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Frequently, empirical studies are plagued with missing data. When the
data are missing not at random, the parameter of interest is not identifiable
in general. Without additional assumptions, we can derive bounds of the pa-
rameters of interest, which, unfortunately, are often too wide to be informa-
tive. Therefore, it is of great importance to sharpen these worst-case bounds
by exploiting additional information. Traditional missing data analysis uses
only the information of the binary missing data indicator, that is, a certain
data point is either missing or not. Nevertheless, real data often provide more
information than a binary missing data indicator, and they often record dif-
ferent types of missingness. In a motivating HIV status survey, missing data
may be due to the units’ unwillingness to respond to the survey items or their
hospitalization during the visit, and may also be due to the units’ temporar-
ily absence or relocation. It is apparent that some missing types are more
likely to be missing not at random, but other missing types are more likely
to be missing at random. We show that making full use of the missing types
results in narrower bounds of the parameters of interest. In a real-life exam-
ple, we demonstrate substantial improvement of more than 50% reduction in
bound widths for estimating the prevalence of HIV in rural Malawi. As we
illustrate using the HIV study, our strategy is also useful for conducting sen-
sitivity analysis by gradually increasing or decreasing the set of types that are
missing at random. In addition, we propose an easy-to-implement method to
construct confidence intervals for partially identified parameters with bounds
expressed as the minimums and maximums of finite parameters, which is use-
ful for not only our problem but also many other problems involving bounds.

1. An introduction to missing data and partial identification. Missing data
is a common problem for both experimental and observational studies in social and
biomedical sciences. Rubin (1976) first clarified the missing at random and missing
not at random mechanisms. Intuitively, the missing at random assumption requires
the missing data mechanism be independent of the missing values themselves con-
ditional on the observed data, but missing not at random allows for such depen-
dence [Rubin (1976)]. For more subtle discussion of these concepts, see Rubin
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(1976), Seaman et al. (2013), and Mealli and Rubin (2015). Missing at random is
a sufficient condition to justify many missing data methods, including likelihood
and Bayesian inference [Little and Rubin (2002), Yang and Kim (2016)], multiple
imputation [Rubin (2004)], and inverse probability weighting and doubly robust
estimation [Bang and Robins (2005), Kang and Schafer (2007)].

Unfortunately, however, the missing at random assumption is untestable and it
can be too strong in practice. Without making such assumption, researchers de-
rived bounds of the parameters of interest, considering the worst-case scenarios of
the missing data [Ding and Geng (2014), Horowitz and Manski (1998), Horowitz
and Manski (2000), Manski (2003), Mattei, Mealli and Pacini (2014)]. In fact, this
idea had an early root in survey nonresponse, but was abandoned by its inventor
Cochran (1953) because the bounds are often too wide to be useful. Recognizing
the drawbacks of the extreme bounds, some researchers suggested conducting sen-
sitivity analysis to obtain a range of estimates for the parameters corresponding to
a plausible range of the sensitivity parameter [Copas and Li (1997), Molenberghs,
Kenward and Goetghebeur (2001), Rotnitzky et al. (2001), Scharfstein, Rotnitzky
and Robins (1999), Vansteelandt et al. (2006)]. Some researchers incorporated
expert opinions [Scharfstein, Manski and Anthony (2004)] to derive narrower
bounds. Other researchers imposed parametric assumptions [Miao, Ding and Geng
(2016)] or used instrumental variables [Ma, Geng and Hu (2003), Shao and Wang
(2016), Tang, Little and Raghunathan (2003)] to identify parameters of interest.

Motivated by a longitudinal survey of HIV prevalence in rural Malawi [Arpino,
De Cao and Peracchi (2014)], we propose an alternative approach to improve the
inference by exploiting the information about different missing types of the out-
comes. For instance, the data have recorded that the units’ HIV statuses were miss-
ing due to different reasons, that is, the outcomes have different missing types.
Some of them were unwilling to respond, some of them were in a hospital, some
of them were temporarily absent in the survey, some of them moved to another
place to live, and some outcomes were missing due to other reasons. It is evident
that some missing types may depend on the HIV status, and other missing types
are very likely to be independent of the HIV status. Carefully utilizing the infor-
mation of the missing types can lead to narrower bounds of the partially identified
parameters compared to bounds that use only the binary missing data indicators as
in the traditional analysis. Moreover, the HIV status satisfies a natural monotonic-
ity, because a person infected at any given time point must be infected at later time
points, whereas a person not infected at any given time point cannot be infected at
earlier time points. Therefore, we can further improve the bounds with longitudi-
nal HIV data. We establish theory to quantify the improvement of bounds in both
cross-sectional and longitudinal data, and show that the consequential bounds of
the HIV prevalence are substantially narrower in theory and in our application.

Although it is straightforward to estimate the bounds, it is challenging to con-
struct confidence intervals for the parameters of interest. Importantly, the esti-
mators of our bounds do not follow asymptotic normal distributions as required
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by Imbens and Manski (2004) and Vansteelandt et al. (2006), and the bootstrap
may lead to invalid asymptotic confidence intervals [Andrews (2000), Romano
and Shaikh (2010)]. We propose a method to construct confidence intervals for
partially identified parameters with upper and lower bounds expressed as the min-
imums and maximums of finite parameters. Our method is easy to implement,
and is useful for not only our problem but also many other problems involving
bound analysis in the missing data and causal inference literature [Cheng and
Small (2006), Manski (2003), Mattei, Mealli and Pacini (2014), Mealli and Pacini
(2013), Yang and Small (2016)].

More practically, our paper offers a novel strategy to conduct sensitivity analysis
with respect to the missing data mechanism. Illustrated by the HIV study, we can
gradually increase or decrease the set of types that are missing at random, and
therefore obtain a sequence of results under assumptions with different restrictions
on the missing data mechanism.

2. Missing data at a single time point.

2.1. Traditional bounds with data missing not at random. We first consider the
case with a single observational time point t . Let Yt be a binary outcome of interest.
For example, in our application, Yt is the HIV status at a given time t , with Yt = 1 if
infected and Yt = 0 otherwise. We focus on a binary outcome, and will comment
on general outcomes in Section 6. We condition on covariates implicitly in the
theoretical discussion, and all conclusions hold within each stratum of covariates.
Let St be the survival status at a given time t , with St = 1 if survive and St = 0
otherwise. The outcome Yt is well defined only for people alive at time point t ,
that is, for units with St = 0, we define Yt = ∗. In addition, Yt is missing for some
alive units. Let R̃t be the missing data indicator, with R̃t = 1 if the outcome is
observed, R̃t = 0 if the outcome is missing, and R̃t = ∗ if the unit is dead. In many
real-world applications, an important quantity of interest is

πt = pr(Yt = 1 | St = 1),

which, in the HIV example, is the prevalence of HIV of the alive people at time
point t .

