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ABSTRACT
Understanding and characterizing treatment effect variation in randomized experiments has become
essential for going beyond the “black box” of the average treatment effect. Nonetheless, traditional sta-
tistical approaches often ignore or assume away such variation. In the context of randomized experiments,
this article proposes a framework for decomposing overall treatment effect variation into a systematic com-
ponent explained by observed covariates and a remaining idiosyncratic component. Our framework is fully
randomization-based, with estimates of treatment effect variation that are entirely justified by the random-
ization itself. Our framework can also account for noncompliance, which is an important practical compli-
cation. We make several contributions. First, we show that randomization-based estimates of systematic
variation are very similar in form to estimates from fully interacted linear regression and two-stage least
squares. Second, we use these estimators to develop an omnibus test for systematic treatment effect varia-
tion, both with and without noncompliance. Third, we propose an R2-like measure of treatment effect vari-
ation explained by covariates and, when applicable, noncompliance. Finally, we assess these methods via
simulation studies and apply them to the Head Start Impact Study, a large-scale randomized experiment.
Supplementary materials for this article are available online.

1. Introduction

The analysis of randomized experiments has traditionally
focused on the average treatment effect, often ignoring or
assuming away treatment effect variation (e.g., Neyman 1923;
Fisher 1935; Kempthorne 1952; Rosenbaum 2002). Today,
understanding and characterizing treatment effect variation in
randomized experiments has become essential for going beyond
the “black box” of the average treatment effect. This is clear
from the increasing number of articles on the topic in statis-
tics and machine learning (Hill 2011; Athey and Imbens 2016;
Wager and Athey 2017), biostatistics (Huang, Gilbert, and Janes
2012;Matsouaka, Li, andCai 2014), education (Raudenbush and
Bloom 2015), economics (Heckman, Smith, and Clements 1997;
Crump et al. 2008; and Djebbari and Smith 2008), political sci-
ence (Green and Kern 2012; Imai and Ratkovic 2013), and other
areas.

This article proposes a framework for decomposing overall
treatment effect variation in a randomized experiment into
a systematic component that is explained by observed covari-
ates, and an idiosyncratic component that is not explained
(Heckman, Smith, and Clements 1997; Djebbari and Smith
2008). In doing so, we make several key contributions. First, we
take a fully randomization-based perspective (see Rosenbaum
2002; Imbens and Rubin 2015), and propose estimators that are
entirely justified by the randomization itself. This is in contrast
to much of the literature on randomization-based methods,
where treatment effect variation is typically a nuisance (e.g.,
Rosenbaum 1999, 2007). Similar to Lin (2013), we show that
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the resulting estimator is very similar in form to linear regres-
sion with interactions between the treatment indicator and
covariates. Unlike with linear regression, however, the proposed
estimator does not require any modeling assumptions on the
marginal outcomes.

Second, we extend these methods from intention-to-treat
(ITT) analysis to allow for noncompliance, proposing a
randomized-based estimator for systematic treatment effect
variation for the local average treatment effect (LATE) in the
case of noncompliance (Angrist, Imbens, and Rubin 1996).
We show that this estimator is nearly identical to the two-
stage least-square estimator with interactions between the treat-
ment and covariates. We believe that this is a particularly
novel contribution to the recent literature seeking to recon-
cile the randomization-based tradition in statistics and the
linear model-based perspective more common in economet-
rics (Abadie 2003; Imbens 2014; Imbens and Rubin 2015).

Armed with these estimators, we turn to two practical tools
for decomposing treatment effect variation. The first is an
omnibus test for the presence of systematic treatment effect vari-
ation. While versions of this test have been proposed previ-
ously, largely in the context of linear models (Cox 1984; Crump
et al. 2008), our proposed test is fully randomization-based and
can also account for noncompliance. The second is to develop
and bound an R2-like measure of the fraction of treatment
effect variation explained by covariates. This builds on previ-
ous versions proposed in the econometrics literature (Heckman,
Smith, and Clements 1997; Djebbari and Smith 2008), again
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extending results to account for noncompliance. This approach
is also closely related to the Oaxaca–Blinder decomposition in
economics (Oaxaca 1973; Blinder 1973). See Angrist, Pathak,
and Walters (2013) for a recent application that also addresses
compliance. Finally, we apply these methods to the Head Start
Impact Study, a large-scale randomized trial of Head Start, a fed-
erally funded preschool program (Puma et al. 2010).We relegate
the technical details and some further extensions to the online
supplementary material.

2. Framework for Treatment Effect Variation

2.1. Setup and Notation

Assume that we have n units in an experiment. For unit i,
let X i = (X1i, . . . ,XKi)

T ∈ RK denote the vector of pretreat-
ment covariates, with the constant 1 as its first component. Let
Ti denote the treatment indicator with 1 for treatment and 0
for control. We use the potential outcomes framework (Ney-
man 1923; Rubin 1974) to define causal effects. Under the sta-
ble unit treatment value assumption (Rubin 1980) that there is
only one version of the treatment and no interference among
units, we define Yi(1) and Yi(0) as the potential outcomes of
unit i under treatment and control, respectively. The observed
outcome, Y obs

i = TiYi(1) + (1 − Ti)Yi(0), is quite general and
includes continuous, binary, and zero-inflated cases. On the
difference scale, the individual treatment effect is τi = Yi(1) −
Yi(0).

Importantly, this is finite population inference in that we con-
dition on the n units at hand—the potential outcomes are fixed
and pretreatment. This differs from super population inference
in which some variables or residuals are assumed to be indepen-
dent and identically distributed (iid) draws from some distribu-
tion. See, for example, Rosenbaum (2002), Imbens and Rubin
(2015), and Li and Ding (2017). Under the potential outcomes
framework, {Yi(1),Yi(0)}ni=1 are all fixed numbers; the random-
ness of any estimator comes from the assignment mechanism,
which is the distribution of possible treatment assignments
T = (T1, . . . ,Tn)T. Note that pr{(T1, . . . ,Tn) = (t1, . . . , tn)} =! n
n1

"− 1 if
#n

i=1 ti = n1.

2.2. Randomization Inference for Vector Outcomes

To set up our overall framework, we first generalize
Neyman’s (1923) classic results to vector outcomes.We consider
a completely randomized experiment, with n1 units assigned to
treatment and n0 units assigned to control; in total we have

! n
n1

"

possible randomizations. We are interested in estimating the
finite population average treatment effect on a vector outcome
V ∈ RK :

τV = 1
n

n$

i=1

{V i(1) − V i(0)} ,

where V i(1) and V i(0) are the potential outcomes of V for
unit i. For example, V can be Y or XY . The Neyman-type
unbiased estimator for τV is the difference between the sample
mean vectors of the observed outcomes under treatment and

control:

%τV = V̄ obs
1 − V̄ obs

0 = 1
n1

n$

i=1

TiV obs
i − 1

n0

n$

i=1

(1 − Ti)V obs
i

= 1
n1

n$

i=1

TiV i(1) −
1
n0

n$

i=1

(1 − Ti)V i(0).

The behavior of our estimator, and of our estimators for het-
erogeneity discussed later, revolve around covariances of vector
outcomes. For notation, let A = {A1, . . . ,An} be a collection of
n vectors, with Ā = n− 1

#n
i=1 Ai the vectormean, and define the

covariance operator on A as

S(A) = 1
n − 1

n$

i=1

(Ai − Ā)(Ai − Ā)T,

which gives the covariance matrix of the n vectors in A. For
example, Ai can beV i(1),V i(0), orV i(1) − V i(0).

The following theorem, generalizing the results for scalar
outcomes from Neyman (1923), demonstrates that%τV is unbi-
ased and gives its covariance matrix.

Theorem 1. Over all possible randomizations of a completely
randomized experiment, %τV is unbiased for τV , with K × K
covariance matrix:

cov(%τV ) = S{V (1)}
n1

+ S{V (0)}
n0

− S{V (1) − V (0)}
n

. (1)

The diagonal elements of this matrix are the variances of the
estimators of each component of τV . The covariance matrix of
%τV depends on the various covariances of the potential outcomes
under treatment and control. In particular, the last termdepends
on the correlation between the potential outcomes V (1) and
V (0), and therefore cannot be identified from the observed
data. When the individual treatment effects are constant for all
components of V , the last term in the above covariance matrix
vanishes, because then S{V (1) − V (0)} = 0K×K . Under this
assumption, we can unbiasedly estimate the sampling covari-
ance matrix cov(%τV ) by replacing the covariances of the poten-
tial outcomes by the sample analogs:

&cov(%τV ) =
%S1(V obs)

n1
+
%S0(V obs)

n0
,

where

%St (V obs)

= 1
nt − 1

n$

i=1

I(Ti=t )(V i − V̄
obs
t )(V i − V̄

obs
t )T (t = 0, 1) (2)

are the sample covariance matrices ofV obs in the treatment and
control groups. Without the constant treatment effect assump-
tion, the covariance estimator &cov(%τV ) is conservative in the
sense that the difference between the expectation of the variance
estimator and the true variance is a nonnegative definite matrix.
In particular, the diagonal terms of the expected estimator will
all be larger than the truth. LettingK = 1, the covariance matri-
ces become simple variances, which recovers Neyman’s original
result.
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Using the mathematical framework introduced in the
Appendix and in Li and Ding (2017), we can easily gener-
alize Theorem 1 to more complicated experimental designs,
for example, cluster-randomized trials (Middleton and Aronow
2015) and unbalanced 22 split-plot designs (Zhao et al. 2017).

2.3. Decomposing Treatment Effect Variation

We now apply this general framework to treatment effect varia-
tion. We decompose the individual treatment effect, τi, via

τi = Yi(1) − Yi(0) = X T
iβ + εi, (i = 1, . . . , n) (3)

with β being the finite population linear regression coefficient
of τi on X i, defined by

β = arg min
b∈RK

n$

i=1

!
τi − X T

i b
"2

. (4)

Following Heckman, Smith, and Clements (1997) and Djeb-
bari and Smith (2008), we call δi = X T

iβ the systematic treatment
effect variation explained by the observed covariates,X i, and call
εi ≡ τi − δi = τi − X Tβ the idiosyncratic treatment effect varia-
tion not explained by X i.

More generally, we can view this decomposition in a
regression-style framework. Define

Sxx = 1
n

n$

i=1

X iX T
i ∈ RK×K, Sxε = 1

n

n$

i=1

εiX i ∈ RK,

Sxτ = 1
n

n$

i=1

τiX i ∈ RK,

where Sxx is nondegenerate, analogous to the usual full-rank
assumption in linear models. Also define

Sxt = 1
n

n$

i=1

X iYi(t ) ∈ RK, (t = 0, 1).

These are all finite population quantities, as in they are fixed pre-
randomization values. The definition of β gives Sxε = 0, that is,
εi and X i have finite population covariance zero. Therefore, in
the spirit of the agnostic regression framework (e.g., Lin 2013),
the systematic component, δi = X T

iβ, is a projection of τi onto
the linear space spanned by X i, and the idiosyncratic treatment
effect, εi, is the corresponding residual. The linear projection
applies to general outcomes, including the binary case.

Because of our finite population focus, if we observed all the
potential outcomes we could immediately calculate all individ-
ual treatment effects and apply standard linear regression theory
to (3) and obtain β. In particular, the solution of (4), that is, the
ordinary least-square (OLS) solution from regressing τ onX , is

β = S− 1xx Sxτ = S− 1xx Sx1 − S− 1xx Sx0 ≡ γ1 − γ0, (5)

where γ1 = S− 1xx Sx1 and γ0 = S− 1xx Sx0 are the corresponding
finite population regression coefficients of the potential out-
comes on the covariates. Let ei(1) = Yi(1) − X T

i γ1 and ei(0) =
Yi(0) − X T

i γ0 be the residual potential outcomes from the
regression of Yi(t ) onto X . Our idiosyncratic treatment vari-
ation is then the difference of residuals: εi = ei(1) − ei(0). In

practice, we do not fully observe these components, but we can
obtain unbiased or consistent estimates for them as we discuss
below.

3. Systematic Treatment Effect Variation for the ITT

3.1. Randomization-Based Estimator

We now turn to estimating β. As shown in (5), β has three com-
ponents. The first term, Sxx, is fully observed as all the covari-
ates are observed. Our estimation then depends on the sample
analogs of Sx1 and Sx0:

%Sx1 = 1
n1

n$

i=1

TiY obs
i X i ∈ RK,

%Sx0 = 1
n0

n$

i=1

(1 − Ti)Y obs
i X i ∈ RK .

The%Sxt ’s capture how the observed potential outcomes correlate
with the covariates. Plug these into (5) to obtain an overall esti-
mate of β. The randomization of T then justifies the following
theorem.

Theorem 2. Under decomposition (3), S− 1xx
%Sx1 and S− 1xx

%Sx0 are
unbiased estimates of γ1 and γ0, respectively. Therefore,

%βRI = S− 1xx
%Sx1 − S− 1xx

%Sx0,

is an unbiased estimator for β with covariance matrix

cov(%βRI) = S− 1xx

'
S{Y (1)X}

n1
+ S{Y (0)X}

n0
− S(τX )

n

(
S− 1xx .

