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ABSTRACT

Understanding and characterizing treatment effect variation in randomized experiments has become
essential for going beyond the “black box” of the average treatment effect. Nonetheless, traditional sta-
tistical approaches often ignore or assume away such variation. In the context of randomized experiments,
this article proposes a framework for decomposing overall treatment effect variation into a systematic com-
ponent explained by observed covariates and a remaining idiosyncratic component. Our framework is fully
randomization-based, with estimates of treatment effect variation that are entirely justified by the random-
ization itself. Our framework can also account for noncompliance, which is an important practical compli-
cation. We make several contributions. First, we show that randomization-based estimates of systematic
variation are very similar in form to estimates from fully interacted linear regression and two-stage least
squares. Second, we use these estimators to develop an omnibus test for systematic treatment effect varia-
tion, both with and without noncompliance. Third, we propose an R?-like measure of treatment effect vari-
ation explained by covariates and, when applicable, noncompliance. Finally, we assess these methods via
simulation studies and apply them to the Head Start Impact Study, a large-scale randomized experiment.
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1. Introduction

The analysis of randomized experiments has traditionally
focused on the average treatment effect, often ignoring or
assuming away treatment effect variation (e.g., Neyman 1923;
Fisher 1935; Kempthorne 1952; Rosenbaum 2002). Today,
understanding and characterizing treatment effect variation in
randomized experiments has become essential for going beyond
the “black box” of the average treatment effect. This is clear
from the increasing number of articles on the topic in statis-
tics and machine learning (Hill 2011; Athey and Imbens 2016;
Wager and Athey 2017), biostatistics (Huang, Gilbert, and Janes
2012; Matsouaka, Li, and Cai 2014), education (Raudenbush and
Bloom 2015), economics (Heckman, Smith, and Clements 1997;
Crump et al. 2008; and Djebbari and Smith 2008), political sci-
ence (Green and Kern 2012; Imai and Ratkovic 2013), and other
areas.

This article proposes a framework for decomposing overall
treatment effect variation in a randomized experiment into
a systematic component that is explained by observed covari-
ates, and an idiosyncratic component that is not explained
(Heckman, Smith, and Clements 1997; Djebbari and Smith
2008). In doing so, we make several key contributions. First, we
take a fully randomization-based perspective (see Rosenbaum
2002; Imbens and Rubin 2015), and propose estimators that are
entirely justified by the randomization itself. This is in contrast
to much of the literature on randomization-based methods,
where treatment effect variation is typically a nuisance (e.g.,
Rosenbaum 1999, 2007). Similar to Lin (2013), we show that

the resulting estimator is very similar in form to linear regres-
sion with interactions between the treatment indicator and
covariates. Unlike with linear regression, however, the proposed
estimator does not require any modeling assumptions on the
marginal outcomes.

Second, we extend these methods from intention-to-treat
(ITT) analysis to allow for noncompliance, proposing a
randomized-based estimator for systematic treatment effect
variation for the local average treatment effect (LATE) in the
case of noncompliance (Angrist, Imbens, and Rubin 1996).
We show that this estimator is nearly identical to the two-
stage least-square estimator with interactions between the treat-
ment and covariates. We believe that this is a particularly
novel contribution to the recent literature seeking to recon-
cile the randomization-based tradition in statistics and the
linear model-based perspective more common in economet-
rics (Abadie 2003; Imbens 2014; Imbens and Rubin 2015).

Armed with these estimators, we turn to two practical tools
for decomposing treatment effect variation. The first is an
omnibus test for the presence of systematic treatment effect vari-
ation. While versions of this test have been proposed previ-
ously, largely in the context of linear models (Cox 1984; Crump
et al. 2008), our proposed test is fully randomization-based and
can also account for noncompliance. The second is to develop
and bound an R*-like measure of the fraction of treatment
effect variation explained by covariates. This builds on previ-
ous versions proposed in the econometrics literature (Heckman,
Smith, and Clements 1997; Djebbari and Smith 2008), again
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extending results to account for noncompliance. This approach
is also closely related to the Oaxaca-Blinder decomposition in
economics (Oaxaca 1973; Blinder 1973). See Angrist, Pathak,
and Walters (2013) for a recent application that also addresses
compliance. Finally, we apply these methods to the Head Start
Impact Study, a large-scale randomized trial of Head Start, a fed-
erally funded preschool program (Puma et al. 2010). We relegate
the technical details and some further extensions to the online
supplementary material.

2. Framework for Treatment Effect Variation

2.1. Setup and Notation

Assume that we have n units in an experiment. For unit 4,
let X; = (Xy;, ..., Xg)" € RX denote the vector of pretreat-
ment covariates, with the constant 1 as its first component. Let
T; denote the treatment indicator with 1 for treatment and 0
for control. We use the potential outcomes framework (Ney-
man 1923; Rubin 1974) to define causal effects. Under the sta-
ble unit treatment value assumption (Rubin 1980) that there is
only one version of the treatment and no interference among
units, we define Y;(1) and Y;(0) as the potential outcomes of
unit i under treatment and control, respectively. The observed
outcome, YiObS = T,Y;(1) + (1 — T})Y;(0), is quite general and
includes continuous, binary, and zero-inflated cases. On the
difference scale, the individual treatment effect is 7; = Y;(1) —
Y;(0).

Importantly, this is finite population inference in that we con-
dition on the # units at hand—the potential outcomes are fixed
and pretreatment. This differs from super population inference
in which some variables or residuals are assumed to be indepen-
dent and identically distributed (iid) draws from some distribu-
tion. See, for example, Rosenbaum (2002), Imbens and Rubin
(2015), and Li and Ding (2017). Under the potential outcomes
framework, {Y;(1), ¥;(0)}}_, are all fixed numbers; the random-
ness of any estimator comes from the assignment mechanism,
which is the distribution of possible treatment assignments
T=(Ty,..., T,)" Notethatpr{(T1, ..., T,) = (t1, ..., t)} =

(:1)_1 1len:1 ti = ny.

2.2. Randomization Inference for Vector Outcomes

To set up our overall framework, we first generalize
Neyman’s (1923) classic results to vector outcomes. We consider
a completely randomized experiment, with #; units assigned to
treatment and n units assigned to control; in total we have (:1)
possible randomizations. We are interested in estimating the
finite population average treatment effect on a vector outcome

V e RX;
1 n
== ; {(Vi(1) = V,(0)},

where V;(1) and V;(0) are the potential outcomes of V for
unit i. For example, V can be Y or XY. The Neyman-type
unbiased estimator for Ty is the difference between the sample
mean vectors of the observed outcomes under treatment and
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control:

- _ 1 — 1 —
Ty V(l)bs _ V((;bs _ n_ Z T;'V?bs _ n_ Z(l _ Ti)V?bs
11 0 =1

1 n 1 n

=Y TVi(l) = —» (1= T)V(0).
ny £ no <

i=1 i=1

The behavior of our estimator, and of our estimators for het-
erogeneity discussed later, revolve around covariances of vector
outcomes. For notation, let A =1{A;,...,A,} bea collection of
nvectors,withA = n~' Y| A, the vector mean, and define the
covariance operator on A as

1 < - _
SA) = ﬁ;(A,-—A)(Ai—A) ,

which gives the covariance matrix of the »n vectors in A. For
example, A; can be V;(1), V;(0), or V;(1) — V;(0).

The following theorem, generalizing the results for scalar
outcomes from Neyman (1923), demonstrates that Ty is unbi-
ased and gives its covariance matrix.

Theorem 1. Over all possible randomizations of a completely
randomized experiment, Ty is unbiased for Ty, with K x K
covariance matrix:

_ S{v(1)} n SV}  S{va) —Vv(0)}

ni no n

cov(Ty)

(1)

The diagonal elements of this matrix are the variances of the
estimators of each component of ty. The covariance matrix of
Ty depends on the various covariances of the potential outcomes
under treatment and control. In particular, the last term depends
on the correlation between the potential outcomes V(1) and
V(0), and therefore cannot be identified from the observed
data. When the individual treatment effects are constant for all
components of V, the last term in the above covariance matrix
vanishes, because then S{V (1) — V(0)} = Oxxx. Under this
assumption, we can unbiasedly estimate the sampling covari-
ance matrix cov(Ty) by replacing the covariances of the poten-
tial outcomes by the sample analogs:

‘é"\l(VObS) N &’S\O(V(Jbs)

cov(Ty) =
ny no
where
g(vobS)
1 ‘ b b
=—— D la=o(Vi= VIOV = V)" (=01 ()
-

i=1

are the sample covariance matrices of V° in the treatment and
control groups. Without the constant treatment effect assump-
tion, the covariance estimator cov(Ty) is conservative in the
sense that the difference between the expectation of the variance
estimator and the true variance is a nonnegative definite matrix.
In particular, the diagonal terms of the expected estimator will
all be larger than the truth. Letting K = 1, the covariance matri-
ces become simple variances, which recovers Neyman’s original
result.
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Using the mathematical framework introduced in the
Appendix and in Li and Ding (2017), we can easily gener-
alize Theorem 1 to more complicated experimental designs,
for example, cluster-randomized trials (Middleton and Aronow
2015) and unbalanced 2 split-plot designs (Zhao et al. 2017).

2.3. Decomposing Treatment Effect Variation

We now apply this general framework to treatment effect varia-
tion. We decompose the individual treatment effect, t;, via

=X+, (@(=1,...,n) (3)

with B being the finite population linear regression coefficient
of 7; on X;, defined by

T = Y;(1) — Yi(0)

n
B = arg min 2 (ti
Following Heckman, Smith, and Clements (1997) and Djeb-
bari and Smith (2008), we call §; = X7 B the systematic treatment
effect variation explained by the observed covariates, X, and call
g = 1, — & = 1; — X" B the idiosyncratic treatment effect varia-
tion not explained by X;.
More generally, we can view this decomposition in a
regression-style framework. Define

—X'b)’. (4)

1 o 1
Sec = > OXiX] e RO, == > eX; e RK,
i=1 i=1

1 n
er = ;Z‘L’,’X,’GRK,

where S, is nondegenerate, analogous to the usual full-rank
assumption in linear models. Also define

1 n
Se=—Y X;Yit) eRE, (t=0,1).

2
These are all finite population quantities, as in they are fixed pre-
randomization values. The definition of 8 gives S, = 0, that is,
¢; and X; have finite population covariance zero. Therefore, in
the spirit of the agnostic regression framework (e.g., Lin 2013),
the systematic component, §; = X}, is a projection of t; onto
the linear space spanned by X, and the idiosyncratic treatment
effect, ¢;, is the corresponding residual. The linear projection
applies to general outcomes, including the binary case.

Because of our finite population focus, if we observed all the
potential outcomes we could immediately calculate all individ-
ual treatment effects and apply standard linear regression theory
to (3) and obtain B. In particular, the solution of (4), that is, the
ordinary least-square (OLS) solution from regressing r on X, is

ﬂ = S;xlsxr - S;xlsxO =Y~ Yo (5)

where y, =8!S, and y, = S_'S. are the corresponding
finite population regression coefficients of the potential out-
comes on the covariates. Let ¢;(1) = Y;(1) — X[y, and ¢;(0) =
Y;(0) — X7y, be the residual potential outcomes from the
regression of Y;(#) onto X. Our idiosyncratic treatment vari-
ation is then the difference of residuals: &; = ¢;(1) — ¢;(0). In

= S;xl Sx1

practice, we do not fully observe these components, but we can
obtain unbiased or consistent estimates for them as we discuss
below.

