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Abstract—Many biomedical entity mentions contain other
entity mentions nested inside. Most current named entity recog-
nition (NER) systems deal with only flat entities and ignore such
nested entities, which may introduce errors to subsequent tasks
such as relation extraction and knowledge base completion. Re-
cently, fully supervised methods are proposed for nested named
entity recognition. Despite their success on benchmark datasets,
supervised methods rely on human annotation and lead to highly
specialized systems that cannot be easily adapted to new entity
types. In this study, we propose PENNER, a novel and effective
pattern-enhanced nested named entity recognition method that
relies on massive corpora plus only very weak supervision.
We compare PENNER with a state-of-the-art BioNER system,
PubTator, and observe great improvement at recognizing genes,
chemicals, diseases and species. PENNER can also accurately
extract new types of entities, such as biological process and
treatment, that are not annotated by PubTator.

Index Terms—nested named entity recognition, meta-pattern
discovery, pattern mining, multi-set expansion

I. INTRODUCTION

Biomedical named entity recognition (BioNER) is a task
that identifies text spans associated with proper names and
classifies them into a set of semantic classes, such as genes,
proteins, chemicals and diseases. BioNER is a fundamental
step in the biomedical information extraction pipeline. It
facilitates many downstream tasks such as relation extraction
[2], [18] and knowledge base completion [9], [28], [29], [36].

The common way for BioNER is to formulate the task
as a sequence labeling problem. Various approaches have
been successfully applied to BioNER, from feature-based
[14], [16] to neural network methods [4], [8], [34]. However,
most of such methods are unable to handle nested named
entities. Figure 1 shows an example. A CHEMICAL entity
(i.e., “alanine”) is nested in a PROTEIN entity (i.e., “alanine
aminotransferase”). The flat entity recognition methods cannot
detect both correctly. For example, PubTator [35], a state-of-
the-art BioNER system, recognizes “alanine” as a CHEMI-
CAL, but misses “alanine aminotransferase” as a PROTEIN.

Emphasis should be put on nested named entities for two
reasons: (1) The nested entity structure is quite common in
biomedical literature. For example, 17% of the entities in the
GENIA [30] dataset are embedded within another entity. And
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…… although each of the agents alone caused only slight increase in the 
[[alanine]CHEMICAL aminotransferase]PROTEIN activity.

Fig. 1. An example of biomedical named entities with nested naming
architecture from PubMed (PMID: 10190572).

(2) many downstream tasks require NER to detect not just
the inner-most entity. For example, in Figure 1, we would
like to know that a protein activity is being discussed instead
of a chemical one. Failing to do so may introduce errors to
subsequent relation extraction and knowledge base completion.

Several approaches have been proposed for handling nested
named entity recognition [1], [6], [11], [12], [19], [23]. All
of these methods are fully supervised, which require human
effort for feature engineering or data annotation. Feature-based
approaches [1], [6], [19], [23] rely on handcrafted features
carefully designed for each entity type. Neural network models
[11], [12] save efforts for feature engineering, but still require
a large amount of human-annotated training data. Therefore,
these methods cannot be easily adapted to new entity types.
In GENIA, a benchmark dataset for biomedical nested named
entity recognition, five types of entities (i.e., gene/protein,
DNA, RNA, cell type and cell line) are annotated. Despite
the success of the supervised models on the GENIA dataset,
it remains unknown whether they perform well at detecting
nested structures for other important types of entities such
as chemicals and diseases. No results are shown in their
papers, or even no proper benchmark datasets are found for
recognizing nested structures for chemicals and diseases.

In this paper, we propose PENNER (Pattern-enhanced
Nested Named Entity Recognition), which relies on massive
corpora and unsupervised pattern mining to tackle the prob-
lems mentioned above. Our model takes massive corpora as
input, with entities pre-tagged by any existing flat named entity
recognition tools. We first perform automatic meta-pattern ex-
traction and take the extracted meta-patterns as candidate outer
entity patterns. Then we select two patterns for each entity type
as seed patterns and perform automatic type set expansion.
Note that in this step, we only need very weak supervision
(two user-specified seed patterns in contrast with a large nested
annotated training corpus). The top-ranked meta-patterns for
each type are treated as correctly typed meta-patterns and
are used to extract the correct outer entities from the input
corpus. Compared with previous methods, our method greatly



ID Sentence

1
TERT encodes the reverse transcriptase subunit of 
human telomerase.

2
The FGFR-2 receptor is a membrane-spanning tyrosine 
kinase.

3
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1
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GENE_tyrosine_kinase.