(6)

Here, for example, S{Y (0)X} denotes the covariance opera-
tor on new unit-level variables Yi(0)X i ∈ RK , made by scaling
the X i vector of each unit by Yi(0), similarly for S{Y (1)X} and
S(τX ). This slight abuse of notation gives formulas less clut-
tered by subscripts and excessive annotation. As with the vector
version of Neyman’s formula, the square root of the diagonal of
cov(%βRI) gives the standard errors of%βRI.

The covariance formula (6) generalizes the result of Neyman
(1923) for the average treatment effect, reducing to Neyman’s
formula if X i = 1 for all units. We can obtain a “conservative”
estimate of cov(%βRI) by

&cov(%βRI) = S− 1xx

)
%S1(Y obsX )

n1
+
%S0(Y obsX )

n0

*

S− 1xx ,

recalling the definitions of the sample covariance operators %S1
and %S0 introduced in (2). Similar to Neyman (1923), this implic-
itly assumes S(τX ) = 0. Under the assumption that εi = 0 for
all units (i.e., no idiosyncratic variation whatsoever), we can
instead use S(%τX ) with %τ = X T

i
%βRI as a plug-in estimate for

S(τX ). This yields tighter standard errors based on the diag-
onal elements of the covariance matrix.

Finite Population Asymptotic Analysis. Theorem 2 holds for
any finite sample. To obtain confidence intervals and to conduct
hypothesis testing aswe describe below,we need to prove further
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that%βRI is asymptotically normal with mean β and covariance
cov(%βRI). Finite population asymptotic analysis, however, has
a slightly different flavor from the usual super population
approach. Formally, the finite asymptotic scheme embeds the
finite population {(X i,Yi(1),Yi(0),Ti)}ni=1 with size n into a
hypothetical sequence of finite populations with sizes approach-
ing infinity. This effectively assumes that all the finite population
quantities, for example, Sxx and β, depend on n, although they
are fixed numbers for a given finite population. Moreover, the
sample quantities such as%Sx1 and%βRI depend on n as well, and
are random quantities due to the randomization of T . For nota-
tional simplicity, we drop the index n for all these quantities.
Importantly, we must impose some regularity conditions on the
hypothetical sequence of finite populations. Throughout the
article, we invoke the following conditions for asymptotic analy-
sis, which are required for a form of the finite population central
limit theorem discussed in Li and Ding (2017, Theorem 5).

Condition 1. (i) Stable treatment proportions: p1 = n1/n and
p0 = n0/n have positive limiting values; (ii) Stable means,
variances, and covariances: the finite population means, vari-
ances, and covariances of the covariates and potential out-
comes have finite and nonzero limiting values; (iii) both Sxx
and its limit have full-rank K; (iv) there are no individual
extreme values in the limit: max1≤i≤n ||Vi − V̄ ||22/n→ 0, for
Vi = Xki,Yi(z),Yi(z)Xki,XkiXk′i,Yi(z)XkiXk′i with 1 ≤ k, k′ ≤
K, and z = 0, 1.

Condition parts (i) and (ii) are natural. Part (iii) is a basic
requirement for asymptotic analysis of quantities depending on
S− 1xx . The condition on the limit is of particular interest. Having
a nonsingular limiting covariance matrix essentially means that
there cannot be too many units with extreme leverage on any
of the regression coefficients (see Huber 1973). For example, for
a binary covariate Xki, the numbers of units with Xki = 1 and
Xki = 0 must both go to infinity. If this did not hold, the limit of
Sxx would not have full-rankK as the kth row and columnwould
all be driven to 0. Part (iv) controls the tails; it holds if V has
more than two moments (Li and Ding 2017). In particular, (iv)
holds automatically for bounded covariates and outcomes. For a
more technical discussion of finite population causal inference,
seeDing (2014), Aronow,Green, and Lee (2014), andMiddleton
and Aronow (2015); for regularity conditions of the finite pop-
ulation central limit theorems, see Hájek (1960) and Lehmann
(1998). A recent review is Li and Ding (2017).

Under these conditions, we can extend Theorem 2 to a
sequence of finite populations and obtain a limiting distribution
as follows:
√
n
+
%βRI − β

,
d→

N
+
0, lim

n→∞
S− 1xx
-
p− 11 S{Y (1)X}+p− 10 S{Y (0)X}− S(τX )

.
S− 1xx

,
.

(7)

As a result, we can state that%βRI is approximately normal with
mean β and covariance matrix (6), which allows us to construct
confidence intervals and hypothesis tests. In our theory below,
we use this informal statement instead of (7) to avoid notational
complexity.

3.2. Regressionwith Treatment-Covariate Interactions

The results from randomization inference can shed light on the
familiar case of linear regression with treatment-covariate inter-
actions. This classical approach assumes the model

Y obs
i = X T

i γ + TiX T
iβ + ui, (i = 1, . . . , n), (8)

where {ui}ni=1 are errors implicitly assumed to induce the
randomness, and where β models systematic treatment effect
variation, as in (3). Departing from much of the previous lit-
erature (e.g., Cox 1984; Berrington de González and Cox 2007;
Crump et al. 2008), we study the properties of the least-square
estimator under complete randomization, without assuming
that model (8) is correctly specified. In particular, we do not
assume any iid sampling; the assignment mechanism drives the
distribution of the OLS estimator.
Theorem 3. The OLS estimator for β from fitting model (8) can
be rewritten as

%βOLS =%S− 1xx,1
%Sx1 − %S

− 1
xx,0
%Sx0,

where

%Sxx,t = 1
nt

n$

i=1

I(Ti=t )X iX T
i , (t = 0, 1).

Over all possible randomizations of T ,%S− 1xx,1
%Sx1 and%S

− 1
xx,0
%Sx0 are

consistent estimates of γ1 and γ0, respectively; %βOLS therefore
follows an asymptotic normal distribution with mean β and
covariance matrix

cov(%βOLS) = S− 1xx

'
S{e(1)X}

n1
+ S{e(0)X}

n0
− S(εX )

n

(
S− 1xx (9)

with ei(1), ei(0), and εi as defined after (5).

This estimate is simply the difference between %γ1,OLS =
%S− 1xx,1

%Sx1 and %γ0,OLS =%S− 1xx,0
%Sx0, two OLS regressions run sep-

arately on each treatment arm. The (asymptotic) covariance
formula (9) is different from (6), with {Y (1),Y (0)} replaced
by {e(1), e(0)}. For treated units, define residual %ei = Y obs

i −
X T

i%γ1,OLS, and for control units, define residual %ei = Y obs
i −

X T
i%γ0,OLS. We can drop the unidentifiable term S(εX ), estimate

S{e(1)X} and S{e(0)X} by their sample analogs, and conserva-
tively estimate the asymptotic covariance matrix (9) by

&cov(%βOLS) =%S− 1xx,1

)
%S1(%eX )

n1

*
%S− 1xx,1 +%S− 1xx,0

)
%S0(%eX )

n0

*
%S− 1xx,0.

This formof the sandwich variance estimator has the same prob-
ability limit as the Huber–White covariance estimator for linear
model (8) (Huber 1967; White 1980; Angrist and Pischke 2008;
Lin 2013).

Importantly,%βRI and%βOLS are quite similar in form. In par-
ticular,%βRI uses the true Sxx while%βOLS separately estimates the
covariance matrix for each treatment arm,%Sxx,0 and%Sxx,1. The
latter is effectively a ratio estimator. Although this introduces
some small bias (on the order of 1/n), using the estimated%Sxx,t
rather than true Sxx can often lead to gains in precision, espe-
cially when covariates are strongly correlated with the poten-
tial outcomes. In particular, the OLS estimator, by separately
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estimating the (known) Sxx matrix for each treatment arm, can
account for random imbalances in the covariates in both arms.
For related discussion, see Cochran (1977) on ratio estimators
in surveys.

The RI estimator, by comparison, has no adjustment what-
soever, and so cannot account for such random covariate
imbalances. However, in Section 3.4 and in the supplementary
materials, we introduce a different form of adjustment that
uses covariates to make the estimates of the Sxt more precise.
Depending on the structure of covariates, this estimator could
be better or worse than OLS adjustment; we leave a thorough
investigation of these trade-offs for future work.

Regardless, we again emphasize that we do not rely on classi-
cal OLS assumptions to justify the OLS estimator here. Rather,
randomization (with some mild regularity conditions for the
finite sample asymptotics) justifies our results.

3.3. Omnibus Test for Systematic Variation

Finally, we can use these results to develop an omnibus test for
the presence of any systematic treatment effect variation. The
null hypothesis of no treatment effect variation explained by the
observed covariates can be characterized by

H0(X ) : β1 = 0,

where β1 contains all the components of β except the first com-
ponent corresponding to the intercept. Under H0(X ), the indi-
vidual treatment effects have no linear dependence on X .

We then construct a Wald-type test for H0(X ) using an esti-
mator%β and its covariance estimator &cov(%β); it could be%βRI or
%βOLS. Let %β1 and &cov(%β1) denote the subvector of %β and sub-
matrix of &cov(%β), corresponding to the nonintercept coordi-
nates of X . We reject when

%βT

1&cov
− 1(%β1)

%β1 > qK− 1(1 − α), (10)

where qK− 1(1 − α) is the 1 − α quantile of the χ2 random vari-
able with degrees of freedom K − 1.

The test in (10) is nearly identical to the test proposed
byCrump et al. (2008). They relax the parametric assumption by
taking a “sieve estimator” approach, namely, by using a quadratic
form of the regression function, which allows for more flexible
marginal distributions. Our approach differs in that we avoid
modeling the marginal distributions entirely. If desired, we can
add polynomials of X (or other basis functions) into the model
for δ to allow for more flexible systematic treatment effect varia-
tion, which could enhance power or model more complex rela-
tionships between the X and treatment impact.

3.4. Additional Considerations

In the supplementary material, we describe two additional
points about systematic treatment effect variation that we
briefly address here. First, as mentioned above, we can use
model-assisted estimation to improve the randomization-based
estimator. In particular, improving estimation of %Sxt directly
improves%βRI, as the%Sxt are the only random components. Thus,
if we replace the standard sample estimator,%Sxt , by a more effi-
cient, model-assisted estimator, as in survey sampling (Cochran

1977; Särndal, Swensson, and Wretman 2003), we can achieve
meaningful precision gains in practice. More importantly, this
setup allows researchers to assess systematic variation across
one set of covariates while adjusting for another set.

Second, under the assumption of no idiosyncratic variation
(i.e., εi = 0 for all i), we can obtain exact inference for β by
inverting a sequence of randomization-based tests. This com-
plements previous work on randomization-based tests for the
presence of idiosyncratic treatment effect variation (Ding, Feller,
and Miratrix 2016).

4. Idiosyncratic Treatment Effect Variation for ITT

After characterizing the systematic component of treatment
effect variation, we now turn to characterizing the idiosyncratic
component. Since this quantity is inherently unidentifiable, we
propose sharp bounds on this component and a framework for
sensitivity analysis. We then leverage these results to bound an
R2-like measure of the treatment effect variation explained by
covariates.

4.1. Bounds

We first define the main quantities of interest:

Sττ = 1
n

n$

i=1

(τi − τ )2, Sδδ = 1
n

n$

i=1

(δi − τ )2,

Sεε = 1
n

n$

i=1

ε2i ,

with δi and εi defined as in (3). Then Sττ = Sδδ + Sεε . We
can immediately estimate Sδδ via the sample variance of {%δi =
X T

i
%β}ni=1, where %β is a consistent estimator, for example, %βRI

or%βOLS. However, the idiosyncratic variance, Sεε , is inherently
unidentifiable because it depends on the joint distribution of
potential outcomes.

We can, however, derive sharp bounds for Sεε . Let F1(y)
and F0(y) be the empirical cumulative distribution functions of
{ei(1)}ni=1 and {ei(0)}ni=1. Let F

− 1
1 (u) and F− 10 (u) be the corre-

sponding empirical quantile functions, with F− 1(u) = inf{x :
F(x) ≥ u}. Below we denote e(t ) as a random variable tak-
ing equal probabilities on n values of {ei(t )}ni=1. Based on
the Fréchet–Hoeffding bounds (Hoeffding 1941; Fréchet 1951;
Nelsen 2007), we can bound Sεε as follows.

Theorem 4. Sεε has sharp bounds Sεε ≤ Sεε ≤ Sεε, where

Sεε =
/ 1

0
{F− 11 (u) − F− 10 (u)}2du,

Sεε =
/ 1

0
{F− 11 (u) − F− 10 (1 − u)}2du.

The lower and upper bounds are attainable when e(1) and e(0)
have the same ranks and opposite ranks, respectively.

The lower bound of Sεε corresponds to a rank-preserving
relationship between e(1) and e(0), and the upper bound of Sεε

corresponds to an anti-rank-preserving relationship between
e(1) and e(0). Equivalently, they correspond to the cases where
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the Spearman rank correlation coefficients between e(1) and
e(0) are +1 and − 1.