The pattern mixture decomposition [Little and Rubin (2002)] of the outcome
distribution is

πt = pr(Yt = 1 | R̃t = 1, St = 1)pr(R̃t = 1 | St = 1)

+ pr(Yt = 1 | R̃t = 0, St = 1)pr(R̃t = 0 | St = 1).
(2.1)

An advantage of the above decomposition is its transparency for identification
analysis. For the right-hand side of (2.1), the observed data of survivors allow
for identification of pr(R̃t = 1 | St = 1), pr(R̃t = 0 | St = 1) and pr(Yt = 1 | R̃t =
1, St = 1), but do not contain any information about pr(Yt = 1 | R̃t = 0, St = 1)
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without further assumptions. Consequently, in general, we can obtain only the
bounds of πt by setting pr(Yt = 1 | R̃t = 0, St = 1) to its extreme values. Be-
cause 0 ≤ pr(Yt = 1 | R̃t = 0, St = 1) ≤ 1, the lower and upper bounds of πt are
LBt ≤ πt ≤UBt , where

LBt = pr(Yt = 1 | R̃t = 1, St = 1)pr(R̃t = 1 | St = 1),(2.2)

UBt = pr(Yt = 1 | R̃t = 1, St = 1)pr(R̃t = 1)+ pr(R̃t = 0 | St = 1).(2.3)

This type of bound analysis, considering the worst case scenarios, has a long
history in statistics at least dating back to Cochran (1953)’s discussion in sur-
vey nonresponse. Similar ideas are extensively explored in econometrics [Manski
(2003)]. Although the bounds in (2.2) and (2.3) do not rely on any assumptions
about the missing data mechanism, they often correspond to unrealistic extreme
cases that all the missing outcomes are 1 or 0, and consequently they are too wide
to be useful as pointed out by Cochran (1953). Rubin (2005) echoed this view.
Therefore, to make useful inference with data missing not at random, we need to
exploit more information from the data and background knowledge to sharpen the
bounds.

2.2. Using nonresponse types to sharpen bounds of a single time point. The
discussion in Section 2.1 uses only the binary missing data indicator. In many ap-
plications, the data provide additional information about different types of non-
response. For theoretical discussion, we consider a generic case with a four-
valued type-specific missing data indicator. Let Rt = 1 if the outcome is observed,
Rt =−1 if nonresponse is due to reasons related to the missing outcome, Rt = 0 if
nonresponse is due to other reasons unrelated to the missing outcome, and Rt = ∗
if the unit is dead. Real problems, such as the HIV study considered in Section 5,
often record many reasons of nonresponse, but we can collapse the reasons into
two categories of nonresponse with Rt = −1 or 0. An example of the first type
with Rt =−1 is that the unit refuses to answer the survey item about the outcome,
and an example of the second type with Rt = 0 is that the unit moves to another
place during the visit. Therefore, the coarsened binary missing data indicator R̃t
equals 1 if and only if the type-specific missing data indicator Rt equals 1, R̃t
equals 0 if Rt = 0 or −1, and R̃t equals ∗ if Rt = ∗.

The bounds in (2.2) and (2.3) do not take into account the difference in nonre-
sponse types. We can improve them by making full use of the missing data indica-
tor Rt and the following assumption.

ASSUMPTION 1. pr(Yt = 1 |Rt = 0, St = 1)= pr(Yt = 1 | St = 1).

Assumption 1 states that among survivors, the outcome distribution of the in-
dividuals with Rt = 0 is the same as the outcome distribution of the whole popu-
lation. According to Bayes’ Theorem, Assumption 1 is equivalent to pr(Rt = 0 |
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Yt = 1, St = 1) = pr(Rt = 0 | St = 1). Therefore, Assumption 1 means that the
type with Rt = 0 is missing completely at random, but it is weaker than the usual
missing completely at random assumption. Recall that in the theoretical discus-
sion, we condition on all the covariates implicitly. With covariates Xt at time t ,
Assumption 1 becomes pr(Yt = 1 | Xt,Rt = 0, St = 1) = pr(Yt = 1 | Xt,St = 1),
meaning that the type with Rt = 0 is missing at random. Therefore, we refer to
Assumption 1 as a partial missing at random assumption.

In our motivating example, Assumption 1 means that the nonresponse corre-
sponding to Rt = 0 is due to reasons unrelated to the HIV status. In the data, some
individuals’ HIV status is missing due to carelessness in data collection, which is
purely random. Some individuals’ HIV status is missing because he/she moved to
another place during the survey, which is also independent of his/her HIV status. It
is plausible to assume that units with these missing types constitute a simple ran-
dom sample of all the units, or, equivalently, Assumption 1 holds. In addition to
these reasons, there are some other reasons such as “hospitalization” and “refused
to answer,” which are probably related to the HIV status. As a result, we define
these reasons as Rt = −1. Not surprisingly, Assumption 1 helps to sharpen the
bounds of πt .

THEOREM 1. Under Assumption 1, the sharp bounds of πt are L̃Bt ≤ πt ≤
ŨBt , where

L̃Bt =
pr(Yt = 1,Rt = 1 | St = 1)

1− pr(Rt = 0 | St = 1)
,

ŨBt =
pr(Yt = 1,Rt = 1 | St = 1)+ pr(Rt =−1 | St = 1)

1− pr(Rt = 0 | St = 1)
.

Moreover, [L̃Bt , ŨBt ] ⊆ [LBt ,UBt ], with [L̃Bt , ŨBt ] ⊂ [LBt ,UBt ] ⊂ [0,1] if
pr(Rt = 0) > 0.

Theorem 1 demonstrates that by considering different nonresponse types, we
can sharpen the bounds of πt in (2.2) and (2.3). The reduction in width of the
bounds depends on pr(Rt = 0 | St = 1), the proportion of units with outcomes
missing at random. When pr(Rt = 0 | St = 1) = 0, the bounds are the same as
the traditional bounds (2.2) and (2.3); when pr(Rt = 0 | St = 1)= 1− pr(Rt = 1 |
St = 1), that is, pr(Rt =−1 | St = 1)= 0, the bounds collapse to a point, and πt is
pointly identifiable. A larger value of pr(Rt = 0 | St = 1) leads to a larger reduction
in the width of the bounds by taking into account the difference in nonresponse
types. A practical issue of applying Theorem 1 to our real data is that we do not
know whether some reasons depend on the HIV status or not. We would obtain
different bounds if we define different reasons as Rt = 0. To deal with this issue,
we will propose an approach in Section 5.4 to conducting sensitivity analysis based
on Theorem 1.
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Assumption 1 is weaker than missing at random, because it imposes a partial
missing at random assumption that one category of nonresponse is independent of
the missing outcome. Assumption 1 is similar to the identifying restrictions in pat-
tern mixture model [Little (1993)], where the parameters for the nonrespondents
are assumed to be the same as those for the respondents. In the literature, Harel
and Schafer (2009) and Little, Rubin and Zangeneh (2017) discussed the role of
some other partial missing at random assumptions in likelihood and Bayesian in-
ference. We focus on nonparametric identification and bound analysis without im-
posing parametric modeling assumptions that are often required by likelihood and
Bayesian inferences.

3. Longitudinal data missing not at random.

3.1. Improving bounds using nonresponse types with longitudinal data. When
longitudinal data are available, the information across different time points can
help to improve the bounds, as recognized by Arpino, De Cao and Peracchi (2014).
For instance, HIV infection is an absorbing state, that is, a person infected at any
given time point must be infected at later time points, whereas a person not infected
at any given time point cannot be infected at earlier time points. Mathematically,
for the people alive at both time points s and t with s < t , if Yt = 0 then Ys = 0,
and if Ys = 1 then Yt = 1. We formally state this assumption below.

ASSUMPTION 2. For any s < t , if St = Ss = 1, then Ys ≤ Yt .

Assumption 2 imposes monotonicity on the individual level outcomes, which
holds naturally for diseases like HIV. Under monotonicity, for s < t , if Ys = 1,
Rs = 1 and St = 1, then we can infer Yt = 1. Note that we do not set the value of
Rt to 1 in this case because the original missing mechanism contains information
for the bounds. As a side note, other different forms of monotonicity are also used
as identification assumptions [e.g., Angrist, Imbens and Rubin (1996), Jiang, Ding
and Geng (2016), Jin and Rubin (2008)].

Under Assumption 2, we can sharpen the bounds in Theorem 1 with data at
multiple time points.

