properties that have
been used for superprisms [8], negative refraction [9], dispersion
compensation [10], and more [11]. The present research is
mostly based on the self-collimation effect where light is forced
to propagate along an axis of the lattice regardless of angle of
incidence [12]. Inside of self-collimating photonic crystals,
beams do not diverge and remain collimated indefinitely. Self-
collimation has been used for interferometry [13], beam splitters
[14], ring-resonator filters [15], and more.

In recent years, a technique was presented that could bend,
twist, and otherwise spatially-vary the geometric properties of a
periodic structure while minimizing unintentional deformations
to the unit cells [16][17]. For optical and electromagnetic
applications, it is critical to avoid unintentional deformations as
these weaken or erase the properties of the photonic crystal. In
the present work, spatially-variant photonic crystals (SVPCs)
based on self-collimation have been developed and explored as
a new mechanism for controlling light [18]. This prior research
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has shown that SVPCs can exhibit extraordinary control and
manipulate light very abruptly.

II. GENERATING SPATIALLY-VARIANT LATTICES

A. Spatially-Variant Planar Gratings
A planar grating is described by its average refractive index

Nave, index contrast An, and grating vector K according to
Eq. (1), where 7 is position.

n(7)=n,, +Anco{K 7) (1)

The grating vector K defines the period and orientation of
the grating. When the grating is spatially varied, the grating
vector becomes a function of position and Eq. (1) fails to
properly calculate the grating. To mitigate this, an intermediate
parameter is introduced called the grating phase ®. The grating
phase is related to the grating vector through Eq. (2), which is
the key equation behind spatial variance.

VOLF) K (F) @)

After solving Eq. (2) for the grating phase, the planar grating
is calculated according to

n(?):navg (7)+An(7)cos[®(?)} 3)

In this equation, the average refractive index and index
contrast parameters have also been made a function of position.
In this manner, all of the attributes of a planar grating can be
spatially varied.

An example of a spatially-variant planar grating is shown in
Fig. 1. The K function, illustrated in Fig. 1(a), contains a region
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in the shape of the state of Florida. Inside this region, the grating
period is 2.0 and the orientation of the grating is 45° with respect
to the x-axis. Outside of this region, the grating period is set to
1.0 and the orientation is perpendicular to the x-axis. The analog

grating computed using this K function is shown in Fig. 1(b).
Note that the grating remains smooth and continuous even
though the grating vector K changes rather abruptly inside of
the Florida region.

IBEERERREREERRE]

Fig. 1: a) Example K function. b) Spatially-variant grating
computed using the given K function.

B. Spatially-Variant Lattices

To spatially vary a lattice, the lattice is first decomposed into
a set of planar gratings, each of the planar gratings are
individually spatially varied, and the results are added to form
the overall lattice. To calculate the set of planar gratings, the
unit cell is expanded into a Fourier series along its reciprocal

lattice vectors fl s fz , and f; according to Eq. (4) and (5).

n(?) = Z ap’q’ref(Pfﬁquﬁrf}).; (4)
Psq.r
o, =L DT
v

The Fourier coefficients apq, are complex numbers that
quantify the amplitude and offset of each of the planar grating
components. Vis the volume of the unit cell. The total range of
possible things to spatially vary becomes apparent when the
Fourier series parameters are also made functions of position.
When this is done, Eq. (4) becomes

()= T ey, ()OO

p.q,r

Using Eq. (6) it becomes possible to spatially vary all of the
attributes while still generating an overall lattice that is smooth,
continuous, defect-free and that minimizes unintentional
deformations to the unit cells. Attributes that can be spatially
varied include the orientation of the unit cells, lattice spacing,
lattice symmetry, fill factor, pattern within the unit cell, and
more. In fact, Eq. (6) ensures all of these can be spatially varied
at the same time and all in unique patterns.

The ability to spatially vary multiple attributes of a lattice
simultaneously is demonstrated in Fig. 2. In this example, the
spatially varied attributes are: lattice spacing, orientation of the
unit cells, and fill factor. Each of these inputs are spatially varied
in a unique way and the overall lattice remains smooth.
Continuous, and defect free as expected.

Fig. 2: a) Inputs to spatially vary the lattice. b) Lattice with
three parameters spatially varied simultaneously and in unique
patterns.

C. Incorporating Randomness

Profound perfection can be found in nature’s imperfections.
This is particularly true of periodic structures observed in nature,
which leverage randomness to provide more omnidirectional
behavior [19], greater immunity to damage and deformations,
identification of friend/foe, and likely many things we have yet
to discover. In electromagnetic and photonic systems,
randomness has been shown to provide wide band gaps [19] and
to suppress side lobes of array antennas and frequency selective
surfaces [20]. Random scatter has also been used for optical
cloaking [21].