In practice, we can often sharpen these bounds because we
are unlikely to have negatively associated potential outcomes
after adjusting for covariates. If we assume a nonnegative cor-
relation between e(1) and e(0), we have the following corollary.

Corollary 1. If the correlation between e(1) and e(0) is non-
negative, then the bounds for Sεε become Sεε ≤ Sεε ≤ V1 +V0,
whereVt is the variance of e(t ) for t = 0, 1.

We can consistently estimate each quantity: Sδδ by the sample
variance ofX T

i
%β, Fe1(y) and Fe0(y) by%F1(y) and%F0(y), the empir-

ical cumulative distribution functions of the residuals%ei under
treatment and control, and V1 and V0 by the variances of%e(1)
and%e(0).

Variance of the Overall ITT Estimator. We can use these
results to obtain sharper bounds on the variance of Ney-
man’s (1923) estimate of overall ITT, %τ = n− 11

#n
i=1 TiY obs

i −
n− 10

#n
i=1(1 − Ti)Y obs

i , extending previous work by Heckman,
Smith, and Clements (1997) and Aronow, Green, and Lee
(2014). See also Fogarty (2016). Applying the results in Section
2 for scalar outcomes, we have the following variance for the
difference-in-means estimator,

var(%τ ) = S11
n1

+ S00
n0
−
0
Sδδ

n
+ Sεε

n

1
,

where Sττ = Sδδ + Sεε . As we discuss above, Neyman (1923)
proposed a lower bound for the overall var(%τ ) under the
assumption of a constant treatment effect, Sττ = 0. More
recently, Aronow, Green, and Lee (2014) instead proposed to
bound Sττ via Fréchet–Hoeffding bounds. We can modestly
improve these results by applying Fréchet–Hoeffding bounds for
Sεε alone rather than for Sττ = Sδδ + Sεε . So long as Sδδ > 0, this
yields strictly tighter bounds on var(%τ ) than the corresponding
bounds that do not incorporate covariate information. In turn,
this gives a tighter estimate of the standard error for the same
difference-in-means estimator,%τ .

AVariance Ratio Test. Finally, while the relationship between
e(0) and e(1) is inherently unidentifiable, there is some infor-
mation in the data about the relationship between εi, the
individual-level idiosyncratic treatment effect, and Yi(0), the
control potential outcome. In particular, Raudenbush and
Bloom (2015) noted that if the variance of the treatment
potential outcomes is smaller than the variance of the control
potential outcomes, then the treatment effect must be nega-
tively associated with the control potential outcomes. In the
supplementary material, we extend this result to incorporate
covariates and propose a formal test.

4.2. Sensitivity Analysis

Going beyond worst-case bounds, we can assess the sensitivity
of our estimate of Sεε to different assumptions of the dependence
between potential outcomes. Using the probability integral
transformation, we represent the residual potential outcomes as

e(1) = F− 11 (U1), e(0) = F− 10 (U0), U1,U0 ∼ Uniform(0, 1).

Therefore, the dependence of the potential outcomes is deter-
mined by the dependence of the uniform random variables U1
and U0, which are the standardized ranks of the potential out-
comes. When U1 = U0, Sεε attains the lower bound Sεε ; when
U1 = 1 − U0, Sεε attains the upper bound Sεε ; whenU1 U0, Sεε

attains the improved upper boundV1 +V0.
Rather than simply examine extreme scenarios of Sεε , we can

instead representU1 as amixture ofU0 and another independent
uniform random variableV0 :

U1 ∼ ρU0 + (1 − ρ)V0, U0,V0
iid∼ Uniform(0, 1), (11)

which the sensitivity parameter ρ captures the association
between U1 and U0. An immediate interpretation of ρ is the
proportion of rank preserved units, with the other 1 − ρ as the
proportion of units with independent treatment and control
residual outcomes. When ρ = 0, U1 U0, and the residual
potential outcomes are independent; when ρ = 1,U1 = U0, and
the residual potential outcomes have the same ranks. The values
between (0, 1) correspond to positive rank correlation but not
full-rank preservation. Note that the representation of the joint
distribution is not unique, because we can choose any copula
as a joint distribution of (U1,U0) (Nelsen 2007). We choose the
above representation and notation ρ for the following theorem.

Theorem 5. If Equation (11) holds, then ρ is Spearman’s rank
correlation coefficient between e(1) and e(0). Furthermore, Sεε

is a linear function of ρ:

Sεε(ρ) = ρSεε + (1 − ρ)(V1 +V0).

Wecannot extract any information aboutρ from the data.We
therefore treat ρ as a sensitivity parameter, choose a plausible
range of ρ, and obtain corresponding values for Sεε .

4.3. Fraction of Treatment Effect Variation Explained

A natural question is the relative magnitudes of Sδδ and
Sεε (Djebbari and Smith 2008). Continuing the regression anal-
ogy, this is an R2-like measure for the proportion of total treat-
ment effect variation explained by the systematic component:

R2
τ = Sδδ

Sττ

= Sδδ

Sδδ + Sεε

,

which is the ratio between the finite population variances of δ

and τ. As above, we can directly estimate Sδδ but must bound
Sεε . Applying Theorem 4, we obtain the following bounds on
R2

τ .

Corollary 2. The sharp bounds on R2
τ are

Sδδ

Sδδ + Sεε

≤ R2
τ ≤

Sδδ

Sδδ + Sεε

.

If we further assume that the correlation between e(1) and e(0)
is nonnegative, the sharp bounds on R2

τ are

Sδδ

Sδδ +V1 +V0
≤ R2

τ ≤
Sδδ

Sδδ + Sεε

.

We estimate these bounds via plug-in estimates. Note
that Djebbari and Smith (2008) explored a similar quan-
tity by using a permutation approach to approximate the
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Fréchet–Hoeffding upper and lower bounds. Finally, we can use
the sensitivity results for Sεε , with values of ρ ∈ [0, 1]:

R2
τ (ρ) = Sδδ

Sδδ + Sεε(ρ)
.

5. Noncompliance

5.1. Setup

We now extend our results to allow for noncompliance. Let T be
the indicator of treatment assigned, D be the indicator of treat-
ment received,Y be outcome of interest, and X be pretreatment
covariates. Under the Stable Unit Treatment Value Assumption,
we define Di(t ) and Yi(t ) as the potential outcomes for unit i
under treatment assignment t. Following Angrist, Imbens, and
Rubin (1996) and Frangakis and Rubin (2002), we can classify
units into four compliance types based on the joint values of
Di(1) and Di(0):

Ui =

⎧
⎪⎪⎨

⎪⎪⎩

Always Taker (a) if Di(1) = 1,Di(0) = 1,
Never Taker (n) if Di(1) = 0,Di(0) = 0,
Complier (c) if Di(1) = 1,Di(0) = 0,
Defier (d) if Di(1) = 0,Di(0) = 1.

Denote nu and πu as the number and proportion of compliance
types πu of stratumU = u for u = a, n, c, d.

Throughout our discussion, we invoke the following assump-
tions which are commonly used for analyzing randomized
experiments with noncompliance.

Assumption 1. (i) Monotonicity: Di(1) ≥ Di(0); (ii) Exclusion
restrictions for Always Takers and Never Takers: Yi(1) = Yi(0)
for all units with Di(1) = Di(0); (iii) Strong instrument: πc >

C0 > 0, whereC0 is a positive constant independent of the sam-
ple size.

Monotonicity rules out the existence of Defiers, that is,
πd = 0. Under monotonicity, we can estimate the proportion
πu using the observed counts of units classified by T and D: let
ntd = #{i : Ti = t,Di = d}, and then%πn = n10/n1,%πa = n01/n0,
and %πc = n11/n1 − n01/n0. The exclusion restrictions assume
that treatment assignment has no effect on the outcome for
Always Takers and Never Takers. As a result, treatment effect
variation is trivially zero for Always Takers and Never Takers.
Note that this is the unit-level exclusion restriction imposed
in Angrist, Imbens, and Rubin (1996). This can be relaxed in
other settings, for example, we could assume the impact of
randomization for these groups is zero on average (see Imbens
and Rubin 2015). Finally, to avoid technical complexity, we
rule out the weak instrument case (Bound, Jaeger, and Baker
1995; Staiger and Stock 1997), that is, πc is within a small
neighborhood of 0 with radius shrinking to 0.

We are interested in treatment effect variation among Com-
pliers, which motivates the following decomposition:

τi = Yi(1) − Yi(0) =
6
0, if Ui = a or n,
X T

iβc + εi, if Ui = c, (12)

where βc is the regression coefficient of τi on X i among Compli-
ers, analogous to (3).

5.2. Systematic Treatment Effect Variation Among
Compliers

... Randomization Inference
We now extend the results of Section 3 to estimate systematic
treatment effect variation among Compliers. Define

Sxx,u = 1
nu

n$

i=1

I(Ui=u)X iX T
i , Sxt,u = 1

nu

n$

i=1

I(Ui=u)Yi(t )X i,

(t = 0, 1; u = a, c, n).

Then, analogous to (5),

βc = S− 1xx,c(Sx1,c − Sx0,c) = S− 1xx,cSx1,c − S− 1xx,cSx0,c ≡ γ1c − γ0c,

(13)

where

γ1c = S− 1xx,cSx1,c, γ0c = S− 1xx,cSx0,c

are the linear regression coefficients ofY (1) andY (0) on covari-
ates among Compliers.

Unlike in the ITT case, we cannot estimate these quanti-
ties directly. Instead, following standard results from noncom-
pliance (e.g., Angrist, Imbens, and Rubin 1996; Abadie 2003;
Angrist and Pischke 2008), we use estimates from observed sub-
groups to estimate the desired quantities of interest. Define sam-
ple moments:

%Sxx,td = 1
nt

n$

i=1

I(Ti=t )I(Di=d)X iX T
i ,

%Sxt,td = 1
nt

n$

i=1

I(Ti=t )I(Di=d)Y obs
i X i (t, d = 0, 1). (14)

The following theorem connects these quantities with the finite
population quantities in (13).

Theorem 6. Over all possible randomizations of a com-
pletely randomized experiment, both %Sxx(1) =%Sxx,11 − %Sxx,01
and%Sxx(0) =%Sxx,00 − %Sxx,10 are unbiased for πcSxx,c, and

E(%Sx1,11 − %Sx0,01) = πcSx1,c, E(%Sx0,00 − %Sx1,10) = πcSx0,c.
(15)

This theorem shows that we can obtain unbiased esti-
mates for all terms in (13). The following corollary shows
that we can then obtain consistent estimates for γ1c, γ0c,
and βc, recalling that in the asymptotic analysis, we need to
embed {(X i,Yi(1),Yi(0),Di(1),Di(0),Ti)}ni=1 into a hypothet-
ical sequence of finite populations under Condition 1 and the
following Condition 2.

Condition 2. Both Sxx,c and its limit have full-rank K.

Condition 2 holds if and only if any linear combination of X ,
l⊤X with l ̸= 0, has positive finite population variance among
Compliers. Condition 2 is effectively the finite population ver-
sion of ruling outweak instruments in the two-stage least-square
estimate with treatment-covariate interactions (e.g., Angrist and
Pischke 2008).
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Corollary 3. %γ1c,RI =%S− 1xx (1)(%Sx1,11 − %Sx0,01) and %γ0c,RI =
%S− 1xx (0)(%Sx0,00 − %Sx1,10) are consistent for γ1c and γ0c. Further-
more,%βc,RI =%γ1c,RI − %γ0c,RI is consistent for βc and follows an
asymptotic normal distribution with covariance matrix

cov(%βc,RI)

= (πcSxx,c)− 1
'
S{e′(1)X}

n1
+ S{e′(0)X}

n0
− S(εX )

n

(
(πcSxx,c)− 1,

(16)

where we define the residual potential outcomes to be:

e′i(1) =

⎧
⎨

⎩

Yi(1) − X T
i γ1c,

Yi(1) − X T
i γ0c,

Yi(1) − X T
i γ1c,

e′i(0) =

⎧
⎨

⎩

Yi(0) − X T
i γ1c, Ui = a,

Yi(0) − X T
i γ0c, Ui = n,

Yi(0) − X T
i γ0c, Ui = c.

(17)

The idiosyncratic variation is εi = e′i(1) − e′i(0) for unit i,
with εi = 0 for Never Takers and Always Takers, and with εi for
Compliers as in (12). The two sets of residuals are not formed
from a regression on all units, but instead the population regres-
sion on Compliers alone. As in the ITT case, we can estimate
S{e′(1)X} and S{e′(0)X} using their sample analogs; S(εX ),
however, is unidentifiable. For units with Di = 1, we define
the residual %e′i = Y obs

i − X T
i%γ c1,RI, and for units with Di = 0,

we define the residual%e′i = Y obs
i − X T

i%γ c0,RI. Therefore, we can
obtain a conservative estimate for the asymptotic covariance
(16) by the following sandwich form:

&cov(%βc,RI) =%S− 1xx (1)

)
%S1(%e′X )

n1

*
%S− 1xx (1)

+%S− 1xx (0)

)
%S0(%e′X )

n0

*
%S− 1xx (0).