THEOREM 2. With data at time points t − I, . . . , t, . . . , t + J , under As-
sumptions 1 and 2, the sharp bounds of πt are L̃BIt ≤ πt ≤ ŨBJt with L̃BIt =
max{Lt (1),Lt (2)} and ŨBJt = min{Ut (1),Ut (2)}, where

Lt (1)= L̃Bt +
∑I
i=1 pr(Yt−i = 1,Rt−i = 1,Rt−i+1 ≠ 1, . . . ,Rt−1 ≠ 1,Rt =−1 | St = 1)

1− pr(Rt = 0 | St = 1)
,

Lt (2)=
I∑

i=1

pr(Yt−i = 1,Rt−i = 1,Rt−i+1 ≠ 1, . . . ,Rt−1 ≠ 1 |Rt = 0, St = 1),
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Ut (1)= ŨBt −
∑J
j=1 pr(Yt+j = 0,Rt+j = 1,Rt+j−1 ≠ 1, . . . ,Rt+1 ≠ 1,Rt =−1, St+j = 1 | St = 1)

1− pr(Rt = 0 | St = 1)
,

Ut (2)= 1−
J∑

j=1

pr(Yt+j = 0,Rt+j = 1,Rt+j−1 ≠ 1, . . . ,Rt+1 ≠ 1, St+j = 1 |Rt = 0, St = 1),

recalling that L̃Bt and ŨBt are defined in Theorem 1.

Because people alive at time point t must be alive at time points before t ,
for t ′ < t , we can observe Rt ′ for units with St = 1. Thus, we can calculate
L̃BIt from the observed data. Similarly, for units with St+j = 1, we observe
(Rt+j ,Rt+j−1, . . . ,Rt ), and thus we can also calculate ŨBJt from the observed
data. Note that, to obtain the bounds of πt with longitudinal data, we require As-
sumption 1 holds only for time point t . Theorem 2 shows that the data at time
points later than t do not have any information to improve the lower bound of πt .
Intuitively, this is because the monotonicity assumption is one-sided, that is, for
a positive j , we can infer Yt = 0 as long as Yt+j = 0, but we are unsure of Yt if
Yt+j = 1. Thus, the data at time points later than t can rule out only the possibil-
ity that some units’ Yt ’s take value 1 but not 0, and hence do not affect the lower
bound. From a more theoretical view, with data at time points later than t , the
unidentifiable term pr(Yt = 1 | Rt =−1, St = 1) can no longer attain the extreme
value 1 as in Theorem 1, but it can always attain the extreme value 0, which keeps
the lower bound unchanged. Similar discussion applies to the upper bound.

Comparing Theorems 1 and 2, we can see that the bounds with multiple time
points are narrower than the bounds with a single time point. Therefore, collecting
data at more time points can always improve the bounds, as long as Assumptions
1 and 2 hold.

In our application, monotonicity holds automatically for the HIV infection. For
other diseases or other types of outcomes, this assumption may be violated. How-
ever, without monotonicity, we can still improve the bounds of Arpino, De Cao
and Peracchi (2014) with Assumption 1 as shown in Theorem 1.

3.2. Testable conditions for Assumptions 1 and 2. Assumptions 1 and 2 are
crucial for our theory. Therefore, it is important to check their validity empiri-
cally. Requiring the lower bound to be less than or equal to the upper bound in
Theorem 2, we can obtain testable conditions implied by Assumptions 1 and 2.
Moreover, because the bounds in Theorem 2 are sharp, these conditions include
all testable conditions. Specifically, L̃BIt ≤ ŨBJt implies four testable inequalities.
For simplicity, we give the testable conditions with two or three time points in the
main text which are adequate for our empirical application. We can similarly de-
rive the general testable conditions implied by Theorem 2, but to avoid notational
complexity we give them in the Supplementary Material [Jiang and Ding (2018)].



1838 Z. JIANG AND P. DING

COROLLARY 1. With data at time points t and t + 1, a testable condition
for Assumptions 1 and 2 is L̃Bt ≤ 1− pr(Yt+1 = 0,Rt+1 = 1, St+1 = 1 | Rt = 0,
St = 1), and it is the only testable condition.

The condition in Corollary 1 is testable because it depends only on the distri-
bution of the observed data, but does not depend on any missing values. There-
fore, the testable condition allows us to falsify Assumptions 1 and 2 by the ob-
served data in some scenarios. If the condition is violated, then the data invalidate
the fundamental assumptions we make. We give a numerical example to illustrate
Corollary 1.

EXAMPLE 1. Suppose that we have data at time points t and t + 1, and for
simplicity, all the units are alive at both time points. Thus, we omit St and St+1
in probabilities. Let the distributions of Yt be pr(Yt = 1) = 2/5, and assume the
following conditional distribution of Rt given Yt :

pr(Rt = r | Yt = y) Rt = −1 Rt = 0 Rt = 1
Yt = 1 0 1/4 3/4
Yt = 0 1/2 1/2 0

We further assume that the conditional distribution of (Yt+1,Rt+1) on (Yt ,Rt )
can be decomposed as pr(Yt+1,Rt+1 | Yt ,Rt) = pr(Yt+1 | Yt )pr(Rt+1 | Rt) with
pr(Yt+1 = 1 | Yt = 1) = 1 and pr(Yt+1 = 1 | Yt = 0) = 1/6. Therefore, Assump-
tion 2 holds, and pr(Yt+1 = 1)= 1/2. The probabilities of the conditional distribu-
tion of Rt+1 on Rt are

pr(Rt+1 = rt+1 | Rt = rt ) Rt = −1 Rt = 0 Rt = 1
Rt+1 = 1 1/2 1 1/2
Rt+1 = 0 1/2 0 1/2
Rt+1 =−1 0 0 0

Therefore, the data generating process violates Assumption 1.
From the observed data, we can verify that L̃Bt = 1/2 > 3/8 = 1−pr(Yt+1 = 0,

Rt+1 = 1 | Rt = 0), which violates the condition in Corollary 1. Therefore, the
observed distribution falsifies the conjunction of Assumptions 1 and 2. If we have
the prior knowledge that Assumption 2 holds as in the motivating HIV example,
then the observed data can falsify Assumption 1. As a result, our bounds are not
applicable in this case.

Corollary 1 shows that, although the missing data mechanism in Assumption 1
cannot be tested alone, it can be tested when Assumption 2 holds a priori. For
related discussion on testable conditions in other contexts, please see Balke and
Pearl (1997), Cheng and Small (2006) and Kitagawa (2015).
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The following corollary gives the testable condition with time points t−1 and t .

COROLLARY 2. With data at time points t − 1 and t , a testable condition for
Assumptions 1 and 2 is pr(Yt−1 = 1,Rt−1 = 1 | Rt = 0, St = 1) ≤ ŨBt , and it is
the only testable condition.

Because our HIV example has three time points, we present theoretical results
that are directly applicable. With three time points t − 1, t and t + 1, the sharp
lower and upper bounds of πt are L̃B1

t and ŨB1
t . Thus, we have the following

corollary.

COROLLARY 3. With data at time points t−1, t , and t+1, testable conditions
for Assumptions 1 and 2 are

pr(Yt+1 = 0,Rt+1 = 1, St+1 = 1 |Rt =−1, St = 1)

+ pr(Yt−1 = 1,Rt−1 = 1 |Rt =−1, St = 1)≤ 1,

pr(Yt+1 = 0,Rt+1 = 1, St+1 = 1 |Rt = 0, St = 1)

+ pr(Yt−1 = 1,Rt−1 = 1 |Rt = 0, St = 1)≤ 1,

pr(Yt+1 = 0,Rt+1 = 1, St+1 = 1 |Rt = 0, St = 1)

+ pr(Yt−1 = 1,Rt−1 = 1,Rt =−1 | St = 1)
1− pr(Rt = 0 | St = 1)

≤ 1− L̃Bt ,

pr(Yt−1 = 1,Rt−1 = 1 |Rt = 0, St = 1)

+ pr(Yt+1 = 0,Rt+1 = 1,Rt =−1, St+1 = 1 | St = 1)
1− pr(Rt = 0 | St = 1)

≤ ŨBt .