3
Each of the agents alone caused only slight increase in 
the GENE_alanine_aminotransferase activity.

… …

Nested Entity Recognition

Fig. 2. Framework overview of PENNER.

enhances nested named entity recognition without any human
effort for feature engineering or data annotation. Additionally,
our novel set expansion approach gives us the advantage to
discover new entity types that are not annotated in the pre-
tagged input corpus. We compare our method with a state-
of-the-art BioNER system, PubTator [35], and observed great
improvement in recognizing the outer entities with four types:
gene, chemical, disease and species. Our method is also able to
accurately extract biological process and treatment entities that
are originally not annotated by PubTator in the input corpus.

II. RELATED WORK

Several methods have been proposed for flat named entity
recognition. Early techniques in the supervised domain have
been based on hidden markov models (HMMs) [37] or, later,
conditional random fields (CRFs) [21]. Recently, recurrent
neural networks (RNNs) have been widely applied to several
sequence labeling tasks achieving state-of-the-art results. Lam-
ple et al. [15] proposed neural models based on long short-term
memory networks (LSTMs) and CRFs for flat named entity
recognition and achieve state-of-the-art performance.

There are fewer approaches, however, addressed the prob-
lem of nested entities. Alex et al. [1] presented several
techniques based on CRFs for nested named entity recognition
for the GENIA dataset. They obtained their best results from
a cascaded approach, where they applied CRFs in a specific
order on the entity types, such that each CRF utilizes the
output derived from previous CRFs. Their approach could not
identify nested entities of the same type. Finkel and Manning
[6] proposed a CRF-based constituency parser for nested
named entities such that each named entity is a constituent

in the parse tree. Their model achieved state-of-the-art results
on the GENIA dataset. However, the time complexity of their
model is O(n3), where n is the number of tokens in the
sentence, making inference slow. Lu and Roth [19] further
proposed a linear time directed hypergraph-based model.

While most previous efforts for nested entity recognition
were limited to named entities, Lu and Roth [19] addressed
the problem of nested entity mention detection where men-
tions can either be named, nominal or pronominal. Their
hypergraph-based approach is able to represent the potentially
exponentially many combinations of nested mentions of dif-
ferent types. They adopted a CRF-like log-linear approach to
learn these mention hypergraphs and employed several hand-
crafted features defined over the input sentence and the output
hypergraph structure.

Recently, Muis and Lu [23] introduced the notion of
mention separators for nested entity mention detection. In
contrast to the hypergraph representation that Lu and Roth [19]
adopt, they learn a multigraph representation and are able to
perform exact inference on their structure. It is an interesting
orthogonal approach for nested entity mention detection.

Neural network models for nested named entity recognition
are recently proposed as extensions to the state-of-the-art
RNN-based models for flat named entity recognition. Katiyar
and Cardie [12] proposed to learn a hypergraph representation
for nested entities using features extracted from a recurrent
neural network. Ju et al. [11] proposed to dynamically stack
flat NER layers and recognize outer entities with additional
information from their inner entities. The neural network
models save efforts for manual feature generation, but they
still require a large amount of training data and is not easily



adaptable to new entity types.

III. FRAMEWORK

A. Overview

We lay out our PENNER framework in Figure 2. Given a
raw corpus as input, we first use PubTator [35] to recognize
and classify biomedical entities. The detected “flat” entities
will be replaced by their types. In the second step, we extract
quality sequential patterns with entity type tokens, which
are also called meta-patterns [10]. From our perspective, a
quality meta-pattern is assumed to be frequent, informative and
complete. In Figure 2, the green box shows some examples
of extracted quality meta-patterns. The third step is pattern
expansion. For each entity type to be detected, we take two
user-specified seeds as weak supervision, and expand the seed
set iteratively. At each round, we find the meta-patterns sharing
high context similarity with patterns already in the seed set.
For example, in Figure 2, the weak supervision is “GENE”
and “GENE peroxidase” for the GENE type. During the first
round, “SPECIES telomerase” and “CHEMICAL kinase” are
considered to be similar with those two seeds. Then they will
be put into the GENE seed set for future expansion. After
getting the meta-patterns for each entity type, we go back to
the original corpus to find their concrete instances, which are
naturally nested entities.

B. Meta-pattern Extraction

Given a flat NER result of a corpus, we can replace the spans
of tokens with their entity type names. After the replacement,
the corpus will be a mixed sequence of entity types and non-
type words. A meta-pattern is a sub-sequence of the corpus
which contains at least one entity type token. For example,
“human telomerase” and “mouse telomerase” may be two
patterns in the original corpus, and they will be represented as
one meta-pattern “SPECIES telomerase” after the replacement.

