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Abstract—Open information extraction is an important task in
Biomedical domain. The goal of the OpenIE is to automatically
extract structured information from unstructured text with no or
little supervision. It aims to extract all the relation tuples from the
corpus without requiring pre-specified relation types. The existing
tools may extract ill-structured or incomplete information, or fail
on the Biomedical literature due to the long and complicated
sentences. In this paper, we propose a novel pattern-based
information extraction method for the wide-window entities
(WW-PIE). WW-PIE utilizes dependency parsing to break
down the long sentences first and then utilizes frequent textual
patterns to extract the high-quality information. The pattern
hierarchical grouping organize and structure the extractions
to be straightforward and precise. Consequently, comparing
with the existing OpenIE tools, WW-PIE produces structured
output that can be directly used for downstream applications.
The proposed WW-PIE is also capable in extracting n-ary and
nested relation structures, which is less studied in the existing
methods. Extensive experiments on real-world biomedical corpus
from PubMed abstracts demonstrate the power of WW-PIE at
extracting precise and well-structured information.

I. INTRODUCTION

Information extraction (IE) aims to extract structured infor-
mation from unstructured text. It is an important task with
many application. The biomedical domain is especially in
huge demand of automatic IE systems, as it is too costly
for manual curation to keep up with the rapid growth of the
literature. Many BioIE (Biomedical Information Extraction)
systems adopt various machine learning models to conduct
specific IE tasks. For example, in the recent BioCreative V
challenge [1], various machine learning models are applied to
conduct a chemical-induced disease (CID) relation extraction
task [2]–[4], where a ranked list of 〈chemical, disease〉 with
“induced” relation is expected as output. Such systems are very
helpful to enrich the knowledge in bioinformatics databases,
such as the Comparative Toxicogenomics Database (CTD)
[5], and can greatly assist downstream applications such as
identifying potential toxicity.

However, there are several challenges that the aforemen-
tioned BioIE system cannot solve. First, the extractions are

not precise and do not provide conditions. For example, a
certain chemical only induces a disease if it is a long-term
high-dose exposure. It is imprecise to simply claim that this
chemical induces a disease. Second, these machine learning
based models still rely on time and labor consuming human
annotation for training data generation. Obtaining sufficient
training data can be costly. Third, the systems can only work
on pre-specified tasks and cannot be extended to new ones.

To address the above challenges, in this paper, we focus on
semi-supervised Bio-OpenIE (Biomedical Open Information
Extraction) tasks, which do not pre-specify relation types but
aims to extract all the relation tuples from a large biomed-
ical literature corpus with little human effort. Pattern-based
methods are widely used for semi-supervised OpenIE in the
general domain. These methods discover and organize frequent
textual patterns with typed entities to extract information from
large corpora [6]–[8]. For example, meta pattern “COUNTRY
president PERSON” can be used to extract “president” relation
for entities, where COUNTRY can be “USA”, “Russia”, etc, and
PERSON can be “Trump”, “Putin”, etc. Though the pattern-
based methods can often achieve good precision, they may
suffer from low recall in biomedical literature due to the
length of the sentence and their complicated structure used
in the literature. For exmaple, “Pre-treatment of ATRA can
decrease the overexpression of cyclin D1 and E2F-1 induced
by B(a)P”, where “ATRA” and “B(a)P” are two chemicals, and
“cyclin D1” and “E2F-1” are genes. The existing methods can
discover the meta pattern “GENE and GENE” and “CHEMICAL
can decrease the CHEMICAL”, but not “Pre-treatment of
CHEMICAL can decrease the overexpression of GENE and
GENE induced by CHEMICAL”, because it is too long and
infrequent.

Therefore, we propose a novel wide-window pattern-based
IE method for biomedical literature, called WW-PIE. There
are three challenges that we need to address: (1) the long sen-
tences with long-distanced entity mentions, (2) the hierarchical
or n-ary relations among long-distanced entities mentioned
in one sentence, and (3) the completeness of extractions.