As with the ITT analog, so long as we have Assumption 1, ran-
domization itself fully justifies the theorem and estimators with-
out relying on a model of the observed outcomes.

... Two-Stage Least Squares
We now turn to the standard two-stage least-square (TSLS)
setting in econometrics (e.g., Angrist and Pischke 2008). First,
we impose a linear regression model with treatment-covariate
interactions:

Y obs
i = X T

i γ + DiX T
iβ + ui (i = 1, . . . , n).

Here, the randomness of the observed outcome comes from
the randomness of Di and ui. In the language of econometrics,
the treatment received is “endogenous,” that is, Di and the error
term ui are assumed to be correlated; we therefore use Ti as an
instrument for Di. The TSLS estimates (%γTSLS,

%βTSLS) are the
solutions to the following estimating equations:

n− 1
n$

i=1

0
X i
TiX i

1
(Y obs

i − X T
i%γTSLS − DiX T

i
%βTSLS) = 0. (18)

This approach is based onM-estimation, though there aremany
other ways to formalize the TSLS estimator (e.g., Imbens 2014).
The following theorem shows that the fully interacted TSLS
estimator%βTSLS is consistent for βc across randomizations.

Theorem 7. Over all randomizations, the TSLS estimator%βTSLS
follows an asymptotic normal distribution with mean βc and
covariance matrix

(πcSxx,c)− 1
'
S{e′′(1)X}

n1
+ S{e′′(0)X}

n0
− S(εX )

n

(
(πcSxx,c)− 1,

where we define the residual potential outcomes to be

e′′i (1) =

⎧
⎨

⎩

Yi(1) − X T
i (γ∞ + βc), Ui = a,

Yi(1) − X T
i γ∞, Ui = n

Yi(1) − X T
i (γ∞ + βc), Ui = c,

e′′i (0) =

⎧
⎨

⎩

Yi(0) − X T
i (γ∞ + βc), Ui = a,

Yi(0) − X T
i γ∞, Ui = n

Yi(0) − X T
i γ∞, Ui = c,

where γ∞ is the probability limit of the TSLS regression coef-
ficient, %γTSLS, and the idiosyncratic treatment effect is εi ≡
e′′i (1) − e′′i (0).

For variance estimation, define the residual as%e′′i = Y obs
i −

X T
i (%γTSLS +%βTSLS) for units with Di = 1 and %e′′i = Y obs

i −
X T

i%γTSLS for units with Di = 0. We can then use the following
sandwich variance estimator:

&cov(%βTSLS) =%S− 1xx (1)

)
%S1(%e′′X )

n1

*
%S− 1xx (1)

+%S− 1xx (0)

)
%S0(%e′′X )

n0

*
%S− 1xx (0),

which has the same probability limit as theHuber–White covari-
ance estimator for %βTSLS. Therefore, the randomization itself
effectively justifies the use of TSLS for estimating systematic
treatment effect variation among Compliers, extending our ITT
results.

Finally, while%βTSLS is a consistent estimator for βc,%γTSLS is
not, in general, a consistent estimator for γ c0, that is, γ∞ ̸= γ c0.
Instead,%γTSLS converges to γ∞ = S− 1xx Sx0 − πaS− 1xx Sxx,aβc. In the
special case of one-sided noncompliance (i.e., πa = 0), γ∞ =
γ0 = S− 1xx Sx0, the population OLS regression coefficient, among
all Compliers and Never Takers, ofY (0) on covariates.

... Omnibus Test for Systematic Treatment Effect
Variation Among Compliers

With point estimate%β and covariance estimate &cov(%β) for βc, we
can use the same Wald-type χ2 test as in (10) for the presence
of systematic treatment effect variation among Compliers. Here,
the estimator can be either randomization-based%βc,RI or TSLS
estimator %βTSLS; the degrees of freedom are the same, K − 1.
Unlike in the ITT case, we are not aware of existing tests for sys-
tematic treatment effect variation among Compliers.

5.3. Idiosyncratic Treatment Effect Variationwith
Noncompliance

... Bounding Idiosyncratic Variation
We now turn to decomposing the overall treatment effect in
the presence of noncompliance. In this setting, we have three
sources of treatment effect variation: (i) systematic treatment
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effect variation among Compliers, (ii) idiosyncratic treatment
effect variation amongCompliers, and (iii) treatment effect vari-
ation due to noncompliance.

First, recall that total treatment effect variation is
Sττ =

#n
i=1(τi − τ )2/n. We can define a similar quantity

among Compliers:

Sττ,c = 1
nc

n$

i=1

I(Ui=c)(τi − τc)
2.

As in Section 4, we can decompose this variation into system-
atic and idiosyncratic treatment effect variation for Compliers,
respectively:

Sδδ,c = 1
nc

n$

i=1

I(Ui=c)(δi − τc)
2, Sεε,c = 1

nc

n$

i=1

I(Ui=c)ε
2
i .

Because treatment effects for Never Takers and Always Takers
are zero, there is no treatment effect variation for these units.
The component of treatment effect variation due to compliance
status is

Sττ,U =
$

u=c,a,n
πu(τu − τ )2.

Using τa = τn = 0 and τ = πcτc due to the exclusion restric-
tions, we have the following theorem summarizing the relation-
ships among the above components.

Theorem 8. Sττ = πcSττ,c + Sττ,U , Sττ,c = Sδδ,c + Sεε,c, and
Sττ,U = πc(1 − πc)τ

2
c .

In words, total treatment effect variation has three parts: (i)
systematic treatment effect variation among Compliers, πcSδδ,c;
(ii) idiosyncratic treatment effect variation among Compliers,
πcSεε,c; (iii) treatment effect variation due to noncompliance,
Sττ,U .

As in the ITT case, even though Sεε,c is not identifiable,
we can derive bounds in terms of the marginal distributions
of the residuals, {e′i(1) = Yi(1) − X T

i γ1c : Ui = c, i = 1, . . . , n}
and {e′i(0) = Yi(0) − X T

i γ0c : Ui = c, i = 1, . . . , n}, denoted by
F1c(y) andF0c(y), andwithmarginal variances,V1c andV0c.Once
we estimate these quantities, we can plug them in to Theorem 4
and Corollary 1 to get our bounds. As compliance status is only
partially observed, we have to estimate these quantities by dif-
ferencing observed distributions; we defer this and some other
technical details to the supplementary material.

... Treatment Effect Decomposition
Since there are two sources of variation—covariates and
noncompliance—there are three possible R2-type measures.
First, we can measure the treatment effect variation explained
by noncompliance alone (i.e., onlyU ):

R2
τ,U = Sττ,U

Sττ

= Sττ,U

Sττ,U + πcSττ,c
= Sττ,U

Sττ,U + πcSδδ,c + πcSεε,c
.

Second, we can measure the proportion of treatment effect vari-
ation among Compliers explained by covariates (i.e., only X):

R2
τ,c = Sδδ,c

Sττ,c
= Sδδ,c

Sδδ,c + Sεε,c
.

Third, we can measure the treatment effect variation explained
by covariates and noncompliance (i.e., both X andU ):

R2
τ,UX = Sττ,U + πcSδδ,c

Sττ

= Sττ,U + πcSδδ,c

Sττ,U + πcSδδ,c + πcSεε,c
.

For eachmeasure, we can use tailored versions of Corollary 1
to construct bounds, or conduct sensitivity analysis as in Section
4.2, with the sensitivity parameter expressed as the Spearman
correlation between the treatment and control potential out-
comes among Compliers.

6. Simulation Study

6.1. ITT Estimators

We simulate completely randomized experiments to evaluate
the finite sample performance of the tests for systematic treat-
ment effect variation based on %βOLS, %βRI, and %β

w

RI, the model-
assisted version discussed in the supplementary material. Our
data generation process is inspired by the Head Start Impact
Study (HSIS) study analyzed in the next section. For a given
sample size, we first generate four independent covariates (X1,
a standard normal, X2, a binary covariate with probability 0.5
being 1, X3, a binary covariate with probability 0.25 being 1, and
X4, a standard normal). The control potential outcomes are then
generated from

Yi(0) = 0.3 + 0.2X1i + 0.3X2i − 0.4X3i

+ 0.8X4i + ui, ui ∼ N (0, σ 2).

We select σ 2 = 0.26 to make the marginal variance for the con-
trol potential outcomes 1; thuswe can interpret impacts in “effect
size” units. The R2 of regressing Y (0) onto the covariates is
approximately 0.74, due to the “pretest”-like variable X4i. With-
out X4i, the R2 is about 0.09.

The treatment effects are τi = δi + εi, with (i) either δi = 0.3
for all i, or δi = 0.2 + 0.1X1i + 0.4X3i; and (ii) either εi = 0 for
all i, or εi ∼ N (0, 0.22). All combinations of these two options
give the four cases of (a) no treatment effect variation, (b) only
systematic variation, (c) idiosyncratic variation with no system-
atic variation, and (d) both systematic and idiosyncratic varia-
tion. For anα-level test of systematic variation, scenarios (a) and
(c) should only reject at rate α, while we would like to see high
rejection rates for scenarios (b) and (d). For scenario (d), the R2

τ

is about 0.5; systematic variation explains a good share of the
overall variation.

To generate a synthetic dataset, we generated all potential
outcomes, randomized units into treatment with probability 0.6,
and then calculated the corresponding observed outcomes. We
then conducted a test for systematic variation using each of our
three estimators. For %βRI and %βOLS, we use X1,X2,X3. For our
covariate-adjusted estimator%βw

RI, we also include the fairly pre-
dictive X4 for adjustment.
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Figure . Power of the tests based on%βRI,
%βOLS, and

%βw
RI .

Figure 1 shows the power of these tests, with significance level
α = 0.05, for different sample sizes. First, all estimators appear
asymptotically valid, consistent with the theoretical results. The
OLS and adjusted estimators are slightly anti-conservative for
small n, however, with rejection rates of around 9%. Second, the
OLS estimator appears to have the greatest power in this setting,
which is unsurprising since the true data-generating process is a
linear model. Finally, covariate adjustment slightly improves the
power of the RI estimator. Overall, in the scenarios we consider,
we only achieve decent levels of power in large samples, although
there seems to be reasonable power for the sample size in the
data application, n = 3586.

6.2. LATE Estimators

We next simulate completely randomized experiments with
noncompliance to evaluate the finite sample performance of the
tests for systematic treatment effect variation among Compliers
based on%βc,RI and%βTSLS. We first generated a complete dataset
as in the ITT case above, and then assigned stratamembership to
all units with probabilities proportional to their covariates. For
Always Takers, we then setYi(0) = Yi(1), and for Never Takers,
Yi(1) = Yi(0). The overall ITT is now reduced to 0.21 (due to
the 0 effects of Never Takers and Always Takers), although the
CACE is still approximately 0.3. The proportion of Compliers is
approximately 68%.

The Compliers have the systematic and idiosyncratic effects
described as above.We tested for the presence of systematic vari-
ation for Compliers under the exclusion restrictions. Figure 2
shows the power of these tests for our RI and TSLS estimators.
First, in this scenario, the 2SLS and the RI estimators are vir-
tually equivalent; the additional adjustment provided by TSLS
does not add significantly to the precision. We see the tests are
valid (they even appear conservative) for cases (a) and (c). Power
is reduced compared to the ITT simulation; this is reasonable
as power is effectively a function of the number of Compliers,

with additional uncertainty due to partial information about the
identity of Compliers.

7. Application to the Head Start Impact Study

Established in 1965, Head Start is the largest Federal preschool
program in the United States, serving nearly 1 million
low-income 3- and 4-year-old children each year at a cost
of over $7 billion (Administration for Children and Families
2015). Researchers and policymakers have debated Head Start’s
effectiveness since its inception, with early randomized trials
finding limited impacts (e.g., Westinghouse Learning Corpo-
ration 1969) and quasi-experimental studies showing much
larger effects (e.g., Currie and Thomas 1995). Designed in part
to settle this debate, the Head Start Impact Study (HSIS) is a
large-scale, nationally representative randomized trial of Head
Start first launched in 2002 (Puma et al. 2010). The Congres-
sional mandate for HSIS included two broad questions: (1)
the program’s overall impact, and (2) how impacts vary across
children and centers. The policy debate has largely focused on
this first question; HSIS only found modest average effects on
a range of children’s cognitive and social-emotional outcomes.
However, both the original study and several recent articles
argue that these topline results mask important treatment effect
variation (e.g., Bloom and Weiland 2014; Bitler, Hoynes, and
Domina 2014; Walters 2015; Ding, Feller, and Miratrix 2016;
Feller et al. 2016). Understanding such variation is critical both
for assessing the program’s benefits and costs and for improving
the practice and science of early childhood education.

HSIS collected a rich set of covariates about children and
their families, including pretest score, child’s age, child’s race,
child’s home language, mother’s education level, and mother’s
marital status. At the same time, many potentially important
covariates are unavailable. For instance, while families must be
low-income to be eligible for Head Start, HSIS does not include
information on families’ actual income nor other financial
details that could be important predictors of program impact.
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Figure . Power of the tests based on%βc,RI and
%βTSLS.