3. Systematic Treatment Effect Variation for the ITT

3.1. Randomization-Based Estimator

We now turn to estimating 8. As shown in (5), B has three com-
ponents. The first term, S,,, is fully observed as all the covari-
ates are observed. Our estimation then depends on the sample
analogs of S, and Sy:

=
&
I |

—ZTY""SX € RX,
i=1

Sw = — 2(1 — T)Y**X; € RX,

i=1

The Sy’s capture how the observed potential outcomes correlate
with the covariates. Plug these into (5) to obtain an overall esti-
mate of 8. The randomization of T then justifies the following
theorem.

Theorem 2. Under decomposition (3), S;;@l and S;x@xo are
unbiased estimates of y, and y,, respectively. Therefore,

ﬂRI - S 1le S_xrs\xm
is an unbiased estimator for 8 with covariance matrix
~ S{Yy(Hx S{Y ()X S(X
COV(ﬁRI)ZSxxlI: {Y (1) }+ {Y()Xxj} S )i|Sxx1'
ny Mo n
(6)

Here, for example, S{Y (0)X} denotes the covariance opera-
tor on new unit-level variables Y;(0)X; € RX, made by scaling
the X; vector of each unit by Y;(0), similarly for S{Y (1)X} and
S(tX). This slight abuse of notation gives formulas less clut-
tered by subscripts and excessive annotation. As with the vector
version of Neyman’s formula, the square root of the diagonal of
cov(ﬂRI) gives the standard errors of ﬂRI

The covariance formula (6) generalizes the result of Neyman
(1923) for the average treatment effect, reducing to Neyman’s
formula if X; = 1 for all units. We can obtain a “conservative”
estimate of cov(fg;) by
5!

xx

PP § YobsX g YobsX
cov(ﬂm>=8;;[ S )]
m no

recalling the definitions of the sample covariance operators gl
and S introduced in (2). Similar to Neyman (1923), this implic-
itly assumes S(7X) = 0. Under the assumption that &; = 0 for
all units (i.e., no 1dlosyncrat1c variation whatsoever), we can
instead use S(TX) with T = X7 ,BRI as a plug-in estimate for
S(tX). This yields tighter standard errors based on the diag-
onal elements of the covariance matrix.

Finite Population Asymptotic Analysis. Theorem 2 holds for
any finite sample. To obtain confidence intervals and to conduct
hypothesis testing as we describe below, we need to prove further



that ERI is asymptotically normal with mean B and covariance
cov(fg;). Finite population asymptotic analysis, however, has
a slightly different flavor from the usual super population
approach. Formally, the finite asymptotic scheme embeds the
finite population {(X;, Y;(1), Y;(0), T;)}7, with size n into a
hypothetical sequence of finite populations with sizes approach-
ing infinity. This effectively assumes that all the finite population
quantities, for example, Sy, and B, depend on n, although they
are fixed numbers for a given finite population. Moreover, the
sample quantities such as S,; and Bg; depend on n as well, and
are random quantities due to the randomization of T. For nota-
tional simplicity, we drop the index # for all these quantities.
Importantly, we must impose some regularity conditions on the
hypothetical sequence of finite populations. Throughout the
article, we invoke the following conditions for asymptotic analy-
sis, which are required for a form of the finite population central
limit theorem discussed in Li and Ding (2017, Theorem 5).

Condition 1. (i) Stable treatment proportions: p; = n;/n and
po = ng/n have positive limiting values; (ii) Stable means,
variances, and covariances: the finite population means, vari-
ances, and covariances of the covariates and potential out-
comes have finite and nonzero limiting values; (iii) both S,
and its limit have full-rank K; (iv) there are no individual
extreme values in the limit: max;<j<, ||V — \_/||§/n — 0, for
Vi = Xui» Yi(2), Yi(2) Xyi, XyiXpi, Yi(2) XpiXpi with 1 <k, k' <
K,andz =0, 1.

Condition parts (i) and (ii) are natural. Part (iii) is a basic
requirement for asymptotic analysis of quantities depending on
S... The condition on the limit is of particular interest. Having
a nonsingular limiting covariance matrix essentially means that
there cannot be too many units with extreme leverage on any
of the regression coefficients (see Huber 1973). For example, for
a binary covariate Xj;, the numbers of units with X;; = 1 and
Xii = 0 must both go to infinity. If this did not hold, the limit of
S, would not have full-rank K as the kth row and column would
all be driven to 0. Part (iv) controls the tails; it holds if V' has
more than two moments (Li and Ding 2017). In particular, (iv)
holds automatically for bounded covariates and outcomes. For a
more technical discussion of finite population causal inference,
see Ding (2014), Aronow, Green, and Lee (2014), and Middleton
and Aronow (2015); for regularity conditions of the finite pop-
ulation central limit theorems, see Héjek (1960) and Lehmann
(1998). A recent review is Li and Ding (2017).

Under these conditions, we can extend Theorem 2 to a
sequence of finite populations and obtain a limiting distribution
as follows:

Vi (B~ B) =
N(o, Tim 8! [p ' S(Y (DX)+p Y (0X) —S(1X)] s;;) .
(7)

As a result, we can state that :ERI is approximately normal with
mean B and covariance matrix (6), which allows us to construct
confidence intervals and hypothesis tests. In our theory below,
we use this informal statement instead of (7) to avoid notational
complexity.
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3.2. Regression with Treatment-Covariate Interactions

The results from randomization inference can shed light on the
familiar case of linear regression with treatment-covariate inter-
actions. This classical approach assumes the model

Yiobs = X7y + TX!B + u;, (i=1,...,n), (8)

where {u;}! | are errors implicitly assumed to induce the
randomness, and where 8 models systematic treatment effect
variation, as in (3). Departing from much of the previous lit-
erature (e.g., Cox 1984; Berrington de Gonzalez and Cox 2007;
Crump et al. 2008), we study the properties of the least-square
estimator under complete randomization, without assuming
that model (8) is correctly specified. In particular, we do not
assume any iid sampling; the assignment mechanism drives the
distribution of the OLS estimator.

Theorem 3. The OLS estimator for § from fitting model (8) can
be rewritten as

S SXO )

xx,0

ﬂOLS - Sxx IS
where

Soxt = _ZI(T nXiX;,

i=1

(t=0,1).

S, le and S_ Sxo are

Over all possible randomizations of T, S, | J
consistent estimates of y, and p,, respectively; :BOLS therefore
follows an asymptotic normal distribution with mean $ and

covariance matrix

S{e(1)X} N S{e(0)X}

- S(ex)] 5. 9)
ny L) n

cov(BOLs) = S;xl [
with e;(1), e;(0), and ¢; as defined after (5).

This estimate is simply the difference between ¥, o5 =

Sxx 1S 1 and ¥y ors = Sxx OSxO, two OLS regressions run sep-
arately on each treatment arm. The (asymptotic) covariance
formula (9) is different from (6), with {Y (1), Y(0)} replaced
by {e(1), e(0)}. For treated units, define residual ¢; = Yi"bS —
X71.0Ls> and for control units, define residual ¢ = Y —
X7¥0.0Ls- We can drop the unidentifiable term S(¢X), estimate
S{e(1)X} and S{e(0)X} by their sample analogs, and conserva-

tively estimate the asymptotic covariance matrix (9) by

~1 |:81(7():|~1 ~1 |:So(7():|~1

COV(ﬂOLS) = Sxx,l xx,1 + Sxx,O Sxx 0

1o
This form of the sandwich variance estimator has the same prob-
ability limit as the Huber-White covariance estimator for linear
model (8) (Huber 1967; White 1980; Angrist and Pischke 2008;
Lin 2013). R

Importantly, Br; and B g are quite similar in form. In par-
ticular, B, uses the true Sy, while B g separately estimates the
covariance matrix for each treatment arm, S,, ¢ and Sxx 1. The
latter is effectively a ratio estimator. Although this introduces
some small bias (on the order of 1/#), using the estimated /S\xXJ
rather than true S, can often lead to gains in precision, espe-
cially when covariates are strongly correlated with the poten-
tial outcomes. In particular, the OLS estimator, by separately
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estimating the (known) S, matrix for each treatment arm, can
account for random imbalances in the covariates in both arms.
For related discussion, see Cochran (1977) on ratio estimators
in surveys.

The RI estimator, by comparison, has no adjustment what-
soever, and so cannot account for such random covariate
imbalances. However, in Section 3.4 and in the supplementary
materials, we introduce a different form of adjustment that
uses covariates to make the estimates of the S,; more precise.
Depending on the structure of covariates, this estimator could
be better or worse than OLS adjustment; we leave a thorough
investigation of these trade-offs for future work.

Regardless, we again emphasize that we do not rely on classi-
cal OLS assumptions to justify the OLS estimator here. Rather,
randomization (with some mild regularity conditions for the
finite sample asymptotics) justifies our results.

3.3. Omnibus Test for Systematic Variation

Finally, we can use these results to develop an omnibus test for
the presence of any systematic treatment effect variation. The
null hypothesis of no treatment effect variation explained by the
observed covariates can be characterized by

Hy(X) : 31 =0,

where 8, contains all the components of 8 except the first com-
ponent corresponding to the intercept. Under Hy (X), the indi-
vidual treatment effects have no linear dependence on X.

We then construct a Wald-type test for Hy(X) using an esti-
mator f and its covariance estimator cov(f); it could be Bg; or
Bovs- Let B, and cov(B;) denote the subvector of B and sub-
matrix of cov(B), corresponding to the nonintercept coordi-
nates of X. We reject when

Bicov (BB, > qr1(1 — ),

where qx_; (1 — ) is the 1 — & quantile of the x 2 random vari-
able with degrees of freedom K — 1.

The test in (10) is nearly identical to the test proposed
by Crump et al. (2008). They relax the parametric assumption by
taking a “sieve estimator” approach, namely, by using a quadratic
form of the regression function, which allows for more flexible
marginal distributions. Our approach differs in that we avoid
modeling the marginal distributions entirely. If desired, we can
add polynomials of X (or other basis functions) into the model
for § to allow for more flexible systematic treatment effect varia-
tion, which could enhance power or model more complex rela-
tionships between the X and treatment impact.

(10)

3.4. Additional Considerations

In the supplementary material, we describe two additional
points about systematic treatment effect variation that we
briefly address here. First, as mentioned above, we can use
model-assisted estimation to improve the randomization-based
estimator. In partlcular improving estimation of sz directly
improves ﬂRI, as the S, are the only random components. Thus,
if we replace the standard sample estimator, S, by a more effi-
cient, model-assisted estimator, as in survey sampling (Cochran

1977; Sarndal, Swensson, and Wretman 2003), we can achieve
meaningful precision gains in practice. More importantly, this
setup allows researchers to assess systematic variation across
one set of covariates while adjusting for another set.

Second, under the assumption of no idiosyncratic variation
(i.e., & = 0 for all i), we can obtain exact inference for g by
inverting a sequence of randomization-based tests. This com-
plements previous work on randomization-based tests for the
presence of idiosyncratic treatment effect variation (Ding, Feller,
and Miratrix 2016).

4. ldiosyncratic Treatment Effect Variation for ITT

After characterizing the systematic component of treatment
effect variation, we now turn to characterizing the idiosyncratic
component. Since this quantity is inherently unidentifiable, we
propose sharp bounds on this component and a framework for
sensitivity analysis. We then leverage these results to bound an
R2-like measure of the treatment effect variation explained by
covariates.

4.1. Bounds

We first define the main quantities of interest:

1< 1<
Ser = — 7, — 1), Sgps = — 8 —1)%,
n;< )2, Sss n;< )

n
1 2
rOBLE
n <

i=1

with §; and ¢; defined as in (3). Then S;; = Sgs + S.. We
can 1mmed1ately estimate Ss5 via the sample variance of {8 =
XiB}_,> where B is a consistent estimator, for example, ﬁRI
or ﬂOLS However, the idiosyncratic variance, S, is inherently
unidentifiable because it depends on the joint distribution of
potential outcomes.