The key idea is to first break down the long sentences into
shorter yet meaningful sentences or segments and then conduct
pattern mining. After discovering high quality meta patterns,
we group patterns hierarchically to better understand and
organize the patterns. The extractions will be presented in two
formats: the tuple format and the expression format. Using
the above sentence as an example, the tuple format of the
extraction will be 〈ATRA, decrease, cyclin D1:〈(cyclin D1,
E2F-1), induced by, B(a)P〉〉, and the expression format will
be “pre-treatment of CHEMICAL:ATRA can decrease the over-
expression of GENE:cyclin D1 and GENE:E2F-1 induced by
CHEMICAL:B(a)P ”.

In summary, we make the following contributions in this
paper:
• We identify the pitfall and challenge of the existing OpenIE

methods in biomedical literature: long distanced entities and
the need for structured n-ary and hierarchical relation types.

• We formulate a meta-pattern-based approach that utilizes
dependency parsing to resolve the complex sentence struc-
tures and utilizes frequency pattern mining to discover high-
quality extractions.

• We propose a novel hierarchical pattern grouping to better
organize the extractions, keeping both simplicity and the
structure of the relationships.
This paper is organized as follows. In the next section, we

briefly introduce some related work of Bio-OpenIE. In Section
III, we introduce the overall framework of WW-PIE. Then
we introduce the detailed methods for meta-pattern extraction
in Section IV. Some quantitative and qualitative experiments
are introduced in Section V, followed by discussion and
conclusions in Sections VI and VII, respectively.

II. RELATED WORK

A. Open-Domain Information Extraction.
OpenIE aims to extract tuples with any types of relations

from a corpus with no or little human supervision. The task
has been studied in the NLP area for a decade since the first
introduction by Banko et al. [9]. The current OpenIE work
mainly follows two lines: clause-based methods and pattern-
based methods.

In clause-based methods, linguistic features, such as depen-
dency parsing and POS tagging, are used to discover wide-
window relationships. For example, ReVerb [10] and Ollie [11]
identify relational phrases via part-of-speech-based regular
expressions. ClausIE [12] uses grammar rules to rewrite sen-
tences into standardized formats, such as SVO (Subject-verb-
object), SVA (Subject-verb-adverbials), and SVC (Subject-
verb-complement), while Stanford OpenIE [13] splits clauses
using distant training. Generally speaking, the clause-based
methods have high recall but many of the extractions are
redundant or uninformative. To handle this issue, Stanford
OpenIE, MinIE [14] and ReMine [15] uses different statistical
measures to reduce the amount of uninformative or incoherent
extractions.

Pattern-based methods can be traced back to Hearst patterns
[16], which are still widely used for hyponymy relation

extraction. Some pattern-based methods also try to discover
meta-patterns (i.e., relational patterns between entity types).
Patty [7] and HighLife [17] extract typed lexical patterns along
the shortest dependency path, where Patty focuses on binary
relation types and HighLife focuses on n-ary relation types.
MetaPAD [6] finds candidate meta-patterns (i.e., relational
patterns between entity types) through sequential frequent
pattern mining and then uses a trained classifier to identify
the high quality ones. TruePIE [8] adopts truth discovery ideas
to improve the meta-pattern synonymy grouping for specific
relation extraction tasks. Generally speaking, when using these
meta-patterns to match the corpus, the extractions usually have
higher precision, but the meta-patterns can be sparse if the
corpus is full of long sentences.

B. Biomedical Information Extraction.

BioIE includes many NLP subtasks on biomedical literature
such as NER (named entity recognition), relation extraction,
and event extraction [18]–[27]. The task that is the most related
to ours is biomedical relation extraction.

The mainstream is to use supervised methods, which rely on
annotated corpora to discover certain relation types between
entities. For example, Bundchus et al. [28] apply conditional
random fields to detect relations between diseases and treat-
ments from PubMed abstracts. Rink et al. [29] adopt support
vector machine to classify relations between medical records
and treatments. Percha et al. [30] propose a random forest
classifier to predict drug-drug interactions. Besides classifi-
cation approaches, rule-based and pattern-based methods are
also studied. For example, Hackenberg et al. [31] extract
syntactical patterns from labeled examples and use them to
detect interactions between genes and proteins.

OpenIE begins to attract great attention in BioIE domain
[32]. Bio-OpenIE aims to extract tuples with any relation
types. One example is the seminal work by Kulick et al.
[33] that extracts information on drug development and cancer
genomics. Nebot et al. [34], [35] utilize a set of Lexico-
syntactic patterns (LSP) to first extract binary relationship
instances and then infer the semantic types of the extracted
relationships. De Silva et al. [36] adapt Ollie to discover
inconsistencies in PubMed abstracts through ontology-based
information extraction.