In addition, Feller et al. (2016) and others argue that the setting
in which a child would otherwise receive care is an impor-
tant source of impact variation, although this is not directly
observable.

We now use the methods outlined above to assess treat-
ment effect variation in HSIS. The original study included n =
4400 total children, with n1 = 2644 in the treatment group and
n0 = 1796 in the control group. Following earlier analy-
ses (Ding, Feller, and Miratrix 2016) and to simplify exposi-
tion, we restrict our attention to a complete-case subset of the
HSIS, with n1 = 2238 in the treatment group and n0 = 1348 in
the control group (so p1 ≈ 0.62 and p0 ≈ 0.38). Our outcome
of interest is the Peabody Picture Vocabulary Test (PPVT), a
widely used measure of cognitive ability in early childhood. To
assess treatment effect variation, we consider the full set of child-
and family-level covariates used in the original HSIS analysis
of Puma et al. (2010), including those mentioned above. After
creating dummy variables for factors (e.g., recoding race), the
covariate matrix has 17 columns. See Figure 3(b) for a complete
list.

7.1. Decomposing Variation in the ITT Effect

We first explore treatment effect variation for the ITT estimate,
beginning with estimating systematic treatment effect varia-
tion. We examine three estimators: the randomization-based
and OLS estimators discussed in Section 3, %βRI and %βOLS, and
the corresponding model-assisted version of the RI estimator
discussed in the supplementarymaterial,%βw

RI. For this latter esti-
mator, we use all available covariates to adjust the standard esti-
mators, that is,W is the entire vector of covariates.

Omnibus Test for Systematic Treatment Effect Variation. We
begin by using these estimators for an omnibus test of whether
any treatment effect variation is explained by the full set of
covariates. The p-values for the unadjusted %βRI estimator and
model-assisted%βw

RI are 0.39 and 0.25, respectively, which do not
show any evidence of treatment effect variation. The OLS esti-
mator, however, shows much stronger evidence with p = 0.005.

Importantly, all three estimators are based on the same
underlying assumptions: the randomization itself justifies all
three p-values. And while we expect the unadjusted%βRI to have

Figure . Treatment effect R2τ , with sensitivity parameter, ρ ∈ [0, 1].
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the lowest power, it is instructive that the p-value for %βOLS is
substantially smaller than the p-value for the covariate-adjusted
%βw

RI. As we discuss in Section 3.2,%βOLS can account for covariate
imbalance across experimental arms by estimating the Sxx
matrix separately for the treatment and control groups. By
contrast, %βRI does not address imbalance in X and instead
attempts to residualize out the Y to get a more precise estimate
of the relationship of the X to Y for each treatment arm. Based
on the discrepancy in p-values, adjusting for baseline imbalance
is clearly important in this example.

Treatment Effect R2
τ .Next, we examine howmuchof the varia-

tion could be explained by our covariates. Figure 3(a) shows val-
ues of the treatment effectR2

τ using%β
w

RI to estimate the systematic
variation. Results are nearly identical using the other estimators.
In theworst case of perfect negative dependence between poten-
tial outcomes (not shown), the treatment effect R2

τ could be
as low as 0.01. Assuming that this dependence is nonnegative,
the treatment effect R2

τ ranges from 0.03 to 0.76. While the
estimate is clearly sensitive to the unidentifiable sensitivity
parameter, the covariates explain a substantial proportion of
treatment effect variation for values of ρ near 1.

We can also use this framework to assess the relative impor-
tance of each covariate in terms of explaining overall treatment
effect variation. To do this, we use the model-assisted RI esti-
mator,%βw

RI, adjusting for all covariates (i.e., dim(W ) = 17) but
restricting systematic treatment effect variation to one covariate
at a time. Note that we consider factors (e.g., race) as a group.
Figure 3(b) shows the resulting estimates for the upper bound of
R2

τ , with lower bound estimates all below 0.01. Having a mother
who is a recent immigrant and dual language learner status
(which are highly correlated in practice) could each explain a
substantial proportion of treatment effect variation, consistent
with previous results fromBloomandWeiland (2014) andBitler,
Hoynes, and Domina (2014). This is not true for other covari-
ates, like mother’s education level.

Negative Correlation Between Treatment Effect and Control
Potential Outcomes. Finally, we test whether the individual-
level idiosyncratic treatment effects, {εi}ni=1, are negatively corre-
lated with the control potential outcomes, {Yi(0)}ni=1, extending
results from Raudenbush and Bloom (2015). As outlined in the
supplementary material, we do so by testing whether the vari-
ance of {Y obs

i − X T
i
%βw

RI : Ti = 1} is smaller than the variance of
{Y obs

i : Ti = 0}. This yields a p-value of 0.02, which suggests that
the unexplained treatment effect is indeed larger for smaller val-
ues of the control potential outcomes. This result is consistent
with findings from Bitler, Hoynes, and Domina (2014) who use
a quantile treatment effect approach.

7.2. Incorporating Noncompliance

As with many social experiments, there is substantial noncom-
pliance with random assignment in HSIS. In the analysis sample
we consider here, the estimated proportion of compliance types
is %πc = 0.69 for Compliers, %πa = 0.13 for Always Takers, and
%πn = 0.18 for Never Takers. Given the exclusion restrictions for
Always Takers andNever Takers, the treatment effect is therefore
zero (by assumption) for over 30% of the sample, suggesting that
noncompliance will be an important component of treatment
effect variation.

In the setting with noncompliance, we focus on two estima-
tors for systematic treatment effect variation among Compliers:
the randomization-based estimator, %βc,RI, and the two-stage
least-squares estimator, %βTSLS. We first use these estimators to
construct omnibus tests for systematic treatment effect varia-
tion among Compliers. Tests using both estimators show strong
evidence for such variation, with p-value 0.02 using %βc,RI and
p-value 0.01 using%βTSLS.

Finally, we turn to decomposing the overall treatment effect.
As in the ITT case, we assume that the potential outcomes
have a nonnegative correlation. Figure 3(a) shows the treatment
effect R2 among Compliers, which ranges from R2

τ,c = 0.05 to
R2

τ,c = 0.68. Next, we can calculate treatment effect variation
due to noncompliance, R2

τ,U . In the case of HSIS, this is rela-
tively small—between 0.01 and 0.16—in part because the overall
treatment effect is fairly small. Therefore, the overall treatment
effect decomposition due to both covariates and noncompli-
ance, R2

τ,UX , is quite close to R2
τ,c, as shown in Figure 3(a). Taken

together, these estimates suggest that there is indeed important
treatment effect variation that is neither captured by pretreat-
ment covariates nor by noncompliance, consistent with previous
results in Ding, Feller, and Miratrix (2016).

8. Conclusion

In this article, we propose a broad, flexible framework for assess-
ing and decomposing treatment effect variation in random-
ized experiments with and without noncompliance. In general,
we believe this is a natural setup for researchers to formulate
and investigate a broad range of questions about impact het-
erogeneity (e.g., Heckman, Smith, and Clements 1997). Appli-
cations include assessing underlying causal mechanisms and
targeting treatments based on individual-level characteristics.
Understanding such variation is also important for the design
of experiments. Djebbari and Smith (2008), for example, argued
that characterizing the size of the idiosyncratic treatment effect
is useful for determining the value of additional data collection.

We briefly note several directions for future work. First,
our primary purpose was to propose a framework for analysis
rooted in and justified by the randomization itself. As a result,
we focused on the core properties of several relatively simple
versions of linear regression and TSLS. We did not, however,
fully explore their practical and finite-sample properties. For
example, in future work, we hope to determine the settings
in which model assistance will most improve estimation and
assess the increased power of the OLS approach versus the
unbiased RI approach. We are also investigating how to connect
model-assisted and OLS approaches to take advantage of both
methods of precision gain. Similarly, there is still much potential
improvement in determining ways of characterizing the degree
of heterogeneity, such as with an effect size for the systematic
variation.

Second, a natural extension is to use more complex methods
to estimate systematic treatment effects, such as via hierarchi-
cal models (Feller and Gelman 2015) or via machine-learning
methods (Wager and Athey 2017), extending the results for
the omnibus test and treatment effect R2

τ accordingly. While
the guarantees from randomization are clearly weaker in such
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settings, researchers can assess these tradeoffs themselves. For
example, hierarchicalmodelingwould be especially useful in the
Head Start Impact Study due to themulti-site design (Bloomand
Weiland 2014).

Third, a question of increasing practical importance is the
generalizability of experimental results to a given target popu-
lation (Stuart et al. 2011). We believe that the treatment effect
R2

τ is a critical measure for assessing the credibility of these gen-
eralizations. In short, if there is substantial idiosyncratic treat-
ment effect variation, that is,R2

τ is small, then researchers should
be wary of using observed covariates to extrapolate treatment
effects.

Finally, a question is how to extend this treatment effect vari-
ation framework to nonrandomized settings. While the results
would necessarily rest on much stronger assumptions, many
settings already use an as-if-randomized framework, such as
in observational studies (Rosenbaum 2002; Imbens and Rubin
2015). Under this approach, extensions should be natural.
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Supplementary Material for
“Decomposing Treatment E↵ect Variation”

by Peng Ding, Avi Feller and Luke Miratrix

Appendix A gives all the proofs and Appendix B provides the additional commentary mentioned

in the main text. The finite population central limit theorem (FPCLT) we use for our asymptotic

proofs is Theorem 5 of Li and Ding (2017), which requires some mild moment conditions on the

covariates and potential outcomes, as outlined in the main text.

Appendix A Lemmas and Proofs

Before we prove Theorem 1, we provide a few lemmas to ease the notational burden and amount of

algebra of subsequent calculations. These lemmas allow us to derive expressions for our estimators

in terms of matrix algebra rather than the summation-style approach typically seen for Neyman-

style derivations in the literature.

To begin, let 1n = (1, . . . , 1)T and 0n = (0, . . . , 0)T be column vectors of length n, and In be the

n ⇥ n identity matrix. Then Sn = In � n�1
1n1

T
n is the projection matrix orthogonal to 1n with

Sn1n = 0n. Under this formulation, the covariance matrix of the treatment assignment vector is a

scaled projection matrix orthogonal to 1n, as shown in the following lemma.

Lemma A.1. The treatment assignment vector T of a completely randomized experiment has

E(T ) =
n1

n
1n, cov(T ) =

n1n0

n(n� 1)
Sn.

Proof of Lemma A.1. The conclusions follow from

E(Ti) =
n1

n
, var(Ti) =

n1n0

n2
, cov(Ti, Tj) = � n1n0

n2(n� 1)
, (i 6= j).

The projection matrix Sn acts as a covariance operator as illustrated by the following lemma.

Lemma A.2. Let Ui,Vi 2 RK be column vectors of length K. Define U = [U1,U2, . . . ,Un] and

V = [V1,V2, . . . ,Vn] 2 RK⇥n as two matrices of dimension K ⇥ n. If Ū = n�1
Pn

i=1
Ui = n�1U1

and V̄ = n�1
Pn

i=1
Vi = n�1V1, then

USnVT =
nX

i=1

(Ui � Ū)(Vi � V̄ )T. (A.1)

1



In particular, when Ui = Vi,

VSnVT =
nX

i=1

(Vi � V̄ )(Vi � V̄ )T = (n� 1)S(V ).

Proof of Lemma A.2. The left hand side of (A.1) is equal to

USnVT = UVT � n�1 (U1n) (V1n)T =
nX

i=1

UiV
T
i � n�1(nŪ)(nV̄ )T =

nX

i=1

UiV
T
i � nŪ V̄

T,

which is the same as the right hand side of (A.1).

Theorem 1: A generalized, vector-outcome version of Neyman. To prove the generalized

Neyman result, we bundle our vector potential outcomes into matrices and use the above lemmas

to obtain their covariance matrix. The theorem is exact, no asymptotics. Using the FPCLT to

show that the estimator has an approximately Normal distribution, allowing for classic testing and

inference, is a separate, subsequent step.

Proof of Theorem 1. Define V1 = [V1(1), . . . ,Vn(1)] and V0 = [V1(0), . . . ,Vn(0)] as the matrices of

the potential outcomes. Then the Neymanian simple di↵erence in means estimator has the following

representation:

b⌧V = V̄
obs

1 � V̄
obs

0

=
1

n1

nX

i=1

TiVi(1)�
1

n0

nX

i=1

(1� Ti)Vi(0)

=
1

n1

V1T � 1

n0

V0 (1� T )

=

✓
V1

n1

+
V0

n0

◆
T � 1

n0

V01.

Now the unbiasedness of b⌧V follows from the linearity of the expectation and Lemma A.1. For

the covariance, note the second term in the above is constant, and so is not involved. Applying

Lemmas A.1 and A.2, we can obtain the covariance matrix of b⌧V :

cov(b⌧V ) =

✓
V1

n1

+
V0

n0

◆
cov(T )

✓
V1

n1

+
V0

n0

◆T

=
n1n0

n(n� 1)

✓
V1

n1

+
V0

n0

◆
Sn

✓
V1

n1

+
V0

n0

◆T

=
n1n0

n(n� 1)

✓
1

n2
1

V1SnVT
1 +

1

n2
0

V0SnVT
0 +

1

n1n0

V0SnVT
1 +

1

n1n0

V1SnVT
0

◆

=
n0

nn1

S{V (1)}+ n1

nn0

S{V (0)}+ 1

n(n� 1)
(V0SnVT

1 + V1SnVT
0).