Studying meta-patterns is necessary for nested NER from
two perspectives: (1) The nested structure is more like a
pattern-level phenomenon than an instance-level one. For
example, “SPECIES telomerase” is a protein entity no matter
we are talking about humans or mice. (2) A meta-pattern
has the aggregated context information of all of its instances,
which helps us learn its semantics in a more accurate way.

Meta-pattern discovery has been studied by [10], [17] and
[33]. They propose a set of statistical features (e.g., pattern
frequency, IDF score, etc.) to train a classifier that estimates
the quality of each candidate meta-pattern. However, they do
not rely on deeper semantic analysis of the sentence structure.
In biomedical literature, sentences are usually long and with
formal language styles. To better utilize this feature, we
improve their methods by incorporating dependency parsing
[13] into PENNER.

We use SpaCy1 for dependency parsing. The output parsing
tree has a set of directed syntactic relations between the words
in a sentence. Figure 3 shows an example. The root of the tree

1https://spacy.io/

is the verb “appear”. It is connected to “The high doses” via a
subject relation (nsubj) and to “for” via a preposition relation
(prep).

The high doses        of        CHEMICAL        appear        useful        for        the treatment        of        patients  with        DISEASE.

NOUN ADP PROPN VERB ADJ        ADP             NOUN ADP NOUN ADP PROPN

nsubj

prep pobj

prep

prep preppobj pobj pobjoprd

Fig. 3. An example sentence with dependency parsing tree using SpaCy.

According to the parsing tree as well as the original corpus,
we propose the following four criteria to select quality meta-
patterns:
(1) Frequency. A quality meta-pattern should occur fre-
quently. In this paper, we require each meta-pattern candidate
to appear for more than 10 times in the corpus.
(2) Informativeness. A quality meta-pattern should either be
a single entity type (e.g., “DISEASE”) or a phrase with one
entity type and at least one non-stop-word (e.g., “patients with
DISEASE”). In this paper, since we focus on NER, meta-
patterns with two or more entity mentions (e.g., “CHEMICAL
induces DISEASE”) will not be considered, but they will be
useful in relation extraction.
(3) Syntactic Completeness. For a quality meta-pattern, all
of its tokens in the parsing tree should form a connected
subgraph. We take the sentence in Figure 3 as an example.
“CHEMICAL appear useful” is not complete since “CHEMI-
CAL” and “appear” are separated by other nodes. In contrast,
“patients with DISEASE” is complete.
(4) Semantic Completeness. Since we are doing NER, the
extracted pattern should be a complete noun phrase. Recall
the previous example. “of CHEMICAL” is syntactic complete,
but it may not be a complete noun phrase. To alleviate
this problem, we divide the whole parsing tree into chunks.
Starting from the root, we iteratively cut the tree at nouns (i.e.,
nodes with tags NOUN or PROPN). The noun will serve as the
leaf of the current chunk as well as the root of the next chunk.
In the example, the sentence will be divided into 4 chunks:
“the high doses appear useful for the treatment”, “the high
doses of CHEMICAL”, “treatment of patients”, and “patients
with DISEASE”. We require a semantic complete pattern to be
a complete chunk in the sentence.

We first use sequential pattern mining [10] to discover all
the meta-patterns satisfying our frequency threshold. Then
we check them one by one on the informativeness, syntactic
completeness and semantic completeness.

C. Pattern Expansion

Taking the extracted meta-patterns as candidates, we further
select patterns associated with the entity types we want to
detect. As mentioned above, to get rid of the reliance on
entity-type-dependent training corpus, the pattern selection
step needs to be solved under very weak supervision. Here we
adopt the SETEXPAN framework [26]. SETEXPAN takes sev-
eral user-provided “seed” patterns (e.g., “GENE” and “CHEM-



ICAL peroxidase”) and extracts other patterns belonging to the
same semantic class (e.g., “CHEMICAL aminotransferase”,
“CHEMICAL hydrolase”, “SPECIES telomerase”, etc.). To
capture the semantics of each pattern, we utilize skip-grams
as their features.