III. OVERVIEW

The overall framework of WW-PIE is shown in Figure 1.
The inputs are sentences in the biomedical corpus. We firstly
conduct the biomedical named entity recognition (BioNER),
which recognizes the biomedical entities and provides their
entity types, e.g., gene, chemical, and disease. The typed entity
mentions are then replaced by their types in the following
process. Then each sentence is broken into shorter sentences
and segments based on dependency parsing (see Section IV-B).
These short segments and sentences are the candidates for
sequential frequent pattern mining. Next, we extract the high-
quality meta patterns and these patterns are further grouped



              

     

   

   

         

     

    

    

         

    

    

   

               

    

   

   

     

     

    

     

     

     

        

    

   

   

         

     

Input：Biomedical Corpus

Pre-treatment of ATRA can decrease the overexpression of cyclin_D1 and E2F-1 induced by B(a)P

…

BioNER
Dependency Parsing

1.

Sentence
Break-Down

2.

treatment can decrease 
overexpression 

pre-treatment of CHEMICAL

the overexpression of GENE

GENE and GENE

GENE induced by CHEMICAL

Pattern
mining

3.

{CHEMICAL phrase} can 
decrease {GENE phrase}

pre-treatment of CHEMICAL

the overexpression of GENE

GENE and GENE

GENE induce by CHEMICAL

output 

4.

Patterns

{CHEMICAL phrase} can decrease {GENE phrase}

GENE induce by CHEMICAL

…

Extractions

<ATRA, decrease, cyclin_D1:<(cyclin_D1, E2F−1), 
induced by, B(a)P>>

pre-treatment of CHEMICAL:ATRA can decrease the 
overexpression of GENE:cyclin_D1 and GENE:E2F-1 
induced by CHEMICAL: B(a)P

Fig. 1: The overall framework of WW-PIE: Wide-Window Pattern-based Information Extraction.

hierarchically (see Section IV-C). Finally, the quality meta-
patterns are used to extract corresponding relationship in-
stances from the original input sentences, and form both
the tuple format and the expression format extractions. The
extraction and the quality meta-patterns are the output of our
framework.

IV. META PATTERN EXTRACTION

A. Data Preprocessing

The data preprocessing contains two steps: named entity
recognition and sentence dependency parsing. We use Pubtator
[37], a state-of-the-art BioNER tool, to first generate a typed
corpus. Pubtabtor recognizes five biomedical entity types
including gene/protein, chemical, disease, species, and SNP.
Pubtator also provides a fully annotated version of the PubMed
abstracts1. After the BioNER step, we replace the recognized
entity mentions by their types, and then use a dependency
parser to parse each sentence. The reason of applying BioNER
first is that the named entities in the biomedical literature may
consist of one or more words and may be out of vocabulary
of the dependency parser, and thus causes mistakes in parsing.
In this paper, we use spaCy2, a python NLP library, for
dependency parsing. The parsing result has a tree structure,
which indicates a set of directed syntactic relations between
the words in the sentence (See example in Figure 1).

1https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
2https://spacy.io/

After the data preprocessing, each sentence s is a sequence
of word tokens t, i.e., s = t1t2...tm, in which tj ∈ T ∪ W
(T is the set of entity types and W is the set of non-type
words). The dependency parsing outputs a tree structure of
tokens Tree(s), and each token’s POS (part-of-speech) tag
Ptj

B. Sentence Break-Down

As mentioned earlier, sentences in biomedical literature can
be long and tokens between entities of interest can be lengthy.
Such issues can cause sparsity and incompleteness of the
patterns. Therefore, it is important to break down the long
and complicated sentences before conducting pattern mining.

In order to break down the sentences, we need to understand
the sentence structure and English grammar. In linguistics,
words can be categorized as content words and function words.
Content words, including nouns, most verbs, and adjectives,
are those which have statable lexical meanings, referring to
some objects, actions, or characteristic. Function words, on
the other hand, are used for grammatical purposes. We observe
that in biomedical literature, the complexity of the sentences is
mainly due to the complexity in noun structures, where a noun
can be modified by other nouns, adjectives, adjectival clauses,
etc. Using the sentence in Figure 1 as an example. In this
sentence, the object is “the overexpression of GENE and GENE
induced by CHEMICAL”, which consists of noun phrases, noun
conjunctions, and an adjectival clause. Therefore, in this paper,
we focus on resolving the complexity of noun structures.