2



To simplify the third term, we use the fact abT + ba
T = aa

T + bb
T � (a� b)(a� b)T for two column

vectors a and b, we have

{Vi(1)� V̄ (1)}{Vi(0)� V̄ (0)}T + {Vi(0)� V̄ (0)}{Vi(1)� V̄ (1)}T

= {Vi(1)� V̄ (1)}{Vi(1)� V̄ (1)}T + {Vi(1)� V̄ (1)}{Vi(1)� V̄ (1)}T

�{Vi(1)� Vi(0)� V̄ (1) + V̄ (0)}{Vi(1)� Vi(0)� V̄ (1) + V̄ (0)}T.

Summing over i = 1, . . . , n and applying Lemma A.2, we have

V0SnVT
1

n� 1
+

V1SnVT
0

n� 1
= S{V (1)}+ S{V (0)}� S{V (1)� V (0)}.

Therefore, the covariance of b⌧V can be simplified as:

cov(b⌧V ) =
n0

nn1

S{V (1)}+ n1

nn0

S{V (0)}+ 1

n
[S{V (1)}+ S{V (0)}� S{V (1)� V (0)}]

=
S{V (1)}

n1

+
S{V (0)}

n0

� S{V (1)� V (0)}
n

.

Theorem 2: Behavior of b�RI. To show properties of b�RI we express the systematic variation

as a vector of new potential outcomes of the original outcome scaled by the di↵erent covariates of

interest. This allows for immediate use of Theorem 1.

Proof of Theorem 2. Because bSxt is the sample mean for {XiY obs

i : Ti = t, i = 1, . . . , n} =

{XiYi(t) : Ti = t, i = 1, . . . , n}, it is unbiased for the population mean Sxt. Thus, the estima-

tor b�RI is also unbiased for � as S�1
xx is fixed and the expectation is linear. Its sampling covariance

over all possible randomizations is

cov(b�RI) = S
�1

xx cov( bSx1 � bSx0)S
�1

xx .

Therefore, we need only to obtain the covariance of

bSx1 � bSx0 =
1

n1

nX

i=1

TiXiY
obs

i � 1

n0

nX

i=1

(1� Ti)XiY
obs

i ,

which is the di↵erence between the sample means of {XiYi(1) : i = 1, . . . , n} and {XiYi(0) : i = 1, . . . , N}

under treatment and control. Viewing XiY obs

i as a vector outcome in a completely randomized

experiment, we can apply Theorem 1 to obtain

cov( bSx1 � bSx0) =
S{XY (1)}

n1

+
S{XY (0)}

n0

� S(X⌧)

n
,

3



which completes the proof.

Theorem 3: Behavior of b�OLS. We first use the well-known fact that the estimate from a

OLS model with treatment fully interacted with covariates is equivalent to separate regressions of

outcome onto covariates for the control and treatment groups. This means we can obtain b�OLS

by running a regression of Y obs onto X using the control group data, and \(� + �)
OLS

by running

regression of Y obs onto X using the treatment group data, giving estimated coe�cients of

b�OLS = bS�1

xx,0
bSx0

and

b�OLS = bS�1

xx,1
bSx1 � bS�1

xx,0
bSx0.

As a quick heuristic argument for this, consider that the maximization problem for the interacted

model will separate into two components, one for each group. Then re-parameterize to get the

above.

We now prove the properties of b�OLS. Here we have to use asymptotics for the entire theorem,

unlike the case of b�RI, where the mean and covariance are exact and the asymptotics are only

needed for the asymptotic normality of the estimator.

Proof of Theorem 3. First expand the di↵erence of b�OLS and � as

b�OLS � � = bS�1

xx,1(
bSx1 � bSxx,1�1)� bS�1

xx,0(
bSx0 � bSxx,0�0),

This will be close to the related quantity of

� = S
�1

xx ( bSx1 � bSxx,1�1)� S
�1

xx ( bSx0 � bSxx,0�0). (A.2)

For the above to make sense and hold, we here need our asymptotic framework. In particular,

we need the associated moment conditions described in the main text. We next observe that the

di↵erence between b�OLS � � and � is of higher order, because

(b�OLS � �)�� = ( bS�1

xx,1 � S
�1

xx )( bSx1 � bSxx,1�1)� ( bS�1

xx,0 � S
�1

xx )( bSx0 � bSxx,0�0) (A.3)

= OP (n
�1/2)OP (n

�1/2)�OP (n
�1/2)OP (n

�1/2) = OP (n
�1), (A.4)

following from the FPCLT for the four terms in (A.3). This is an argument commonly used in the

survey sampling literature for ratio estimators (Cochran, 1977).
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We next focus on the asymptotic distribution of �, because the asymptotic distribution of

b�OLS � � will be the same. Further simplify (A.2) as

� = S
�1

xx

"
1

n1

nX

i=1

TiXiei(1)�
1

n0

nX

i=1

(1� Ti)Xiei(0)

#
, (A.5)

where ei(1) = Yi(1)�X
T
i�1 and ei(0) = Yi(0)�X

T
i�0 are the residual potential outcomes. (To see

the above, note, for example, that both bSx1 and bSxx,1 are sums over the treatment units, and we

can factor out an Xi to get Xi times the di↵erence in the Yi and predicted Yi.)

Applying Theorem 1 to the vector outcome Xe, we obtain the covariance matrix of �, to which

b�OLS � � converges to due to (A.4). The asymptotic normality follows from the representation

(A.5) and the FPCLT.

Theorem 4: Bounds for R2
⌧ . To prove Theorem 4, we need to invoke the following Fréchet–

Hoe↵ding inequality (Hoe↵ding, 1941; Fréchet, 1951; Heckman et al., 1997; Aronow et al., 2014).

Lemma A.3. If we know only the marginal distributions of two random variables X ⇠ FX(x) and

Y ⇠ FY (y), then E(XY ) can be sharply bounded by
Z

1

0

F�1

X (u)F�1

Y (1� u)du  E(XY ) 
Z

1

0

F�1

X (u)F�1

Y (u)du.

Lemma A.3 immediately implies the following bound for var(X � Y ) if E(X � Y ) = 0.

Lemma A.4. If we know only the marginal distributions X ⇠ FX(x), Y ⇠ FY (y) and E(X�Y ) =

0, then var(X � Y ) can be sharply bounded by
Z

1

0

{F�1

X (u)� F�1

Y (u)}2du  var(X � Y ) 
Z

1

0

{F�1

X (u)� F�1

Y (1� u)}2du

Proof of Lemma A.4. The variance var(X � Y ) can be decomposed as

var(X � Y ) = E(X � Y )2 = E(X2) + E(Y 2)� 2E(XY ),

which depends on the following three terms:

E(X2) =
R
x2dFX(x) =

Z
1

0

{F�1

X (u)]}2du,

E(Y 2) =
R
1

0
{F�1

Y (u)}2du =

Z
1

0

{F�1

Y (1� u)}2du,
Z

1

0

F�1

X (u)F�1

Y (1� u)du  E(XY ) 
Z

1

0

F�1

X (u)F�1

Y (u)du.

Plug the above expressions into the variance of X � Y to obtain the desired bounds.
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Applying Lemma A.4, we can easily prove Theorem 4.

Proof of Theorem 4. Because S⌧⌧ = S�� + S"", we need only to bound S"", which is the finite

population variance of "i = {Yi(1) � X
T
i�1} � {Yi(0) � X

T
i�0} = ei(1) � ei(0). We can identify

the marginal distributions of {ei(1) : i = 1, . . . , n} and {ei(0) : i = 1, . . . , n}, and also know that

n�1
Pn

i=1
"i = 0. Therefore, the bounds in Lemma A.4 imply the bounds in Theorem 4.

Theorem 5: Sensitivity analysis.

Proof of Theorem 5. The joint distribution of (U1, U0) is

C(u1, u0) = P (U1  u1, U0  u0)

= ⇢P (U0  u1, U0  u0) + (1� ⇢)P (V0  u1, U0  u0)

= ⇢min(u1, u0) + (1� ⇢)u1u0.

Therefore, the distribution function C(u1, u0) is a weighted average of min(u1, u0) = CR(u1, u0)

and u1u0 = CI(u1, u0), i.e., the joint distributions when U1 = U0 and U1 U0, respectively.

According to Nelsen (2007, Theorem 5.1.6), Spearman’s rank correlation coe�cient between

e(1) and e(0) is

12

Z
1

0

Z
1

0

{C(u1, u0)� u1u0}du1du0 = 12⇢

Z
1

0

Z
1

0

{min(u1, u0)� u1u0}du1du0

= 12⇢

✓
2

Z
1

0

du1

Z u1

0

u0du0 �
1

4

◆

= 12⇢(1/3� 1/4) = ⇢.

To complete the proof of the theorem, we need only to show that the covariance between e(1)

and e(0) is linear in ⇢, which follows from

Z
1

0

Z
1

0

F�1

1
(u1)F

�1

0
(u0)dC(u1, u0)

= ⇢

Z
1

0

Z
1

0

F�1

1
(u1)F

�1

0
(u0)dCR(u1, u0) + ⇢

Z
1

0

Z
1

0

F�1

1
(u1)F

�1

0
(u0)dCI(u1, u0)

= ⇢

Z
1

0

F�1

1
(u)F�1

0
(u)du+ (1� ⇢)

Z
1

0

F�1

1
(u)du

Z
1

0

F�1

0
(u)du.
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Theorem 6: Extending to non-compliance. Theorem 6 shows how to estimate the outcome-

to-covariate relationships of the Compliers by estimating di↵erent aggregate covariance relationships

across all the strata for di↵erent observed groups and then taking di↵erences. Due to the exclusion

restriction for the Never Takers and Always Takers, this gives our desired relationships for the

Compliers only.

First, a small bit of notation of, due to the exclusion restrictions for Never Takers and Always

Takers, defining the population covariance between X and Y (1) = Y (0) within stratum U = a and

U = n as

Sx.,u =
1

nu

nX

i=1

I(Ui=u)XiYi(1) =
1

nu

nX

i=1

I(Ui=u)XiYI(0), (u = a, n).

Proof of Theorem 6. We first create an estimator for Sxx,c. From the observed data with (Ti, Di) =

(1, 1), we have

E

(
1

n1

nX

i=1

TiDiXiX
T
i

)
= E

(
1

n1

nX

i=1

TiI(Ui=a)XiX
T
i +

1

n1

nX

i=1

TiI(Ui=c)XiX
T
i

)

= ⇡aSxx,a + ⇡cSxx,c. (A.6)

Similar to (A.6), we have

E

(
1

n1

nX

i=1

Ti(1�Di)XiX
T
i

)
= ⇡nSxx,n, (A.7)

E

(
1

n0

nX

i=1

(1� Ti)DiXiX
T
i

)
= ⇡aSxx,a, (A.8)

E

(
1

n0

nX

i=1

(1� Ti)(1�Di)XiX
T
i

)
= ⇡nSxx,n + ⇡cSxx,c. (A.9)

Subtracting the left sides of (A.8) from (A.6), or subtracting the left sides of (A.7) from (A.9), give

unbiased estimators for ⇡cSxx,c.

Second, analogous to the Sxx,c, we consider the sample covariances between X and Y obs to

obtain estimators for Sx1,c and Sx0,c. From the observed data with (Ti, Di) = (1, 1), we have

E

(
1

n1

nX

i=1

TiDiXiY
obs

i

)
= E

(
1

n1

nX

i=1

TiI(Ui=a)XiYi(1) +
1

n1

nX

i=1

TiI(Ui=c)XiYi(1)

)

= ⇡aSx.,a + ⇡cSx1,c. (A.10)
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Similar to (A.10), we have

E

(
1

n1

nX

i=1

Ti(1�Di)XiY
obs

i

)
= ⇡nSx.,n, (A.11)

E

(
1

n0

nX

i=1

(1� Ti)DiXiY
obs

i

)
= ⇡aSx.,a, (A.12)

E

(
1

n0

nX

i=1

(1� Ti)(1�Di)XiY
obs

i

)
= ⇡nSx.,n + ⇡cSx0,c. (A.13)

Subtracting (A.12) from (A.10), and subtracting (A.11) from (A.13), we obtain the results in

(15).

Corollary 3: Behavior of b�c,RI. Theorem 6 shows how to obtain unbiased estimates of the

components of our estimator, which we can then plug in to obtain a consistent estimator of �c. We

next show how this plug-in estimator behaves.