Given a target pattern p, one of its skip-grams is
“w−1 w1” where w−1 and w1 are two context words and p is
replaced with a placeholder. For example, in the sentence “This
effect exhibits CHEMICAL peroxidase activity in SPECIES
hepatocytes.”, one skip-gram of “CHEMICAL peroxidase” is
“exhibits activity”. We can also enlarge the context window
size to extract longer skip-grams (e.g., “w−2w−1 w1w2w3”).
In our experiments, the maximum context window size is 4.
One advantage of using skip-grams is that it imposes strong
positional constraints.

Note that word embedding methods such as word2vec [22]
also use skip-gram information. We will show the effectiveness
of our method against word2vec in experiments.

SETEXPAN defines the similarity between each pair of
pattern p and feature c using the TF-IDF transformation [24]:

fp,c = log(1 +Xp,c)(log |P | − log
∑
p′∈P

Xp′,c), (1)

where P is the set of candidate patterns and Xp,c is the raw
co-occurrence count between p and c. Empirically, [26] shows
that such weight scaling outperforms some other alternatives
such as point-wise mutual information (PMI) and BM25.

Then the similarity between two patterns p1 and p2 under
feature set F is defined as

sim(p1, p2|F ) =

∑
c∈F min(fp1,c, fp2,c)∑
c∈F max(fp1,c, fp2,c)

. (2)

Given the seed set S, we first score each skip-gram feature
c based on its accumulated strength with entities in S (i.e.,∑

p∈S fp,c). Then M features with the highest scores will
be selected, from which we sample N subsets Fi (i =
1, 2, ..., N). Each of the subsets contains M0 (M0 < M)
features. The score of each pattern p in feature set Fi is

score(p|Fi) =
1

|S|
∑
p′∈S

sim(p, p′|Fi). (3)

Therefore, for Fi, we can obtain a ranking list of patterns
according to their score(·|Fi). Suppose the rank of p in feature
set Fi is rp,i, we calculate the mean reciprocal rank of p as

MRR(p) =
1

N

N∑
i=1

1

rp,i
. (4)

Finally, the patterns with MRR higher than a threshold
MRRthrs will be added into the seed set for the next iteration.

In practice, we need to recognize entities of different types
simultaneously. For instance, we may expand new patterns
representing genes and chemicals at the same time, using
two seed sets. In our problem setting, the entity types are
assumed to be mutually exclusive (e.g., a disease entity/pattern
can hardly be a chemical as well). This property enables

Algorithm 1 MULTISETEXPAN(S1, ..., SQ,MRRthrs)
1: Input: M seed sets S1, ..., SQ representing Q different

entity types.
2: while ∃Sk not converged do
3: for i = 1 to Q do
4: Sample N context feature sets F1, ..., FN .
5: for p ∈ P \ Si do
6: Calculate MRR(p) for each p.
7: if MRR(p) ≥MRRthrs and p /∈ ∪j 6=iSj then
8: Si ← Si ∪ {p}.
9: end if

10: end for
11: if nothing added into Si in this round then
12: Mark Si as converged.
13: end if
14: end for
15: end while
16: Output: Q expanded sets S1, ..., SQ

TABLE I
BASIC STATISTICS OF THE SUBSET CORPUS.

Abstracts Sentences Entity Mentions
Gene Chemical Disease Species

28007 302736 215704 314134 129931 86697

different semantic sets to give hints to each other. Therefore,
we extend SETEXPAN to the MULTISETEXPAN framework,
given in Algorithm 1. Given Q seed sets S1, S2, ..., SQ of
different types, MULTISETEXPAN extracts new patterns for
each Si by turns. If a pattern already appears in other seed
sets, no matter how large its MRR is, we will not put it in Si.

In our experiments, we find this strategy very useful in
avoiding interference among different seed sets.

IV. EVALUATION

We aim to answer three questions in the experimental part.
First, at the pattern level, does PENNER perform well in
meta-pattern expansion? Second, at the instance level, does
PENNER perform well in nested named entity recognition?
Third, after the pattern enhancement, what is our improvement
over PubTator?

A. Setup

Dataset. While PENNER is a general method that can be
applied to any set of biomedical literature, we select a sub-
set of PubMed paper abstracts for the evaluation process.
The selection is based on the Comparative Toxicogenomics
Database (CTD) [5] which contains a large set of human-
curated biomedical entities. Two entities, together with their
relation, form a tuple in CTD. We randomly sample 248,064
tuples and extract all the PubMed abstracts associated with
these tuples. Table I shows some basic statistics of the subset
corpus.

Baselines. We demonstrate the effectiveness of PENNER by
comparing it with two baselines:



TABLE II
PATTERN EXPANSION RESULTS OF EMBEDDING ON GENE, CHEMICAL, DISEASE AND SPECIES ENTITIES. GREY PATTERNS ARE JUDGED AS INCORRECT.

