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Assessing the causal effects of interventions on ordinal outcomes is an impor-
tant objective of many educational and behavioral studies. Under the potential
outcomes framework, we can define causal effects as comparisons between the
potential outcomes under treatment and control. However, unfortunately, the
average causal effect, often the parameter of interest, is difficult to interpret for
ordinal outcomes. To address this challenge, we propose to use two causal
parameters, which are defined as the probabilities that the treatment is bene-
ficial and strictly beneficial for the experimental units. However, although well-
defined for any outcomes and of particular interest for ordinal outcomes, the
two aforementioned parameters depend on the association between the poten-
tial outcomes and are therefore not identifiable from the observed data without
additional assumptions. Echoing recent advances in the econometrics and
biostatistics literature, we present the sharp bounds of the aforementioned
causal parameters for ordinal outcomes, under fixed marginal distributions of
the potential outcomes. Because the causal estimands and their corresponding
sharp bounds are based on the potential outcomes themselves, the proposed
framework can be flexibly incorporated into any chosen models of the potential
outcomes and is directly applicable to randomized experiments, unconfounded
observational studies, and randomized experiments with noncompliance. We
illustrate our methodology via numerical examples and three real-life appli-
cations related to educational and behavioral research.

Keywords: linear programming; monotonicity; noncompliance; partial identification;
potential outcome; stochastic dominance

1. Introduction

In educational, behavioral, and public health research, a scenario frequently
encountered is evaluating causal effects of interventions on ordinal (i.e., ordered
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categorical) outcomes. For example, Oenema, Brug, and Lechner (2001) con-
ducted a randomized controlled trial to access whether Web-based nutrition
education changed personal awareness and intentions (e.g., negative, neutral,
or positive attitudes) toward healthier diets. Hoff (2009) analyzed a data set from
the 1994 General Social Survey (Smith, Marsden, Hout, & Kim, 2013), aiming to
study whether the fact that parents possessing college or higher degrees affected
their offspring’s education level (from “less than high school” to “graduate
degree”). Praet and Desoete (2014) investigated the effect of computer-aided
programs on young children’s proficiency in arithmetic (e.g., 0—10 scaled scores
in reading, writing, and counting). To draw scientifically meaningful conclusions
from such studies, it is imperative that we employ an interpretable and robust
methodology for defining and inferring causal effects.

The potential outcomes framework (Neyman, 1923; Rubin, 1974) permits
defining causal effects as comparisons between the potential outcomes under
treatment and control. The average causal effect, generally the parameter of
interest ever since the seminal work of Neyman (1923), may not be applicable
to ordinal outcomes because average outcomes themselves are not well-defined
substantively (although sometimes they can be well-defined mathematically),
except when there are meaningful distances between outcomes (e.g., standard
test scores). For example, it is difficult to interpret the “average” of “high school”
and “PhD,” or compare it to the average of “bachelor” and “master.” Neverthe-
less, ordinal outcomes appear rather frequently in applied research, and the
generalized linear model literature (cf. Agresti, 2010) has discussed them exten-
sively. However, although the model parameters of the generalized linear models
are useful summaries of the data, they are often not direct measures of the causal
effects of interest (Freedman, 2008). More importantly, statistical inference often
requires correctly specified models, and when the generalized linear model
assumptions are violated, the interpretations of the parameters become obscure.
Mainly focused on the classic average causal effect (and its variants), the
existing causal inference literature does not thoroughly investigate ordinal out-
comes. Exceptions include Rosenbaum (2001), who discussed causal inference
for ordinal outcomes under the monotonicity assumption that the treatment is
beneficial for all units. Cheng (2009), Agresti (2010), and Agresti and Kateri
(2017) discussed various causal parameters under the assumption of indepen-
dent potential outcomes. Volfovsky, Airoldi, and Rubin (2015) exploited a
Bayesian strategy, requiring a full parametric model on the joint values of the
potential outcomes. Diaz, Colantuoni, and Rosenblum (2016) proposed to use a
causal parameter that did not rely on the assumption of the proportional odds
model for ordinal outcomes.

Realizing the conceptual and theoretical gaps in this important topic, in this
article we propose to use two causal parameters for ordinal outcomes, measuring
the probabilities that the treatment is beneficial and strictly beneficial for the
experimental units. The two parameters play important roles in decision and
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policymaking for randomized evaluations with ordinal outcomes. However,
because the two causal parameters depend on the association between the treat-
ment and control potential outcomes, they are generally not identifiable from the
observed data. Instead of imposing assumptions about the underlying distribu-
tions of, or the association between, the potential outcomes, we adopt the partial
identification strategy (cf. Manski, 2003; Richardson, Hudgens, Gilbert, & Fine,
2014) and sharply bound the parameters by using the marginal distributions of
the potential outcomes. We acknowledge concurrent work by Huang, Fang,
Hanley, and Rosenblum (2017) who numerically calculated the sharp bounds
of the parameters and provided their consistent estimators, allowing for poten-
tially complex support restrictions on the marginal distributions of the potential
outcomes. Compared to Huang et al. (2017), one main distinction of our work is
that we focus on the identification perspective. To be specific, echoing several
relevant discussions in the discrete mathematics (Williamson & Downs, 1990)
and econometrics (e.g., Fan & Park, 2009; Kim, 2014; Manski, 1997; Manski &
Pepper, 2009) literature, we present closed-form expressions for the sharp
bounds of the causal parameters.

We believe that the mathematical practice of deriving the closed-form expres-
sions for the sharp bounds has a 2-fold benefit. From a theoretical perspective,
the closed-form expressions enable us to study when we can identify the causal
parameters, that is, the lower and upper bounds collapse. At least in the context of
ordinal outcomes, we believe this is a unique contribution to the existing liter-
ature. From a more practical perspective, because these bounds are defined by the
potential outcomes themselves, they can be incorporated flexibly into any chosen
models of the potential outcomes. Furthermore, they are directly applicable to
randomized experiments, unconfounded observational studies, and randomized
experiments with noncompliance. In randomized experiments, we can identify
the bounds immediately, and additionally, sharpen the bounds by exploiting
covariate information under certain modeling assumptions. In observational
studies, if the treatment assignment is unconfounded given the observed covari-
ates, we can identify the bounds, for example, by the propensity score weighting
(Hirano, Imbens, & Ridder, 2003; Rosenbaum & Rubin, 1983). Furthermore, we
extend the theory to accommodate noncompliance, which often arises in practi-
cal randomized evaluations.

This article proceeds as follows. Section 2 introduces the potential outcomes
framework for causal inference for ordinal outcomes, and proposes two causal
parameters that are natural measures of causal effects and are of practical impor-
tance. Section 3 presents the sharp bounds of the proposed causal parameters.
Section 4 generalizes the bounds to noncompliance. Section 5 discusses statisti-
cal inference of the bounds. Sections 6 and 7 present numerical and real examples
to illustrate the theoretical results. We conclude in Section 8 and give all the
proofs, technical, and computational details in the Online Supplemental Material.
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2. Causal Inference for Ordinal Outcomes
2.1. Potential Outcomes

We consider a study with NV units, a binary treatment, and an ordinal outcome
with J categories labeled as 0, ...,J — 1, where 0 and J — 1 represent the worst
and best categories. Under the stable unit treatment value assumption (Rubin,
1980) that there is only one version of the treatment and no interference among
the units, we define the pair {¥;(1), ¥;(0)} as the potential outcomes of the ith
unit under treatment and control, respectively. Let

pa=pr{Yi(1) =k, Y:(0) =1} (k,1=0,....J—1),

denote the proportion or probability of units whose potential outcome is k£ under
treatment and / under control. The probability notation “pr(-)” is either for a
finite population of N units or for a super population, depending on the question
of interest. The probability matrix P = (p) <y <, Summarizes the (uncondi-
tional) joint distribution of the potential outcomes. We denote the row and
column sums of P by

J—1 J—1
Pe = puws pu=Y po (k1=0,1,....J —1).
I'=0 k'=0

The vectors p; = (po+,-- - ,p,/,1,+)T and p, = (p+o,--- ,p+‘J,1)T characterize
the marginal distributions of the potential outcomes under treatment and control,
respectively. By definition, the following constraints must hold:

J—-1J-1

J—1 J—1
j{:pk+ ::17 j{:p+1::17 ZE:EE:PM:: 1.
k=0 1=0 k=0 1=0

2.2. Causal Parameters for Ordinal Outcomes

We discuss the existing causal parameters for ordinal outcomes and the moti-
vation behind proposing new ones. Any causal parameter is a function of the
probability matrix P. Unfortunately, the average causal effect is difficult to
interpret for ordinal outcomes. Instead, we can use the distributional causal
effects (cf. Ju & Geng, 2010):

Aj=pr{¥i(1) > j} = pr{¥i(0) =/} = per =Y pu (G=0,....J=1), (1)

kzj 12
to measure the difference between the marginal distributions of potential out-
comes at different levels of j. Although distributional causal effects are standard
and important measures for ordinal outcomes in practice, it is sometimes difficult
to decide whether the treatment or the control is preferable unless they have the
same sign for all j. In the presence of heterogeneous distributional treatment

effects for different levels of j, we may use Z]{;l ®;A; to measure the treatment
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effect, but such a measure depends crucially on the weights w;’s. We illustrate
this point by using the following numerical example.

Example 1: Let p, = (1/5,3/5,1/5)" and p, = (2/5,1/5,2/5)", with
Ao =0,A; =1/5,and A, = —1/5. The treatment is beneficial at Level 1, but
not at Level 2. In this case, distributional causal effects do not provide straight-
forward guidance for decision-making.

When A; > 0 for all j, Y (1) stochastically dominates Y (0). When this pattern
appears in real data applications, practitioners often fit a proportional odds model
(Agresti, 2010) and summarize the overall effectiveness of the treatment by a
single odds ratio parameter. Although such summary parameter may be useful in
certain cases, its causal interpretation is unclear. Moreover, when the data do not
present the stochastic dominance pattern as in Example 1, summarizing the
treatment effect by the single odds ratio parameter of a wrong model often gives
misleading conclusions.

Volfovsky et al. (2015) studied the conditional medians:

mj:med{Yi(l)‘Yi(O) :J} (j:Ov"'v‘]*l)v (2)

which is a set containing all values of %, such that Zzzopk’j > p.j/2 and
Z‘,i;lkpkfj > p+;/2. By definition, the conditional medians may not be unique,
and they are only well-defined for j with p,; > 0. Moreover, they are not direct
measures of the treatment effect itself.