For the dependency parse tree Tree(s), we visit the tree
from the root and repeatedly split the tree at the noun nodes,
where the nouns are those tokens with POS tags as NN, NNS,
NNP, and NNPS. These noun nodes are repeated and kept
in the original tree as a leaf and in the subtree as the root.
Then keeping the original order of the tokens, each tree can
be written as a short sentence. In this way, the original long
sentence can be partitioned hierarchically into shorter ones.
This sentence break-down step not only enhances the pattern
mining step, but also makes the nested relation extraction
possible.

Example 1. The sentence in Figure 1 will be rewritten as 5
short sentences:
decrease: treatment can decrease overexpression.
treatment: Pre-treatment of CHEMICAL
overexpression: overexpression of GENE
GENE: GENE and GENE
GENE: GENE induced by CHEMICAL
where the first token of each line indicates the root of the
corresponding short sentence.

C. Meta Pattern Mining

After the sentences are partitioned into shorter ones, we
then mine frequent sequential text patterns from the set of
short sentences. The lemmas of the words are used to avoid the
effect of different word forms. The frequent sequential text pat-
terns mp are those sequences of tokens tmp1

tmp2
...tmpn

which
appear for more than τ times. The frequency constraint can
help identify meaning expressions. However, for a sequential
text pattern, the frequency of its any sub-sequence is no less
than the frequency of this pattern. Consequently, there exist
many noisy and incomplete patterns such as “of CHEMICAL”
and “and GENE”.

1) Pattern Quality Criteria: In order to reduce the number
of the low quality patterns, we further propose three additional
criteria to ensure the pattern quality: the patterns should be
informative, complete grammarly and complete semantically.
To ensure the pattern informativeness, we require that the
pattern should either contain one entity mention plus at least
one non-stop-word, or contain two or more entity mentions.
To ensure the pattern completeness in grammar, we constraint
that for a candidate pattern, its tokens should form a connected
graph on the dependency parse tree, i.e., ∀i, j 6 n, there is a
path between tmpi

and tmpj
on Tree(s). To ensure the pattern

completeness in semantics, we require that the pattern should
appear at least once as a short sentence. After the noisy pattern
filtering, we get a high quality meta-pattern set MP .

Example 2. Continuing previous example. Pattern “and
GENE” is not grammarly complete because these two tokens
are siblings and not connected on the dependency parse
tree. Pattern “of CHEMICAL” is regarded as incomplete in
semantics because there is no short sentence that says “of
CHEMICAL”. Both patterns are not informative because there
is only one entity mention but no other non-stop-word in each
pattern.

2) Hierarchical Pattern Grouping: Using the pattern qual-
ity criteria, many of the noisy patterns can be removed.
However, in some cases, it also breaks the relationship between
entities which are in different short sentences. For example,
pattern “treatment can decrease overexpression” is considered
uninformative due to the lack of entity mentions. However,
this pattern is important to extract the relation between the
CHEMICAL and the GENE.

The reason that the entity mentions are not expressed in the
same short sentence is because grammarly, the entity mentions
are modifiers of other nouns. However, semantically speaking,
the entity mentions are the emphasis of those noun phrases. For
example, “pre-treatment of CHEMICAL”, “effect of CHEMI-
CAL”, etc, are actions or properties of the CHEMICAL. To
tackle this issue, we propose to group patterns hierarchically
so that the relations can be extracted and expressed more
straightforward. We start from entity phrases: For a noun-
rooted short sentence s = t1, t2, ...tm, if s ∈ MP and has a
single entity mention, it is then regarded as the entity phrases.
After the grouping of entity phrases, the distance between the
entities is further shortened. Then we can re-mine the meta
patterns and may discover more high-quality ones.

Example 3. Patterns “overexpression of GENE” and “pre-
treatment of CHEMICAL” will be tagged as a GENE phrase
and a CHEMICAL phrase respectively. Then “treatment can
decrease overexpression” will be rewritten as “{CHEMICAL
phrase} can decrease {GENE phrase}”. When conducting
extraction, the expression format of extraction is then written
based on the hierarchy of patterns, entity phrases and expres-
sions according to the parse tree.