Proof of Corollary 3. First we write

b�c,RI � �c = ( bSxx,11 � bSxx,01)
�1{ bSx1,11 � bSx0,01 � ( bSxx,11 � bSxx,01)�1c}

�( bSxx,00 � bSxx,10)
�1{ bSx0,00 � bSx1,10 � ( bSxx,00 � bSxx,10)�0c},

second we introduce

�c = (⇡cSxx,c)
�1{ bSx1,11 � bSx0,01 � ( bSxx,11 � bSxx,01)�1c}

�(⇡cSxx,c)
�1{ bSx0,00 � bSx1,10 � ( bSxx,00 � bSxx,10)�0c},

third we observed that the di↵erence between b�c,RI � �c and �c has higher order following the

same argument as (A.4). Therefore, we need only to find the asymptotic distribution of �c.
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Simple algebra gives

�c = (⇡cSxx,c)
�1

h 1

n1

nX

i=1

TiDiXiYi(1)�
1

n0

nX

i=1

(1� Ti)DiXiYi(0)

� 1

n1

nX

i=1

TiDiXiX
T
i�c1 +

1

n0

nX

i=1

(1� Ti)DiXiX
T
i�c1

� 1

n0

nX

i=1

(1� Ti)(1�Di)XiYi(0) +
1

n1

nX

i=1

Ti(1�Di)XiYi(1)

+
1

n0

nX

i=1

(1� Ti)(1�Di)XiX
T
i�c0 �

1

n1

nX

i=1

Ti(1�Di)XiX
T
i�c0

i

= (⇡cSxx,c)
�1

h 1

n1

nX

i=1

TiI(Ui=a)XiYi(1) +
1

n1

nX

i=1

TiI(Ui=c)XiYi(1)�
1

n0

nX

i=1

(1� Ti)I(Ui=a)XiYi(0)

� 1

n1

nX

i=1

TiI(Ui=a)XiX
T
i�c1 �

1

n1

nX

i=1

TiI(Ui=c)XiX
T
i�c1 +

1

n0

nX

i=1

(1� Ti)I(Ui=a)XiX
T
i�c1

� 1

n0

nX

i=1

(1� Ti)I(Ui=n)XiYi(0)�
1

n0

nX

i=1

(1� Ti)I(Ui=c)XiYi(0) +
1

n1

nX

i=1

TiI(Ui=n)XiYi(1)

+
1

n0

nX

i=1

(1� Ti)I(Ui=n)XiX
T
i�c0 +

1

n0

nX

i=1

(1� Ti)I(Ui=c)XiX
T
i�c0 �

1

n1

nX

i=1

TiI(Ui=n)XiX
T
i�c0

i

= (⇡cSxx,c)
�1

n 1

n1

nX

i=1

TiXi
⇥
I(Ui=a)(Yi(1)�X

T
i�c1) + I(Ui=n)(Yi(1)�X

T
i�c0) + I(Ui=c)(Yi(1)�X

T
i�c1)

⇤

� 1

n0

nX

i=1

(1� Ti)Xi
⇥
I(Ui=a)(Yi(0)�X

T
i�c1) + I(Ui=n)(Yi(0)�X

T
i�c0) + I(Ui=c)(Yi(0)�X

T
i�c0)

⇤ o
.

According to the definitions of the residual potential outcomes e0i(1) and e0i(0) in the main text, the

above formula reduces to

e�c,RI � �c = (⇡cSxx,c)
�1

"
1

n1

nX

i=1

TiXie
0
i(1)�

1

n0

nX

i=1

(1� Ti)Xie
0
i(0)

#
. (A.14)

The representation in (A.14) implies the asymptotic covariance matrix according to Theorem 1 and

the asymptotic normality of e�c,RI according to the FPCLT.

Theorem 7: Behavior of b�TSLS. While the amount of notation and matrix algebra is consider-

ably more in scope, the overall structure of the proof follows the earlier one for the OLS estimator

for the ITT. In particular, we show the estimator asymptotically converges to a more tractable

version that has a fixed portion, and then use the usual covariance argument on the remaining
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terms. Before doing this, we first show the probability limits of the estimator by working through

the matrix algebra.

Proof of Theorem 7. First, we find the probability limits of the TSLS estimators:

✓
b�TSLS

b�TSLS

◆
=

(
1

n

nX

i=1

✓
Xi

TiXi

◆
(XT

i , DiX
T
i )

)�1(
1

n

nX

i=1

✓
Xi

TiXi

◆
Y obs

i

)

=

✓
n�1

Pn
i=1

XiX
T
i n�1

Pn
i=1

DiXiX
T
i

n�1
Pn

i=1
TiXiX

T
i n�1

Pn
i=1

TiDiXiX
T
i

◆�1✓
n�1

Pn
i=1

XiY obs
i

n�1
Pn

i=1
TiXiY obs

i

◆

P�!
✓
A B

C D

◆�1✓
G

H

◆
. (A.15)

The above term A is A = Sxx, and terms (B,C,D,G,H) are the population limits of the sample

quantities. We will find each of them. Term B is

B = E

(
1

n

nX

i=1

DiXiX
T
i

)
= E

(
1

n

nX

i=1

TiDiXiX
T
i +

1

n

nX

i=1

(1� Ti)DiXiX
T
i

)

= E

(
1

n

nX

i=1

TiI(Ui=a)XiX
T
i +

1

n

nX

i=1

TiI(Ui=c)XiX
T
i +

1

n

nX

i=1

(1� Ti)I(Ui=a)XiX
T
i

)

= p1⇡aSxx,a + p1⇡cSxx,c + p0⇡aSxx,a

= ⇡aSxx,a + p1⇡cSxx,c.

Term C is C = E
�
n�1

Pn
i=1

TiXiX
T
i

 
= p1Sxx. Term D is

D = E

(
1

n

nX

i=1

TiDiXiX
T
i

)
= E

(
1

n

nX

i=1

TiI(Ui=a)XiX
T
i +

1

n

nX

i=1

TiI(Ui=c)XiX
T
i

)

= p1⇡aSxx,a + p1⇡cSxx,c.

Term G is

G = E

(
1

n

nX

i=1

XiY
obs

i

)
= E

(
1

n

nX

i=1

TiXiY
obs

i +
1

n

nX

i=1

(1� Ti)XiY
obs

i

)
= p1Sx1 + p0Sx0.

Term H is H = E
�
n�1

Pn
i=1

TiXiY obs

i

 
= p1Sx1. We apply the following formula for the inverse

of a block matrix: ✓
A B

C D

◆�1

=

✓
S

�1

D �A
�1

BS
�1

A
�D

�1
CS

�1

D S
�1

A

◆
,

where SD = A �BD
�1

C and SA = D � CA
�1

B are the Schur complements of blocks D and

A. Omitting some tedious matrix algebra, we obtain

SD = p0⇡cSxx,c(⇡aSxx,a + ⇡cSxx,c)
�1

Sxx, SA = p1p0⇡cSxx,c,

10



and the inverse of the block matrix is
✓
A B

C D

◆�1

=

✓
p�1

0
⇡�1
c S

�1
xx (⇡aSxx,a + ⇡cSxx,c)S�1

xx,c �p�1

1
p�1

0
⇡�1
c S

�1
xx (⇡aSxx,a + p1⇡cSxx,c)S�1

xx,c

�p�1

0
⇡�1
c S

�1
xx,c p�1

1
p�1

0
⇡�1
c S

�1
xx,c

◆
.

Therefore, according to (A.15), the probability limit of b�TSLS is

p�1

0
⇡�1

c S
�1

xx (⇡aSxx,a + ⇡cSxx,c)S
�1

xx,c(p1Sx1 + p0Sx0)� p�1

1
p�1

0
⇡�1

c S
�1

xx (⇡aSxx,a + p1⇡cSxx,c)S
�1

xx,c(p1Sx1)

= S
�1

xx Sx0 � ⇡a⇡
�1

c S
�1

xx Sxx,aS
�1

xx,c(Sx1 � Sx0)

= �0 � ⇡aS
�1

xx Sxx,a�c ⌘ �1, (A.16)

and the probability limit of b�TSLS is

�p�1

0
⇡�1

c S
�1

xx,c(p1Sx1 + p0Sx0) + p�1

1
p�1

0
⇡�1

c S
�1

xx,c(p1Sx1) = ⇡�1

c S
�1

xx,c(Sx1 � Sx0) = �c, (A.17)

where we use Sx1 � Sx0 = ⇡c(Sx1,c � Sx0,c), which is guaranteed by exclusion restrictions.

We next find the asymptotic distribution of b�TSLS. Following the derivation in Corollary 3, we

first write

✓
b�TSLS

b�TSLS

◆
�
✓
�1
�c

◆
=

(
1

n

nX

i=1

✓
Xi

TiXi

◆
(XT

i , DiX
T
i )

)�1(
1

n

nX

i=1

✓
Xi(Y obs

i �X
T
i�1 �DiX

T
i�c)

TiXi(Y obs

i �X
T
i�1 �DiX

T
i�c)

◆)
,

then introduce

�TSLS =

✓
A B

C D

◆�1
(
1

n

nX

i=1

✓
Xi(Y obs

i �X
T
i�1 �DiX

T
i�c)

TiXi(Y obs
i �X

T
i�1 �DiX

T
i�c)

◆)

=

✓
A B

C D

◆�1✓
n�1

Pn
i=1

TiXie00i (1) + n�1
Pn

i=1
(1� Ti)Xie00i (0)

n�1
Pn

i=1
TiXie00i (1)

◆

=

✓
A B

C D

◆�1✓
n�1

Pn
i=1

TiXi{e00i (1)� e00i (0)}+ n�1
Pn

i=1
Xie00i (0)

n�1
Pn

i=1
TiXie00i (1)

◆
,

(A.18)

with (A,B,C,D) defined in (A.15) and {e00i (1), e00i (0)} defined in Theorem 7, and finally recognize

that the di↵erence between the above two formulas has high order. Again we need only to find

the asymptotic distribution of �TSLS. The covariance of the second term on the right hand side of

(A.18) is (dropping the constant sum of Xie00(0))

cov

✓
n�1

Pn
i=1

TiXi{e00i (1)� e00i (0)}
n�1

Pn
i=1

TiXie00i (1)

◆

=
1

n2

n1n0

n

✓
S(X") 1

2
[S{Xe00(1)}� S{Xe00(0)}+ S(X")]

1

2
[S{Xe00(1)}� S{Xe00(0)}+ S(X")] S{Xe00(1)}

◆
,
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where the o↵-diagonal term comes from the finite population covariance between X{e00(1)� e00(0)}

and Xe00(1). Therefore, according to (A.18), the asymptotic covariance of �TSLS is the (2, 2) block

of the following matrix

1

n2

n1n0

n

✓
A B

C D

◆�1

·
✓

S(X") 1

2
[S{Xe00(1)}� S{Xe00(0)}+ S(X")]

1

2
[S{Xe00(1)}� S{Xe00(0)}+ S(X")] S{Xe00(1)}

◆
·
✓
A B

C D

◆�T

,

which is

1

n2

n1n0

n

n
(p�1

0
⇡�1

c S
�1

xx,c)S(X")(p�1

0
⇡�1

c S
�1

xx,c)
T + (p�1

1
p�1

0
⇡�1

c S
�1

xx,c)S{Xe00(1)}(p�1

1
p�1

0
⇡�1

c S
�1

xx,c)
T

�(p�1

0
⇡�1

c S
�1

xx,c)[S{Xe00(1)}� S{Xe00(0)}+ S(X")](p�1

1
p�1

0
⇡�1

c S
�1

xx,c)
T

o

= (⇡cSxx,c)
�1


S{Xe00(1)}

n1

+
S{Xe00(0)}

n0

� S(X")

n

�
(⇡cSxx,c)

�1.

The asymptotic normality follows from the representation in (A.18) and the FPCLT.

Theorem 8: Decomposition of variation in non-compliance. The following proof uses two

facts: ⌧a = ⌧n = 0, and ⌧ = ⇡c⌧c.

Proof of Theorem 8. Write the total treatment e↵ect variation as

S⌧⌧ =
1

n

nX

i=1

(⌧i � ⌧)2 =
1

n

nX

i=1

⌧2i � ⌧2

=
1

n

nX

i=1

I(Ui=c)⌧
2

i � ⇡2

c ⌧
2

c = ⇡c

 
1

nc

nX

i=1

I(Ui=c)⌧
2

i � ⌧2c

!
+ ⇡c(1� ⇡c)⌧

2

c ,

the treatment e↵ect variation explained by compliance status as

S⌧⌧,U =
X

u=c,a,n

⇡u(⌧u � ⌧)2 = ⇡c(⌧c � ⇡c⌧c)
2 + ⇡a(0� ⇡c⌧c)

2 + ⇡n(0� ⇡c⌧c)
2

= ⇡c⌧
2

c

�
(1� ⇡c)

2 + ⇡c(⇡a + ⇡n)
 
= ⇡c(1� ⇡c)⌧

2

c ,

and the subtotal treatment e↵ect variation for compliers as

S⌧⌧,c =
1

nc

nX

i=1

I(Ui=c)(⌧i � ⌧c)
2 =

1

nc

nX

i=1

I(Ui=c)⌧
2

i � ⌧2c .

Therefore, the above three terms has the relationship S⌧⌧ = ⇡cS⌧⌧,c + S⌧⌧,U .

The decomposition S⌧⌧,c = S��,c + S"",c follows immediately from the definition of �c.
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Appendix B More detailed comments

Appendices B.1–B.5 give more details of some technical issues and extensions mentioned in the

main text, and Appendix B.6 contains the proofs of the results in Appendix B.