We propose to use two causal parameters that measure the probabilities that
the treatment is beneficial and strictly beneficial for the experimental units:

©=pr{¥;(1 0} =>"> pu, m=pr{Xl 0} =>>pru ()

k>l k>1

The causal parameters T and n are measures of causal effects that are well-
defined for any types of outcomes and of particular interest to ordinal outcomes.
To be more specific, they can complement the distributional causal effects and
provide more information about what would happen under treatment versus
control for an ordinal outcome. Similar causal measures appeared in biomedical
(Demidenko, 2016; Gadbury & Iyer, 2000; Huang, Fang, Hanley, & Rosenblum,
2017; Newcombe, 2006a, 2006b; Zhou, 2008) and social sciences (Djebbari &
Smith, 2008; Fan & Park, 2010; Fan, Sherman, & Shum, 2014; Heckman, Smith,
& Clements, 1997). In practice, we suggest using the pair (t, 1) as measures of
causal effects on ordinal outcomes. For example, if the sharp null holds, that is,
Y:(1) = Y;(0) for all units i, then T = 1 and n = 0. In this case, using only T may
be misleading. Nevertheless, we argue that the parameter t is as important as 1.
Because 1 —t = pr{¥;(0) > Y;(1)}, the value of T determines the probability
that the control is strictly beneficial for the experimental units. Due to the sym-
metry of treatment and control labels, t and n are equally useful for real data
analysis.
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We use the following numerical example to show the values of m;, 7, and n.
Example 2: Consider the following probability matrix:

0 1/6 1/6
P—(O 1/6 0 )
0 1/3 1/6

In this case, my is not well-defined because pyo = 0 for all k, m; is 1, and m, =
{0, 1,2} by the definition of the conditional median in Equation 2. However, we
have Tt = 2/3 and n = 1/3, that is, two thirds of the population benefit from the
treatment and one third strictly benefit.

The causal parameters t and 1 in Equation 3 are well-defined for both finite
populations and super populations. They are functions of the potential outcomes,
which distinguishe them from the parameters in superpopulation models. When
the models are misspecified, the interpretations of the corresponding model
parameters are often obscure. We have already discussed this issue for the pro-
portional odds model. Our causal parameters t and  are closely related to the
relative treatment effect oo = pr{¥;(1) > ¥;(0)} — pr{¥i(1) < ¥;(0)} previously
studied under the assumption of independent potential outcomes (Agresti, 2010).
This relative treatment effect o and the causal parameters we proposed have a
simple algebraic relationship, that is, & = 1 + m — 1. Therefore, our newly pro-
posed causal parameters T and m determine o. Furthermore, these causal para-
meters are also related to the notation of “probability of causation” (Pearl, 2009)
because their direct interpretations are the probabilities or proportions that the
treatment affects the outcome on the individual level. It is for these reasons that
we advocate using T and m as causal effect measures for ordinal outcomes.

3. Sharp Bounds on the Proposed Causal Estimands for Ordinal Outcomes
3.1. Closed-Form Expressions of Sharp Bounds

The definitions of T and 1 involve the association between the treatment and
control potential outcomes. Because we can never jointly measure the potential
outcomes, the observed data do not provide full information about their associ-
ation, rendering the causal parameters T and m not identifiable. To partially
circumvent this difficulty, we focus on the sharp bounds of Tt and m, which are
the minimal and maximal values of T and m under the condition that the prob-
ability matrix P = (px)g<j ;<;_; is well-defined, as well as the constraints of the

marginal distributions. In other words, the following needs to hold:
J—-1 J—1
§ Pkl = Pk+, E Pk't = P+l PklZO (k7l:077‘]_1) (4)
/=0 k=0

The sharp bounds depend only on the marginal distributions of the potential
outcomes. Deriving the bounds is equivalent to solving linear programming
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problems, because the objective functions in Equation 3 and the constraints in
Equation 4 are all linear. Previous literature (Huang et al., 2017) used a numerical
method to solve the linear programming problem for 1. Fortunately, as pointed
out by several researchers (Fan and Park, 2009; Williamson and Downs, 1990),
we can derive closed-form solutions of the above linear programming problems,
for both T and 1. We first present the sharp bounds of 1, which is the foundation
for the remaining of this article.

Proposition 1: The sharp lower and upper bounds of T are

W= max (py+4y), =1+ min A (5)

The bounds in Equation 5 resemble Fan and Park’s (2010) parallel results for
continuous outcomes, where the maximum and minimum operators are replaced
by supremum and infimum, respectively. As a straightforward validity check, the
inequalities 0 < 1, < 1y < 1 always hold regardless of the marginal distribu-
tions of the potential outcomes. In particular, by definition in Equation 5, t;, >
P+o+ Ay =pio and 1y < 1 + Ag = 1. Moreover, the bounds in Proposition 1
are closely related to the distributional causal effects in Equation 1, and therefore,
we can interpret them as the conservative and optimistic estimates of the prob-
ability that the treatment is beneficial to the outcome. Furthermore, the following
corollary demonstrates that the sharp upper bound 1y is related to the stochastic
dominance assumption, that is, A; > 0 for all ;.

Corollary 1: The causal parameter 1, = 1, if and only if the marginal prob-
abilities p, and p, satisfy the stochastic dominance assumption.

The above corollary implies that for any marginal probabilities satisfying the
stochastic dominance assumption, there exists a lower triangular probability
matrix P that corresponds to a population satisfying the monotonicity assump-
tion, that is, ¥;(1) > ¥;(0) for all i. Strassen (1965) and Rosenbaum (2001)
demonstrated this result, and Proposition 1 extends the previous result without
imposing the stochastic dominance assumption. Moreover, Proposition 1 also
justifies the use of ming<<s—14; as a measure of the deviation from the stochas-
tic dominance assumption (Scharfstein, Manski, & Anthony, 2004).

To bound n, realizing that n = 1 — pr{¥;(0) > Y;(1)}, we can directly derive
the sharp bounds for pr{¥;(0) > ¥;(1)} by switching the treatment and control
labels and applying Equation 5.

Proposition 2: The sharp lower and upper bounds of n are

= max A, mg =1+ min (A - p.). (6)

Similar to the sharp bounds for T in Equation 5, the inequalities 0 < n; <
Ny < 1 always hold. The bounds in Equations 5 and 6 resemble parallel results
in the econometrics literature (Fan & Park, 2009, 2010; Manski, 1997; Manski &
Pepper, 2000), which largely focused on continuous outcomes. In fact, deriving
the sharp bounds of T and 1 is related to a classical probability problem posed by
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A. N. Kolmogorov (cf. Nelsen, 2006): How to bound the distribution of the sum (or
difference) of two random variables with fixed marginal distributions? For contin-
uous outcomes, because & = Y (1) — Y(0) is well-defined, our causal parameters t
and m are determined by the distribution of the causal effect 6, the difference
between the treatment and control potential outcomes. Indeed, sharp bounds on
the distribution of 3 have been obtained by Makarov (1982), Riischendorf
(1982), Frank, Nelsen, and Schweizer (1987), and Williamson and Downs
(1990), and recently reviewed by Fan, Sherman, and Shum (2014). For
ordinal outcomes, although mathematically valid, the interpretation of
Y(1) — Y(0) becomes more challenging, at least in many scenarios. For
example, in the context of education, it is difficult to define the “difference”
of PhD and master. In behavioral research, it is unclear how to compare the
improvement from “negative” to “neutral” and from “neutral” to “positive.”

Motivated by the above, in the Online Supplemental Material, for ordinal
outcomes we provide direct proofs of Propositions 1 and 2. Our proofs directly
construct the probability matrices that achieve the lower and upper bounds of t
and m. We believe that our “constructive” approach helps researchers sharply
bound other causal parameters (e.g., m; and ), at least for ordinal outcomes. It is
worth mentioning that the probability matrices attaining the lower and upper
bounds of t and m correspond to negatively associated and positively associated
potential outcomes. They are both “extreme” scenarios. In practice, researchers
may also be interested in the case with independent potential outcomes (Agresti,
2010; Cheng, 2009; Ding & Dasgupta, 2016; Rubin, 1978), that is, py; = px+p+1
for all k£ and /. With independent potential outcomes, we can identify t and n
from the marginal distributions of the potential outcomes.

Proposition 3: With independent potential outcomes,

= ZZPHP-H’ nr = ZZPk+P+1~

k>1 k>1

Furthermore, 1, <1, <ty and n; < n; < Ny

In cases where negatively associated potential outcomes are unlikely, we can
use 1; and m; as the lower bounds of t and 1. Below we give two numerical
examples to illustrate Propositions 1 through 3.

Example 3: The marginal probabilities p,= (1/5,3/5,1/5)" and
po=(2/5,1/5,2/5)" do not satisfy the stochastic dominance assumption
because Ag =0, Ay =1/5>0, and A, = —1/5 < 0. Propositions 1 and 3
imply that t, = 2/5, 1, = 16/25, and Ty = 4/5 The probability matrices corre-
sponding to negatively associated, independent, and positively associated poten-
tial outcomes achieving these values are, respectively,

0 1/5 0 2/25 1/25 2/25 /5 0 0
P1—<1/5 0 2/5), P2—<6/25 3/25 6/25), P3—<1/5 1/5 1/5). (7)
2/5 0 0 2/25 1/25 2/25 0 0 1/5
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Similarly, Propositions 2 and 3 imply n; = 1/5,n; = 9/25, and n;; = 3/5. We
omit presenting the matrices attaining these values of 7.

Example 4: The marginal probabilities p,= (1/5,1/5,3/5)" and
po = (3/5,1/5,1/5)" satisfy the stochastic dominance assumption because
Ap=0, Ay =2/5>0, and A, =2/5> 0. Propositions 1 and 3 imply
1, = 3/5, 1y = 22/25, and ty = 1. The probability matrices corresponding to
negatively associated, independent, and positively associated potential outcomes
achieving these values are, respectively,

0 1/5 0 3/25 1/25 1/25 1/5 0 0
Py = ( 0 0 1/5), Ps = <3/25 1/25 1/25), Ps = ( 0 1/5 0 ) (8)
3/5 0 0 9/25 3/25 3/25 2/5 0 1/5
Similarly, Propositions 2 and 3 imply n; = 2/5, n; = 3/5, and n, = 4/5. We
omit presenting the matrices attaining these values of n.