In practice, we should first check the testable conditions before reporting the
bounds. If the conditions are violated, then the data provide evidence against As-
sumptions 1 and 2. In Section 5, our real data have observations at three time
points and Assumption 2 holds by nature of HIV. Fortunately, the data do not
contradict any testable conditions. Therefore, although the data cannot validate
Assumption 1, they provide no evidence against it.

4. Confidence intervals for partially identified parameters. It is relatively
easy to obtain point estimates of the lower and upper bounds by replacing the
probabilities by their sample frequencies. To account for sample variability, we
need to construct a confidence interval for πt . However, because the lower and
upper bounds are the minimums or maximums of some parameters, their moment
estimators are not asymptotically normal. Thus, we cannot use traditional tech-
niques without further modifications [Andrews (2000), Imbens and Manski (2004),
Vansteelandt et al. (2006), Romano and Shaikh (2010)]. In this section, we propose
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a method to obtain valid confidence intervals for partially identified parameters of
certain forms.

4.1. Method and theory conditioning on covariates. We drop the subscript t
for notational simplicity. In the previous sections, the parameter of interest, π , has
bounds of the following form:

(4.1) max
{
L(1), . . . ,L(Q)

}≤ π ≤min
{
U(1), . . . ,U(R)

}
,

where the L(q)’s and U(r)’s are all functions of some population moments. For
example, in Theorem 2, Q = R = 2, and {L(1),L(2)} and {U(1),U(2)} are the
two terms in the expressions of L̃BIt and ŨBJt , respectively. For any q and r , the
point estimators of L(q) and U(r) are L̂(q) and Û(r), which are asymptotically
normal with means L(q) and U(r) and estimated standard errors σ̂L(q) and σ̂U(r).

Imbens and Manski (2004) proposed a method to construct confidence intervals
for partially identified parameters, but their method requires that the estimators for
the upper and lower bounds follow a joint bivariate normal distribution asymptot-
ically. Chernozhukov, Lee and Rosen (2013) proposed a general method, but the
construction of their confidence interval is nontrivial. Fortunately, the bounds in
our paper have a nice feature: the lower bounds are the maximums of some param-
eters, and the upper bounds are the minimums of some parameters. This feature
allows us to extend Imbens and Manski (2004)’s method to construct confidence
intervals for π . We first review their method. They considered a simple case in
which the parameter of interest has bounds L(q) ≤ π ≤ U(r) for fixed q and r ,
and proposed to use

(4.2) CI(q, r)= [
L̂(q)− C × σ̂L(q), Û(r)+C × σ̂U(r)

]
,

as a (1− α)-level confidence interval for π , where $(·) is the cumulative distribu-
tion function of a standard normal random variable, and C is determined by

(4.3) $

[
C + Û(r)− L̂(q)

max{σ̂L(q), σ̂U(r)}
]
−$(−C)= 1− α.

Note that with large samples, the solution of C in equation (4.3) is close to
$−1(1− α), the one-sided critical value based on a standard normal distribution.
See Vansteelandt et al. (2006) for similar discussion.

However, the bounds in (4.1) have more complicated forms. If we know the
true indices of the bounds q0 = arg max1≤q≤Q L(q) and r0 = arg min1≤r≤R U(r),
then the bounds in (4.1) are simply L(q0)≤ π ≤U(r0), and we can use CI(q0, r0)
as a confidence interval for π . In our case, the true values of q0 and r0 are
unknown, we can first obtain their estimators q̂ = arg max1≤q≤Q L̂(q) and r̂ =
arg min1≤r≤R Û(r), and then use CI(q̂, r̂) as a confidence interval for π . In the fol-
lowing subsection, we will prove the validity of this new method for constructing
confidence intervals.
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Intuitively, as the large sample size goes to infinity, q̂ and r̂ will converge to
the true values q0 and r0, and CI(q̂, r̂) will then converge to CI(q0, r0). Because
CI(q0, r0) has a correct asymptotic coverage rate as shown in Imbens and Manski
(2004), CI(q̂, r̂) also has a correct asymptotic coverage rate for π . The following
theorem formally ensures the validity of this new confidence interval.

THEOREM 3. If (1) {L(1), . . . ,L(Q)} have a unique maximum value L(q0),
and {U(1), . . . ,U(R)} have a unique minimum value U(r0); (2) for any q and
r , the asymptotic distribution of {L̂(q), Û(r)} is bivariate normal with means
{L(q),U(r)} and estimated standard errors {σ̂L(q), σ̂U(r)}, then CI(q̂, r̂) has a
coverage rate at least as large as 1− α asymptotically.

Technically, in Theorem 3 there are two types of coverage rates (the point-
wise and uniform coverage rates), and they require different regularity conditions
[Chernozhukov, Lee and Rosen (2013), Imbens and Manski (2004), Romano and
Shaikh (2010), Vansteelandt et al. (2006)]. For simplicity we relegate the technical
discussions to the online Supplementary Material. Intuitively, these conditions rule
out the extreme cases that the L(q)’s and U(r)’s are too close. In our application,
the estimated bounds are wide enough for us to believe that L(q)’s and U(r)’s are
not close even in the presence of statistical uncertainty. Therefore, the confidence
intervals calculated in our application are likely to have coverage rates at least as
large as 95% asymptotically. According to Theorem 3, for each possible value of
the parameter, CI(q̂, r̂) has a coverage rate at least as large as 1 − α asymptoti-
cally, and in the case of partial identification it is inevitable that for some values of
the parameter, CI(q̂, r̂) will have higher coverage rates than the nominal level. We
give a numerical example to illustrate the procedure of Theorem 3 for constructing
confidence intervals.

EXAMPLE 2. Suppose that the parameter of interest, π , has bounds max{L(1),
L(2)} ≤ π ≤ min{U(1),U(2)}. Suppose further that, from the observed data, we
have point estimates L̂(1) = −0.2, Û(1) = 0.5, L̂(2) = −0.1, and Û(2) = 0.8,
with asymptotic standard errors σ̂L(1) = 0.01, σ̂U(1) = 0.04, σ̂L(2) = 0.02, and
σ̂U(2) = 0.03. Note that these numbers are artificial, not from the motivating ex-
ample.

We can construct the confidence interval of π in the following steps. First, we
calculate q̂ = arg maxq=1,2 L(q) = 2 and r̂ = arg minr=1,2 U(r) = 1. Second, we
obtain C = 1.645 by solving (4.3) with q and r replaced by q̂ = 2 and r̂ = 1. Third,
we calculate CI(q̂, r̂)= CI(2,1)= [−0.133,0.566] according to (4.2), which is a
confidence interval for π .

The bounds with a single time point correspond to the case withQ=R = 1, and
CI(q̂, r̂) reduces to the one proposed by Imbens and Manski (2004). The bounds
with multiple time points correspond to the case with Q= R = 2, and we can use
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CI(q̂, r̂) to construct a confidence interval for parameter πt in our missing data
problem.

In the Supplementary Material, we conduct simulation studies to evaluate the
method for constructing confidence intervals. The simulation studies show that the
coverage rates of the confidence intervals are close to the nominal levels in a wide
range of situations with moderate sample sizes.

Although it is not the focus of our main paper, in the Supplementary Material,
we also consider constructing confidence intervals for the bounds themselves. Be-
cause of the coverage guarantees for the bounds, the method in the Supplementary
Material can be used to construct confidence intervals for the parameter of interest
when condition (1) in Theorem 3 fails.