Seed {GENE, GENE peroxidase} {CHEMICAL, GENE agonist} {DISEASE, cellular DISEASE} {SPECIES, female SPECIES}
1 unassigned : GENE CHEMICAL receptor modulator ( serm ) DISEASE vera fischer SPECIES
2 CHEMICAL phosphatase antagonist of CHEMICAL potential for DISEASE SPECIES and adult
3 ( CHEMICAL ) release offspring of SPECIES GENE translocation exposure to CHEMICAL or
4 SPECIES cardiomyocyte CHEMICAL oxidase ( SPECIES and adult SPECIES in vivo
5 potential against DISEASE DISEASE chemopreventive agent growth and DISEASE CHEMICAL protect
6 GENE inducer GENE receptor activity a common DISEASE CHEMICAL interfere
7 effect and mechanism of CHEMICAL antagonist ( CHEMICAL ) rare DISEASE a cohort of SPECIES
8 inducer of GENE CHEMICAL blocker detection of DISEASE SPECIES albino
9 ( GENE ) antagonist CHEMICAL substituent DISEASE as well as CHEMICAL exposure ,

10 GENE level and CHEMICAL vapor progression and DISEASE the detrimental effect of CHEMICAL

TABLE III
PATTERN EXPANSION RESULTS OF SETEXPAN ON GENE, CHEMICAL, DISEASE AND SPECIES ENTITIES. GREY PATTERNS ARE JUDGED AS INCORRECT.

Seed {GENE, GENE peroxidase} {CHEMICAL, GENE agonist} {DISEASE, cellular DISEASE} {SPECIES, female SPECIES}
1 SPECIES telomerase GENE hepatic DISEASE male SPECIES
2 CHEMICAL DISEASE chemopreventive agent degradation of GENE DISEASE
3 DISEASE DISEASE dermal DISEASE CHEMICAL
4 CHEMICAL acetyltransferase CHEMICAL chelation clinical DISEASE DISEASE cell
5 CHEMICAL aminotransferase SPECIES GENE phosphorylation GENE
6 SPECIES GENE antagonist - SPECIES cell
7 CHEMICAL hydrolase DISEASE cell - pregnant SPECIES
8 GENE kinase underlying mechanism of CHEMICAL - adult SPECIES
9 CHEMICAL kinase CHEMICAL exclusion - CHEMICAL channel

10 CHEMICAL influx 10 m CHEMICAL - DISEASE cell line

TABLE IV
PATTERN EXPANSION RESULTS OF PENNER ON GENE, CHEMICAL, DISEASE AND SPECIES ENTITIES. GREY PATTERNS ARE JUDGED AS INCORRECT.

Seed {GENE, GENE peroxidase} {CHEMICAL, GENE agonist} {DISEASE, cellular DISEASE} {SPECIES, female SPECIES}
1 SPECIES telomerase DISEASE chemopreventive agent hepatic DISEASE male SPECIES
2 CHEMICAL aminotransferase CHEMICAL chelation degradation of GENE DISEASE cell
3 GENE promoter GENE antagonist dermal DISEASE pregnant SPECIES
4 CHEMICAL hydrolase - clinical DISEASE adult SPECIES
5 CHEMICAL oxidase - GENE phosphorylation SPECIES hepatocyte
6 CHEMICAL acetyltransferase - - SPECIES embryo
7 GENE kinase - - normal SPECIES
8 CHEMICAL kinase - - juvenile SPECIES
9 CHEMICAL peroxidase - - adult male SPECIES

10 CHEMICAL dismutase - - f334 SPECIES

(1) EMBEDDING [22] first adopts word2vec to learn the
representation vector of each meta-pattern by viewing it as
a single token in the corpus. Given the seed patterns, other
patterns are ranked by the sum of distances away from the
seeds, and top-10 patterns will be returned as the result.

(2) SETEXPAN [26] is an ablation of the whole PENNER
framework, where the seed sets of every entity types are
expanded one by one instead of simultaneously.

For SETEXPAN and PENNER, we set M,M0, N to be 200,
120, 10, respectively. If the final expanded list has more than
10 patterns, we only take the first 10 into consideration.

B. Extracting New Meta-Patterns

We first focus on the meta-pattern expansion. As we all
know, five major entity types can be recognized by PubTator:
gene/protein, chemical, disease, species and SNP. Since SNP
is sparse in the corpus, we consider the other four in this paper.
For each entity type, we put two patterns in the seed set to
see whether the methods can find new nested structures of the
same type. The results are shown in Tables II, III and IV.