We can, however, derive sharp bounds for S... Let F (y)
and F, (y) be the empirical cumulative distribution functions of
{e;(1)}7, and {e;(0)}/,. Let F'(u) and Fo_l(u) be the corre-
sponding empirical quantile functions, with F~!(u) = inf{x :
F(x) > u}. Below we denote e(t) as a random variable tak-
ing equal probabilities on #n values of {e;(¢)}l_,. Based on
the Fréchet-Hoeftding bounds (Hoeffding 1941; Fréchet 1951;
Nelsen 2007), we can bound S, as follows.

SEE

Theorem 4. S, has sharp bounds S,, < S, < S.., where
1
e = / {F'(w) — By ' (w)Y du,
0

1
See = / {Fl_l(u) - Fo_l(l —uw)}du.
0

The lower and upper bounds are attainable when e(1) and e(0)
have the same ranks and opposite ranks, respectively.

The lower bound of S,, corresponds to a rank-preserving
relationship between e(1) and e(0), and the upper bound of S,
corresponds to an anti-rank-preserving relationship between
e(1) and e(0). Equivalently, they correspond to the cases where



the Spearman rank correlation coefficients between e(1) and
e(0) are +1 and —1.

In practice, we can often sharpen these bounds because we
are unlikely to have negatively associated potential outcomes
after adjusting for covariates. If we assume a nonnegative cor-
relation between e(1) and e(0), we have the following corollary.

Corollary 1. If the correlation between e(1) and e(0) is non-
negative, then the bounds for S,, become S,, < S, < Vi + Vj,
where V; is the variance of e(t) fort = 0, 1.

We can consistently estimate each quantity: S by the sample
variance of X} 8, F.; (y) and F,(y) by F; (y) and I (), the empir-
ical cumulative distribution functions of the residuals ¢; under
treatment and control, and V; and V; by the variances of (1)
and e(0).

Variance of the Overall ITT Estimator. We can use these
results to obtain sharper bounds on the variance of Ney-
mans (1923) estimate of overall ITT, T=n;' Y L T;Y°" —

oI (1 = T;)Y?, extending previous work by Heckman,
Smith, and Clements (1997) and Aronow, Green, and Lee
(2014). See also Fogarty (2016). Applying the results in Section
2 for scalar outcomes, we have the following variance for the
difference-in-means estimator,

~ S S S See
Var(r)=£+ﬂ—<ﬁ+—),
ni no n n

where S;; = Sss + See. As we discuss above, Neyman (1923)
proposed a lower bound for the overall var(7) under the
assumption of a constant treatment effect, S;; = 0. More
recently, Aronow, Green, and Lee (2014) instead proposed to
bound §;; via Fréchet-Hoeftding bounds. We can modestly
improve these results by applying Fréchet-Hoeftding bounds for
See alone rather than for S;; = Sss + See. Solongas Ss5 > 0, this
yields strictly tighter bounds on var(7) than the corresponding
bounds that do not incorporate covariate information. In turn,
this gives a tighter estimate of the standard error for the same
difference-in-means estimator, 7.

A Variance Ratio Test. Finally, while the relationship between
e(0) and e(1) is inherently unidentifiable, there is some infor-
mation in the data about the relationship between ¢;, the
individual-level idiosyncratic treatment effect, and Y;(0), the
control potential outcome. In particular, Raudenbush and
Bloom (2015) noted that if the variance of the treatment
potential outcomes is smaller than the variance of the control
potential outcomes, then the treatment effect must be nega-
tively associated with the control potential outcomes. In the
supplementary material, we extend this result to incorporate
covariates and propose a formal test.

4.2. Sensitivity Analysis

Going beyond worst-case bounds, we can assess the sensitivity
of our estimate of S, to different assumptions of the dependence
between potential outcomes. Using the probability integral
transformation, we represent the residual potential outcomes as
e(l) =F ' (U1), e(0)=F (W),

U, Uy ~ Uniform(0, 1).
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Therefore, the dependence of the potential outcomes is deter-
mined by the dependence of the uniform random variables U;
and Uy, which are the standardized ranks of the potential out-
comes. When U; = Uy, S, attains the lower bound S,,; when
U; = 1 — Up, S¢. attains the upper bound See; when Uy LU, S,.,
attains the improved upper bound V; + Vj.

Rather than simply examine extreme scenarios of S,., we can
instead represent U, as a mixture of U and another independent
uniform random variable Vj :

Ui~ pUp + (1 = p)Vo,  Up, Vo ~

Umform (0,1), (11)

which the sensitivity parameter p captures the association
between U; and Up. An immediate interpretation of p is the
proportion of rank preserved units, with the other 1 — p as the
proportion of units with independent treatment and control
residual outcomes. When p =0, U;1LU;, and the residual
potential outcomes are independent; when p = 1, U; = Uy, and
the residual potential outcomes have the same ranks. The values
between (0, 1) correspond to positive rank correlation but not
full-rank preservation. Note that the representation of the joint
distribution is not unique, because we can choose any copula
as a joint distribution of (U, Uy) (Nelsen 2007). We choose the
above representation and notation p for the following theorem.

Theorem 5. If Equation (11) holds, then p is Spearman’s rank
correlation coefficient between e(1) and e(0). Furthermore, S,
is a linear function of p:

See(0) = pS,, + (1 — p)(V1 + V).

We cannot extract any information about p from the data. We
therefore treat p as a sensitivity parameter, choose a plausible
range of p, and obtain corresponding values for S,..

4.3. Fraction of Treatment Effect Variation Explained

A natural question is the relative magnitudes of Ss;5 and
See (Djebbari and Smith 2008). Continuing the regression anal-
ogy, this is an R?-like measure for the proportion of total treat-
ment effect variation explained by the systematic component:

RS _ Se
! Sn 868 + Saa
which is the ratio between the finite population variances of §
and 7. As above, we can directly estimate S5 but must bound
See- Applying Theorem 4, we obtain the following bounds on
R:
Corollary 2. The sharp bounds on R? are

556_ <2 - Sss
556 +Sss

<R < ——.
Sss + S,
If we further assume that the correlation between e(1) and e(0)
is nonnegative, the sharp bounds on R? are

Sss 2 Sss

0 < 20
Sss +Vi+Vy — S5+ S,

We estimate these bounds via plug-in estimates. Note
that Djebbari and Smith (2008) explored a similar quan-
tity by using a permutation approach to approximate the
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Fréchet-Hoeffding upper and lower bounds. Finally, we can use
the sensitivity results for S, with values of p € [0, 1]:

Sss

R(p) = ————.
! 885 +saa(p)

5. Noncompliance

5.1. Setup

We now extend our results to allow for noncompliance. Let T be
the indicator of treatment assigned, D be the indicator of treat-
ment received, Y be outcome of interest, and X be pretreatment
covariates. Under the Stable Unit Treatment Value Assumption,
we define D;(¢) and Y;(¢) as the potential outcomes for unit i
under treatment assignment . Following Angrist, Imbens, and
Rubin (1996) and Frangakis and Rubin (2002), we can classify
units into four compliance types based on the joint values of
D;(1) and D;(0):

Always Taker (a) if D;(1) =1, D;(0) =1,

U — Never Taker (n)  if D;(1) =0, D;(0) =0,
"7 | Complier (¢) if D;(1) =1, D;(0) =0,
Defier (d) if D;(1) =0, D;(0) = 1.

Denote 1, and 7, as the number and proportion of compliance
types m, of stratum U = u foru = a, n, ¢, d.

Throughout our discussion, we invoke the following assump-
tions which are commonly used for analyzing randomized
experiments with noncompliance.

Assumption 1. (i) Monotonicity: D;(1) > D;(0); (ii) Exclusion
restrictions for Always Takers and Never Takers: Y;(1) = Y;(0)
for all units with D;(1) = D;(0); (iii) Strong instrument: 7z, >
Cy > 0, where C, is a positive constant independent of the sam-
ple size.

Monotonicity rules out the existence of Defiers, that is,
g = 0. Under monotonicity, we can estimate the proportion
m, using the observed counts of units classified by T and D: let
ng = #{i: T, = t, D; = d},and then 7, = nyo/n1, 7T, = no1/no>
and 7, = ny;/n; — ng1/ng. The exclusion restrictions assume
that treatment assignment has no effect on the outcome for
Always Takers and Never Takers. As a result, treatment effect
variation is trivially zero for Always Takers and Never Takers.
Note that this is the unit-level exclusion restriction imposed
in Angrist, Imbens, and Rubin (1996). This can be relaxed in
other settings, for example, we could assume the impact of
randomization for these groups is zero on average (see Imbens
and Rubin 2015). Finally, to avoid technical complexity, we
rule out the weak instrument case (Bound, Jaeger, and Baker
1995; Staiger and Stock 1997), that is, 7, is within a small
neighborhood of 0 with radius shrinking to 0.

We are interested in treatment effect variation among Com-
pliers, which motivates the following decomposition:

0, if Uy =aorn,

X:B.+en if Ui=c, (12

T =Y;(1) = Yi(0) = {

where B, is the regression coefficient of 7; on X; among Compli-
ers, analogous to (3).

5.2. Systematic Treatment Effect Variation Among
Compliers

5.2.1. Randomization Inference
We now extend the results of Section 3 to estimate systematic
treatment effect variation among Compliers. Define

1 n
Sxx u— ZI(U u)X X Sxt,u = I’I_ ZI(U,-:M)Yi(t)Xi’
i=1 U=t

(t=0,1;u=a,c,n).
Then, analogous to (5),

ﬂ = sxxlc(sxl,c - SxO,c) = Sxx Csxl c Sxx CSxO c=Y1ic — Yo

(13)
where

Yic Sxx cSXl o Yoo = Sxx CSXO c

are the linear regression coefficients of Y (1) and Y (0) on covari-
ates among Compliers.

Unlike in the ITT case, we cannot estimate these quanti-
ties directly. Instead, following standard results from noncom-
pliance (e.g., Angrist, Imbens, and Rubin 1996; Abadie 2003;
Angrist and Pischke 2008), we use estimates from observed sub-
groups to estimate the desired quantities of interest. Define sam-
ple moments:

2]

td = — ZRT =nlp=a)Xi X3,
i=1

-~

1
Sxttd = - ZI(T,:t)I(D,:d)YiObSX,-
ti=1

(t,d=0,1). (14)

The following theorem connects these quantities with the finite
population quantities in (13).

Theorem 6. Over all possible randomizations of a com-
pletely randomlzed experiment, both Sxx(l) = Sxx 1n— Sxx o1
and Sxx(O) = 8.x.00 — Sxx.10 are unbiased for 7S, ., and

E(§x0,00 _§x1.10) = 7Tch0,c~
(15)

E(Sx1,11 — Sx0,01) = 7Sy,

This theorem shows that we can obtain unbiased esti-
mates for all terms in (13). The following corollary shows
that we can then obtain consistent estimates for y,. Y.
and B, recalling that in the asymptotic analysis, we need to
embed {(X;, Y;(1), Y;(0), D;(1), D;(0), T;)}_, into a hypothet-
ical sequence of finite populations under Condition 1 and the
following Condition 2.

Condition 2. Both Sy, . and its limit have full-rank K.

Condition 2 holds if and only if any linear combination of X,
ITX with I # 0, has positive finite population variance among
Compliers. Condition 2 is effectively the finite population ver-
sion of ruling out weak instruments in the two-stage least-square
estimate with treatment-covariate interactions (e.g., Angrist and
Pischke 2008).