4.2. Extension to the case adjusting for discrete covariates. In our data, there
are some discrete covariates such as gender and region, which are prognostic to
the HIV status. We also find that these two covariates are related to the missing
data indicator. It is therefore more reasonable to impose Assumption 1 condition-
ing on these covariates. In this subsection, we show how to use our method to
construct confidence intervals with discrete covariates. In practice, covariates help
to improve inference in three ways. First, the assumptions will generally be more
plausible conditional on covariates. Second, we can first calculate the bounds con-
ditional on the covariates and then average over them to obtain tighter bounds of
the whole population [Lee (2009), Long and Hudgens (2013), Mealli and Pacini
(2013)]. Third, covariates help to improve the estimation precision.

Consider a discrete covariate X corresponding to K subpopulations, with wk =
pr(X = k) being the proportion of subpopulation k. We fix the wk’s at the sample
frequencies of X, and treat them as known constants. Therefore, our inference is
conditional on the proportions of the subpopulations. The parameter of interest in
subpopulation k, πk , has bounds of the following forms:

(4.4) max
{
Lk(1), . . . ,Lk(Qk)

}≤ πk ≤min
{
Uk(1), . . . ,Uk(Rk)

}
,

where the subscript k is the index for the quantities of the kth subpopulation
analogues of those in Section 4.1. We are interested in the overall bounds of
π = ∑K

k=1wkπk . We first consider the following simple form of bounds with
known and fixed qk’s and rk’s:

K∑

k=1

wkLk(qk)≤ π ≤
K∑

k=1

wkUk(rk).

If the joint distribution of the estimators of the upper and lower bounds are asymp-
totically normal, then we can again construct a confidence interval for π using
Imbens and Manski (2004)’s method, denoted by CI(q1, . . . , qk, r1, . . . , rk). Let
the true indices for the kth subpopulation bounds be qk0 = arg max1≤q≤Qk Lk(q)
and rk0 = arg min1≤r≤Rk Uk(r). They are unknown, but can be consistently
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estimated by the sample analogues q̂k0 = arg max1≤q≤Qk L̂k(q) and r̂k0 =
arg min1≤r≤Rk Ûk(r). We then construct the final confidence interval for π as
CI(q̂1, . . . , q̂k, r̂1, . . . , r̂k). The following corollary extends Theorem 3, justifying
the above confidence interval with a discrete covariate.

COROLLARY 4. If (1) for all k, {Lk(1), . . . ,Lk(Qk)} have a unique maximum
value, and {Uk(1), . . . ,Uk(Rk)} have a unique minimum value; (2) for any qk’s and
rk’s, the asymptotic distribution of {∑K

k=1wkL̂k(qk),
∑K
k=1wkÛk(rk)} is bivariate

normal, then CI(q̂1, . . . , q̂k, r̂1, . . . , r̂k) has a coverage rate at least as large as
1− α asymptotically.

For continuous covariates, we need to assume parametric or semiparametric
models, and we leave this topic for future research. For time-varying covariates,
we can treat them as covariates at different time points, and obtain the bounds and
confidence intervals with the same procedure.

5. Application.

5.1. Background and motivation. Credible estimates of the prevalence of HIV
are essential for policy makers to plan control programs and interventions. How-
ever, population-based surveys may be affected by missing data on respondents’
HIV status [Arpino, De Cao and Peracchi (2014)]. The Malawi Diffusion and
Ideational Change Project is a longitudinal survey conducted in rural Malawi every
two years since 1998. The survey is from a collaboration between the University of
Pennsylvania and the College of Medicine and Chancellor College at the Univer-
sity of Malawi. The data can be downloaded from http://www.malawi.pop.upenn.
edu and include the outcomes of HIV tests for the years 2004, 2006, and 2008. We
will give a data description that is relevant to our context, and refer to the orig-
inal study [Anglewicz et al. (2009)] for more details. The project started with a
main survey, which collected information on household structure, sexual relations,
marriage, and partnership histories, etc. Starting from 2004, the Voluntary Con-
sulting and Test survey was added to the main survey, which consisted of a short
questionnaire and free tests for HIV and other sexually transmitted infections.

However, the HIV status is missing for a substantial fraction of the sample.
There are different types of missing data, including temporary absence, loss of
results, relocation, hospitalization, and refusal to participate. In the analysis of
Arpino, De Cao and Peracchi (2014), they ignored different types of missing data,
and used the binary missing data indicator to obtain the bounds of the HIV preva-
lence. With cross-sectional data, they calculate the worst-case bounds; with lon-
gitudinal data, they improve their bounds under monotonicity. Unfortunately, the
bounds they obtained are quite wide, for example, the bound of the HIV preva-
lence in the south region in 2008 is [0.035,0.529] with cross-sectional data and
[0.082,0.529] with longitudinal data. In the following analysis, we are aiming to
improve the inference by taking into account the difference in missing types.

http://www.malawi.pop.upenn.edu
http://www.malawi.pop.upenn.edu
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TABLE 1
Numbers of missing types by year with proportions in parentheses. The sample sizes across years

differ because some units died before observations

Year R = −1 R = 0 R = 1

2004 386 (9.5%) 799 (19.7%) 2877 (70.8%)
2006 323 (8.0%) 1164 (29.0%) 2531 (63.0%)
2008 453 (11.5%) 1253 (31.8%) 2233 (56.7%)

5.2. Data description. Following the analysis of Arpino, De Cao and Perac-
chi (2014), we focus on people who were interviewed in 2004, and drop units who
were never successfully contacted. We use the data in years 2004, 2006, and 2008.
Because HIV prevalence is defined for the population of alive individuals, we con-
sider only the alive people when computing HIV prevalences for each of the years
2004, 2006, and 2008. The data are available from the online materials of Arpino,
De Cao and Peracchi (2014). The total sample size is 4062. The HIV status is
missing for 1185, 1487, and 1706 individuals in 2004, 2006, and 2008, with miss-
ing proportions 29.2%, 36.6%, and 42.0%, respectively. In the data, the reasons
for the missing data in the main survey are categorized as “refused,” “hospital-
ized,” “not known,” “temporarily absent,” “moved.” Other reasons are classified
as the residual category “other,” consisting mainly of people who did not fill in
the questionnaire because they were too old or too sick, or for unspecified rea-
sons that may also include migration [Arpino, De Cao and Peracchi (2014)]. The
reasons for the missing data in the Voluntary Consulting and Test survey are cate-
gorized as “refused,” “hospitalized,” “temporarily absent,” “not known,” “moved,”
and “results lost.” Other reasons for item nonresponse are classified as the cat-
egory “other.” The HIV status is missing if either data from the main survey or
the Voluntary Consulting and Test survey are missing. In our analysis, we de-
fine Rt = −1 if the reason of missingness in either of the two surveys belongs to
the categories “refused,” “hospitalized,” or “others.” For the rest of the reasons of
missingness, we defineRt = 0. Table 1 summarizes the distributions of the missing
types.

In our data, there may be some reasons that are related to the HIV status but we
classify them as missing at random. To deal with this, we will propose an approach
to conducting sensitivity analysis in Section 5.4. We will not consider measure-
ment error, because as stated in Arpino, De Cao and Peracchi (2014), measurement
error in the two types of test (oral swabs and blood test) appears to be small.