At the pattern level, PENNER consistently achieves better
performance than the two baselines. Patterns extracted by EM-

BEDDING are noisy, and some of them are even syntactically
wrong. This is because EMBEDDING only considers semantic
similarity while ignores frequency. For patterns that are not so
frequent, their context in the corpus is limited, so the quality
of their representations learned by word2vec may not be good.
In contrast, PENNER cares both semantics and frequency. If
the extracted patterns appear very often in the corpus, we have
a good reason to trust the quality of its context information.

SETEXPAN does not exploit mutual exclusiveness of differ-
ent seed sets. As we can see, “CHEMICAL” and “DISEASE”,
as entity types, are far more frequent than other quality meta-
patterns in the corpus. Although they may not be semantically
similar to “GENE”, they will be ranked high if frequency
and semantics are considered comprehensively. As a result,
“CHEMICAL” and “DISEASE” will be added into the GENE
seed set after the first round. This may cause severe semantic
drift problem since other disease- and chemical-related pat-
terns will be included in the next few rounds. In contrast,
PENNER will never consider “CHEMICAL” or “DISEASE”
as candidates since they already appear in other seed sets.

We now discuss the four sets expanded by PENNER in
details.



TABLE V
NDCG OF DIFFERENT METHODS ON THE FOUR TYPES.

GENE CHEMICAL DISEASE SPECIES
EMBEDDING [22] 0.139 0.580 0.073 0.315
SETEXPAN [26] 0.602 0.312 0.754 0.417

PENNER 1.000 1.000 0.754 0.776

(1) GENE. PENNER detects 10 gene/protein meta-patterns
that are all correct. Most of the patterns are enzymes, sharing
the same fine-grained type with “GENE peroxidase” in the
seed set. Note that when entities appear in the same meta-
pattern, they are more likely to be similar to each other or
belong to the same subtype. For example, the instances of
“CHEMICAL aminotransferase” include “alanine aminotrans-
ferase”, “aspartate aminotransferase”, “tyrosine aminotrans-
ferase”, “ornithine aminotransferase”, etc. All the chemicals
here are amino acids.
(2) CHEMICAL. PENNER extracts 3 chemical meta-
patterns, among which “GENE antagonist” is the counterpart
of “GENE agonist” in the seed set. The instances of “CHEM-
ICAL chelation” include “iron chelation”, “copper chelation”,
“zinc chelation”, “EDTA chelation”, etc. We believe that
“CHEMICAL chelation” as a whole entity is more complete
than part of it since metal ions and their chelations are different
types of chemicals.
(3) DISEASE. PENNER discovers 5 meta-patterns for the
disease seeds, among which three are correct and the other two
are biological processes. “hepatic DISEASE” extracts instances
such as “hepatic fibrosis”, “hepatic inflammation”, “hepatic
tumor” and “hepatic toxicity”. Again, we believe “hepatic
fibrosis” is a more complete entity than “fibrosis” itself. In fact,
PubTator recognizes “liver fibrosis” or “liver inflammation” as
a whole (see abstracts with PMIDs 30079841 and 23813842
as two examples). Thus, we also need “hepatic DISEASE” for
the consistency in recognition.
(4) SPECIES. PENNER finds 10 meta-patterns for the species
seeds, among which eight are correct and the other two are cell
types. From our perspective, including attributes (e.g., “male”)
for species entities is beneficial to downstream knowledge
extraction tasks. For example, one sentence in the abstract of
[7] is “Amphetamine and cocaine decreased susceptibility to
myoclonus in young mice and increased susceptibility in ma-
ture mice.” If the NER system ignores “young” and “mature”,
the facts extracted from this sentence will be inaccurate and
even controversial to each other. Similar sentences can also be
observed for male species and female species [27]. In addition,
“Sprague-Dawley rat” is recognized as a whole by PubTator
(see abstracts with PMIDs 24726336 and 25325438 as two
examples). Therefore, it is consistent to recognize “F334 rat”
as well.

C. Recognizing Nested Entities

Using the extracted meta-patterns for each entity type, we
go back to the original corpus to find their concrete instances,
which are naturally nested entities.

TABLE VI
NUMBER OF INSTANCES EXTRACTED BY DIFFERENT METHODS ON THE

FOUR ENTITY TYPES.