The algorithm described above provides an extraordinary
means to incorporate randomness into SVPCs. 1t is possible to
introduce any level of randomness to each attribute of the lattice
independently while still generating an overall lattice that is
smooth, continuous, and free of unintentional defects. Fig. 3
shows an example of this. The lattice in Fig. 3(a) has a 90° bend
and is otherwise uniform. In Fig. 3(b), this same structure is
presented, but with some randomness incorporated into the
orientation, period, and fill factor maps. As can be seen, the
lattice is aperiodic, randomized, and yet remains smooth,
continuous, and free of defects.
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Fig. 3: a) Uniform lattice with a 90° bend. b) Same
structure but with some randomness incorporated into the
orientation, period, and fill factor parameters.

III. IMPLEMENTATION AND POSSIBLE APPLICATIONS

In this section we summarize our work [22] and present our
results for planar SVLs with high and low An structures'. We
then present an approach to transform our algorithms to HPC
platforms.

A. Current Research and Results

Fig. 4 shows the steps we took to simulate the propagation
of an EM wave impinging on a SVL structure.

STEP 1: Define the unit cell structure. The unit cell, outlined
by the dashed lines, is made of silicon (n = 3.5), has a lattice
spacing of a, and consists of sheets with thickness t and rods of
radius r. We analyzed different variants of this structure,
changing the values of n, t, and r each time. We also looked at
unit cells with different geometries, including triangles, circles,
squares, and random geometries, but found this structure to be
the best for self-collimation.

STEP 2:
Dispersion Surfaces

STEP 1: STEP 3:
Define Unit Cell Iso-Frequency Contours

- - - . .

STEP 5:
Simulate STEP 4:

Design SVL

i

Fig. 4: Design workflow for self-collimating photonic
crystals.

STEP 2: Analyze the unit cell using the plane wave
expansion method (PWEM). Through PWEM, we calculate the
dispersion surfaces which describe the spatial dispersion of the
lattice at a specific frequency.

STEP 3: Generate the iso-frequency contours (IFC) by
finding the intersection between constant frequency planes and
the dispersion surfaces. Self-collimation occurs where the IFC
is flat over some span of wave vectors £ and over some band of
frequencies .

a, B

Fig. 5: Performance metrics for self-collimation.

STEP 4: Optimize the unit cell for self-collimation using the
following metrics [23]: strength metric (S), fractional bandwidth
(FBW), and acceptance angle (8,), as shown in Fig. 5. The
figure of merit is calculated directly from these performance

metrics: FOM = 3/S « FBW % 6,,.

STEP 5: Simulate an EM wave impinging on the structure
using the finite-difference frequency-domain (FDFD) method.
For this work, we demonstrate the self-collimation effect by
varying the orientation of the unit cells in the lattice to forma 90
degree bend as shown in Fig. 6(b). Simulations were performed
for both low and high An cases. The structure is the same in both
cases, but with slightly different dimensions. The high An
lattice, with a higher FOM, performs better for self-collimation.
In the FDFD simulation, this is conveyed through less scattering
at the input and output faces of the lattice, as well as along the
bend.

(<)

Fig. 6: Optimized unit cells for self-collimation. (a) Planar,
low An structure. (b) Beam propagation through the SVL with
low An . (c) Planar, high An structure. (d) Beam propagation
through the SVL with high An.

! An is the refractive index contrast and is determined by getting the absolute difference
between the refractive index of the material that the unit cell is made of and the material
surrounding it. An > 1 is considered high and An < 1is considered low.
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B. Possible Applications and Way Forward

The simulations provide insights into the self-collimation
phenomenon that will enable new device functionality over a
broad spectral range. Harnessing these qualities in photonic
crystals can provide advanced features in a variety of
applications:  decreased size and cost of scene projection
systems, improved performance collimators and collecting
optics, broadband optics with very wide acceptance angles,
improved emitter and detector efficiencies, compressive sensing
applications, radical system miniaturization through
multiplexing and light couplers for integrated photonics.

Current computational limitations hinder the design of larger
scale, higher complexity devices®. Simulation of planar 20x20
and 100x100 lattices require approximately 30 minutes and 24
hours respectively to execute using the current MATLAB
scripting. The corresponding memory footprint for the larger
lattice is greater than 20 GB. Consequently, large lattices with
a substantial number of parametric variations (unit cell shapes,
materials, wavelengths, incidence angles, etc.) are prohibitive.
Increasing the structural dimensions of the photonic crystals to
two or three will be practically impossible.

In order to enhance the quality and size of simulations, the
current MATLAB script used is undergoing migration to C/C++
using optimized linear algebra libraries for implementation on
high performance computing (HPC) platforms.  Further
improvements to efficiency are expected as multiple
simultaneous simulation configurations will be performed on
multiple cores or a complex configuration can be executed using
multiple cores. All modifications for HPC will also preserve the
heterogeneous system execution capability utilizing both CPUs
and GPUs.
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2 The system is a dual quad core Xeon processors @ 3.47 GHz and 96GB RAM.

Distribution A; Approved for Public Release; Distribution Unlimited; (96TW-2018-0104)

336