5.3. Data analysis. The survey was carried out in three administrative regions:
center, south, and north. Because these regions have very different demographic
characteristics, we conduct analyses within subpopulations stratified by region and
gender. Within each level of region and gender, it is plausible that the absence of
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the individual or the loss of the individual’s result does not depend on the indi-
vidual’s HIV status, that is, Assumption 1 holds. Because of the feature of HIV
infection discussed in Section 3.1, Assumption 2 holds. Therefore, we can apply
Theorems 1 and 2 to calculate the bounds of HIV prevalence. The upper and lower
bounds have explicit forms, and we can estimate the bounds by replacing the prob-
ability parameters by their sample frequency analogues, and then apply the method
in Section 4 to construct confidence intervals. We empirically check the testable
conditions for all three years, and find that the conditions hold in all subpopula-
tions and years. Therefore, the data provide no evidence against Assumption 1,
because Assumption 2 holds automatically.

Figure 1 shows the estimated bounds and confidence intervals for the HIV
prevalence from our method and Arpino, De Cao and Peracchi (2014)’s method
for the three administrative regions of the country separated by gender. For de-
scriptive convenience, we call Arpino, De Cao and Peracchi (2014)’s method the
“A method” and our method the “JD method” from now on. For women in the
north region in 2006 [the third plot of Figure 1(b)], the A method gives bounds
(0.047,0.237), and the JD method gives bounds (0.058,0.067); the JD method re-
duces 95.3% of the width of the bounds. For men in the south region in 2004 [the
second plot of Figure 1(a)], the A method gives bounds (0.045,0.172), and the JD
method gives bounds (0.054,0.129); the JD method reduces 40.6% of the width
of the bounds. The reductions in the widths of the bounds in these two subpopula-
tions are the largest and smallest among all subpopulations, respectively. For men
in the north region in 2006 [the third plot of Figure 1(a)], the A method gives a
confidence interval (0.013,0.382), and the JD method gives a confidence interval
(0.019,0.113); the JD method reduces 75.2% of the width of the confidence in-
terval. For men in the south region in 2004 [the second plot of Figure 1(a)], the
A method gives a confidence interval (0.032,0.195), and the JD method gives a
confidence interval (0.037,0.154); the JD method reduces 28.5% of the width of
the confidence interval. The reductions in the widths of the confidence intervals in
these two subpopulations are the largest and smallest among all subpopulations,
respectively.

Figure 2 shows the histograms of the ratios of the widths of the bounds and
confidence intervals obtained by the JD method divided by those obtained by the
A method. For all the results with a single time point and multiple time points,
the ratios of the widths of the bounds range from 0.043 to 0.594, and the ratios
of the widths of the confidence intervals range from 0.255 to 0.715. In most sub-
populations, the reductions in widths of the bounds and confidence intervals are
larger than 50%, demonstrating substantial improvement in inference by taking
into account the different types of missing data.

We can obtain the overall bounds of men and women by first calculating the
bounds in each region and then averaging the bounds over regions. Figure 3 shows
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FIG. 1. The solid lines are the bounds and the dotted extended lines are the 95% confidence inter-
vals for the HIV prevalence in the corresponding years. The grey lines are the results with a single
time point and the black lines are the results with multiple time points. The label “JD” corresponds
to the result of our method, and the label “A” corresponds to the results of Arpino, De Cao and
Peracchi (2014)’s method.

the overall bounds and corresponding confidence intervals using the A and JD
methods. The reductions in widths of the bounds and confidence intervals are large
by the JD method.
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FIG. 2. Ratios of the widths of the bounds and confidence intervals for the HIV prevalence obtained
by the JD and A methods. The grey histograms are the results with a single time point and the white
histograms are the results with multiple time points.

According to Figure 1, in years 2006 and 2008, the lower bound of the HIV
prevalence in Southern Malawi is the highest among the three regions for both
men and women. But in 2004, the central region has the highest lower bound.
This is similar for the upper bound. However, because the bounds and confidence
intervals overlap, we make no attempt to draw inference about the differences in
HIV prevalence across different regions. In Figure 3, the lower bounds and upper

FIG. 3. The solid lines are the bounds and the dotted extended lines are the 95% confidence inter-
vals for the HIV prevalence in the corresponding years. The grey lines are the results with a single
time point and the black lines are the results with multiple time points. The label “JD” corresponds
to the result of our method, and the label “A” corresponds to the results of Arpino, De Cao and
Peracchi (2014)’s method.
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bounds in 2008 are the highest among the three years for both men and women,
suggesting an increasing trend of the HIV prevalence.

Note that Arpino, De Cao and Peracchi (2014) used some variables as instru-
mental variables or monotone instrumental variables to further narrow their bounds
[Manski (2003), Manski and Pepper (2000)], which, however, invoked additional
assumptions. As a future work, we can further narrow our bounds by further in-
voking some of these instrumental variable assumptions.

5.4. Sensitivity analysis. The classification of the reasons of missingness re-
quires prior knowledge, and sometimes it is hard to justify whether a specific rea-
son is missing at random or not at random. For example, in our application, it is
possible that absence of the individual is related to HIV status in various ways.
As a result, the reason “temporarily absent” may be missing not at random, but in
previous analysis, we define it as Rt = 0. In this case, we can conduct a sensitivity
analysis by gradually increasing or decreasing the set of reasons that are missing
at random. Specifically, we start with the analysis that assumes all the reasons are
missing not at random. Then, we change the categories of the reasons of missing-
ness from Rt =−1 to Rt = 0 one by one. As a result, we can see how the bounds
and confidence intervals change as we strengthen the assumption about the missing
types.

We conduct the sensitivity analysis for the bounds with multiple time points in
2004 in the subpopulation of women. We start with the method in Arpino, De Cao
and Peracchi (2014), which classifies all the reasons of missingness as Rt = −1.
We then change the categories of reasons “moved,” “results lost or not known,” and
“temporarily absent” to Rt = 0 one by one. The results in Figure 4 show that even
with a single reason classified as missing at random, we have meaningful improve-
ment, and with three reasons classified as missing at random, we have substantial
improvement. Analogously, we can conduct sensitivity analyses for other subpop-
ulations, but we omit the results to save space.

6. Discussion. We discussed binary outcomes in Sections 2 and 3. For gen-
eral outcomes, we can dichotomize the outcomes, and apply our results for binary
outcomes to obtain bounds on the distribution functions. Furthermore, bounds on
the distribution function can be used to construct bounds on quantiles as suggested
by Manski (2009).

In the application, there are many types of missing data. We collapsed them
into two categories: one is more likely to be missing at random, and the other
tends to be related to the missing outcome itself. By doing this, we do not need to
model the detailed missing data patterns. Ideally, we could further distinguish the
detailed missing types. But this will require more assumptions about the missing
data mechanism. From the HIV data, although we know there are different missing
types, we do not have very clear understanding about the missing data mechanism.
If we are willing to impose parametric models, it is promising that more efficient
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FIG. 4. The solid lines are the bounds and the dotted extended lines are the 95% confidence in-
tervals. The label “A” corresponds to the results of Arpino, De Cao and Peracchi (2014)’s method.
The label “JD1” corresponds to the result of our method with Rt = 1 indicating “moved.” The label
“JD2” corresponds to the result of our method with Rt = 1 indicating “moved” and “results lost
or not known.” The label “JD3” corresponds to the result of our method with Rt = 1 indicating
“moved,” “results lost or not known,” and “temporarily absent,” which is the same as what we did
in Section 5.3.

estimates could be obtained. Our paper, however, focuses more on nonparametric
and robust analyses.

The current bounds are sharp, that is, without imposing further assumptions be-
yond Assumptions 1 and 2, we cannot improve these bounds. In particular, we do
not impose any assumptions about the transition probabilities of the missing indi-
cator Rt . If we are willing to model the transition probability matrix, then we can
obtain narrower bounds. However, from the HIV study, it does not seem obvious
how to impose assumptions on this transition probability matrix. Therefore, we do
not explore this direction in our current paper, but leave it to future research.