For patterns that have more than one entity mention, we
want to group them by their semantic meanings. We group
them under the following two assumptions: 1) Synonymous
meta patterns should have the same entity types and same
number of entity mentions; and 2) synonymous meta patterns
should share similar extracted tuples and keywords. For the
extracted tuples, we adopt the term frequency-inverse docu-
ment frequency (TF-IDF) vector of its instance sets. Then we
perform clustering to group synonymous meta patterns. Since
the TF-IDF vector can be sparse, cosine similarity or Jaccard
similarity are recommended when constructing the clusters. In
the experiment, we adopt the hierarchical clustering approach
with cosine distance. The algorithm will keep merging clusters
with the minimal cosine distance until the minimal cosine
distance is greater than a threshold. Then for each cluster,
we use the words with the highest frequency to represent the
meaning of the cluster. If two clusters have the same keywords,
we further merge them together.

V. EXPERIMENT

To test the effectiveness of WW-PIE, we collect a subset of
PubMed paper abstracts as our Biomedical corpus. To ensure
that the selected paper contain some biomedical relationships,
we used the Comparative Toxicogenomics Database (CTD)
[5], a human-curated database containing biological entities



TABLE I: Statistics of the CTD dataset subset used in our
experiments.

# of Entity # of Relation # of PMID

Chemical-Gene Chemical: 7,187
Gene: 667 163,126 26,786

Chemical-Disease Chemical: 7,187
Disease: 598 84,104 1,619

Disease-Gene Gene: 669
Disease: 599 834 1,622

Total
Chemical: 7,187

Gene: 669
Disease: 599

248,064 28,007

and their relationships, to guide the selection of the PMIDs
(PubMed IDs).

We focus on three entity types in the corpus: gene, chemical,
and disease. The named entities are recognized and typed
by Pubtator [37]. Among these entity types, there are three
relation types in CTD: chemical-gene, chemical-disease, and
disease-gene relationships. We first randomly select 248,064
relationships from the above three relation types that are
associated with experimental evidence in the CTD database.
The CTD also provides the PMIDs related to these selected
relationships. We then collect all PubMed abstracts that are
shown to be associated with the above relationships in CTD
as our input corpus. The entity and relationship statistics of
our input corpus are shown in Table I.

A. Results On Relation Extractions

Baselines. To show the effectiveness of WW-PIE in relation
extraction, we compare it with the following state-of-the-art
OpenIE approaches:
• ClausIE [12] adopts clause patterns to handle long-distance

relationships.
• Stanford OpenIE [13] learns a clause splitter via distant

training data.
• Ollie [11] utilizes open pattern learning and extracts patterns

over dependency path and part-of-speech tags.
• MinIE [14] refines tuples extracted by ClausIE by identify-

ing and removing parts that are considered overly specific.
We also tried pattern-based methods such as METAPAD but
they do not work due to pattern sparsity in biomedical corpus.

For the baseline methods, since their extraction are in
surface-name form and the results are not structured, we
conduct the following post-processing to obtain the structured
extractions: (1) use NER tools to recognize the name entities,
and (2) keep extractions from the SVO formatted extractions
if there is an entity Es in the subject and an entity Eo in the
object. For WW-PIE, we only use patterns with two or more
entity mentions to extract the tuples.
Evaluation Metrics. We randomly sample 96 sentences from
the 28,007 input PubMed abstracts for performance compari-
son. The annotator is asked to evaluate without knowing which
model produced the results, eliminating potential bias in evalu-
ation. Similar to the settings in previous studies [12], one tuple
will be judged as correct if it reads smoothly and meets the fact
described in the sentence. For example, both (“DISEASE”, “is”,

“DISEASE”) and (“DISEASE”, “induced by”, “CHEMICAL”)
are correct. However, (“SPECIES”, “with”, “DISEASE”) will
not be counted since they have no relationship.