GENE CHEMICAL DISEASE SPECIES
EMBEDDING [22] 79 139 61 45
SETEXPAN [26] 1734 458 184 2211

PENNER 5254 458 184 3212

TABLE VII
PATTERN EXPANSION RESULTS OF PENNER FOR BIOLOGICAL PROCESS

AND TREATMENT ENTITIES. GREY PATTERNS ARE JUDGED AS
INCORRECT.

Seed {GENE upregulation, GENE
downregulation}

{CHEMICAL injection,
CHEMICAL inhalation}

1 GENE expression CHEMICAL treatment
2 GENE phosphorylation CHEMICAL administration
3 the development of DISEASE CHEMICAL exposure
4 GENE induction treatment with CHEMICAL
5 CHEMICAL action exposure to CHEMICAL
6 identification of GENE administration of CHEMICAL
7 GENE suppression pretreatment with CHEMICAL
8 DISEASE reduction CHEMICAL pretreatment
9 CHEMICAL production -
10 GENE activity -

Tables V and VI show the performance of PENNER in
nested NER. Since the extracted patterns form a ranking list,
we use normalized discounted cumulative gain (NDCG) [25]
to evaluate the rank-aware precision. Besides precision, we
also show the numbers of correct instances extracted by each
method on the four entity types. This can be regarded as the
instance-level “recall” of nested NER.

From Tables V and VI, we can see that PENNER consis-
tently outperforms the baselines both in precision and recall.
For GENE and CHEMICAL, all the instances extracted by
PENNER are correct. Besides, PENNER finds 5254 nested
GENE entities in 28,007 abstracts (i.e., on average, one nested
GENE entity in every 5.33 abstracts), which reflects that in
biomedical literature, the nested structure is not an exception,
but the norm.

D. Finding New Types of Entities

We now demonstrate an important advantage of PENNER
against fully-supervised methods: finding new types of entities.
As we all know, if one entity type is not even mentioned in
the training set, it would be extremely difficult for supervised
methods to detect entities of this type. In biomedical literature,
biomedical processes [3] and treatment entities [31] arouse
great concern. For example, detecting biological process pat-
terns such as “GENE expression” and “GENE phosphoryla-
tion” are useful in connecting gene/protein-disease-drug in the
context of gene-variant [20] and protein modification (PTM)
[32]. However, these two types are not originally annotated
by PubTator. Under this setting, PENNER shows its power.
Similar to the stories above, we just use two seeds for each
entity type.

Table VII shows the pattern expansion results on the two
new types.
(1) Biological Process. Taking “GENE upregulation” and
“GENE downregulation” as seeds, PENNER extracts 10 other



TABLE VIII
CASE STUDY OF THE NER RESULTS. DIFFERENCES OF PUBTATOR AND PENNER RESULTS ARE MARKED IN BOLD. IN CONTRAST WITH PUBTATOR,

PENNER IS ABLE TO DETECT NESTED ENTITY STRUCTURES AS WELL AS NEW TYPES OF ENTITIES.

PMID: 15820610
PubTator The aim of the present study was to determine the effect of HRT on the activities of an antioxidant enzyme [superoxide]CHEMICAL dismutase

(SOD) and aminotransferases like [alanine]CHEMICAL aminotransferase (Ala-AT) and [aspartate]CHEMICAL aminotransferase in different age
groups ...

PENNER The aim of the present study was to determine the effect of HRT on the activities of an antioxidant enzyme [[superoxide]CHEMICAL
dismutase]GENE (SOD) and aminotransferases like [[alanine]CHEMICAL aminotransferase]GENE (Ala-AT) and [[aspartate]CHEMICAL
aminotransferase]GENE in different age groups ...

PMID: 10919993
PubTator Mitogen-activated protein (MAP) kinase [Erk1/2]GENE antagonist mainly inhibited the release of [MCP-1]GENE, whereas MAP kinase

[p38]GENE antagonist mainly suppressed the release of [IL-8]GENE and [RANTES]GENE.
PENNER Mitogen-activated protein (MAP) kinase [[Erk1/2]GENE antagonist]CHEMICAL mainly inhibited the release of [MCP-1]GENE, whereas MAP

kinase [[p38]GENE antagonist]CHEMICAL mainly suppressed the release of [IL-8]GENE and [RANTES]GENE.
PMID: 21266192

PubTator ... it suppressed [STAT3]GENE and [STAT5]GENE phosphorylation in HS-578T cells, whereas it up-regulated [STAT1]GENE phosphorylation
and down-regulated [STAT5]GENE phosphorylation in MCF-7 cells.