From the perspective of study designs, our results suggest that in addition to
recording the binary missing indicator, researchers should also collect nonresponse
types and, if possible, distinguish between types related to the outcomes and types
unrelated to the outcomes.
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SUPPLEMENTARY MATERIAL

Supplement to “Using missing types to improve partial identification with
application to a study of HIV prevalence in Malawi” (DOI: 10.1214/17-
AOAS1133SUPP; .pdf). The supplementary material consists of four parts. Sec-
tion S1 gives the proofs of the theorems of the bounds. Section S2 gives the testable
conditions with multiple time points. Section S3 gives the proofs of the theorem
and corollary for constructing confidence interval. Section S4 shows the results of
the simulation studies.
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Supplementary Material for “Using Missing Types to

Improve Partial Identification with Application to a

Study of HIV Prevalence in Malawi”

Zhichao Jiang⇤ and Peng Ding†

The supplementary material consists of four parts.

Section S1 gives the proofs of the theorems of the bounds.

Section S2 gives the testable conditions with multiple time points.

Section S3 gives the proofs of the theorem and corollary for constructing confidence interval.

Section S4 shows the results of simulation.

S1. Proofs of the theorems of the bounds

Proof of Theorem 1. The law of total probability and Assumption 1 imply

⇡t = pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1) + pr(Yt = 1 | Rt = 0, St = 1)pr(Rt = 0 | St = 1)

+pr(Yt = 1 | Rt = �1, St = 1)pr(Rt = �1 | St = 1)

= pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1) + ⇡tpr(Rt = 0 | St = 1)

+pr(Yt = 1 | Rt = �1, St = 1)pr(Rt = �1 | St = 1). (S1)

Because 0  pr(Yt = 1 | Rt = �1, St = 1)  1, the decomposition (S1) implies

⇡t � pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1) + ⇡tpr(Rt = 0 | St = 1),

⇡t  pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1) + ⇡tpr(Rt = 0 | St = 1) + pr(Rt = �1 | St = 1).

⇤Department of Politics, Princeton University, New Jersey 08544, USA. Email: zhichaoj@princeton.edu
†Department of Statistics, University of California, Berkeley, California, USA. Email: pengdingpku@berkeley.edu
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Solving the above two inequalities about ⇡t, we have fLBt  ⇡t  gUBt, where

fLBt =
pr(Yt = 1, Rt = 1 | St = 1)

1� pr(Rt = 0 | St = 1)
, gUBt =

pr(Yt = 1, Rt = 1 | St = 1) + pr(Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)
.

The lower and upper bounds can be attained when pr(Yt = 1 | Rt = �1, St = 1) equals 0 and

1, respectively. Furthermore, when pr(Yt = 1 | Rt = �1, St = 1) equals 0 or 1, the obtained

distribution is compatible with Assumption 1. Thus, the bounds are sharp. It is straightforward

to verify that fLBt � LBt, and

UBt �gUBt = pr(Yt = 1 | R̃t = 1, St = 1)pr(R̃t = 1 | St = 1) + pr(R̃t = 0 | St = 1)

�pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1) + pr(Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)

= pr(Rt = 0 | St = 1) + pr(Rt = �1 | St = 1)� pr(Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)

�pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1)pr(Rt = 0 | St = 1)

1� pr(Rt = 0 | St = 1)

 pr(Rt = 0 | St = 1)� pr(Rt = �1 | St = 1)pr(Rt = 0 | St = 1)

1� pr(Rt = 0 | St = 1)

�pr(Rt = 1 | St = 1)pr(Rt = 0 | St = 1)

1� pr(Rt = 0 | St = 1)
(S2)

= 0,

where (S2) follows from pr(Yt = 1 | Rt = 1, St = 1)  1. Therefore, [fLBt,gUBt] ✓ [LBt,UBt]. If

pr(Rt = 0 | St = 1) > 0, then the last inequality above holds strictly, and [fLBt,gUBt] ⇢ [LBt,UBt] ⇢

[0, 1]. ⇤

In the proofs below, under Assumption 1, we use the notation

⇡t = pr(Yt = 1 | Rt = 0, St = 1) = pr(Yt = 1 | St = 1), ✓t = pr(Yt = 1 | Rt = �1, St = 1).

To prove Theorem 2, we need the following three lemmas.

Lemma S1. Under Assumption 1, ⇡t and ✓t satisfy the linear constraint

⇡tpr(Rt 6= 0 | St = 1)� ✓tpr(Rt = �1 | St = 1) = pr(Yt = 1, Rt = 1 | St = 1). (S3)
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Proof of Lemma S1. The law of total probability and Assumption 1 imply

⇡t = pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1) + ⇡tpr(Rt = 0 | St = 1)

+pr(Yt = 1 | Rt = �1, St = 1)pr(Rt = �1 | St = 1)

= pr(Yt = 1 | Rt = 1, St = 1)pr(Rt = 1 | St = 1) + ⇡tpr(Rt = 0 | St = 1) + ✓tpr(Rt = �1 | St = 1),

which further implies (S3). ⇤

Lemma S2. Under Assumption 2, we have the following constraints from the data at time points

t, . . . , t+ J ,

⇡t  1�
JX

j=1

pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = 0, St = 1), (S4)

✓t  1�
JX

j=1

pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = �1, St = 1). (S5)

Proof of Lemma S2. For r = 0 and �1, we can expand pr(Yt = 1 | Rt = r, St = 1) with respect to

the distribution of (Yt+1, Rt+1, St+1):

pr(Yt = 1 | Rt = r, St = 1)

= pr(Yt = 1 | Yt+1 = 1, Rt+1 = 1, St+1 = 1, Rt = r, St = 1)pr(Yt+1 = 1, Rt+1 = 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt+1 = 0, Rt+1 = 1, St+1 = 1, Rt = r, St = 1)pr(Yt+1 = 0, Rt+1 = 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt+1 6= 1, St+1 = 1, Rt = r, St = 1)pr(Rt+1 6= 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | St+1 = 0, Rt = r, St = 1)pr(St+1 = 0 | Rt = r, St = 1) (S6)

= pr(Yt = 1 | Yt+1 = 1, Rt+1 = 1, St+1 = 1, Rt = r, St = 1)pr(Yt+1 = 1, Rt+1 = 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt+1 6= 1, St+1 = 1, Rt = r, St = 1)pr(Rt+1 6= 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | St+1 = 0, Rt = r, St = 1)pr(St+1 = 0 | Rt = r, St = 1) (S7)

= pr(Yt = 1, Yt+1 = 1, Rt+1 = 1, St+1 = 1 | Rt = r, St = 1) + pr(Yt = 1, Rt+1 6= 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1, St+1 = 0 | Rt = r, St = 1), (S8)

where (S6) follows from the law of total probability, (S7) follows from pr(Yt = 1 | Yt+1 = 0, Rt+1 =

1, St+1 = 1, Rt = r, St = 1) = 0 due to monotonicity, and (S8) follows from the definition of

conditional probability.