The following measures are adopted: (1) number of correct
extractions, (2) number of valid extractions, (3) the precision
of the extracted tuples, i.e. # correct extractions divided by
# valid extractions. The first measure represents how many
correct extractions can be detected from the corpus by each
method. Note here, for OpenIE task, it is hard to measure
the recall since it is infeasible to know all the “correct”
extractions, but the number of correct extraction can reflet
the recall in a certain degree. For the second measure, the
valid extractions for the baselines refer to the extractions
after post-processing, and for WW-PIE, they refer to the
extractions after pattern grouping and removing the tuples with
conjunction relation types. The third measure represents the
precision, the percentage of the correct extractions in the valid
extractions. For this measure, the higher the better.

TABLE II: Performance comparison with state-of-the-art Ope-
nIE systems

# Correct extractions # Valid extractions Precision
ClausIE [12] 21 142 0.15
Stanford [13] 120 277 0.43

Ollie [11] 43 84 0.51
MinIE [14] 77 126 0.61
WW-PIE 110 150 0.73

Results and case studies. Table II summarizes the com-
parison results on the extracted tuples. It is clear that the
proposed WW-PIE method achieves significant improvement
in precision. It boosts the precision from 61% of the best
baseline (MinIE) to 73%. The number of correct extractions of
WW-PIE is also competitive with the baseline methods. Only
Standford OpenIE extracts more correct extractions. However,
after a careful sentence-by-sentence examination, we find that
the information extracted by the baseline OpenIE methods has
high redundancy, and the number of correct extractions does
not honestly reflect the amount of information detected by
these methods.

The major reason is that these methods try to re-write
the sentences with various expressions, but different expres-
sions carry almost identical information and do not introduce
new information. For example, sentence “YM511 significantly
inhibited testosterone-stimulated transcriptional activation of
estrogen-responsive element (ERE) in MCF-7 cells transfected
transiently with ERE-luciferase reporter plasmid”. Stanford
OpenIE produces 60 valid extractions, such as 〈YM511,
inhibited, testosterone-stimulated activation〉 , 〈YM511, sig-
nificantly inhibited, testosterone-stimulated activation〉, and
〈YM511, significantly inhibited, testosterone-stimulated tran-
scriptional activation in MCF-7 cells〉. However, these extrac-
tions have much information in common. When we evaluate
the results, the annotator are asked to give T/F labels for each
valid extraction. Therefore, among the 60 valid extractions, 28
are annotated as correct, even though there are only couple of
unique meaningful tuples in the original sentence. On the other
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Fig. 2: Pattern and Expression Distributions.

hand, WW-PIE tries to provide the most complete information

in a single tuple, so the redundancy among extractions is very

low. We find that almost all correct extractions are unique.

Compare with baseline methods, WW-PIE is especially

strong in extracting relations expressed in noun phrases. For

example, “GENE inhibitor CHEMICAL” is an informative pat-

tern to extract the inhibition relation between the gene mention

and the chemical mention. However, due to the lack of verb

in this expression, such relation cannot be detected by the

baseline methods. The shortcoming of WW-PIE is that some

information may be missed due to the infrequent expressions.

For example, WW-PIE fail to extract the relation tuples

from the sentence in the previous example, as “CHEMICAL-

stimulated transcriptional activation” is infrequent even though

“CHEMICAL significantly inhibit activation” is frequent. To

conquer this shortcoming, we plan to improve WW-PIE with

skip-gram pattern extraction.

B. Results On Pattern Extractions

As discussed earlier, it is important that the extractions and

the patterns to be simple and straightforward. We examine

the meta patterns and the expression formatted extractions by

WW-PIE. Figure 2 shows four distributions.

Figure 2a shows the number of patterns with different

number of entity mentions. It is clear that most meta patterns

from WW-PIE contains a single entity mention, i.e., they are

entity phrases. These patterns are not directly used in entity

relation extractions, but they can be useful in other tasks (See

Table III for more examples). Figure 2b shows the number

of patterns with different number of tokens. We can see that

most patterns contain less than five tokens, indicating that the

patterns are concise. For the two figures at the bottom, we

focus on the expression format of extractions, so there are at

least two entity mentions in each expression. Figure 2c shows

the number of expressions with different number of entity

mentions. Though most expressions contain two entities, there

TABLE III: Top 10 Frequent Meta Patterns with Single Entity.

Meta Patterns with Single Entity #
DISEASE cell 11210
effect of CHEMICAL 9507
GENE expression 6551
expression of GENE 4940
CHEMICAL treatment 4896
GENE gene 4229
CHEMICAL exposure 3957
the effect of CHEMICAL 3721
GENE mrna 3211
CHEMICAL level 3076

TABLE IV: Examples of synonymous meta pattern groups.