As demonstrated in Examples 3 and 4, the bounds of T (or 1) generally do not
shrink to a point. However, there are some special cases in which the lower and
upper bounds of T (or 1) are identical. The following corollary provides neces-
sary and sufficient conditions for such cases.

Corollary 2: Let K = {k : pyy > 0} and L = {/ : p;; > 0}. The lower and
upper bounds of T are the same, if and only if there does not exist k1, k&, € K and
11,1, € L, such that:

ky>L>k>1l or Ih>k > >k. (9)
The lower and upper bounds of 1 are the same, if and only if there does not exist
ki,k, € Kand [, [, € L such that:

L>k>L >k or kh>hL>k>1. (10)

In the proof of Corollary 2 in the Online Supplemental Material, we provide the
interpretations of the conditions in Equations 9 and 10.

3.2. Covariate Adjustment

With pretreatment covariates, it is possible to further sharpen the bounds of the
causal parameters (Grilli & Mealli, 2008; Jiang & Ding, 2018; Lee, 2009; Long &
Hudgens, 2013; Mealli & Pacini, 2013). Without loss of generality, we focus only
on the bounds of t. Within each level of the pretreatment covariates X = x,

w(x) = pr{¥(1) = Y(0)|X = x},
is the conditional probability that the treatment is beneficial. We can obtain the
conditional lower and upper bounds 1, (x) and 1y (x) given the covariate level x,

then average them over the covariate distribution F(x), and finally obtain the
adjusted bounds for t:

v = [w@r@n), vu= [wiore. (1)



Treatment Effects on Ordinal Outcomes

Proposition 4: The adjusted bounds are tighter, that is, 1, <1, <1ty < 1p.

Proposition 4 holds intuitively because the existence of covariates imposes
more distributional restrictions on the observed data. We use the following
example to illustrate Proposition 4.

Example 5: Consider a population consisting of two subpopulations of equal
sizes, labeled by a binary covariate X. Assume that the potential outcomes of
subpopulations X = 1 and X = 0 are the independent potential outcomes in
Example 3 and 4. Simple algebra gives the following joint distribution, marginal
distributions, and t of the potential outcomes:

1/10 1/25 3/50
P—<9/50 2/25 7/50), po=(1/5.2/5,2/5)7, po=(1/2,1/5,3/10)T, 1=19/25.
11/50 2/25 1/10

Without covariate information, Proposition 1 implies t; = 1/2 and 1y = 1.
However, if we first obtain the bounds for the two subpopulations and then
average over them, we obtain sharper covariate adjusted bounds v/, = t,(1)/2 +
1,(0)/2=1/2and Ty = ty(1)/2 + t(0)/2 = 9/10.

3.3. Identifying the Bounds From Observed Data

Previous subsections discussed the causal parameters T and m and their
bounds. The causal parameters depend on the joint distribution of the potential
outcomes, but the bounds depend only on the marginal distributions of the
potential outcomes. In practice, the observed data provide full information about
only the marginal distributions. Therefore, point estimations of the bounds can be
obtained, although the causal parameters themselves are only partially identified
(cf. Richardson et al., 2014; Romano & Shaikh, 2008, 2010).

For unit i = 1,...,N, let the treatment indicator be Z; and the observed
outcome be Y°* = Z;Y;(1) + (1 — Z)Y:(0). To avoid conceptual complications,
we consider treatment assignments that satisfy the ignorability assumption
(Rosenbaum & Rubin, 1983), that is, Z1 {¥(1), Y(0)}|X. The ignorability
assumption holds by the design of randomized experiments and cannot be vali-
dated in observational studies. Under the ignorability assumption, we define the
propensity score as e(X) = pr(Z = 1]/X), which is a constant independent of X in
completely randomized experiments. We can identify the marginal distributions
of the potential outcomes by

pr{¥(1) =k} :E{%}, pr{¥(0) =1} :E{%}

By replacing the expectations by their sample analogues, we obtain the moment
estimators for the marginal distributions. We defer more detailed discussion
about statistical inference to Section 5.

10
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4. Randomized Experiments With Noncompliance
4.1. Causal Effects for Compliers

Noncompliance is an important topic in practice. For instance, in clinical
trials, some patients may not comply with their assigned treatments. Although
noncompliance itself has been extensively investigated in the causal inference
literature (e.g., Angrist, Imbens, & Rubin, 1996), there appears to be very limited
discussions about causal inference of ordinal outcomes in the presence of non-
compliance. To the best of our knowledge, Cheng (2009) discussed various
causal parameters under the assumptions of one-sided noncompliance, and Baker
(2011) generalized her results to two-sided noncompliance; both of them
assumed independent potential outcomes.

Under the stable unit treatment value assumption, for unit 7, let {D;(1), D;(0)}
be the potential values of treatment received under treatment and control; the
observed treatment received is therefore D = Z,D;(1) + (1 — Z;)D;(0).
Angrist, Imbens, and Rubin (1996) proposed to classify the units into four cate-
gories according to the joint values of D;(1) and D;(0):

a, ifDi(1)=1,D,(0) =1,
_ | e iftDi(1) = 1,D,0) =0,
“=1a ifDl-():OD(O):L (12)
n, if Di(1) = 0,D;(0) = 0,

and referred to the subgroups defined in Equation 12 as always-takers (a), com-
pliers (c), defiers (d), and never-takers (n). Let m, = pr(G = g) denote the prob-
ability of the stratum g € {a,c,d,n} and

gu=pr{Y(1) =k, Y(0) =1|G = g},

be the probability of potential outcome k under treatment and potential outcome /
under control within stratum g. The J x J probability matrix {gu}o<t /< 1

summarizes the joint distribution of the potential outcomes for stratum g. Define

J—1 J—1
8k+ :ng1’> g+lzzgk’l (k>Z:0717'~~7J_ 1)7 (13)
=0 K'=0
the vectors (go+, . . . ,gJ_H)T and (g0, - - ,g+7J_1)T characterize the marginal

distributions of the potential outcomes under treatment and control. By the law of
total probability,

Dl = angld, Dre = anngr, Pl = ang% (14)
g g g
We define the subgroup causal parameters within stratum g as

T =pr{¥i(1) > %(0)|G=g} =D > gu, g =pr{X(1) > %;(0)|G=g} => > gu.

k>1 k>1

11
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Again, these parameters are particularly useful for ordinal outcomes, but are also
applicable to general continuous outcomes.

Following Angrist et al. (1996), we invoke the following “standard” assump-
tions: (1) complete randomization, that is, Z 1L {D(1), D(0), Y (1), Y(0), X}, (2)
monotonicity, thatis, D;(1) > D;(0) forall i, and (3) exclusion restriction, that is,
D;(1) = D;(0) implies ¥;(1) = ¥;(0). Monotonicity rules out the defiers with
G = d, and strong monotonicity further rules out the always-takers with G = a.
Exclusion restriction implies that t, =1, n, =0, 1, = 1, and 1, = 0. There-
fore, we discuss only the causal effects for the compliers, that is, t. and n,.

4.2. Bounds on the Causal Effects for Compliers

We focus only on the monotonicity assumption because it is more general than
strong monotonicity. Under monotonicity and exclusion restriction, we identify
the probabilities of always-takers, compliers, and never-takers, that is,
(14, M., T, ), and the distributions of the potential outcomes conditional on G
(Angrist et al., 1996; Baker, 2011; Cheng, 2009), that is, the gz ’s and g,’s.
Below, we establish the relationships between the causal parameters T and 1, and
between 1 and 1.

Proposition 5: t. = t/n. — (1 — )/, and N, = /7.

Therefore, we can plug in the upper and lower bounds of T and n to obtain the
bounds of T, and 1., using the relationships in Proposition 5. However, these
bounds are not sharp, and the following bounds, implied by Propositions 1 and 2,
are narrower.

Corollary 3: The sharp lower and upper bounds of . are

T = max
’ 0<j<J—

X (e +Acy), Teu =1+ min Ay,

<j<J—
and the sharp lower and upper bounds of n, are

= max A.; =14+ min (A, —ci}).
T'lc,L 0<j<i—1 s ﬂc,u 0§/‘§J—l( C,f ,/+)

Similar to Section 3.2, we can use covariates to sharpen the bounds of 1.
Within each level of the pretreatment covariates X = x, we define the condi-
tional probabilities that the treatment is beneficial for compliers as

T.(x) =pr{Y(1) > Y(0)|G = ¢, X = x},

and obtain their conditional sharp upper and lower bounds 7., (x) and 1. ¢ (x).
Because

J.rc (x)m.(x)dF (x)

JTE” (x)dF(x)

Te = P

12
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the bounds for T, become
JIC,L(x)rcc(x)dF(x) Jtc‘y(x)nc(x)dF(x)

Jnc(x)dF(x) LT Jnc(x)dF(x)

’
Tel =

(15)

Similar to Proposition 4, the adjusted bounds are tighter, that is, 1., <
/ /
Tel S TeU S Te,U-

4.3. Using Noncompliance to Sharpen Bounds for the Whole Population

Proposition 5 and Corollary 3 imply two new sets of bounds for T and 1, which
are tighter than those in Propositions 1 and 2.

Corollary 4: Under monotonicity and exclusion restriction, we can bound t
from below and above using

T”L =TTl +1- T, T”U =T:Tu + 1- T,
and bound m from below and above using
"o "o
nr= Tcl,‘nc}L7 Nu= TECT]L',U'

These new bounds above are narrower than those in Propositions 1 and 2 because
they satisfy 7, < 'p, 1y = vy, n, =N, and gy >N’y

There are two reasons that we can obtain tighter bounds. First, we use the
partially observed variable G as a pretreatment variable. Second, the monotoni-
city and exclusion restriction assumptions further restrict the probability struc-
ture of the potential outcomes.

5. Statistical Inference of the Bounds
5.1. Point Estimation

In practice, we need to use the observed data to estimate the marginal prob-
abilities of the potential outcomes and the bounds. To save space for the main
text, we discuss only the bounds of t and t. We describe the point estimation
procedures for the three scenarios mentioned in the previous sections—com-
pletely randomized experiments with or without noncompliance and uncon-
founded observational studies.