~ <1 < =
Corollary 3. Y.zt = S (1) (Sx1,11 — Sxo,01)  and Yo g =

1 -~ -~ .
S,x (0)(8x0,00 — Sx1.10) are consistent for y;. and p,,. Further-
more, B x1 = V1.t — Yocrr 18 consistent for B, and follows an
asymptotic normal distribution with covariance matrix

COV(BC,RI)

— (8t | TR SEOT)

n o

(TeSeec) ™,

(16)

S(SX)]
n

where we define the residual potential outcomes to be:

Yi(1) = Xi¥1e Yi(0) = Xiyy. Ui=a,
ei(1) = | Yi(1) = X¥q. €;(0) = { Yi(0) — X[yo., Ui=n,
Yi(1) — Xy Yi(0) = Xi¥o. Ui=c

(17)

The idiosyncratic variation is &; = €/(1) — €;(0) for unit i,
with ¢; = 0 for Never Takers and Always Takers, and with ¢; for
Compliers as in (12). The two sets of residuals are not formed
from a regression on all units, but instead the population regres-
sion on Compliers alone. As in the ITT case, we can estimate
S{e'(1)X} and S{e'(0)X} using their sample analogs; S(eX),
however, is unidentifiable. For units with D; = 1, we define
the residual €, = Y°° — X7p,, ¢;, and for units with D; = 0,
we define the residual €, = Y — X7, p;. Therefore, we can
obtain a conservative estimate for the asymptotic covariance
(16) by the following sandwich form:

S\ (@ (“X)]M

S (1)

1
+30) [S‘)px)} 5. (0).

As with the ITT analog, so long as we have Assumption 1, ran-
domization itself fully justifies the theorem and estimators with-
out relying on a model of the observed outcomes.

cV(B.rt) = S, (1) [

5.2.2. Two-Stage Least Squares

We now turn to the standard two-stage least-square (TSLS)
setting in econometrics (e.g., Angrist and Pischke 2008). First,
we impose a linear regression model with treatment-covariate
interactions:

i=1,...,n).

Here, the randomness of the observed outcome comes from
the randomness of D; and u;. In the language of econometrics,
the treatment received is “endogenous,” that is, D; and the error
term u; are assumed to be correlated; we therefore use T; as an
instrument for D;. The TSLS estimates (Yrgg, Brgig) are the
solutions to the following estimating equations:

Y =Xy + DX;B + ui

n
- X T )
n Z (TX )(YObs Xi¥Y1sis — DiXiBrss) = 0. (18)
P
This approach is based on M-estimation, though there are many
other ways to formalize the TSLS estimator (e.g., Imbens 2014).
The following theorem shows that the fully interacted TSLS
estimator Bq ¢ is consistent for B, across randomizations.
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Theorem 7. Over all randomizations, the TSLS estimator ETSLS
follows an asymptotic normal distribution with mean f. and
covariance matrix

S{e" (D)X} n S{e"(0)X}

n no

(ncsxx,c)_ls

(”csxx,c)_l |: - S(SX)]
n

where we define the residual potential outcomes to be

:a,

e/ (1) = | Yi(1) — Xy, Ui=n
Yi(1) = Xi(roo + B, Ui=vc,
Yi(0) = Xi(¥oo + Bo), Ui=a,

e/ (0) = | Yi(0) — Xy, Ui =
Yi(0) = XV oo U=c

where y is the probability limit of the TSLS regression coef-
ficient, Prqs, and the idiosyncratic treatment effect is &; =
e/ (1) — €/ (0).

For Varlance estimation, define the residual as e A” = Y°bS -
X (Prsis + ﬂTSLS) for units with D; =1 and Al’/ = Yi"bs -
X Yrss for units with D; = 0. We can then use the following
sandwich variance estimator:

PP ~ S@X) |~
cov(Brss) = Sxxl(l) |: 1(; )] Sxxl(l)

1
+510) [ mx)} 5.0,

which has the same probability limit as the Huber-White covari-
ance estimator for B ¢. Therefore, the randomization itself
effectively justifies the use of TSLS for estimating systematic
treatment effect variation among Compliers, extending our ITT
results. N

Finally, while B1g ¢ is a consistent estimator for B,, Yrgs is
not, in general, a consistent estimator for y , thatis, y ., # p -
Instead, Prgrs converges to ¥, = Sg'Sx0 — 7S, Sxx.aB.. In the
special case of one-sided noncompliance (i.e., 7, = 0), Yo, =
Yo = S S0, the population OLS regression coefficient, among
all Compliers and Never Takers, of Y (0) on covariates.

5.2.3. Omnibus Test for Systematic Treatment Effect
Variation Among Compliers

With point estimate § and covarlance estimate cov( ﬂ ) for B, w

can use the same Wald-type x? test as in (10) for the presence

of systematic treatment effect variation among Compliers. Here,

the estimator can be either randomization-based B ¢; or TSLS

estimator ﬁTSLS; the degrees of freedom are the same, K — 1.

Unlike in the ITT case, we are not aware of existing tests for sys-

tematic treatment effect variation among Compliers.

5.3. Idiosyncratic Treatment Effect Variation with
Noncompliance

5.3.1. Bounding Idiosyncratic Variation

We now turn to decomposing the overall treatment effect in
the presence of noncompliance. In this setting, we have three
sources of treatment effect variation: (i) systematic treatment
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effect variation among Compliers, (ii) idiosyncratic treatment
effect variation among Compliers, and (iii) treatment effect vari-
ation due to noncompliance.

First, recall that total treatment effect variation is
S;e =Y i (ti—1)*/n. We can define a similar quantity
among Compliers:

1 n

2

Srr,c = 11_ E I(Ui:c)(fi - Tc) .
¢ =1

As in Section 4, we can decompose this variation into system-
atic and idiosyncratic treatment effect variation for Compliers,
respectively:

1 < ) 1 < )
Sss,¢ " ;I(u_c) 6 — )7, See.c n ;I(U,_c)g, .
Because treatment effects for Never Takers and Always Takers
are zero, there is no treatment effect variation for these units.
The component of treatment effect variation due to compliance
status is

Srt,Uz Z ﬂu(fu_f)z-

u=c,a,n

Using 7, = 7, = 0 and 7 = 7,7, due to the exclusion restric-
tions, we have the following theorem summarizing the relation-
ships among the above components.

Theorem 8. Srr = ncsrr,c + Stt,Ua Srr,c = SSS,C + Sss,m and
S‘L"L’,U = nc(l - nc)tc2~

In words, total treatment effect variation has three parts: (i)
systematic treatment effect variation among Compliers, 7.Sss.c;
(ii) idiosyncratic treatment effect variation among Compliers,
7See.c; (iil) treatment effect variation due to noncompliance,
Srr,U-

As in the ITT case, even though S,. . is not identifiable,
we can derive bounds in terms of the marginal distributions
of the residuals, {¢;(1) = Y;(1) — X[y, : Ui=c,i=1,...,n}
and {€}(0) = Y;(0) — X7y, : Ui=¢,i=1,...,n}, denoted by
F.(y) and Fy.(y), and with marginal variances, V;. and V;.. Once
we estimate these quantities, we can plug them in to Theorem 4
and Corollary 1 to get our bounds. As compliance status is only
partially observed, we have to estimate these quantities by dif-
ferencing observed distributions; we defer this and some other
technical details to the supplementary material.

5.3.2. Treatment Effect Decomposition

Since there are two sources of variation—covariates and
noncompliance—there are three possible R*-type measures.
First, we can measure the treatment effect variation explained
by noncompliance alone (i.e., only U):

Sn,U
Srr,U + ”csﬁﬁ,c + ncsss,c

Sff,U _ S'L"L',U _
S‘L"L’ Srr,U + 7Tcsn,c

2
RI,U -

Second, we can measure the proportion of treatment effect vari-
ation among Compliers explained by covariates (i.e., only X):

2 Ssse S
T,c - :
' Str,c 355,6 + Sss,c

Third, we can measure the treatment effect variation explained
by covariates and noncompliance (i.e., both X and U):

R2 _ Srr,U + ncsé&c _ Srr,U + ﬂcS(SzS,c
., UX — -

Srr S‘L’T,U + NCSSS,C + ncsss,c

For each measure, we can use tailored versions of Corollary 1
to construct bounds, or conduct sensitivity analysis as in Section
4.2, with the sensitivity parameter expressed as the Spearman
correlation between the treatment and control potential out-
comes among Compliers.

6. Simulation Study

6.1. ITT Estimators

We simulate completely randomized experiments to evaluate
the finite sample performance of the tests for systematic treat-
ment effect variation based on /ﬁOLS, //§RI, and EIZ:I, the model-
assisted version discussed in the supplementary material. Our
data generation process is inspired by the Head Start Impact
Study (HSIS) study analyzed in the next section. For a given
sample size, we first generate four independent covariates (X,
a standard normal, X, a binary covariate with probability 0.5
being 1, X3, a binary covariate with probability 0.25 being 1, and
X4, a standard normal). The control potential outcomes are then
generated from

Y:(0) = 0.3 + 0.2X; + 0.3X5; — 0.4X5;
+0.8Xy +uin  u; ~ N(0,07).

We select 02 = 0.26 to make the marginal variance for the con-
trol potential outcomes 1; thus we can interpret impacts in “effect
size” units. The R* of regressing Y (0) onto the covariates is
approximately 0.74, due to the “pretest”-like variable Xy;. With-
out X, the R? is about 0.09.

The treatment effects are t; = §; + &;, with (i) either §; = 0.3
for all i, or §; = 0.2 + 0.1X;; + 0.4X3;; and (ii) either &; = 0 for
all i, or &; ~ N(0, 0.2%). All combinations of these two options
give the four cases of (a) no treatment effect variation, (b) only
systematic variation, (c) idiosyncratic variation with no system-
atic variation, and (d) both systematic and idiosyncratic varia-
tion. For an a-level test of systematic variation, scenarios (a) and
(c) should only reject at rate o, while we would like to see high
rejection rates for scenarios (b) and (d). For scenario (d), the R?
is about 0.5; systematic variation explains a good share of the
overall variation.

To generate a synthetic dataset, we generated all potential
outcomes, randomized units into treatment with probability 0.6,
and then calculated the corresponding observed outcomes. We
then conducted a test for systematic variation using each of our
three estimators. For Bg; and B g, we use Xi, X5, X5. For our
covariate-adjusted estimator /ﬁ\;)l, we also include the fairly pre-
dictive X4 for adjustment.
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Figure 1. Power of the tests based on ﬁRI, /ﬂ\OLS' and /ﬂ\;i

Figure 1 shows the power of these tests, with significance level
a = 0.05, for different sample sizes. First, all estimators appear
asymptotically valid, consistent with the theoretical results. The
OLS and adjusted estimators are slightly anti-conservative for
small , however, with rejection rates of around 9%. Second, the
OLS estimator appears to have the greatest power in this setting,
which is unsurprising since the true data-generating process is a
linear model. Finally, covariate adjustment slightly improves the
power of the RI estimator. Overall, in the scenarios we consider,
we only achieve decent levels of power in large samples, although
there seems to be reasonable power for the sample size in the
data application, n = 3586.

6.2. LATE Estimators

We next simulate completely randomized experiments with
noncompliance to evaluate the finite sample performance of the
tests for systematic treatment effect variation among Compliers
based on B, ; and B s. We first generated a complete dataset
asinthe ITT case above, and then assigned strata membership to
all units with probabilities proportional to their covariates. For
Always Takers, we then set Y;(0) = Y;(1), and for Never Takers,
Y;(1) = Y;(0). The overall ITT is now reduced to 0.21 (due to
the 0 effects of Never Takers and Always Takers), although the
CACE is still approximately 0.3. The proportion of Compliers is
approximately 68%.