PENNER ... it suppressed [STAT3]GENE and [[STAT5]GENE phosphorylation]PROCESS in HS-578T cells, whereas it up-regulated [[STAT1]GENE
phosphorylation]PROCESS and down-regulated [[STAT5]GENE phosphorylation]PROCESS in MCF-7 cells.

PMID: 10498651
PubTator [COL1A2]GENE expression was decreased by [vitamin E]CHEMICAL treatment or transfection with [manganese superoxide]CHEMICAL

dismutase, and was further increased after treatment with [L-buthionine sulfoximine]CHEMICAL ...
PENNER [[COL1A2]GENE expression]PROCESS was decreased by [[vitamin E]CHEMICAL treatment]TREATMENT or transfection with [[manganese

superoxide]CHEMICAL dismutase]GENE, and was further increased after [treatment with [L-buthionine sulfoximine]CHEMICAL]TREATMENT
...

patterns from the text, among which 8 are correct. Similar to
the seeds, most of the extracted biological process patterns are
describing the activities of genes.
(2) Treatment. Taking “CHEMICAL injection” and “CHEM-
ICAL inhalation” as seeds, PENNER expands the set to a
large group of treatment patterns. PENNER makes a mistake
here since “CHEMICAL exposure” is actually a symptom. In
fact, if a chemical appears in an instance of “CHEMICAL
treatment”, it is more likely to be a drug. (E.g., top-5 frequent
instances of “CHEMICAL treatment” include “resveratrol
treatment”, “simvastatin treatment”, “quercetin treatment”,
“estrogen treatment” and “5-FU treatment”.) In contrast, if
a chemical appears in an instance of “CHEMICAL exposure”,
it is usually a toxic entity.

E. Case Study

In order to further show our improvements over PubTator,
we compare the annotation results of several sentences by
PENNER and PubTator in Table VIII. In the first two sen-
tences, PubTator can only do flat NER, while PENNER suc-
cessfully detects CHEMICAL-GENE and GENE-CHEMICAL
nested structures. From the second sentence, we can also see
that recognizing more complete entities will benefit down-
stream applications such as relation extraction. For example, it
is “Erk1/2 antagonist” instead of “Erk1/2” inhibiting “MCP-
1”. Failing to detect “antagonist” will lead us to an almost op-
posite conclusion. In the third and fourth sentences, PENNER
finds new types of entities using the biological process and
treatment meta-patterns we just obtained. Again, the GENE-
PROCESS nested structure helps us realize that it is “STAT1
phosphorylation” instead of “STAT1” being up-regulated.

While the annotation results have been improved by PEN-
NER, there is still room for future progress. For example,

meta-patterns can be utilized in a more general way. PENNER
mainly uses meta-patterns with only one entity type token to
deal with nested structures. However, meta-patterns with two
or more type tokens may also be useful. We still take the
sentences in Table VIII as examples. In the first sentence, the
abbreviations of the genes (i.e., “SOD” and “Ala-AT”) are
not recognized. In fact, we do extract a quality meta-pattern
“GENE ( GENE )”. If we already know that the entity outside
of the brackets is a gene/protein, we may infer that the inside
one is a gene/protein as well. In the third sentence, “STAT3
and STAT5 phosphorylation” is suppressed. However, we only
find “STAT5 phosphorylation” and leave “STAT3” alone. It is
possible to utilize meta-patterns such as “GENE and GENE
phosphorylation” to find a more complete nested structure.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a framework to find nested entity
structures in biomedical literature. Taking a corpus pre-tagged
by any existing flat NER tool, we can extract quality meta-
patterns in an unsupervised way, and find meta-patterns as-
sociated with each entity type under very weak supervision.
Experiments show that our PENNER outperforms the base-
lines by a large margin in finding nested patterns and entities.
Besides, it can also be used to find new types of entities with
just two user-specified seeds. Moreover, we show that the final
annotation results are largely improved over PubTator.

There are several future directions in light of these results.
First, as mentioned in Section IV-E, meta-patterns can be uti-
lized in a more general way. Second, it is widely believed that
various types of biomedical entities have their formation rules.
The unsupervised meta-pattern discovery can actually help us
find some entity naming principles. Third, it is interesting to
study whether nested entity structures can help meta-pattern



discovery in return. If so, we can run the pattern extraction
module and the pattern expansion module iteratively, letting
them mutually enhance each other. Besides, we would like
to see how the detected complex entity types (e.g., gene
variants/mutations, protein phosphorylation) can benefit real
use cases.
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