First, we consider completely randomized experiments without noncompli-
ance. To estimate the unadjusted bounds, we replace py. and p; in Proposition 1
with their sample analogues

N
ﬁk+:N_IZZi1(Yi0bs:k, p+1_ IZ 17 Yobszl).

i=1

13



Treatment Effects on Ordinal Outcomes

To estimate the covariate adjusted bounds in Equation 11, we first estimate the
marginal probabilities of the potential outcomes of unit i given covariates x;.
Following Imbens and Rubin (2015), for low-dimensional and discrete covariates,
we can still use sample analogues. For high-dimensional and continuous covari-
ates, we can invoke parametric models such as proportional odds models. We then
use the estimates, denoted by p;, (x;) and p,(x;), respectively, to estimate the
sharp lower and upper bounds of t(x;), denoted by T, (x;) and Ty (x;), respectively.
Consequently, the estimated adjusted bounds of t are as follows:

N N
:E\/L :Nilz/‘f\[l(x,*), :E\/U :Nilz:f\U(xi)
i=1 i=1

Second, we consider unconfounded observational studies. If we have propensity
score estimator e(x;) for unit i, then we can estimate the marginal probabilities by:

" T [0 ) IS L™ =1
Prr =N ;ZiW7 Pu=N ;(1 *Zt)ma
and then estimate the bounds accordingly.

Third, we consider completely randomized experiments with noncompliance.
Without covariates, we use the expectation maximization (EM) algorithm by Demp-
ster, Laird, and Rubin (1976) to estimate m., cx+, and c; and then estimate the
unadjusted bounds in Corollary 3. For a more detailed description of the EM algo-
rithm, see Baker (2011). With covariates, we need to invoke parametric models for
G (e.g., multinomial logistic model given X) and the marginal probabilities of the
potential outcomes and use the EM algorithm to compute the maximum likelihood
of the model parameters. For more details, see Online Supplemental Material, and
Zhang, Rubin, and Mealli (2009) and Frumento, Mealli, Pacini, and Rubin (2012).
After obtaining the sample analogues of t. ; (x), .,y (x), and . (x), we estimate the
covariate adjusted bounds defined in Equation 15 using a plug-in approach.

5.2. Finite-Sample Bias and Bias Correction

As pointed out by several researchers (e.g., Liu & Brown, 1993; Manski &
Pepper, 2000, 2009), the minimum and maximum operators in the closed-form
expressions of the sharp bounds usually complicate the estimation procedure, by
introducing finite-sample biases to the corresponding plug-in estimators. For
example, even with unbiased estimators of the marginal probabilities (e.g., in
completely randomized experiments), the estimated lower bound is positively
biased. In the existing literature, this non-smoothness-induced bias has been
recognized and discussed by Laber and Murphy (2011), Hirano and Porter
(2012), and Luedtke and Van der Laan (2016), under various settings. However,
fortunately, such biases tend to diminish as the sample size increases, due to the
consistency of the plug-in estimators. More importantly, as pointed out by
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TABLE 1.

Numerical Examples

Case N T T Bias, Bias,
1 100 0.640 400 .023 .005
1 200 0.640 400 .016 .004
1 500 0.640 400 .009 .001
2 100 0.800 400 .017 —.002
2 200 0.800 400 014 .001
2 500 0.800 400 .007 —.001
3 100 0.880 .600 .037 .010
3 200 0.880 .600 .026 .007
3 500 0.880 .600 .016 .004
4 100 1.000 .600 .036 .009
4 200 1.000 .600 .026 .007
4 500 1.000 .600 .013 .001

Note. The first four columns contain the case label, sample size, and true values of t and 1. The last
two columns contain the biases of the plug-in (labeled “p”) estimator and the bootstrap bias-corrected
(labeled “b”) estimators, calculated by 1,000 repeat samplings and 200 bootstraps for each sample.

Kreider and Pepper (2007), it is possible to effectively reduce such biases by a
nonparametric bootstrap correction (Efron & Tibshirani, 1994; Parr, 1983). To be
more specific, let T, denote the point estimator of 17, and the corresponding bias-
corrected estimator is therefore 27, — Ep(T;), where “Ep” denotes the expecta-
tion induced by the bootstrap distribution.

The following numerical example demonstrates the magnitude of the bias
associated with the plug-in estimator and the performance of the bias-
correction estimator.

Example 6: Consider a completely randomized experiment without noncom-
pliance. To save space, we focus only on t and its unadjusted lower bound t; in
Equation 5. We choose the sample size N € {100,200,500} and consider four
different probability matrices. Cases 1 and 2 correspond to matrices P, and P3 in
Equation 7, that is, the independent and positively associated potential outcomes,
which share the same marginal distribution but do not satisfy the stochastic dom-
inance assumption. Cases 3 and 4 correspond to matrices Ps and Pg in Equation 8,
that is, the independent and positively associated potential outcomes, which share
the same marginal distribution and satisfy the stochastic dominance assumption.
Columns 3 and 4 of Table 1 summarize the true values of t and t; for all four cases.

For each case and fixed sample size, we independently draw 1,000 treatment
assignments from a balanced completely randomized experiment. For each
observed data set, we calculate point estimates of t; using the plug-in estimator
and the bias-correction estimator based on 200 bootstraps. In Columns 5 and 6 of
Table 1, we report the biases of the two point estimators, from which we can draw
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two conclusions. First, for each case, the bias of the plug-in estimator decreases
as the sample size increases. Second, the bias-corrected estimator greatly reduces
(in most cases by over 60%) the bias of the plug-in estimator.

5.3. Confidence Intervals (Cls)

We discuss the construction of Cls for the aforementioned causal parameters
and their unadjusted or covarite adjusted bounds. For illustration, we again use
T as an example. From a practical (e.g., decision-making) perspective, we aim
to construct a CI that covers t at least 100(1 — o)% of the times, for prespeci-
fied significance level a. Because the casual parameter is only partially identi-
fiable, it is difficult to do so directly without additional assumptions or
information. A common approach to address this challenge is to instead con-
struct a 100(1 — a)% CI for the sharp bounds [t;, ty]. Because t € [1;, Ty], the
resulted interval automatically guarantees at least 100(1 — a)% coverage rate
for 1 itself.

Similar to the point estimation procedure because both the upper and the
lower bounds involve the maximum and minimum operators, their asymptotic
distributions become nonnormal, rendering the construction of Cls covering the
bounds extremely challenging (Hirano & Porter, 2012). Consequently, in prac-
tice, statisticians (Cheng & Small, 2006; Yang & Small, 2016) often employed
bootstrap methods (e.g., Beran, 1988, 1990; Bickel, Gotze, & Van Zwet, 1997,
Bickel & Sakov, 2008) to construct ClIs for partially identified parameters.
Among numerous proposals, the most conceptually straightforward and trans-
parent one is arguably the “standard” bootstrap procedure advocated by Horowitz
and Manski (2000), for which 1 —a CI is simply {T; — zz(a),Tv +zz(a) },
where the threshold value zz(a) can be obtained by solving the equation:

PI'B{:C\L —ZB(O() S/‘EL,:C\U S?U +ZB(OL)} =1-a.

In the above equation, “Prg” is the probability measure induced by bootstrap.
Recently, several researchers (e.g., Chernozhukov, Lee, & Rosen, 2013; Romano
& Shaikh, 2008, 2010) proposed more delicate methods to construct Cls for
partially identified parameters. Although the theoretical guarantees of the classic
bootstrapped Cls (Horowitz & Manski, 2000) are not completely established,
several researchers (e.g., Fan & Park, 2010; Yang, 2014) have evaluated them via
extensive simulation studies and found that they achieve nominal coverage rates
in many realistic scenarios.

To empirically illustrate the validity of our inferential procedure, in Online
Appendix C, we compare Horowitz and Manski’s (2000) method to a more
theoretically rigorous one, under a wide range of settings. The results suggest
that, at least in our context, Horowitz and Manski’s (2000) bootstrap interval
performs equally well, if not slightly more “conservative.” Therefore, for sim-
plicity in simulations and transparency in applications, we still use bootstrap to
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construct CIs. We provide the code to implement the above construction
approach; more sophisticated users can straightforwardly modify our code and
explore more advanced methods.

6. Simulation Studies
6.1. Without Noncompliance

To save space for the main text, we focus only on 1 and its sharp bounds in
Proposition 1. For illustration, we first adopt the settings (i.e., sample sizes and
probability matrices) in Example 6. It is worth mentioning that, for Cases 1 and 3
with independent potential outcomes, 1, < T < ty. For Cases 2 and 4 with
positively associated potential outcomes, T = ty. In addition, by symmetry
Cases | through 4, only consider t > .5.

For each case, we independently draw 1,000 treatment assignments from a
balanced completely randomized experiment. For each observed data set, we
obtain bias-corrected estimates of t; and ty and construct a 95% CI for
[Tz, Ty] using 200 bootstrapped samples. In Columns 5 through 8 of Table 2,
we report the biases and standard errors of the point estimators T, and T,; in
Column 9, we report the coverage rates of the CIs on the bounds [t;,Ty] and ©
itself. We can draw several conclusions from the simulation results. First, the
point estimators have small biases and standard errors. Second, the CIs achieve
reasonable coverage rates for the bounds [, Ty], although always overcover T,
especially in cases with independent potential outcomes.

As mentioned previously, in Online Appendix C, we conduct additional simu-
lation studies to further examine the performance of Horowitz and Manski’s
(2000) bootstrap CI. The simulation results suggest that it achieves nearly nom-
inal coverage rates for the bounds [t;, Ty], except for certain “edge cases” (e.g.,
when T &~ 1y = 1), and as expected usually overcover T.

6.2. With Noncompliance

To evaluate the finite-sample performances of the estimators and the Cls of the
bounds, we conduct simulation studies under different model specifications. To save
space, we focus only on the parameter t. and consider six simulation cases. Cases 1
through 3 are indexed by the parameter B € {1, 1/2,0} and Cases 4 through 6 by
€ € {1,1/2,0}. We postpone the interpretations of § and & until afterward. For each
case, let the pretreatment covariates X = (1,X;,X;), where X; ~N(0, 1) and
X, ~Bern(1/2). For fixed X = x, we generate the variable G from a multinomial
logit model:

() = exp(ngx)/{zexpm;x)} (¢ =a,cin),
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TABLE 2.