Synonymous group Meta Patterns
CHEMICAL induced GENE inhibition by CHEMICAL

inhibition of GENE CHEMICAL block GENE

GENE inhibitor , CHEMICAL

GENE inhibitor CHEMICAL

CHEMICAL activate GENE CHEMICAL activated GENE

GENE activator CHEMICAL

GENE agonist CHEMICAL

GENE agonist , CHEMICAL

GENE ligand CHEMICAL

GENE ligand , CHEMICAL

DISEASE cause by CHEMICAL CHEMICAL induced DISEASE

CHEMICAL can cause DISEASE

CHEMICAL induce DISEASE

CHEMICAL cause DISEASE

DISEASE be induce by CHEMICAL

DISEASE induce by CHEMICAL

DISEASE produce by CHEMICAL

SPECIES treat with CHEMICAL CHEMICAL administration to SPECIES

CHEMICAL treated SPECIES

CHEMICAL exposed SPECIES

CHEMICAL treat SPECIES

SPECIES be inject with CHEMICAL

SPECIES be administer with CHEMICAL

...

are still a good number of extractions contain more entities.

Figure 2d shows the number of expressions with different

number of tokens. The expressions contain more tokens than

the patterns do in general, but most of them still contain

less than 5 tokens, further demonstrating the conciseness

of the extraction. Comparing with WW-PIE, the average

length of the extractions from the four baselines (ClausIE,

Standford OpenIE, Ollie, and MinIE) are 13.5, 6.7, 9.4, and

9.1 respectively. We also find that 44% of the extractions are

extracted from two or more short sentences, which implies that

WW-PIE is effective in getting the complete information.

In Table III, we list the top 10 most frequent informative

meta-patterns with single entity and their counts. We can see

that these meta patterns are high-quality biomedical phrases.

These phrases may be useful for recognizing more entities,

entity types, entity functions and entity properties. For exam-

ple, “GENE expression” and “GENE mrna” may be helpful

in named entity recognition tasks: if a proper noun appears

frequently in such phrases, there is a high chance it is a gene’s

name. “CHEMICAL treatment” can be a reliable pattern for

recognizing treatments.

In Table IV, we list some examples of the synonymous

pattern groups. For example, the first group refers to the



TABLE V: Examples of the extractions from the meta patterns.

Meta Pattern
{CHEMICAL} reduce {DISEASE}

Extractions in Expression Format Extractions in Tuple Format
Ranitidine reduce ischemia/reperfusion-induced liver injury in rats 〈Ranitidine, reduce, liver injury:

〈ischemia/reperfusion, induce, liver injury, in, rats〉 〉
resveratrol reduce brain injury 〈resveratrol, reduce, brain injury 〉
Resveratrol reduce renal and lung injury cause by sepsis in rats 〈Resveratrol, reduce, renal and lung injury:

〈sepsis, cause, renal and lung injury, in rats〉 〉
Resveratrol reduce TNF-a-induced U373MG human glioma cell invasion 〈Resveratrol, reduce, glioma cell invasion:

〈TNF-a, induce, human glioma cell invasion〉 〉
caffeine treatment reduce glioma cell proliferation 〈caffeine, reduce, glioma 〉

Meta Pattern
{CHEMICAL} inhibit {GENE}

Extractions in Expression Format Extractions in Tuple Format
Progesterone inhibit COX-2 expression 〈Progesterone, inhibit, COX-2〉
NAC treatment inhibit phosphorylation of Akt 〈NAC, inhibit, Akt 〉
ATRA inhibit the expression of Ccnb1 and Ccna1 〈ATRA, inhibit, (Ccnb1, Ccna1)〉
Cypermethrin inhibit the interaction between the AR AF1 and SRC-1 〈Cypermethrin, inhibit, AR AF1:〈AR AF1, interaction, SRC-1〉 〉
PGF and H2O2 inhibit SOD1 protein expression and activity 〈(PGF,H2O2), inhibit, SOD1〉

Meta Pattern
{GENE} cause {DISEASE}

Extractions in Expression Format Extractions in Tuple Format
mutations in the CSB gene cause Cockayne syndrome 〈CSB, cause, Cockayne syndrome〉
mutations in FOXP2 cause developmental verbal dyspraxia (DVD) 〈FOXP2, cause, developmental verbal dyspraxia:

〈 〈developmental verbal dyspraxia, abbr, DVD〉 〉
mutations in the hENT3 gene cause an autosomal recessive disorder in humans 〈hENT3, causes, autosomal recessive disorder:

〈autosomal recessive disorder, in, humans〉 〉
germline mutations in DIS3L2 cause the 〈(DIS3L2, cause,
Perlman syndrome of overgrowth and Wilms tumor susceptibility (Perlman syndrome of overgrowth, Wilms tumor) 〉

relation type “GENE inhibitor CHEMICAL”, which includes
meta patterns such as “CHEMICAL induced inhibition of
GENE”, “GENE block CHEMICAL”, and “GENE inhibition
by CHEMICAL”. We can see that the synonymous patterns
may have different key words and may have different entity
orders (such as “GENE block CHEMICAL”). However, the meta
patterns within each group still have close semantic meaning
and each group can be regarded as a specific relation type.
By grouping synonymous meta patterns together, we reduce
the redundancy of extracted relation types and enrich the
relation instances for each type, which makes the output more
structured for downstream applications.

Table V shows some examples of the patterns and extrac-
tions in both the expression format and the tuple format. The
words in bold are the recognized named entities. We can see
that for a pattern, the expressions can be very diverse. In
existing pattern-based information extraction methods, these
expressions will be considered as separated patterns, and
consequently, the frequency of each pattern is rather low.
These examples also demonstrate three advantages brought
by the hierarchical pattern grouping. 1) The pattern grouping
merges the diverse expressions into a bigger group, so it can
address the challenge of pattern sparsity. 2) It shortens the
distance between entity mentions. 3) The hierarchical pattern
grouping enables a new structure of extractions, the nested
relations, which is not studied in any existing OpenIE methods.
As a result, WW-PIE can extract more information and more
complete information.

VI. DISCUSSION AND FUTURE WORK

WW-PIE utilizes both dependency parsing and sequential
frequent pattern mining in finding typed textual patterns. Both
component can be further improved. We test several state-
of-the-art parsers which are trained on general domain, but
they all experience more difficulty in parsing sentences from
the biomedical domain. WW-PIE can tolerant the errors at a
certain degree, as the errors are unlikely to appear in a high
frequency, but a better dependency parser can enhance the
quality of sentence break-down and the relation extraction.
The sequential frequent patterns may be carefully extend to
frequent skip-gram patterns as discussed in Section V-A. If the
infrequent expression “CHEMICAL-stimulated transcriptional
activation” can be merged into pattern “CHEMICAL-stimulated
{adj} activation”, WW-PIE then can extract the relation tuples
from the original sentence, and improve recall overall.

In the experiments, we mainly examine the patterns with
multiple entity mentions and focus on relation extraction tasks.
However, the patterns can be useful in a wide range of
applications. As mentioned in Section V-B, the patterns with
single entity can be useful in named entity recognition, entity
function discovery, entity property discovery, etc. For example,
recent papers [38], [39] point out the importance of expres-
sions such “GENE phosphorylation”, “GENE overexpression”,
and “CHEMICAL sensitivity” in extracting genomic anoma-
lies and post-translational modifications (PTMs).

Through the error analysis, we find that both the base-
line methods and WW-PIE have trouble for some negation
structures. For example, “there is no evidence that ...”, and



“apoptosis of DISEASE cell”. Such negation structures may
change the relation type found in the OpenIE methods. We
leave this open challenge to our future work.

VII. CONCLUSION

We propose a novel method WW-PIE for the Bio-OpenIE
tasks. It can extract all variety of the relation tuples from large
biomedical literature corpora with little human effort. WW-
PIE first resolves the long and complicated sentence structures
by breaking down the sentences using dependency parse tree
into shorter ones. Then WW-PIE discovers frequent textual
meta patterns and group them hierarchically to extract n-ary
hierarchical tuples with entity type information. Our method
achieves the highest precision in comparison with state-of-
the-art OpenIE baselines and keeps simplicity and hierarchical
structures of the extracted information. These various experi-
ments demonstrate the effectiveness of WW-PIE in handling
real-world biomedical literature with complicated sentence
structures and rich information.
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