The Compliers have the systematic and idiosyncratic effects
described as above. We tested for the presence of systematic vari-
ation for Compliers under the exclusion restrictions. Figure 2
shows the power of these tests for our RI and TSLS estimators.
First, in this scenario, the 2SLS and the RI estimators are vir-
tually equivalent; the additional adjustment provided by TSLS
does not add significantly to the precision. We see the tests are
valid (they even appear conservative) for cases (a) and (c). Power
is reduced compared to the ITT simulation; this is reasonable
as power is effectively a function of the number of Compliers,
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with additional uncertainty due to partial information about the
identity of Compliers.

7. Application to the Head Start Impact Study

Established in 1965, Head Start is the largest Federal preschool
program in the United States, serving nearly 1 million
low-income 3- and 4-year-old children each year at a cost
of over $7 billion (Administration for Children and Families
2015). Researchers and policymakers have debated Head Start’s
effectiveness since its inception, with early randomized trials
finding limited impacts (e.g., Westinghouse Learning Corpo-
ration 1969) and quasi-experimental studies showing much
larger effects (e.g., Currie and Thomas 1995). Designed in part
to settle this debate, the Head Start Impact Study (HSIS) is a
large-scale, nationally representative randomized trial of Head
Start first launched in 2002 (Puma et al. 2010). The Congres-
sional mandate for HSIS included two broad questions: (1)
the program’s overall impact, and (2) how impacts vary across
children and centers. The policy debate has largely focused on
this first question; HSIS only found modest average effects on
a range of children’s cognitive and social-emotional outcomes.
However, both the original study and several recent articles
argue that these topline results mask important treatment effect
variation (e.g., Bloom and Weiland 2014; Bitler, Hoynes, and
Domina 2014; Walters 2015; Ding, Feller, and Miratrix 2016;
Feller et al. 2016). Understanding such variation is critical both
for assessing the program’s benefits and costs and for improving
the practice and science of early childhood education.

HSIS collected a rich set of covariates about children and
their families, including pretest score, child’s age, child’s race,
child’s home language, mother’s education level, and mother’s
marital status. At the same time, many potentially important
covariates are unavailable. For instance, while families must be
low-income to be eligible for Head Start, HSIS does not include
information on families’ actual income nor other financial
details that could be important predictors of program impact.
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Figure 2. Power of the tests based on EC_RI and ﬁTSLS.

In addition, Feller et al. (2016) and others argue that the setting
in which a child would otherwise receive care is an impor-
tant source of impact variation, although this is not directly
observable.

We now use the methods outlined above to assess treat-
ment effect variation in HSIS. The original study included n =
4400 total children, with n; = 2644 in the treatment group and
np = 1796 in the control group. Following earlier analy-
ses (Ding, Feller, and Miratrix 2016) and to simplify exposi-
tion, we restrict our attention to a complete-case subset of the
HSIS, with n; = 2238 in the treatment group and ny = 1348 in
the control group (so p; &~ 0.62 and py = 0.38). Our outcome
of interest is the Peabody Picture Vocabulary Test (PPVT), a
widely used measure of cognitive ability in early childhood. To
assess treatment effect variation, we consider the full set of child-
and family-level covariates used in the original HSIS analysis
of Puma et al. (2010), including those mentioned above. After
creating dummy variables for factors (e.g., recoding race), the
covariate matrix has 17 columns. See Figure 3(b) for a complete
list.
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7.1. Decomposing Variation in the ITT Effect

We first explore treatment effect variation for the ITT estimate,
beginning with estimating systematic treatment effect varia-
tion. We examine three estimators: the randomization-based
and OLS estimators discussed in Section 3, Bg; and B, and
the corresponding model-assisted version of the RI estimator
discussed in the supplementary material, ﬁ;l. For this latter esti-
mator, we use all available covariates to adjust the standard esti-
mators, that is, W is the entire vector of covariates.

Ompnibus Test for Systematic Treatment Effect Variation. We
begin by using these estimators for an omnibus test of whether
any treatment effect variation is explained by the full set of
covariates. The p-values for the unadjusted By, estimator and
model-assisted E:I are 0.39 and 0.25, respectively, which do not
show any evidence of treatment effect variation. The OLS esti-
mator, however, shows much stronger evidence with p = 0.005.

Importantly, all three estimators are based on the same
underlying assumptions: the randomization itself justifies all
three p-values. And while we expect the unadjusted B, to have

Mother is Recent Immigrant °
Dual-Language Learner °
Child's Race °
Garegiver's Age °
Pre-test Score L]
Mother's Marial Status °
Mother's Education Level o
Chidis Male | @
Both Parents Live with Child | @

Chid's Age | @

00 01 02 03 0.4 05
ITT treatment effect R? with p = 1

(b) R? separately by covariate



the lowest power, it is instructive that the p-value for EOLS is
substantlally smaller than the p-value for the covariate-adjusted
ﬂRI As we discuss in Section 3.2, ﬂOLs can account for covariate
imbalance across experimental arms by estimating the S,
matrix separately for the treatment and control groups. By
contrast, Bg; does not address imbalance in X and instead
attempts to residualize out the Y to get a more precise estimate
of the relationship of the X to Y for each treatment arm. Based
on the discrepancy in p-values, adjusting for baseline imbalance
is clearly important in this example.

Treatment Effect R2. Next, we examine how much of the varia-
tion could be explalned by our covarlates Figure 3(a) shows val-
ues of the treatment effect R? using ,BRI to estimate the systematic
variation. Results are nearly identical using the other estimators.
In the worst case of perfect negative dependence between poten-
tial outcomes (not shown), the treatment effect R? could be
as low as 0.01. Assuming that this dependence is nonnegative,
the treatment effect R? ranges from 0.03 to 0.76. While the
estimate is clearly sensitive to the unidentifiable sensitivity
parameter, the covariates explain a substantial proportion of
treatment effect variation for values of p near 1.

We can also use this framework to assess the relative impor-
tance of each covariate in terms of explaining overall treatment
effect variation. To do this, we use the model-assisted RI esti-
mator, ﬁlu{p adjusting for all covariates (i.e., dim(W) = 17) but
restricting systematic treatment effect variation to one covariate
at a time. Note that we consider factors (e.g., race) as a group.
Figure 3(b) shows the resulting estimates for the upper bound of
R2, with lower bound estimates all below 0.01. Having a mother
who is a recent immigrant and dual language learner status
(which are highly correlated in practice) could each explain a
substantial proportion of treatment effect variation, consistent
with previous results from Bloom and Weiland (2014) and Bitler,
Hoynes, and Domina (2014). This is not true for other covari-
ates, like mother’s education level.

Negative Correlation Between Treatment Effect and Control
Potential Outcomes. Finally, we test whether the individual-
level idiosyncratic treatment effects, {€;}}_,, are negatively corre-
lated with the control potential outcomes, {Y;(0)}",, extending
results from Raudenbush and Bloom (2015). As outlined in the
supplementary material, we do so by testing whether the vari-
ance of {Y°* — X }fﬁ}% : T; = 1} is smaller than the variance of
{Y?% : T; = 0}. This yields a p-value of 0.02, which suggests that
the unexplained treatment effect is indeed larger for smaller val-
ues of the control potential outcomes. This result is consistent
with findings from Bitler, Hoynes, and Domina (2014) who use
a quantile treatment effect approach.

7.2. Incorporating Noncompliance

As with many social experiments, there is substantial noncom-
pliance with random assignment in HSIS. In the analysis sample
we consider here, the estimated proportion of compliance types
is T, = 0.69 for Compliers, 7, = 0.13 for Always Takers, and
7, = 0.18 for Never Takers. Given the exclusion restrictions for
Always Takers and Never Takers, the treatment effect is therefore
zero (by assumption) for over 30% of the sample, suggesting that
noncompliance will be an important component of treatment
effect variation.
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In the setting with noncompliance, we focus on two estima-
tors for systematic treatment effect variation among Compliers:
the randomization-based estimator, B g;, and the two-stage

least-squares estimator, ETSLS' We first use these estimators to
construct omnibus tests for systematic treatment effect varia-
tion among Compliers. Tests using both estimators show strong
evidence for such variation, with p-value 0.02 using B, p; and
p-value 0.01 using /ﬁTSLS'

Finally, we turn to decomposing the overall treatment effect.
As in the ITT case, we assume that the potential outcomes
have a nonnegative correlation. Figure 3(a) shows the treatment
effect R? among Compliers, which ranges from R2 . = 0.05 to
R%_ = 0.68. Next, we can calculate treatment effect variation
due to noncompliance, R2 ;. In the case of HSIS, this is rela-
tively small—between 0.01 and 0.16—in part because the overall
treatment effect is fairly small. Therefore, the overall treatment
effect decomposition due to both covariates and noncompli-
ance, R2 |y, is quite close to R _, as shown in Figure 3(a). Taken
together, these estimates suggest that there is indeed important
treatment effect variation that is neither captured by pretreat-
ment covariates nor by noncompliance, consistent with previous
results in Ding, Feller, and Miratrix (2016).

8. Conclusion

In this article, we propose a broad, flexible framework for assess-
ing and decomposing treatment effect variation in random-
ized experiments with and without noncompliance. In general,
we believe this is a natural setup for researchers to formulate
and investigate a broad range of questions about impact het-
erogeneity (e.g., Heckman, Smith, and Clements 1997). Appli-
cations include assessing underlying causal mechanisms and
targeting treatments based on individual-level characteristics.
Understanding such variation is also important for the design
of experiments. Djebbari and Smith (2008), for example, argued
that characterizing the size of the idiosyncratic treatment effect
is useful for determining the value of additional data collection.

We briefly note several directions for future work. First,
our primary purpose was to propose a framework for analysis
rooted in and justified by the randomization itself. As a result,
we focused on the core properties of several relatively simple
versions of linear regression and TSLS. We did not, however,
fully explore their practical and finite-sample properties. For
example, in future work, we hope to determine the settings
in which model assistance will most improve estimation and
assess the increased power of the OLS approach versus the
unbiased RI approach. We are also investigating how to connect
model-assisted and OLS approaches to take advantage of both
methods of precision gain. Similarly, there is still much potential
improvement in determining ways of characterizing the degree
of heterogeneity, such as with an effect size for the systematic
variation.

Second, a natural extension is to use more complex methods
to estimate systematic treatment effects, such as via hierarchi-
cal models (Feller and Gelman 2015) or via machine-learning
methods (Wager and Athey 2017), extending the results for
the omnibus test and treatment effect R? accordingly. While
the guarantees from randomization are clearly weaker in such
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settings, researchers can assess these tradeoffs themselves. For
example, hierarchical modeling would be especially useful in the
Head Start Impact Study due to the multi-site design (Bloom and
Weiland 2014).

Third, a question of increasing practical importance is the
generalizability of experimental results to a given target popu-
lation (Stuart et al. 2011). We believe that the treatment effect
R? is a critical measure for assessing the credibility of these gen-
eralizations. In short, if there is substantial idiosyncratic treat-
ment effect variation, that is, R? is small, then researchers should
be wary of using observed covariates to extrapolate treatment
effects.

Finally, a question is how to extend this treatment effect vari-
ation framework to nonrandomized settings. While the results
would necessarily rest on much stronger assumptions, many
settings already use an as-if-randomized framework, such as
in observational studies (Rosenbaum 2002; Imbens and Rubin
2015). Under this approach, extensions should be natural.
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Appendix A gives all the proofs and Appendix B provides the additional commentary mentioned
in the main text. The finite population central limit theorem (FPCLT) we use for our asymptotic
proofs is Theorem 5 of Li and Ding (2017), which requires some mild moment conditions on the

covariates and potential outcomes, as outlined in the main text.