Simulated Examples Without Noncompliance

Case N T T TU Bias; se; Biasy sey Coverage, Coverage,
1 100 0.640 .400 0.800 .005 .056 .001 .067 989 1.000
1 200 0.640 .400 0.800 .004 .040 —.000 .044 989 1.000
1 500 0.640 .400 0.800 .001 .025 —.003 .029 982 1.000
2 100 0.800 .400 0.800 —.002 .063 —.001 .082 969 0.979
2 200 0.800 .400 0.800 .001 .044 —.000 .057 .966 0.976
2 500 0.800 .400 0.800 —.001 .027 —.002 .035 968 0.979
3 100 0.880 .600 1.000 .010 .049 .000 .000 959 1.000
3 200 0.880 .600 1.000 .007 .035 .000 .000 965 1.000
3 500 0.880 .600 1.000 .004 .022 .000 .000 969 1.000
4 100 1.000 .600 1.000  .009 .053 .000 .000 940 1.000
4 200 1.000 .600 1.000 .007 .035 .000 .000 967 1.000
4 500 1.000 .600 1.000 .001 .021 .000 .000 983 1.000

Note. The first five columns contain the case number, sample size, and true values of the parameter
and its sharp lower and upper bounds. The next four columns contain the biases and standard errors of
the point estimators of the bounds, and the last two columns contain the coverage properties of the
confidence intervals for the bounds (labeled “coverage,”) and the true parameter itself (labeled
“coverage,”).

where n, = 0, , = (1/2,1,0), and 1, = (—1/2, 1, 0). We generate the poten-
tial outcomes from proportional odds models.

1. For always-takers, let ¥;(1) = ¥;(0), and their marginal distributions be:

logit{ZaH(x)} = logit{2a+,(x)} = 04y — 2X1,

k<j I<j

where 0,0 = —1/2 and o, | = 1.
2. For never-takers, let ¥;(1) = ¥;(0), and their marginal distributions be
logit{znk+(x>} - logit{ZnH(x)} =,
k<j I<j
where 0,0 = —3/2and o, ; =0

3. For compliers let ¥;(1) and Y;(0) be independent, and the values of the parameters
be A0 = 1o = 1/27 Yeo = 1/2’ and Yeq = 2.

a. For Cases 1-3, let the marginal distributions be
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TABLE 3.
Simulated Examples With Noncompliance
Unadjusted Bounds
Case T TeL TeU Bias;, Biasy, Length Coverage
1 .685 488 0.971 —.003 —.005 .659 .945
2 770 .553 1.000 —.008 .006 574 973
3 .856 .622 1.000 013 .001 489 .966
4 782 .589 1.000 .000 .006 523 957
5 736 .540 1.000 —.003 .003 .593 975
6 .686 488 0.970 —.001 —.004 .655 .945
Adjusted bounds
T, ) Teu Bias; Biasy Length Coverage
1 .685 .503 0.772 —.001 .003 466 968
2 770 .563 0.935 —.006 .001 .530 968
3 .856 .622 1.000 .001 .002 489 .959
4 782 .602 0.846 —.002 .017 436 .960
5 738 .556 0.817 —.001 .004 447 965
6 .686 .503 0.772 .008 —.006 466 968

Note. In each subtable, the first three columns contain the true values of the causal parameter t. and
its lower and upper bounds, the next two columns contain the biases of the point estimators of the
lower and upper bounds, and the last two columns contain the lengths and coverage rates of the 95%
confidence intervals for the bounds.

logit{ZcH(x)

k<j

} = o, — 2Pxy, logit{

Zcﬂ(x)

I<j

b. For Cases 4-6, let the marginals distributions be:

logit{ ch+ (x)

k<j

} =0o; — 2x; — &x;, logit{

ZCH(")

I<j

} :’Ycij_‘—Bxl'

}sz—+x1+§xz-

For the above six cases, their true values of 1. unadjusted and adjusted
bounds are in Columns 2 through 4 of each subtable of Table 3. For Cases 1
through 3, the parameter  quantifies the association between the covariates
and the potential outcomes. As B decreases, the covariate adjusted bounds
become closer to the unadjusted bounds. For Cases 4 through 6, the parameter
& quantifies the association between the binary covariate X; and the potential

outcomes of compliers.
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We conduct inference without the binary covariate X,. This does not affect
Cases 1 through 3 because Xj is irrelevant in the data-generating process but does
affect Cases 4 through 6. We purposefully design the data-generating process in
this way to examine the performance of our estimators under correct and incor-
rect model specifications. For each case, we choose the sample size to be 1,000
and independently draw 1,000 treatment assignments from a balanced com-
pletely randomized experiment. For each observed data set, based on based on
100 bootstrapped samples, we first obtain the bias-corrected estimates of 1. ; and
1..v and construct a 95% CI for [t. 1, T.,v]; we then estimate the bounds 7., and
7. v and construct a 95% CI for [t ;, T u].

We report the simulation results in Table 3, in which Columns 4 through 7 of
each subtable include the biases of the point estimators, the average lengths, and
coverage rates of the 95% CIs on the bounds. First, the point estimators of the
bounds have small biases. Second, when the pretreatment covariates are associ-
ated with the potential outcomes, the CIs of the bounds [t 1, T v] are longer than
those of [t.;, 7 u] on average. Third, the CIs for the bounds [t.., T y] and
[t'e, T'c,u] achieve reasonable coverage rates. Fourth, the performance of the
bounds is robust to the missingness of the binary covariate, or, equivalently, a
misspecification of the outcome models.

7. Applications
7.1. A Taste-Testing Experiment Without Noncompliance

We use the taste-testing experiment data in Bradley, Katti, and Coons
(1962) to demonstrate the estimation and inference of the proposed causal
parameters. The outcome of interest Y is ordinal with five categories, from
“terrible” with ¥ = 0 to “excellent” with ¥ = 4. We consider only three
treatments C, D, and E, and summarize the data and results in Table 4.
Because negative associated potential outcomes appear unlikely in practice
(Ding & Dasgupta, 2016), that is, the three treatments are not drastically
different (e.g., ¥;(C) = 4 and Y;(E) = 0), we focus on the interpretations of
the cases with independent and positive correlated potential outcomes, for
example, t; and ty. First, treatment E stochastically dominates treatment C,
and the CIs for [t/,ty]| and [n;,ny] are [0.914, 1.000] and [0.651, 0.997].
The results suggest that treatment E is indeed better than treatment C because
both lower confidence limits are greater than 0.5. Second, although Treat-
ments E and D do not stochastically dominate each other, the Cls for [t;,Ty]
and [n;, ny] are [0.656, 0.982] and [0.510, 0.886], suggesting that Treatment
E is better than Treatment D. Therefore, the proposed causal parameters t
and n are useful for decision-making, especially when the stochastic dom-
inance assumption does not hold.
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TABLE 4.
Analysis of a Taste-Testing Experiment

Data From Bradley et al. (1962)

Outcome Categories

Treatment 0 1 2 3 4 Row Sum
C 14 13 6 7 0 40
D 11 15 3 5 8 42
E 0 2 10 30 2 44
Results for t: Point estimators and confidence intervals (Cls)

T T Tu CI for [tz, ty] CI for [t/, ty]
Evs.C 765 946 1.000 [0.667, 1.000] [0.914, 1.000]
Evs.D .630 782 0.856 [0.503, 0.997] [0.656, 0.982]
Results for m: Point estimators and confidence intervals (Cls)

nL Ny Ny CI for [, ny] CI for [m,nU]
Evs.C .623 .780 .870 [0.480, 1.000] [0.651, 0.997]
Evs.D 573 .659 738 [0.413, 0.896] [0.510, 0.886]

Note. CI = confidence interval.

7.2. A Sexual Assault Education Program Without Noncompliance

Between September 2011 and February 2013, three universities in Canada
(Windsor, Guelph, and Calgary) conducted the Sexual Assault Resistance Edu-
cation (SARE) trial. The SARE trial investigates whether the enhanced Assess,
Acknowledge, and Act (AAA) program, which consist of numerous activities
(e.g., lectures, discussions, and practices) can help prevent sexual assaults. Four
hundred and fifty-one first-year female students from the above universities
where randomly assigned to the treatment group (Z = 1) with access to AAA,
and 442 were randomly assigned to the control group (Z = 0) with brochures
containing general information on sexual assault. The primary outcome Y is
ordinal with six categories, from “complete rape” with ¥ = 0 to “no reporting
of any non-consensual sexual contact” with ¥ = 5.

We summarize the data and results in Table 5. Because both the treatment and
control groups receive useful information on sexual assault prevention, nega-
tively associated potential outcomes seem unlikely. Therefore, we again focus on
independent and positively correlated potential outcomes. The CIs for [/, Ty]
and [n;,ny] are [0.758, 1.000] and [0.554, 0.999], suggesting that AAA is indeed
beneficial because both lower confidence limits are greater than 0.5. Our findings
corroborate the recommendations by Senn et al. (2015).
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TABLE 5.
Analysis of the SARE Trial

Data From Senn et al. (2015)

Outcome Categories

Row

0 1 2 3 4 5 Sum

Treatment 23 15 48 67 121 177 451

Control 42 40 62 103 184 11 442
Results for T and n: point estimators and confidence intervals (CIs)

Lower bound Indep. Upper bound CI for [L, U] ClI for [/, U]

T .636 783 1.000 [0.598, 1.000] [0.758, 1.000]

n 368 .604 0.962 [0.311, 1.000] [0.554, 0.999]

Note. SARE = Sexual Assault Resistance Education; CI = confidence interval.

7.3. A Job Training Program With Noncompliance

In the mid-1990s, Mathematica Policy Research conducted an experiment that
randomly enrolled eligible applicants into the Job Corps program (Lee, 2009;
Schochet et al., 2003). We reanalyzed the data set from 1995 with 13,499 units.
For more detailed descriptions of the data set, see Zhang et al. (2009) and
Frumento et al. (2012). In the following analysis, Z = 1 if an applicant was
enrolled in the program and Z = 0 otherwise; D = 1 if an applicant actually
participated in the program, and D = 0 otherwise. The strong monotonicity
assumption with D;(0) = 0 for all i holds by design. Using the hourly wage after
52 weeks of enrollment, we create a three-level ordinal outcome Y as follows:
Y = 0 for zero wage because of unemployment, ¥ = 1 for low wage (no more
than 4.25 U.S. dollars, 150% of the minimal wage at the time the data were
collected), and ¥ = 2 for high wage (more than 4.25 U.S. dollars). In the fol-
lowing analysis, we take into account covariates such as gender, age, education,
and marital status.