Appendix B.1 Covariate adjustment to improve e�ciency

In the main text, the role of covariates has been to model the treatment e↵ect alone. In general,

we also want to use covariates to reduce sampling variability of b�RI, just as we can use covariates

to get more precise estimates of the average treatment e↵ect. In particular, the goal is to more

precisely estimate bSxt 2 RK ; because these are the only random components in b�RI, if we estimate

them more precisely, we estimate b�RI more precisely as well. Let Wi 2 RJ denote a vector of

pretreatment covariates without the intercept term. Because Xi and Wi have di↵erent roles in

estimation, they may also contain di↵erent sets of covariates, though, in practice, X is likely to be

a subset of W .

Following the covariate adjustment approach in survey sampling, we can obtain a model-assisted

estimator for � that uses W to reduce sampling variability. To see this, we need several definitions.

Define W = n�1
Pn

i=1
Wi and Sww = n�1

Pn
i=1

WiW
T
i , with det(Sww) > 0; define W t and bSww,t

as the sample mean and covariance ofW under treatment arm t; define bBt 2 RJ⇥K as the regression

coe�cient of Y obs
X on W for treatment arm t:

bBt = bS�1

ww,t

(
1

nt

nX

i=1

I(Ti=t)Wi(Y
obs

i Xi)
T

)
.

The model-assisted estimator for Sxt is then

bSw
xt = bSxt � bBT

t(W̄t � W̄ ), (t = 0, 1).

As a result, we can improve the randomization-based estimator by

b�w
RI = S

�1

xx ( bSw
x1 � bSw

x0).

Theorem A.1. The model-assisted estimator b�w
RI

is consistent for � with asymptotic covariance

S
�1

xx


S{E(1)}

n1

+
S{E(0)}

n0

� S(�)

n

�
S

�1

xx ,

where Ei(t) = Yi(t)Xi �B
T
t(Wi � W̄ ) is the residual term and �i = Ei(1)�Ei(0).
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The estimator, b�w
RI

uses covariates both to estimate treatment e↵ect variation and to reduce

sampling variability. Asymptotically, as long as W is predictive of the marginal potential outcomes,

the model-assisted estimator will improve precision over the unassisted estimators.

Appendix B.2 Fisherian exact inference

When "i = 0 for all i, we can obtain exact inference for � based on the Fisher randomization test

(Rubin, 1980; Rosenbaum, 2002; Ding et al., 2016). With a known �, the null hypothesis

H0(�) : Yi(1)� Yi(0) = X
T
i� for all i (A.19)

is sharp in the sense of allowing for full imputation of all missing potential outcomes based on

the observed data. We can perform randomization test using any sensible test statistic measuring

the deviation from the null hypothesis H0(�), for example, the test statistic t(T ,Y obs;�) can be

the di↵erence-in-means, di↵erence-in-medians or the Kolmogorov–Smirnov statistics comparing two

samples {Y obs

i �X
T
i� : Ti = 1, i = 1, . . . , n} and {Y obs

i : Ti = 0, i = 1, . . . , n}. Then we can obtain

a (1� ↵) level confidence region for � by inverting a sequence of randomization tests:

CR↵ = {� : Randomization test fails to reject H0(�) at significance level ↵}.

The confidence region CR↵ is exact regardless of the sample size, and it is valid for general designs

of experiments if we use the corresponding assignment mechanism to simulate the null distribution

of the test statistic. Due to the duality between testing and interval estimation, we reject H0(X)

with �1 = 0 in Section 3.3 if CR↵\ {� : �1 = 0} is an empty set, which controls the type one error

rate by ↵.

Appendix B.3 A Variance Ratio Test

Raudenbush and Bloom (2015) have noticed that if the variance of the treatment potential outcome

is smaller than the control potential outcome, then the correlation between the individual treatment

e↵ect and the control potential outcome is negative. This statement does not involve any covariates,

but it can be generalized to incorporate systematic and idiosyncratic treatment e↵ect variation.

Below we give a finite population version of their result.

Theorem A.2. If the finite population variance of {Yi(1) � X
0
i�}ni=1

is smaller than {Yi(0)}ni=1
,

then the idiosyncratic treatment e↵ect variation, {"i}ni=1
, is negatively correlated with the control

potential outcomes.
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Because the condition in Theorem A.2 depends only on the marginal distributions of the po-

tential outcomes, we propose a formal variance ratio test of it using the observed data, which is a

generalization of a similar theorem in Ding et al. (2016):

Theorem A.3. The variance ratio test with rejection region

log s2
1
� log s2

0p
(b1 � 1)/n1 + (b0 � 1)/n0

< ��1(↵),

has size at least as large as ↵, where s2
1
and b1 are the sample variance and kurtosis of {Y obs

i �

X
T
i
b�RI : Ti = 1, i = 1, . . . , n}, and s2

0
and b0 are the sample variance and kurtosis of {Y obs

i : Ti =

0, i = 1, . . . , n}, and ��1(↵) is the ↵-th quantile of the standard normal distribution.

For finite population inference, the above test in Theorem A.3 is generally conservative, but for

superpopulation inference, it is asymptotically exact.

Note that Raudenbush and Bloom (2015) and Theorem A.2 are only about detecting a negative

association. Unfortunately, there is no testable condition for a positive association.

Appendix B.4 More on noncompliance: estimating the bounds of the R2s

The component S⌧⌧,U and and the probability ⇡c are directly identifiable according to previous

discussion. Furthermore, S��,c is also identifiable according to the following result.

Corollary A.1. S��,c can be expressed as the expectation of the following quantity:

1

⇡c

(
1

n

nX

i=1

(�i � ⌧c)
2 � 1

n1

nX

i=1

Ti(1�Di)(�i � ⌧c)
2 � 1

n0

nX

i=1

(1� Ti)Di(�i � ⌧c)
2

)
.

Because ⇡c, �i = X
T
i�c and ⌧c can be estimated by a plug-in approach, S��,c can also be estimated

from the observed data.

In the ITT case, estimation of the residual distributions are straightforward. In the noncompli-

ance case, however, we need more discussion about the estimation of F1c(y) and F0c(y), because Ui

is a latent variable. To avoid notational clatter, we assume that �c1 and �c0 are known; in practice

we can replace them by the randomization-based estimators b�c1,RI and b�c0,RI, and the consistency

of the final estimator will not be a↵ected. Recall the potential residuals e0i(1) and e0i(0) defined in

(17), and its observed value e0i = Tie0i(1) + (1� Ti)e0i(0). We define the following quantities

bF11(y) =
1

n1

Pn
i=1

TiDiI(e0iy), bF10(y) =
1

n1

Pn
i=1

Ti(1�Di)I(e0iy),
bF01(y) =

1

n0

Pn
i=1

(1� Ti)DiI(e0iy), bF00(y) =
1

n0

Pn
i=1

(1� Ti)(1�Di)I(e0iy).
(A.20)

Similar to Corollary 3, we have the following results.
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Corollary A.2. For any y,

E{ bF11(y)� bF01(y)} = ⇡cF1c(y), E{ bF00(y)� bF10(y)} = ⇡cF0c(y).

Therefore, we can estimate F1c(y) by { bF11(y) � bF01(y)}/b⇡c, and estimate F0c(y) by { bF00(y) �
bF10(y)}/b⇡c. As we mentioned before, in practice, we use be0i instead of e0i in the formulas in (A.20).

Appendix B.5 Proofs of the theorems and corollaries in Appendix B

Proof of Theorem A.1. The population-level OLS regression matrix of Y (t)X onto W is

Bt = S
�1

ww

(
1

n

nX

i=1

Wi{Yi(t)Xi}T

)
2 RJ⇥K .

Define eSw
xt = bSxt + B

T
t(W̄ � W̄t) and e�w

RI
= S

�1
xx ( eSw

x1 � eSw
x0). According to the same argument

as (A.4), b�RI and e�w
RI

have the same asymptotic covariance, and in the following we need only to

discuss the covariance of e�w
RI
. Because

eSw
x1 � eSw

x0 =
1

n1

nX

i=1

Ti
�
Yi(1)Xi +B

T
1(W̄ �Wi)

 
� 1

n0

nX

i=1

(1� Ti)
�
Yi(0)Xi +B

T
0(W̄ �Wi)

 

=
1

n1

nX

i=1

TiEi(1)�
1

n0

nX

i=1

(1� Ti)Ei(0)

can be represented as the di↵erence between the sample means of Ei(1) and Ei(0), applying The-

orem 2 we can obtain its covariance:

cov
⇣
eSw
x1 � eSw

x0

⌘
=

S{E(1)}
n1

+
S{E(0)}

n0

� S{�}
n

,

which completes the proof.

Proof of Theorem A.2. For simplicity, we abuse the variance and covariance notation for finite

population. For example, var{Y (0)} =
Pn

i=1
{Yi(0) � Ȳ (0)}2/(n � 1). If var{Y (1) � X

T
�} 

var{Y (0)}, then var{Y (0) + "}  var{Y (0)}. Expanding the left hand side,

var{Y (0)}+ var{"}+ 2cov{Y (0), "}  var{Y (0)},

which implies 2cov{Y (0), "}  �var{"} < 0.
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Although it is straightforward to prove the conclusion for super population inference of Theorem

A.3 by using Ding et al. (2016, Theorem 2, Supplementary Material) and Slutsky’s Theorem, it

is less obvious to prove the conclusion for finite population inference. To simplify the proof, we

first prove the following lemma. Let (c1, · · · , cn)T and (d1, . . . , dn)T be two vectors of nonnegative

constants with the same mean m > 0 but di↵erent variances Scc and Sdd. The di↵erence vector

(c1 � d1, . . . , cn � dn)T has mean zero and variance Sc�d,c�d. Let

b✓c =
1

n1

nX

i=1

Tici, b✓d =
1

n0

nX

i=1

(1� Ti)di

be two sample means of the treatment and control group, respectively.

Lemma A.5. Under the regularity conditions for the FPCLT, log b✓c� log b✓d has asymptotic mean

zero and variance

1

m2

✓
Scc

n1

+
Sdd

n0

�
Sc�d,c�d

n

◆
. (A.21)

Proof of Lemma A.5. According to the FPCLT, we have the following joint asymptotic normality

of b✓c and b✓d:  
b✓c
b✓d

!
=

✓
n�1

1

Pn
i=1

Tici
n�1

0

Pn
i=1

(1� Ti)di

◆
a⇠ N

✓
m
m

◆
,

✓
Vcc Vcd

Vcd Vdd

◆�
,

where

Vcc =
n0

n1n
Scc, Vdd =

n1

n0n
Sdd, Vcd = � 1

2n
(Scc + Sdd � Sc�d,c�d).

Applying Taylor expansion atm, we have log b✓c�log b✓d = {(b✓c�m)�(b✓d�m)}/m+oP (n�1/2), which,

coupled with Neyman (1923)’s variance formula, gives the asymptotic variance of log b✓c � log b✓d in

(A.21).

Proof of Theorem A.3. First, as a direct consequence of Lemma A.5, the finite sample variance is

always larger than the super population variance, unless Sc�d,c�d = 0. Therefore, we need only to

show that the test in Theorem A.3 is asymptotically exact for super population inference, and the

asymptotic size of the test is no larger than ↵ for finite population inference.

Second, replacing � by its consistent estimator b�RI does not a↵ect the asymptotic distribution of

the test statistic, due to Slutsky’s Theorem. For simplicity, we treat � as known in our asymptotic

analysis.

With the two ingredients above, Theorem A.3 follows directly from the variance ratio test in

Ding et al. (2016, Theorem 2, Supplementary Material).
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Proof of Corollary A.1. The conclusion follows from

E

(
1

n1

nX

i=1

Ti(1�Di)(�i � ⌧c)
2

)
= E

(
1

n1

nX

i=1

TiI(Ui=n)(�i � ⌧c)
2

)
=

1

n

nX

i=1

I(Ui=n)(�i � ⌧c)
2,

E

(
1

n0

nX

i=1

(1� Ti)Di(�i � ⌧c)
2

)
= E

(
1

n0

nX

i=1

(1� Ti)I(Ui=a)(�i � ⌧c)
2

)
=

1

n

nX

i=1

I(Ui=a)(�i � ⌧c)
2.

Proof of Corollary A.2. We rewrite

bF11(y) =
1

n1

nX

i=1

TiI(Ui=c)I{ei(1)y} +
1

n1

nX

i=1

TiI(Ui=a)I{ei(1)y},

bF10(y) =
1

n1

nX

i=1

TiI(Ui=n)I{ei(1)y},

bF01(y) =
1

n0

nX

i=1

(1� Ti)I(Ui=a)I{ei(0)y},

bF00(y) =
1

n0

nX

i=1

(1� Ti)I(Ui=c)I{ei(0)y} +
1

n0

nX

i=1

(1� Ti)I(Ui=n)I{ei(0)y}.

In the above formulas, the random components are the Ti’s, and therefore, the corollary follows

from Lemma A.1 and the linearity of expectations.
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