Appendix A Lemmas and Proofs

Before we prove Theorem 1, we provide a few lemmas to ease the notational burden and amount of
algebra of subsequent calculations. These lemmas allow us to derive expressions for our estimators
in terms of matrix algebra rather than the summation-style approach typically seen for Neyman-
style derivations in the literature.

To begin, let 1,, = (1,...,1)" and 0,, = (0,...,0)" be column vectors of length n, and I,, be the
n X n identity matrix. Then S, = I,, — n_llnlg is the projection matrix orthogonal to 1, with
Sp1, = 0,. Under this formulation, the covariance matrix of the treatment assignment vector is a

scaled projection matrix orthogonal to 1,, as shown in the following lemma.

Lemma A.1. The treatment assignment vector T of a completely randomized experiment has

ni ning
E(T)=—1 T)=—"—"=85,.
( ) n ns COV( ) n(n—l) n
Proof of Lemma A.1. The conclusions follow from
n nin nin .,
E(T'z) - ;17 Var(Ti) - %7 COV(TivTVj) - _ﬁ7 (Z 5&])

O]

The projection matrix S,, acts as a covariance operator as illustrated by the following lemma.

Lemma A.2. Let U;, V; € RE be column vectors of length K. Define U = [Uy,Us,...,U,] and
V=W, VW,...,V,] € REX" a5 two matrices of dimension K x n. f U =n"1Y."  U; = n~ U1
and V. =n"13" V,=n"1V1, then

US, V" = zn:(Ui UV, - V)" (A1)

=1



In particular, when U; =V,
VSV =S (Vi - V)(Vi = V) = (n— DS(V).

i=1
Proof of Lemma A.2. The left hand side of (A.1) is equal to
n n
US V' =UV" —n ! (UL,) (V1) =D UV —n '(nO)(nV) = > UV —nUV",
i=1 i=1
which is the same as the right hand side of (A.1). O

Theorem 1: A generalized, vector-outcome version of Neyman. To prove the generalized
Neyman result, we bundle our vector potential outcomes into matrices and use the above lemmas
to obtain their covariance matrix. The theorem is exact, no asymptotics. Using the FPCLT to
show that the estimator has an approximately Normal distribution, allowing for classic testing and

inference, is a separate, subsequent step.

Proof of Theorem 1. Define Vi = [Vi(1),...,V,(1)] and Vy = [V1(0), ..., V,(0)] as the matrices of

the potential outcomes. Then the Neymanian simple difference in means estimator has the following

representation:
?V — f/lobs Vobs
1< 1<
= — V(1) — — 1-T;)V;(0
ar 2BV = 2 3= TV(O)

1 1
= —WVT—-—VW{1-T)
niy no
vV V 1
= (1+0)T—%L
ni no no
Now the unbiasedness of Ty follows from the linearity of the expectation and Lemma A.1. For
the covariance, note the second term in the above is constant, and so is not involved. Applying

Lemmas A.1 and A.2, we can obtain the covariance matrix of 7y :

CM%):<M+%»WGNW+WY

ni no ni o
ViV Vi W\
_ "1"0<1+0)5n(1+0>
n(n—1) \n1  no ny - no

1 1 1 1
— M (Vlan{ + jVOSnV(T) + 7VOS”V{ + VlSnVS)
ng nino no

n(n —1) \ n? ny
_ "o o L T T
= SV oSV} + s 0080+ S,

2



To simplify the third term, we use the fact ab” 4+ ba™ = aa” +bb" — (a — b)(a — b)" for two column
vectors a and b, we have
{vi(1) DHVi(0) = V(0)}" +{Vi(0) - V(O){Vi(1) - V(1)}'
= {vi(@1) DHVI(D) - V()Y +{Vi(1) - V(HH{Vi(1) - v (1)}
+

—{Vi(1) = Vi(0) = V(1) + V(O H{Vi(1) - Vi(0) = V(1) + V(0)}".

. v
. v

Summing over ¢ = 1,...,n and applying Lemma A.2, we have

WSVi | ViSuV5

1 T, StV SV} = S{V(R) - V(0)}

Therefore, the covariance of Ty can be simplified as:

cov(Ty) = %S{V(l)} + %S{V(O)} + % [S{V(1D)}+8{V(0)} =s{V(1) - V(0)}]
_ StV | StV0)) - SV —V(0)}
ny N n

O

Theorem 2: Behavior of ,@RI. To show properties of B\RI we express the systematic variation
as a vector of new potential outcomes of the original outcome scaled by the different covariates of

interest. This allows for immediate use of Theorem 1.

Proof of Theorem 2. Because S, is the sample mean for {X;Y° : T; = t,i = 1,...,n} =
{X;Y;i(t) : T; = t,i = 1,...,n}, it is unbiased for the population mean S,;. Thus, the estima-
tor BRI is also unbiased for B as Sl is fixed and the expectation is linear. Its sampling covariance

over all possible randomizations is
cov(Bri) = S, cov(Se1 — S20) Sy, -

Therefore, we need only to obtain the covariance of

n

1
- Z(l o E)Xiyviobs’

n
053

~ ~

1 n
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which is the difference between the sample means of { X;Y;(1) : ¢ =1,...,n}and {X;Y;(0) :i=1,...,N}
under treatment and control. Viewing XZ'YiObS as a vector outcome in a completely randomized

experiment, we can apply Theorem 1 to obtain

cov(Bar B~ SIXY(} | SIXY(0)  8(X7)
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which completes the proof. O

Theorem 3: Behavior of BOLS. We first use the well-known fact that the estimate from a
OLS model with treatment fully interacted with covariates is equivalent to separate regressions of
outcome onto covariates for the control and treatment groups. This means we can obtain Yors
by running a regression of Y°" onto X using the control group data, and (’y/—:B)OLS by running
regression of Y°P5 onto X using the treatment group data, giving estimated coefficients of

~ ~

= -1
Yors = 8,050

and
BoLs = §;x171§$1 - §;$170§x0.
As a quick heuristic argument for this, consider that the maximization problem for the interacted
model will separate into two components, one for each group. Then re-parameterize to get the
above.
We now prove the properties of BOLS~ Here we have to use asymptotics for the entire theorem,

unlike the case of BRI, where the mean and covariance are exact and the asymptotics are only

needed for the asymptotic normality of the estimator.

Proof of Theorem 8. First expand the difference of B\OLS and 3 as

1 ~ ~ ~ ~ ~

Bors — B =5;,1(8u1 — Seeam) — S5, 0(8e0 — Sza070),

This will be close to the related quantity of

~ ~ ~ ~

A= Sx_xl(szl - S:)::):,l’Yl) - Sm_l(S:EO - Smc,O'YO)- (AQ)

For the above to make sense and hold, we here need our asymptotic framework. In particular,
we need the associated moment conditions described in the main text. We next observe that the
difference between B\OLS — B and A is of higher order, because

~ ~ ~ ~ ~ ~

(Bors —B) — A = (851 = S (Su1 — Sewam) — (S50 — S2)(Sa0 — Sawov0)  (A3)
= Op(nV20p(n~Y?) = 0p(n~?)Op(n~"?) = Op(n™1), (A.4)

following from the FPCLT for the four terms in (A.3). This is an argument commonly used in the

survey sampling literature for ratio estimators (Cochran, 1977).



We next focus on the asymptotic distribution of A, because the asymptotic distribution of

B\OLS — 3 will be the same. Further simplify (A.2) as

1 & 1 X
" ZTiXiei(l) T e ;(1 —Ti)X;ei(0) |, (A.5)

where e;(1) = Y;(1) — X1 and ¢;(0) = Y;(0) — X 7o are the residual potential outcomes. (To see
the above, note, for example, that both §x1 and §m71 are sums over the treatment units, and we
can factor out an X; to get X; times the difference in the Y; and predicted Y;.)

Applying Theorem 1 to the vector outcome X e, we obtain the covariance matrix of A, to which
BOLS — B converges to due to (A.4). The asymptotic normality follows from the representation

(A.5) and the FPCLT. O

Theorem 4: Bounds for R2. To prove Theorem 4, we need to invoke the following Fréchet—

Hoeffding inequality (Hoeffding, 1941; Fréchet, 1951; Heckman et al., 1997; Aronow et al., 2014).

Lemma A.3. If we know only the marginal distributions of two random variables X ~ Fx(x) and

Y ~ Fy(y), then E(XY') can be sharply bounded by
1 1
/ Fyl(w)Fy' (1 —u)du < B(XY) < / Fy'(w)Fy ! (v)du.
0 0
Lemma A.3 immediately implies the following bound for var(X —Y) if E(X —Y) = 0.

Lemma A.4. If we know only the marginal distributions X ~ Fx(z),Y ~ Fy(y) and E(X -Y) =
0, then var(X —Y') can be sharply bounded by

/ {Fy'(u) — Fy ' (u)}2du < var(X —Y) < /Ol{F);l(u) — FyN (1 —w)}du
Proof of Lemma A.4. The variance var(X — Y') can be decomposed as
var(X —Y) = E(X - Y)? = E(X?) + E(Y?) - 2E(XY),
which depends on the following three terms:
E(X?) = [22dFx(x) / {Ft (u)]} P du,
fo {Fy 1 (u)}2du / {Fy 11 — )} du,

/1 Fl(w)Fyt (1 — u)du < E(XY) < / Fit(u)Fyt (u)du.
0 0

Plug the above expressions into the variance of X — Y to obtain the desired bounds. O



Applying Lemma A.4, we can easily prove Theorem 4.

Proof of Theorem 4. Because S, = Ss5 + See, we need only to bound S.., which is the finite
population variance of ¢; = {Y;(1) — X7y} — {Yi(0) — X7y} = ei(1) — €;(0). We can identify
the marginal distributions of {e;(1) : ¢ = 1,...,n} and {e;(0) : ¢ = 1,...,n}, and also know that
n~! > i, €i = 0. Therefore, the bounds in Lemma A.4 imply the bounds in Theorem 4. O

Theorem 5: Sensitivity analysis.

Proof of Theorem 5. The joint distribution of (Uy, Uy) is

Cui,up) = PUr < uy,Up < up)
= pP(Uo <u1,Up < wo) + (1 = p)P(Vo < 1, Up < ug)
= pmin(uy,uo) + (1 — p)uiuo.
Therefore, the distribution function C'(u1,up) is a weighted average of min(uj,up) = Cr(u1,uo)
and uiug = Cr(ug,up), i.e., the joint distributions when Uy = Uy and Uy LUy, respectively.

According to Nelsen (2007, Theorem 5.1.6), Spearman’s rank correlation coefficient between

e(1) and e(0) is

1 1 1 1
12/ / {C(u1,up) — uupdurduy = 12p/ / {min(u1,uy) — uug pdugdug
0o Jo

(2 [ [ oo 1)

= 12p(1/3—1/4) = p.

To complete the proof of the theorem, we need only to show that the covariance between e(1)

and e(0) is linear in p, which follows from

/ / F () By (u0)dC(un, o)

_ / / “1(40)dCR (u1, o) + p /0 1 /0 P () B (u0)dC (s o)
— » /0 Fr () By (w)du + (1 - p) /01F1—1<u>du /OlFo—l(u)du.



Theorem 6: Extending to non-compliance. Theorem 6 shows how to estimate the outcome-
to-covariate relationships of the Compliers by estimating different aggregate covariance relationships
across all the strata for different observed groups and then taking differences. Due to the exclusion
restriction for the Never Takers and Always Takers, this gives our desired relationships for the
Compliers only.

First, a small bit of notation of, due to the exclusion restrictions for Never Takers and Always
Takers, defining the population covariance between X and Y (1) = Y (0) within stratum U = a and

U=n as

sm——ZIw _ XiY;(1) ZI(U —XiY1(0), (u=a,n).