We report the results in Table 6. Similar as before, we focus on independent
and positively correlated potential outcomes. For both causal parameters t. and
1., the CIs for the lower and upper bounds become narrower when we take
covariates into account. Similarly as the previous example, we focus on the
interpretations of the cases with independent and positive correlated potential
outcomes. The CIs with or without covariates for [/, Ty] suggest that the hourly
wages of more than 70% of participants do not decrease because of the job
training program. Additionally, the CIs with or without covariates for [n;, ny]
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TABLE 6.
Analysis of the Job Corps Program

Results for t: point estimators and confidence intervals (Cls)

Tel Ter Teu ClI for [t. 1, t.v] ClI for [tc/, Tc.u]
Without covariates 561 707 912 [.536, .938] [.687, .934]
With covariates 592 723 912 [.570, .932] [.700, .932]

Results for m: point estimators and confidence intervals (Cls)

ﬁc,L ﬁc‘l /ﬁc‘U CI for [nc,b nc‘U} CI for [nc‘lv nc‘U}

Without covariates ~ .005 209 351 [.000, .362] [.199, .363]
With covariates .004 .193 .320 [.000, .331] [.180, .331]

Note. CI = confidence interval.

suggest that the hourly wages of roughly 20% to 30% of participants strictly
increase because of the job training program.

As a final note, we use this example to illustrate Corollary 4. First,
without the noncompliance information, the estimators of the bounds of t
are T, = .558 and Ty = .937, with 95% CI [0.541, 0.954]; the estimators of
the bounds of n are M; = .004 and 1, = .379, with 95% CI [0.000, 0.388].
With the noncompliance information, the estimators of the bounds of t are
7", = 683 and Ty = .937, with 95% CI [0.666, 0.954]; the estimators of
the bounds of 1 are §"; = .004 and 7"y = .254, with 95% CI [0.000, 0.262].
Therefore, the noncompliance information in return improves the inferences
of T and m for the whole population.

8. Concluding Remarks

We proposed to use two causal parameters to evaluate treatment effect on
ordinal outcomes, and derived the explicit forms of their sharp bounds by using
only the marginal distributions of the potential outcomes. Although we advocate
the use of parameters t and 1 to measure treatment effects, we acknowledge that
some other causal parameters may also provide information in practice (e.g.,
Agresti, 2010; Volfovsky, Airoldi, & Rubin, 2015). For general parameters,
although deriving the explicit forms of the bounds may be difficult, we can use
numerical methods. For instance, for another widely used parameter, the relative
treatment effect o = t+n — 1 (Agresti, 2010), we can use numerical linear
programs to calculate its maximum and minimum values under the constraints
in Equation 4.
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Jiannan Lu, Peng Ding and Tirthankar Dasgupta

The Supplementary Material consists of three parts. Part A contains all the proofs. Part B
gives the details of the EM algorithm with noncompliance. Part C presents additional simulation

results.

A. Proofs of Lemma, Propositions and Corollaries

A.1. A lemma and its proof

We first state a lemma extending a result in Strassen (1965). This lemma plays a central role in

our later proofs, and is also of independent interest.

Lemma 1. Assume that (zg,...,2,—1) and (yo,...,yn—1) are nonnegative constants.
(a) If Z:f;sl Ty > Z:};sl yr for all s = 0,...,n — 1, there exists an n x n lower triangular matrix

Ay, = (agr)o<k,i<n—1 with nonnegative elements such that
n—1 n—1
g <wr, Y a=y (k1=0,...,n—1). (A.1)
'=0 k'=0

(b) If Z:};sl Ty < z:‘;sl yr for all s =0,...,n — 1, there exists an n X n upper triangular matrix

B,, = (bki)o<k,<n—1 with nonnegative elements such that

n—1 n—1
Zbkl’ = Ty, Zbk/l <y (k:,le,...,n—l). (A2)
I'=0 k'=0

1



(c) IE >0 qap < >0 _oyr forall s =0,...,n— 1, there exists an n x n lower triangular matrix

C,, = (Pki)o<ki<n—1 With nonnegative elements such that
n—1 n—1
> pw=ak, > pi<y (k1=0,...,n-1) (A.3)
I'=0 k'=0

(d) >0 _qzr >0 _oyr forall s =0,...,n — 1, there exists an n X n upper triangular matrix

D,, = (dki)o<k,<n—1 With nonnegative elements such that
n—1 n—1
del’ Sxk, de/l:yl (k,l:O,...,n—l). <A4)
1'=0 k'=0

(e) If we further assume Zf:_é Yp = Zf;& x,, the above inequalities in (A.1)—(A.4) all reduce to
equalities, i.e., the matrices A,, B,, C, and D,, have (xq,...,z,—1) and (yo,...,Yn—1) as

their row and column sums.

Note that if all the x;’s are the same as the y;’s, we can simply construct a diagonal matrix

with elements x;’s or y;’s. The following proof deals with general cases.

Proof of Lemma 1(a). We prove by induction. When n = 1, we let A1 = yp > 0, and Lemma 1(a)
holds because yo < xg. When n > 2, suppose Lemma 1(a) holds for n — 1. In particular, for any
(z1,...,Zn—1) and (y1,...,Yn—1) such that Zf;sl T, > Z:f;l yr for all s =1,...,n —1, there exists

a lower triangular matrix A, _1 = (am)1<k,i<n—1 With nonnegative elements such that

n—1 n—1
Zakl/ <z, Zakll =y (k,lzl,...,n—l). (A5)
I'=1 k'=1

To prove that Lemma 1(a) holds for n, we let

ano OT
An = ’
a A,
where agp and a = (ajo, . .. ,an,l,g)T are defined for two separate cases below.

(1) yo < xo. We let agp = yo, and agg = 0 for all k = 1,...,n — 1. Clearly, A, has nonnegative

elements, and satisfies the row and column sum conditions in Lemma 1(a) holds;

2



(2) Yo > xg. We let agg = g, and

n—1
Tk — D p—q Qg

n—1 n—1
Zk’:l (xk’ - 21/21 ak’l’)

aro = (yo—aoo) >0 (k:l,,n—l) (AG)

This construction guarantees that the column sums of A, are y;’s. Furthermore, because

A, satisfies (A.5), we have

n—1 n—1 n—1 n—1n—1 n—1 n—1n—1
$ ( . z) B ST 5) SUTIN SIS o) Sy
k'=1 =1 k'=1 k'=11'=1 k'=1 I'=1k"=1
n—1 n—1
= Z:I:k/—Zyklzy()—zo:yo—aoo>0. (A?)
k'=1 k'=1

Formulas (A.6) and (A.7) imply that axy < xp — Zﬁ;i apy and therefore Zﬁ;}) apy < x1, for

k=1,...,n—1.
Therefore Lemma 1(a) holds for n, and the proof is complete. O

Proof of Lemma 1(b). By applying Lemma 1(a) to (yo,...,yn—1) and (zo,...,x,—1), we obtain a

lower triangular matrix E; = (lskl)ogwgn_l with nonnegative elements such that
n—1 n—1
Zbk’l:xka Zbkl'ﬁyk (k,l:O,...,n—l).
k'=0 I'=0

—T
Let B,, = B,, , and the proof is complete. ]

Proof of Lemma 1(c). By applying Lemma 1(a) to (yn—1,.-.,%0) and (zp—1,...,%0), we obtain a

lower triangular matrix C, = (Pk)o<k,i<n—1 With nonnegative elements such that

n—1 n—1
G =an1, Y G Synk1 (k1=0,...,n—1).
k=0 I'=0

Let Cp = (Cni—1,n—k—1)g<p j<pn_1 » @and the proof is complete. O

Proof of Lemma 1(d). By applying Lemma 1(c) to (yo,...,yn—1) and (zo,...,2n—1), we obtain a



lower triangular matrix B; = (Czkl)(]gk,lgn_l with nonnegative elements such that

k n—1
del’:yka de’lgxk (k‘,l:O,,n—l)
'=0 k'=l

—T
Let D,, = D,, , and the proof is complete. O

Proof of Lemma 1(e). In addition to the proof of Lemma 1(a), we further need to show that if
Zf;& Yp = Zf;é x,, the row sums of the constructed matrix A,, are z;’s. In the induction of the
proof of Lemma 1(a), if we have constructed matrix A, _1, the case with yy < z¢ would not happen.
We consider only the case with yy > xg. Because the lower triangular matrix A,,_1 has the column

sums y;’s, and Zf;& Yp = Zf;& x,, we have

n—1 n—1 n—1 n—1
Z (xk' - Z%/l/) = Zwk/ - Zyk/ = Yo — Lo = Yo — ago > 0.
k=1 k=1

The above formula, coupled with the construction of the first column of A, in (A.6), gives axy =
T — Z?;} apy and thus Z;ﬁ;é apy = xy, for all k. O

A.2. Proof of Proposition 1

Now we prove the main Proposition 1, and the proofs for other propositions and corollaries are

relatively straightforward.

Proof of Proposition 1. For all j =0,1,...,J —1,

T = ZZPklZl—ZZPM

k>l k<l
J-1
S A=Y =1= D> =D pu (A.8)
k<j 1>j k=0 1>j k>j 1>

J-1 J-1
< 1- ZZPM—ZZPM =1- Zerl—Zkar (A.9)

k=0 1>j k>j 1=1 1> k>j
= 1+ Aj,



and

o= > b

k>l
J-1

> ZZPMZZZW—ZZPM (A.10)

k25 1<j k25 1=0 k>j 1>j5

J-1 J—1

> 3 N =D o= Dkt — D D4 (A.11)

k>j 1=0 k=0 1>] k>j 1>
= D+j + Aja

which implies that 77, < 7 < 7.

We now construct two probability matrices attaining the lower and upper bounds respectively,
using Lemma 1.

We first construct a probability matrix attaining the upper bound 7. Let

jl :mln{Ogj/ S J—1: A]/ :0<511<1511A]}

be the minimum index j that attains the minimum value of A;’s. To attain 7y7, the equalities in

(A.8) and (A.9) must hold, i.e.,

J-1
D=2 > e D D =) > pu (A.12)

k<i k<j11>j1 k>j1 1>51 k>j1 1=1
If j4 = 0, ming<j<j—14; = A¢ = 0, implying that A; = Zi;;pk+ — ngjl p4 > 0 for
all j, i.e., the marginal probabilities satisfy the stochastic dominance assumption. According to
Lemma 1(e), there exists a lower triangular probability matrix P with marginal probabilities p; =

(Po++----ps—1,+)" and po = (pso,...,p+s-1)" . Correspondingly, 7 =1 + Ag = 1.