Proof of Theorem 6. We first create an estimator for Sy, . From the observed data with (T3, D;) =
(1,1), we have

1 & 1 & 1 &
E {m > TZ-DiXiXZT} - E {m S Ty X XT + o 3 TiI(UiC)XiXiT}
=1 =1 =1
= 71'CL‘S,QU:L",a + 7"'cS:z:av,c- (AG)

Similar to (A.6), we have

E{l (1 —Di)XiXZ-T} — nSemn, (A7)
ni
i=1
1 n
LS a-nmpxixrt = mSw., AS
{ >0 - mpxx | | a%)
1 n
FE { (1 — TZ)(l — DZ)XZXZT} = Wnsa;%n + WcSm;J. (Ag)
no <
=1

Subtracting the left sides of (A.8) from (A.6), or subtracting the left sides of (A.7) from (A.9), give
unbiased estimators for .85, ¢.
Second, analogous to the S;; ., we consider the sample covariances between X and yobs to

obtain estimators for Sy . and Sy .. From the observed data with (7}, D;) = (1, 1), we have

{ ZTDXYO'%} = { ZTI(U —a) X Yi(1) +n—IZTI —o XiYi(1 )}

i=1 =1
= 7TaSJﬁ.,a‘}"7"'0‘5'%1,0- (A]_O)



Similar to (A.10), we have

n1

E {1 > Tl - DZ-)Xz-beS} = T Sams (A.11)
=1
1 n
E{L =D (1-T)D:X; Y Y = 71,8, 4, A.12
N o
1 n
? { >0 T - Dnmbs} = S+ TS0 (A1)
0521

Subtracting (A.12) from (A.10), and subtracting (A.11) from (A.13), we obtain the results in
(15). O

Corollary 3: Behavior of Bc,RI- Theorem 6 shows how to obtain unbiased estimates of the
components of our estimator, which we can then plug in to obtain a consistent estimator of 3.. We

next show how this plug-in estimator behaves.

Proof of Corollary 3. First we write

Bert — Be = (Sexi1 — Sex01) {Se1.11 — Sz001 — (Sea11 — Sez01)V1c}

—(822.00 — Szz.10) {82000 — Sz1.10 — (Sez.00 — Sez.10)70e}

second we introduce

A, = (7rc‘51$z,c)_1{§$1,11 - §I0,01 - (§$$,11 - §$z,01)710}

_(Wcsxm,c)il{SxO,OO - Sacl,lO - (Sacac,OO - Sxm,10)700}7

third we observed that the difference between ﬁc,RI — B. and A, has higher order following the

same argument as (A.4). Therefore, we need only to find the asymptotic distribution of A..



Simple algebra gives

71 1
A = (7eSppe)t [171 > TDXiYi(1) - - > (1 - T3)D; X;Yi(0)
=1 =1
n
— o 2 DX Xy + o 3 (1= T)DiXi Xy

i=1

1 < 1 &
o Z(l = T;)(1 = D;) X;Y;3(0) + - Zﬂ(l — D) X;Y;(1)

+n0 Z (1- D)X X e0 — ZT XX Yo
= (7oSunc) [ ZITI Ve XiYi(1) + — ZITI(U o X Yi(1) - nloé(l — T (1, —a) XiYi(0)
_nll Zn:TiI(Ui:a)Xin’Ycl - nll izn;ﬂI(Ui:c)XiXiT%l + nlo Zan(l = Ti)[(,=a) Xi X Ye1
_7702 (1 = Ti) I (y,=n) X:Yi(0) — nlo i(l — Ti) (=) XiYi(0) + ;TIU —n)X;Yi(1)
+n0 Z (1 =TI (1,=n) Xi Xi¥e0 + nlog(l — T) (=) Xi X Ye0 — ;TIU _ XiX] %0}
= (Wcsxx,c)l{nllzn;TiXi w,=a)(Yi(1) = X7ve1) + Ti,=n) (Yi(1) = Xve0) + Lv,=)(Yi(1) — Xi7e1)]
_nlo ; (1= T3) X [T(,—a)(Yi(0) = X7ve1) + L(0,=n) (Yi(0) — X77e0) + L(1,=¢) (Yi(0) — X[ 7e0)] }

According to the definitions of the residual potential outcomes €}(1) and €;(0) in the main text, the

above formula reduces to

n
BC,RI - 50 = (WCS:E:): c [nl ZTX €; nO Zl(l - T:L)Xle;(o) . (A14)
The representation in (A.14) implies the asymptotic covariance matrix according to Theorem 1 and

the asymptotic normality of BC,RI according to the FPCLT. ]

Theorem 7: Behavior of BTSLS- While the amount of notation and matrix algebra is consider-
ably more in scope, the overall structure of the proof follows the earlier one for the OLS estimator
for the ITT. In particular, we show the estimator asymptotically converges to a more tractable

version that has a fixed portion, and then use the usual covariance argument on the remaining



terms. Before doing this, we first show the probability limits of the estimator by working through

the matrix algebra.

Proof of Theorem 7. First, we find the probability limits of the TSLS estimators:

-1
yrsis) 1</ X; e 1N/ X, .
(BTSLS) B {n Z <TZXZ> (Xi’DZXi)} {n Z (EX,) Y; }

=1 =1
-1 n T -1 n Y.VYT -1 n .\ obs
_ n Zi:l X X; n Zi:l D; X; X; n Zi:l XiY;

1
a (n_lZ?lez‘XiXE n_lz?:li’l'DiXiXE) <n12?:1Tin‘Y¢°bs>
1
P A B G
(4 B)(S) w19

The above term A is A = S,,, and terms (B,C, D, G, H) are the population limits of the sample

quantities. We will find each of them. Term B is

1< . 1< I .
B = E{HZDiXiXZ} :E{HZTZ-DiXiXi +nZ(1—TZ~)DiXZ-XZ}

=1 =1 =1
1 ¢ o, L - . - T
= B{- z; Ty, Xi X + — z; Til,—0 Xi X + — ;(1 — T)(,—a) Xi X
= plﬂ'anx,a + plTrcSa::c,c + pOT"anx,a

= 7"'aSgcaﬁ,a + plﬂ'csmc,c-

Term CisC = F {nil Yoy TiXiXiT} = p18Szz. Term D is

1 — 1 — 1 —
D = E{n§ TiDiXiXiT}:E{nE TZ-I(UFQ)XiXZT—FﬁE TZ-I(UM)XZ-XZ.T}
i=1 =1 i=1

= plﬂ-asxx,a + plﬂ'csxaz,c'

Term G is

1 — 1 — 1 &
G=F {n E XiYiObs} =F {n E T XY™ + - E (1- Tz’)Xz‘Y;‘ObS} = p1Sz1 + PoSzo0-
i—1 i1 =1

Term H is H=F {n_l S TiXiYiObs} = p1.Sz1.- We apply the following formula for the inverse

A B\ ' S —~A"'BS;,!
C D) ~— \-D'cSp St ’

where Sp = A — BD7'C and S35 = D — CA~'B are the Schur complements of blocks D and

of a block matrix:

A. Omitting some tedious matrix algebra, we obtain
Sp = pOﬂ'cSa:ac,c(ﬂ'anw,a + Wcsxac,c)ilsxm Sa= plpOﬂ'cSac:L’,a

10



and the inverse of the block matrix is

-1 1 1a— _ N R -
(A B> = <p0 S (WGSM o+ TeSrac)Spre —P1 'py Sy ( TaSzza + plWeSm,C)*S’:cml,C)
C D _po— C—ls 1 pl pO -1 —1S 1

rx,c c rx,c

Therefore, according to (A.15), the probability limit of ygrg is

palﬂ';ls;;xl (Wasarar,a + Wchx,c)S;xlc(plsxl + pOSwO) - pl_lpalﬂgls;;xl (Wasa:a:,a + plﬂ'csxx,c)sg;xl’c(plsazl)

= 5,80 — a7, 'Sy Sur.aSac(Se1 — Sao)
= 7 — WaS;xlsazx,aﬁc = Yoo, (A16)

and the probability limit of ,@TSLS is

—p5 e ' Sae(P1Sa1 + P0Se0) + P10y T S e (P1Sa1) = w1 S (a1 — Sao) = B, (A1T)

where we use S;1 — Sz0 = 7e(Sz1,c — Sz0,c), which is guaranteed by exclusion restrictions.

We next find the asymptotic distribution of B\TSLS. Following the derivation in Corollary 3, we

first write
n -1 n
~ATSLS Yoo 1 < X; ) T T 1 ( X; (VP> — X0 — D XTBe) >
L — == X! D; X] - i) /- :
<,3TSLS> <5c> {TL ; T: X ( ) n ; TiXi(Y;Ob5 — X veo — DiX[Bc)
then introduce
A (A B\ '[1 2": X;(YP — X'~y — D X18,)
"seT \e D A\ T X (Y™ — Xiveo — DiX[Be)
(A B\ ' (Y TiXe (1) + 0t S (1 — T Xe (0)
~ \C D n~t Yo TiXaef (1)
_ (A B\ (n Y TX{el (1) — €/ (0)} + 07t 1 Xael (0)
- \C D n~ Y TiXaef (1) ’

(A.18)

with (A, B, C, D) defined in (A.15) and {e/(1),e/(0)} defined in Theorem 7, and finally recognize
that the difference between the above two formulas has high order. Again we need only to find
the asymptotic distribution of Argrg. The covariance of the second term on the right hand side of
(A.18) is (dropping the constant sum of X;e”(0))
co (7 DT O
n= i TiXaei (1)

1 nino S(Xe) LS{Xe"(1)} - S{Xe"(0)} + S(Xs)]) |

nZ n (;[S{Xe"(l)} —S{Xe"(0)} +S8(Xe)] S{Xe"(1)}

11



where the off-diagonal term comes from the finite population covariance between X {e”(1) —¢e”(0)}
and Xe”(1). Therefore, according to (A.18), the asymptotic covariance of Argyg is the (2,2) block

of the following matrix

1 ning <A B>_1_

n2 n \C D
<1[S{X6”(1)} —6;{);{'5()3”(0)} + S(Xe)] é[S{Xeﬂ(l)}S_{_f({e")’((il)éO)} ’ S(Xg)]) . <é g) 7T’
2
which is
1 ning

] 05 S IS (XE) 05 i Sk + (o g s S ) SIX (D} 07y ST

—(pg ' me ' S ) [S{X " (1)} — S{Xe"(0)} + S(Xﬁ)](pflpalﬂc_ls;icf}

X " 1 X 1/ X
_ (Wcsxx,c)_l |:S{ € ( )} + S{ € (O)} o S( 5) (Wcsx:c,c)_l'
ni no n
The asymptotic normality follows from the representation in (A.18) and the FPCLT. O]

Theorem 8: Decomposition of variation in non-compliance. The following proof uses two

facts: 7, =7, =0, and T = 7w.T.

Proof of Theorem 8. Write the total treatment effect variation as

1 ! 2 1 2 2
S = — (i —7) :—ZTZ-—T

i=1 i=1
= ;ZI(Ul_C)TZ TeTe = Te 7ZI(U =)T; — T¢ +7Tc(1 _Wc)ch
i=1 ¢ =1
the treatment effect variation explained by compliance status as
Srru = Z Tu(Tu — 7)2 = mo(1e — were)? + 70 (0 — were)? + 7 (0 — 7o7e)?
u=c,a,n

— 7TCTC2 {(1 — TrC)2 + 7e(ma + ﬂ'n)} =m.(1— 71'0)7'62,

and the subtotal treatment effect variation for compliers as

1 & 1 &
ST.,_’C = — ZI(Ui:C)(Ti - TC)2 = — ZI(Ui:C)TiQ — 7‘62.
Me i e i
Therefore, the above three terms has the relationship S;r = 7.S7+ . + S-rv.

The decomposition S;7. = Sssc + See,c follows immediately from the definition of 3.. O

12



Appendix B More detailed comments

Appendices B.1-B.5 give more details of some technical issues and extensions mentioned in the

main text, and Appendix B.6 contains the proofs of the results in Appendix B.

Appendix B.1 Covariate adjustment to improve efficiency

In the main text, the role of covariates has been to model the treatment effect alone. In general,
we also want to use covariates to reduce sampling variability of BRL just as we can use covariates
to get more precise estimates of the average treatment effect. In particular, the goal is to more
precisely estimate §It € RX; because these are the only random components in ,@RI, if we estimate
them more precisely, we estimate BRI more precisely as well. Let W; € R’ denote a vector of
pretreatment covariates without the intercept term. Because X; and W; have different roles in
estimation, they may also contain different sets of covariates, though, in practice, X is likely to be
a subset of W.

Following the covariate adjustment approach in survey sampling, we can obtain a model-assisted
estimator for 3 that uses W to reduce sampling variability. To see this, we need several definitions.

Define W =n=1 5" W, and Sy = n =1 Y1 W;W], with det(Sy.) > 0; define Wy and §ww,t

RJXK

as the sample mean and covariance of W under treatment arm ¢; define B; € as the regression

coefficient of Y°PX on W for treatment arm t¢:

n

B -5, {it 3 I(Ti:t)vvmsxm} |

i=1

The model-assisted estimator for S,; is then
S% = 8, — Bi(W, — W), (t=0,1).
As a result, we can improve the randomization-based estimator by
Bl = 8.,/ (83 — 8i).
Theorem A.1l. The model-assisted estimator Bﬁl is consistent for B with asymptotic covariance
o1 [SEBQ} | SIEO)  S@A)] g

)

where E;(t) = Y;(t)X; — Bf(W; — W) is the residual term and A; = E;(1) — E;(0).

13



The estimator, ,/B\EI uses covariates both to estimate treatment effect variation and to reduce
sampling variability. Asymptotically, as long as W is predictive of the marginal potential outcomes,

the model-assisted estimator will improve precision over the unassisted estimators.
Appendix B.2 Fisherian exact inference

When ¢; = 0 for all 4, we can obtain exact inference for 8 based on the Fisher randomization test

(Rubin, 1980; Rosenbaum, 2002; Ding et al., 2016). With a known 3, the null hypothesis
Hy(B) : Yi(1) = Y;(0) = X3 for all ¢ (A.19)

is sharp in the sense of allowing for full imputation of all missing potential outcomes based on
the observed data. We can perform randomization test using any sensible test statistic measuring
the deviation from the null hypothesis Hy(3), for example, the test statistic ¢(T, Y°; 3) can be
the difference-in-means, difference-in-medians or the Kolmogorov—Smirnov statistics comparing two
samples {Y°» — XT3 : T, =1,i=1,...,n} and {Y°" : T; = 0,i = 1,...,n}. Then we can obtain

a (1 — «) level confidence region for 3 by inverting a sequence of randomization tests:
CR, = {8 : Randomization test fails to reject Ho(3) at significance level a}.

The confidence region CR,, is exact regardless of the sample size, and it is valid for general designs
of experiments if we use the corresponding assignment mechanism to simulate the null distribution
of the test statistic. Due to the duality between testing and interval estimation, we reject Ho(X)
with 81 = 0 in Section 3.3 if CR, N {3 : B1 = 0} is an empty set, which controls the type one error

rate by a.
Appendix B.3 A Variance Ratio Test

Raudenbush and Bloom (2015) have noticed that if the variance of the treatment potential outcome
is smaller than the control potential outcome, then the correlation between the individual treatment
effect and the control potential outcome is negative. This statement does not involve any covariates,
but it can be generalized to incorporate systematic and idiosyncratic treatment effect variation.

Below we give a finite population version of their result.

Theorem A.2. If the finite population variance of {Y;(1) — X/B}", is smaller than {Y;(0)},,
then the idiosyncratic treatment effect variation, {e;}!" ;, is negatively correlated with the control

potential outcomes.

14



Because the condition in Theorem A.2 depends only on the marginal distributions of the po-
tential outcomes, we propose a formal variance ratio test of it using the observed data, which is a

generalization of a similar theorem in Ding et al. (2016):

Theorem A.3. The variance ratio test with rejection region

log 53 — log s2 o (a),

NCECECE R

has size at least as large as «, where s2 and %1 are the sample variance and kurtosis of {Y;°Ps —
) 1 1

X,'TB\R,I T, =1,i=1,...,n}, and s% and Ko are the sample variance and kurtosis of {Yiobs T =

0,i=1,...,n}, and ® !(a) is the a-th quantile of the standard normal distribution.

For finite population inference, the above test in Theorem A.3 is generally conservative, but for
superpopulation inference, it is asymptotically exact.
Note that Raudenbush and Bloom (2015) and Theorem A.2 are only about detecting a negative

association. Unfortunately, there is no testable condition for a positive association.
Appendix B.4 More on noncompliance: estimating the bounds of the R%s

The component S;-y and and the probability 7. are directly identifiable according to previous

discussion. Furthermore, Sss . is also identifiable according to the following result.

Corollary A.1. Sss. can be expressed as the expectation of the following quantity:

11n‘_T2_in}_.A_7_2_in CTAD:(8: — 7.)2
7.‘-70 {n Z(éz c) n1 ;Tz(l Dz)((sl C) no Z(l TZ)DZ((SZ C) } :

=1 i=1

Because 7., 6; = X 3. and 7. can be estimated by a plug-in approach, Sss . can also be estimated
from the observed data.

In the I'TT case, estimation of the residual distributions are straightforward. In the noncompli-
ance case, however, we need more discussion about the estimation of Fi.(y) and Fy.(y), because U;
is a latent variable. To avoid notational clatter, we assume that <., and =9 are known; in practice
we can replace them by the randomization-based estimators 4.1 g1 and e ri, and the consistency
of the final estimator will not be affected. Recall the potential residuals €;(1) and ¢}(0) defined in

(17), and its observed value e, = T;ei(1) + (1 — T;)e;(0). We define the following quantities

Fu(y) = 5 21 TiDil e <), Fio(y) = 57 21 To(1 = Di)l i<y, (A.20)
For(y) = - 2 (L= T)Dilier<yy,  Foo(y) = 7= 2oy (1= Ti)(1 = Di) e <y

Similar to Corollary 3, we have the following results.

15



Corollary A.2. For any y,

E{F11(y) — Fu(y)} = meFic(y), E{Foo(y) — Fio(y)} = meFoc(y).

Therefore, we can estimate Fic(y) by {Fi1(y) — Fo1(y)}/7e, and estimate Fo.(y) by {Foo(y) —

Fio(y)}/7e. As we mentioned before, in practice, we use €, instead of €] in the formulas in (A.20).

Appendix B.5 Proofs of the theorems and corollaries in Appendix B

Proof of Theorem A.1. The population-level OLS regression matrix of Y (¢) X onto W is

B,=S { ZW{Y X}T}ERJXK.

Define S = S,; + BI (W — W,) and ,BRI = S 1(S Y — ;”0). According to the same argument

€T
as (A.4), BRI and ,@RI have the same asymptotic covariance, and in the following we need only to
discuss the covariance of B’@R"I. Because
n

St - 85y = EZT{Y DX+ BIW = W} = - 3 (1= T3) {V(0)X, + BY(W — W)}

zl
T,
011

n

= n—IZTE Z(lfT)Ei(O)

no =1
can be represented as the difference between the sample means of E;(1) and E;(0), applying The-

orem 2 we can obtain its covariance:

cov (~w Nw) _ S{E(l)} + S{E(O)} B S{A}7

zl z0 ny no n

which completes the proof. O

Proof of Theorem A.2. For simplicity, we abuse the variance and covariance notation for finite
population. For example, var{Y (0)} = > 1 {¥;(0) — Y(0)}?/(n — 1). If var{Y (1) — X"8} <
var{Y (0)}, then var{Y (0) + ¢} < var{Y(0)}. Expanding the left hand side,

var{Y (0)} 4+ var{e} + 2cov{Y (0),e} < var{Y (0)},

which implies 2cov{Y (0),e} < —var{e} < 0. O
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Although it is straightforward to prove the conclusion for super population inference of Theorem
A.3 by using Ding et al. (2016, Theorem 2, Supplementary Material) and Slutsky’s Theorem, it
is less obvious to prove the conclusion for finite population inference. To simplify the proof, we
first prove the following lemma. Let (¢1,---,¢,)" and (dy,...,d,)" be two vectors of nonnegative

constants with the same mean m > 0 but different variances S.. and Sy4. The difference vector

(c1 —di,...,cn —dy)" has mean zero and variance Se_q.—q4. Let
S 1 <
bo=—Y Tici, Og=—> (1-T)d;
c n — iCi, d o i:1( z) 7

be two sample means of the treatment and control group, respectively.

Lemma A.5. Under the regularity conditions for the FPCLT, log 50 —log gd has asymptotic mean

zero and variance

1 (Scc de Sc—d,c—d) (A 21)

m2 \ ny no n

Proof of Lemma A.5. According to the FPCLT, we have the following joint asymptotic normality

of 5,3 and 6A?d:
- () () )
0a ngt Yoiey (1= T;)d; m)’ \Vea Vaa)]’

o ni
Vee = ——Sces Vaa = ——8Saas Vea = —
nin non

where

1
%(Scc + de - Sc—d,c—d)'
Applying Taylor expansion at m, we have log 6.—log 6y = {(6.—m)—(04—m)}/m+op(n~1/2), which,

coupled with Neyman (1923)’s variance formula, gives the asymptotic variance of log 50 — log §d in

(A.21). 0

Proof of Theorem A.S3. First, as a direct consequence of Lemma A.5, the finite sample variance is
always larger than the super population variance, unless S._4 .4 = 0. Therefore, we need only to
show that the test in Theorem A.3 is asymptotically exact for super population inference, and the
asymptotic size of the test is no larger than « for finite population inference.

Second, replacing 3 by its consistent estimator BRI does not affect the asymptotic distribution of
the test statistic, due to Slutsky’s Theorem. For simplicity, we treat 3 as known in our asymptotic
analysis.

With the two ingredients above, Theorem A.3 follows directly from the variance ratio test in

Ding et al. (2016, Theorem 2, Supplementary Material). O
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Proof of Corollary A.1. The conclusion follows from

1 & 1 & 1 &
E{MZTxlDi)(@n)Q} = E{MZTZ-I(UM)(@TC)?} =~ w0 — )%,
i=1 -

i=1 i=1
1 & 1 & 1
E{no Z(l_Ti)Di(fsi—Tc)Q} = E{no > (1= T)y,—a) (6 —Tc)2} = EZI(Ui:a)((S@- —7.)%
=1 i=1 i—1
O

Proof of Corollary A.2. We rewrite

~ 1 & 1 &

Fuly) = - D Tidw—o e, y<yy + - Y Tl w—ay e, <43
=1 =1

~ 1 &

Fio(y) = EZEI(Ui:n)I{ei(l)gy}u
=1

~ 1 &

Fo(y) = nfOZ(l—E)Iwi:a)f{ei(om}’
=1

~ 1 & 1 &

Fooly) = = D (=T = Lo 0)<y} + o > (=T ,=n) L e (0)<u) -
=1 =1

In the above formulas, the random components are the T;’s, and therefore, the corollary follows

from Lemma A.1 and the linearity of expectations. O
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