If j1 > 0, the constraints in (A.12) force some elements of the probability matrix to be zeros.
To be more specific, the constraints in (A.12) imply that the probability matrix has the following

block structure:

P, P,
p=| """, (A.13)

0 Pbr



where the j; x ji sub-matrix P on top left and the (J — j1) x (J — j1) sub-matrix Py, on bottom
right are both lower triangular, and the j; x (J —j1) sub-matrix P, on top right has no restrictions.

Because A, < Aj forall j =0,1,...,J — 1, we have

Jji—1 Jji—1 J J
e =Y pp G=0, =15 D> per <D o G=ju.. T 1),
k=j I=j k=j1 =71

Given the above two sets of constraints on the marginal probabilities, we construct the probability

matrix P in three steps.

(1) We apply Lemma 1(a) to (po+,--.,pji—1,+) and (p4o,--.,p+j,—1), and obtain a lower trian-
gular matrix P, = (pkl)ogk,lgjl—l with nonnegative elements such that
Jji—1 j1—1

S o <, Y pwi=pu (k1=0,...,51—1).
=0 k=0

(2) We apply Lemma 1(c) to (pj;+,-..,ps—1+) and (p4j,,..., P+ j—1), and obtain a lower trian-

gular matrix Py, = (pki) j1<ki<J—1 With nonnegative elements such that

J—1 J—1
Zpkl’:pk+7 Zpk’l§p+l (kvl:jlv"'aj_l)'
U=j k'=j1

(3) We construct Por = (Pkt)o<p<j, 1.4, <1<s—1 DY letting

Ji—1 J—1
I'=0 k'=j1

The constructed probability matrix P has marginal probabilities p1 = (pot,...,p J,LJF)T and
po = (P+0,--- ,p+7j_1)T . What is more, by (A.13) the 7 of P is the sum of all the elements in Py

and Py;, which we construct in the above (1) and (2). Therefore, we have

Jji—1 J—1
T= Zp+ll+ Z pk'+:1+Aj17
=0 K=

which implies that the probability matrix P attains 7.



We then construct a probability matrix attaining the lower bound in 77,. Let

j2 = min {j, D P45 —+ Aj/ — Ogr;lgaf_l(p+j + A])}

be the minimum index j that attains the maximum value of (p4;+A;)’s. To attain 77, the equalities

in (A.10) and (A.11) must hold, i.e.,

S o= s YD = SZPH- (A.14)

k>l k>j2 1<j2 k>jo2 I>j2 k=01>j2
If jo = 0, from (A.14) we know that the elements in the lower triangular part but not in the
first column of the probability matrix P are all zeros, i.e.,

p Ptr

P= : (A.15)

pj—10 0T

where p = (po,o, - - - ,pJ_Q’O)T7 and the (J — 1) x (J — 1) sub-matrix P, on top right is upper

triangular. Because p1g + Ag > p4; + A; for all j, we have

J J
> ke =) pru (=0,...,7-2).
k=0 1=0

Applying Lemma 1(d) to (po+,...,ps—2,+) and (p41,...,p4 j—1), we obtain an upper triangular

matrix Py = (Pr1)o<p<y_21<i<j_1 With nonnegative elements such that

J—1 J—2
Zpkl’épk+7 Zpk’l:p+l (k:077J_27l:177J_1)
'=1 k’'=0

To complete the construction, let p;j_10 = pj—1,+, and

J-1
Pro =Pt — Y P 20 (k=0,...,J —2).

'=1

)T and

The constructed probability matrix P has marginal probabilities p1 = (po+,...,ps—1+

Po = (p+0,--- ,p+,J_1)T . Moreover, by (A.15) the 7 of P is the sum of all the elements in the first



column. Therefore 7 = prg = pyo + Ap, which implies that P attains 7.
If jo = J — 1, the proof is similar to the above case with jo = 0. If 0 < jo < J — 1, because the

first equality in (A.14) is equivalent to

Z Zpkl + Z Zpkz = Z Zpkz,

k<ja 1<k k>j2 1<k k>j21<j2
the probability matrix P must satisfy the following constraints:
(C1) Forall k =0,...,jo— 1, ppy=0foralll =0,...,k.
(C2) Forall k=jo+1,...,J =1, pyy=0foralll =jo+1,... k.

Similarly, because the second equality in (A.14) is equivalent to

Z Zpkz = Z Zpk:l“‘ Z Zpkl,

k>j2 1>j2 k>j2 1>j2 k<j2 I>j2

the probability matrix P must further satisfy the following constraint:
(C3) py=0,forall k=0,...,jo—1landl=jo+1,...,J — 1.

The constraints in (C1), (C2) and (C3) imply that P must have the following block structure:

(07 Ptl) 0
P = P, (A.16)
P,
OT

where the j X jo sub-matrix Py and the (J — j; — 1) x (J — j1 — 1) sub-matrix P}, are both upper
triangular, and the (J — j2) X (j2 + 1) sub-matrix P}, on bottom left has no restrictions.

Because pj, + Aj, > p4; + Aj for all j, we have

Ja2—1 Jo—1 s s
>opkr <D P G=0de—=1) D> per =Y prin (=72 —2),
k=j 1= k=32 I=j2

Given the above two sets of constraints for the marginal probabilities, we construct the probability

matrix P in three steps.



(1) We apply Lemma 1(b) to (po+,...,Pj—1,4+) and (p+1,...,p+j,), and obtain an upper trian-

gular matrix Py = (pkl)0§k§j2—1,1§l§j2 with nonnegative elements such that

Jj2—1

Zpkl’—pk—H Zpk’l<P+l (k=0,....50 =1L I=1,....72).
=1

(2) We apply Lemma 1(d) to (pjo+,-..,ps—2+) and (D4 jo41,---,P+,7-1), and obtain an upper

triangular matrix Phr = (Pkt) j,<k<j—2 j,+1<i1<s—1 With nonnegative elements such that

Yoo <per, Y pmi=pu (k=g J=2%1=ja+1,...,J 1)
U'=jo+1 k'=j2

(3) We construct Py = (pi) j,<p<s—10<i<j, PY letting

J—1 Jo—1
Pl = | Pht — Z Py <P+I—ZPk/l> 20 (k=j2,...,J =1 1=0,....j2).
k=0

l'=j2+1

The constructed probability matrix P has marginal probabilities p1 = (pot,...,p J,LJF)T and
po = (P+o,--- ,p+7J_1)T. Moreover, by (A.16) the corresponding 7 is the sum of all the elements

in P, which we construct in the above (3). Therefore,

Jjo—1
T=1- Zpkur— Z Py = Zpk/+— Z P41 = D4jo T Djo,
I'=ja+1 k'=j2 I'=ja+1
which implies that P attains 7. O

A.3. Proofs of other propositions

Proof of Proposition 2. Because n = 1 — pr{Y;(0) > Y;(1)}, its lower bound is one minus the up-
per bound of pr{Y;(0) > Y;(1)}. By switching the treatment and control labels, we can bound
pr{Y;(0) > Y;(1)} from the above by

. >Y: <1 - .
pri¥i(0) 2 Yi()} <1- max A,

which implies that 17, = maxo<j<j—1 4A;.



Similarly, the upper bound of 7 equals one minus the lower bound of pr{Y;(0) > Y;(1)}. By

switching the treatment and control labels, we can bound pr {Y;(0) > Y;(1)} from below by

Y;(0) > Yi(1)} > = A,
pri¥i(0) = Yi(1)} = max  (pj+ —4;)

which implies that ny =1+ minogjgj_l (AJ - pj+) . ]

Proof of Proposition 8. With independent potential outcomes, the probability matrix P has ele-
ments pg; = prapy for k and I. We obtain 77 and 7y by their definitions. Obviously, they are

between their lower and upper bounds, i.e., 7, < 77 < 7y and np < ny < ny. O

Proof of Proposition 4. The proof follows Lee (2009). Because any value of 7 within the covariate
adjusted bounds |77, 7{;] must be compatible with the distributions of {Y'(1), X'} and {Y'(0), X'} , it
must also be compatible with the distributions of Y (1) and Y (0) by discarding X . Therefore, any
value of 7 within the adjusted bounds |7}, 7{;] must also be within the unadjusted bounds [r, 7¢/].
Consequently, the adjusted bounds are tighter, i.e., [17,7{;] C [7r,7y]. Similar arguments apply to

the covariate adjusted bounds and the unadjusted bounds for 7. O

Proof of Proposition 5. Under monotonicity, by the law of total probability, we have

T = TeTe + TaTa + TnTn-

Under exclusion restriction, we have 7, = 1 and 7,, = 1, yielding

T="mTe+ 1 — 7,

which implies that

Te = T/7Tc - (1 —71'6) /’R’C.

Analogously, we have n = 7.1, which implies that n. = n/n. O
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A.4. Proofs of the corollaries

Proof of Corollary 1. By Proposition 1, 7 = 1 if and only if minp<j<;—1 A; = 0. Because Ag = 0,

this is equivalent to A; > 0 for all 7, i.e., the stochastic dominance assumption holds. O

Proof of Corollary 2. Similar to the proof of Proposition 2, because n =1 —pr {Y;(0) > Y;(1)}, (9)
immediately implies (10). Therefore, we need only to prove that (9) is the sufficient and necessary
condition that the lower and upper bounds of 7 are the same, i.e., 77, = 7.

First we prove the necessity of the condition. Assume that it does not hold, i.e., there does
exist ki,ke € K and [ly,l; € L such that (9) holds. In this case we construct two probability
matrices with the same marginal probabilities but different values of 7. The first probability matrix
is P = (pr+p+1)o<ki<j_1- For the second probability matrix, let & = min (pk,,+P4 1,5 Pro+P+.02) »
which is a positive constant. We then apply the following matrix operation to the 2 x 2 sub-matrix

of the first probability matrix:

pk1l1 pk1l2 pk‘lll - g pkllg +£
—

pkgll pkzlg pkgll + 5 pkzlg - 5

The above operation preserves the marginal probabilities, and the difference of 7 between the first
and second probability matrices is &, if ko > lo > k1 > 11, and =€, if ls > ko > 11 > k1.

Second, we prove the sufficiency of the condition. If |K| =1 or |L| = 1, the probability matrix
degenerates and consequently we have 7, = 7.py. If |[K| > 2 and |L| > 2, let k, = mingeg k
and k* = maxyek £ be the minimal and maximal indices of nonzero py’s, and I, = mingey, [ and
I* = maxj¢cp, I the minimal and maximal indices of nonzero p;’s. A useful fact that we repeatedly
use is that if py4 = 0, then pg; = 0 for all [. Similarly, if p4; = 0, then pg; = 0 for all k.

Because ki, k* and L, [* cannot satisfy (9), we discuss the two following cases based on the

relative locations of the two intervals [k, k*] and [l,,1*] :

1. “Non-overlapping,” i.e., ks > [* or k™ <, :

(a) If k. > 1*, we prove that py; = 0 for all £ < [. Assume the claim does not hold, then
there exists k' < I’ such that pgp > 0, then pr > 0 and pyy > 0. This implies that
k. <k <1 <I* contradicting the initial assumption. Therefore, 7, = 7y = 1.

11



(b) If k* < I, similarly pg; = 0 for all k£ > [, implying that 7, = 7 = 0.
2. “Inclusive,” i.e., I* > k* >k, >l or kK* > 1" > 1, >k, :

(a) If I* > k* > ki > li, and furthermore if there exists I’ € L such that k., < I’ < k*,
then " # I, and I’ # I*. Moreover, ki, k* and I',1* satisfy (9), contradicting the initial

assumption. Therefore for all [ € I, [ < k, or I > k*. Consequently,

7= pul(keKlel)=> pul(kcKleL,l<k,)
k>l k>l

—ZpkllkEKZELl</€ Z D41
1<k, l€L

is identifiable, which implies that 77, = 7.

(b) If k* > 1* > I, > ki, similarly as above for all k € K, k < [, or k > [*. Consequently,

7= pul(keKlel)=> pulkeKlecLk>1")= > pe
k>l k>1 k>1* keK

is identifiable, which implies that 77, = 7.
O
Proof of Corollary 3. The proof follows directly from Propositions 1 and 2. O

Proof of Corollary 4. The closed-form expressions for Té/ L Te e nc ;, and 7’ p follow directly from
Proposition 5 and Corollary 2. Furthermore, under the monotonicity and exclusion restriction

assumptions, we have

Aj:ﬂ—cAc,j (3:0,,J—1)

Therefore, for the upper bound of 7, we have
w=1-m.+m(l+minA.;) =17,
and for the lower bound, we have

7, <max(pyj — 1+ 7w + TAc ;) = 1 — me + memax(cqj + Agj) = 77

12



The first step holds because under the strong monotonicity assumption ny;m, < m,, and under
the monotonicity assumption a, ;g + nyjm, < m, + m,. Similar arguments apply to the bounds of

UL O

B. Detalils of the EM Algorithm with Noncompliance

Let X; = x;, Z; = 2, D;’bs =d; and YiObS = y; be the values of the pretreatment covariates, treat-
ment assigned, treatment received and observed outcome of the ¢th unit. We write the likelihood

function as

L®) = J] {ma@)ayr(@)+me@)ey (@)} x [ {mn(@)ny o ()}

i:z;=1,d;=1 i:2;=1,d;=0
X H [Ma () Ay, (T)] % H {70 (@) np g, (N5 23) + e () e, (T0)
1:2,=0,d; =1 i:2;=0,d;=0

Let G; = g; be the value of the principal stratification variable of the ith unit. By treating it

as missing data, we write the complete-data log-likelihood as:

(@ = > [log{m (@)} +log{ay+ (@)} + > [og{me (@)} +log{cy+ (:)}]

i:gi=a,z;=1 itgi=c,z;=1

+ S og{ma (@)} +log{nys @)} + S [log {ma (@)} +log {asy, (@)}]
i:gi=n,z;=1 i:gi=a,2;=0

+ Y log{me (@)} +log{ery (@)} + D [log{m (@)} +log {nsy, (x:)}],
i:gi=c,2;=0 i:gi=n,2;=0

We denote the realizations of (4) and (5) for the ith unit when evaluated at the true parameter
value 0 as 7y (x;), gkt (x;) and g4 (x;), and those when evaluated at the tth iteration of the

,(fl (x;) and ggfl) (x;) . The EM algorithm proceeds as follows.

parameter estimate () as Wét) (xi), g
Given the current tth iteration of the parameter estimate 8®), we obtain the updated (t + 1)th

iteration 81 as follows:

1. E-Step: obtain the conditional expectation of the complete-data log-likelihood, given observed

data and the current parameter estimate ), by finding the (current) conditional probabilities

(t)

of the principal stratum g, denoted as Ty

13



(a) For all 7 such that z; =1 and d; = 1, let 7 = 0, and

n,%

t t
) _ 71'!(;) (:cl)gél)ﬂr () (9 =a,c)
" @) af) (@) + 7 (@) o) (@) |

(b) For all i such that z; =1 and d; = 0, let WC(LtZ =0, 7r(t) =0, and 7T(t) 1.

ci nag

(c) For all i such that z; =0 and d; = 1, let ﬂ'gtz =1, ) = 0, and =,

(d) For all i such that z; =0 and d; =0, let 7

2. M-Step:

ci ng

=0 and

a,t

t t
() _ ) (wi)gi,)yi (i) (0= cn)
Pl @) e, @)+l @), (@) ’

obtain the updated parameter estimate 81 by maximizing the conditional ex-

pectation with respect to 6. To do this, we adopt the following two-step procedure:

(a) Obtain Gg; 1), the updated estimates of the parameters in the model for the principal

strata, by maximizing the following objective function:

F (0ps) = Z {7753 log 7, () + Wétl) log 7. (:1:1)} + Z 7r7(f)Z log 70, ()
i:z;=1,d;=1 i:z;=1,d;=0
+ Z 77((:2 logmg (x;)  + Z {W((:tz) log 7. (x;) + 7r7(7f)Z log 7y, (:1:2)} :
1:2;,=0,d; =1 i:2;=0,d; =0

The optimization problem is equivalent to fitting the following weighted multinomial

logistic regression:

ii.

iii.

1v.

For ¢ such that z; = 1 and d; = 1, create two new observations for the regression:

(® (1),

one always-taker with weight 7 and one complier with weight 7

a,i c
For i such that z; = 0 and d; = 0, create two new observations: one complier with
(?) (t)

weight 7/ it

and one never-taker with weight
For ¢ such that z; = 1 and d; = 0, create one never-taker with weight 1.

For 4 such that z; = 0 and d; = 1, create one always-taker with weight 1.

(b) Similarly, obtain 01(3% 1), the updated estimates of the parameters in the model for the

potential outcomes, by fitting weighted proportional odds models:

14



i. For g = a, use all ¢ such that z; = 1 and d; = 1 with weight Wgtz, and all 7 such that
z; = 0 and d; = 1 with weight 1.
ii. For g = ¢, use all 7 such that z; =1 and d; = 1 and all ¢ such that z; =0 and d; =0

(1)

with weight 7
iii. For g = n, use all ¢ such that z; = 1 and d; = 0 with weight 1, and all ¢ such that
z; = 0 and d; = 0 with weight 7

C. Additional Simulation Studies

C.1. The alternative method

We further examine the performances of Horowitz and Manski (2000)’s bootstrap method to con-
struct confidence intervals for partially identified parameters, by comparing it to a more rigorous

approach proposed by Jiang and Ding (2018) as follows:

1. Denote p1; + A and 1+ Aj, the “building blocks” of 77, as L; and Uj; respectively. Obtain

their finite-sample estimates ﬁj and (7j, and let
qA = argmaXOSjSJ_le, F= argminogjgj_lUj

be the minimum indices attaining the maximum value of L;’s, and the minimum value of

A~

Uj’s, respectively;

2. Estimate the standard deviations of f)q and U,a, via standard bootstrap. Denote the resulted

standard errors as 64 and 07, respectively;

3. Correspondingly, the (1 — «) confidence interval for 7 is (I:lj — Céy, U; + C6;), where we the
threshold value C' by solving the equation

v
@{CJrUrq}(I)(C):la.

max(&q, 5‘f)

By utilizing the fact that f/j’s and Uj’s are jointly asymptotically normal, Jiang and Ding (2018)
generalized previous results by Imbens and Manski (2004) and proved that the resulted confidence

interval achieves nominal coverage rate for 7.
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C.2. Simulation results

We choose the sample size N = 200, and generate 50 simulation cases (i.e., probability matrices)

by repeating the following procedure 50 times:
1. Let U, "% Unif(0,1) for all » = 1,...,6;
2. Let the marginal probabilities

3 6
p1=(U1,Us,U3)/ Y Uk, po=(Us,Us,Us)/ > Us;

k=1 =4
3. Based on p; and pg construct a probability matrix corresponding to positively correlated

potential outcomes (i.e., 7 = 777).

It is worth mentioning that, we intentionally use uniform random variables for the marginal proba-
bilities, to “objectively” explore a wide range of potential outcome distributions. Additionally, we
choose the case with positively correlated potential outcomes, because previous simulations suggest
that it appear to be the most challenging.

We only focus on the coverage properties of the confidence intervals by Horowitz and Manski
(2000) and Jiang and Ding (2018), respectively. Following the main text, for each of the 100 prob-
ability matrices, we independently draw 1000 treatment assignments from a balanced completely
randomized experiment, and calculate two interval estimates of the bounds (77, 7¢7). In Figure 1 we
report the coverage rates of the two confidence intervals, for both the bounds (77, 7¢7) and the pa-
rameter 7 itself. We can draw several conclusions from the simulation results. First, both intervals
achieve nominal coverage rates for the bounds (7, 7y), expect for some “edge cases” (i.e., when
T & 7y ~ 1). Second, both intervals (inevitably) over-covers 7. Third, for all cases Horowitz and
Manski (2000)’s bootstrapped interval performs equally well compared to Jiang and Ding (2018)’s

interval, if not better. For example, for Case 16 where
p1 = (0.484,0.134,0.382), po = (0.504,0.295,0.201), 77, =0.504, 7 =17y =1,

Horowitz and Manski (2000)’s and Jiang and Ding (2018)’s intervals achieve 0.957 and 0.896 cov-

erage rates for (77, 7y) respectively, and 0.978 and 0.914 for 7 respectively.
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(a) Coverage rates for the bounds (7, 7). (b) Coverage rates for the parameter 7.

Figure 1: Additional simulation results. In each subfigure, the horizontal axis denotes the simulation case
labels, and the vertical axis denotes the coverage rates for the 95% Horowitz and Manski (2000) interval
(denoted as “H-M interval,” round dot) and the 95% Jiang and Ding (2018) interval (denoted as “J-D
interval,” triangular dot).
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