We then expand pr(Yt = 1, Rt+1 6= 1, St+1 = 1 | Rt = r, St = 1) in (S8) with respect to the
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distribution of (Yt+2, Rt+2, St+2):

pr(Yt = 1 | Rt = r, St = 1)

= pr(Yt = 1, Yt+1 = 1, Rt+1 = 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt+2 = 1, Rt+2 = 1, Rt+1 6= 1, Rt = r, St+2 = St+1 = St = 1)

· pr(Yt+2 = 1, Rt+2 = 1, Rt+1 6= 1, St+2 = St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt+2 = 0, Rt+2 = 1, Rt+1 6= 1, Rt = r, St+2 = St+1 = St = 1)

· pr(Yt+2 = 0, Rt+2 = 1, Rt+1 6= 1, St+2 = St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt+2 6= 1, Rt+1 6= 1, Rt = r, St+2 = St+1 = St = 1)

· pr(Rt+2 6= 1, Rt+1 6= 1, St+2 = St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt+1 6= 1, Rt = r, St+2 = 0, St+1 = St = 1)

· pr(Rt+1 6= 1, St+2 = 0, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1, St+1 = 0 | Rt = r, St = 1) (S9)

= pr(Yt = 1, Yt+1 = 1, Rt+1 = 1, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1, Yt+2 = 1, Rt+2 = 1, Rt+1 6= 1, St+2 = St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1, Rt+2 6= 1, Rt+1 6= 1, St+2 = St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1, Rt+1 6= 1, St+2 = 0, St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1, St+1 = 0 | Rt = r, St = 1) (S10)

where (S9) follows from the law of total probability, and (S10) follows from pr(Yt = 1 | Yt+2 =

0, Rt+2 = 1, Rt+1 6= 1, Rt = r, St+2 = St+1 = St = 1) = 0 due to monotonicity.

Sequentially applying the law of total probability to

pr(Yt = 1, Rt+j 6= 1, . . . , Rt+1 6= 1, St+j = · · · = St+1 = 1 | Rt = r, St = 1), (j = 2, . . . , J � 1)

with respect to the distribution of (Yt+j+1, Rt+j+1, St+j+1) and using the fact that

pr(Yt = 1 | Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, Rt = r, St+j = · · · = St = 1) = 0, (j = 3, . . . , J)
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we can further decompose (S10) as

pr(Yt = 1 | Rt = r, St = 1)

=

JX

j=1

pr(Yt = 1 | Yt+j = 1, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, Rt = r, St+j = · · · = St = 1)

· pr(Yt+j = 1, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt+J 6= 1, . . . , Rt+1 6= 1, Rt = r, St+J = · · · = St = 1)

· pr(Rt+J 6= 1, . . . , Rt+1 6= 1, St+J = · · · = St+1 = 1 | Rt = r, St = 1)

+

JX

j=2

pr(Yt = 1 | Rt+j�1 6= 1, . . . Rt+1 6= 1, Rt = r, St+j = 0, St+j�1 = · · · = St = 1)

·pr(Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 0, St+j�1 = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt = r, St+1 = 0, St = 1)pr(St+1 = 0 | Rt = r, St = 1) (S11)

where the terms in the first summation come from the expansion of pr(Yt = 1, Rt+j�1 6= 1, . . . , Rt+1 6=

1, St+j = · · · = St+1 = 1 | Rt = r, St = 1) with respect to the event (Yt+j = 1, Rt+j = 1), and the

terms in the second summation come from the expansion with respect to the event St+j = 0. Note

that (S7) and (S10) are special cases of (S11) with J = 1 and J = 2.

Because the unobservable probabilities in (S11) are all upper bounded by 1, i.e.,

pr(Yt = 1 | Yt+j = 1, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, Rt = r, St+j = · · · = St = 1)  1, (j = 1, . . . , J)

(S12)

pr(Yt = 1 | Rt+J 6= 1, . . . , Rt+1 6= 1, Rt = r, St+J = · · · = St = 1)  1, (S13)

pr(Yt = 1 | Rt+j�1 6= 1, . . . , Rt+1 6= 1, Rt = r, St+j = 0, St+j�1 = · · · = St = 1)  1, (j = 2, . . . , J)

(S14)

pr(Yt = 1 | Rt = r, St+1 = 0, St = 1)  1. (S15)
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we can further bound pr(Yt = 1 | Rt = r, St = 1) by

pr(Yt = 1 | Rt = r, St = 1)


JX

j=1

pr(Yt+j = 1, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(Rt+J 6= 1, . . . , Rt+1 6= 1, St+J = · · · = St+1 = 1 | Rt = r, St = 1)

+

JX

j=2

pr(Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 0, St+j�1 = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(St+1 = 0 | Rt = r, St = 1). (S16)

For convenience, define

� = pr(Yt = 1 | Rt = r, St = 1)+

JX

j=1

pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = r, St = 1).

Because St0 = 1 implies St = 1 if t0 > t, (S16) then implies

� 
JX

j=1

pr(Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(Rt+J 6= 1, . . . , Rt+1 6= 1, St+J = · · · = St+1 = 1 | Rt = r, St = 1)

+

JX

j=2

pr(Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 0, St+j�1 = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(St+1 = 0 | Rt = r, St = 1), (S17)

combining the two terms with summation from j = 1 to J. For j = 1, . . . , J � 1, because (Rt+j =

1, St+j = 1), (Rt+j 6= 1, St+j = 1) and St+j = 0 consist of the whole set, we have

pr(Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 0, St+j�1 = · · · = St+1 = 1 | Rt = r, St = 1)

+pr(Rt+j 6= 1, . . . , Rt+1 6= 1, St+j = · · · = St+1 = 1 | Rt = r, St = 1)

= pr(Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j�1 = · · · = St+1 = 1 | Rt = r, St = 1). (S18)

Note that the first two terms on the left-hand side of (S18) are the terms within the two summations
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with index j in (S17). Sequentially applying (S18) from j = J to 2 to (S17), we can obtain

�  pr(Rt+1 = 1, St+1 = 1 | Rt = r, St = 1) + pr(Rt+1 6= 1, St+1 = 1 | Rt = r, St = 1)

+pr(St+1 = 0 | Rt = r, St = 1)

= 1.

Taking r = 0 and �1 in �  1, we obtain

⇡t  1�
JX

j=1

pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = 0, St = 1),

✓t  1�
JX

j=1

pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = �1, St = 1).

⇤

Lemma S3. Under Assumption 2, we have the following constraints from the data at time points

t� I, . . . , t,

⇡t �
IX

i=1

pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = 0, St = 1), (S19)

✓t �
IX

i=1

pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = �1, St = 1). (S20)

Proof of Lemma S3. The proof of Lemma S3 is simpler than that of Lemma S2, because St = 1

implies that St0 = 1 for t0 < t.

For r = 0 and �1, we can expand pr(Yt = 1 | Rt = r, St = 1) with respect to the distribution of
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(Yt�1, Rt�1):

pr(Yt = 1 | Rt = r)

= pr(Yt = 1 | Yt�1 = 1, Rt�1 = 1, Rt = r)pr(Yt�1 = 1, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�1 = 0, Rt�1 = 1, Rt = r, St = 1)pr(Yt�1 = 0, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt�1 6= 1, Rt = r, St = 1)pr(Rt�1 6= 1 | Rt = r, St = 1) (S21)

= pr(Yt�1 = 1, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�1 = 0, Rt�1 = 1, Rt = r, St = 1)pr(Yt�1 = 0, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt�1 6= 1, Rt = r, St = 1)pr(Rt�1 6= 1 | Rt = r, St = 1) (S22)

= pr(Yt�1 = 1, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�1 = 0, Rt�1 = 1, Rt = r, St = 1)pr(Yt�1 = 0, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1, Rt�1 6= 1 | Rt = r, St = 1), (S23)

where (S21) follows from the law of total probability, (S22) follows from pr(Yt = 1 | Yt�1 = 1, Rt�1 =

1, Rt = r) = 1 due to monotonicity, and (S23) follows from the definition of conditional probability.

We then expand pr(Yt = 1, Rt�1 6= 1 | Rt = r, St = 1) in (S23) with respect to the distribution

of (Yt�2, Rt�2), we have

pr(Yt = 1 | Rt = r, St = 1)

= pr(Yt�1 = 1, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�1 = 0, Rt�1 = 1, Rt = r, St = 1)pr(Yt�1 = 0, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�2 = 1, Rt�2 = 1, Rt�1 6= 1, Rt = r, St = 1)pr(Yt�2 = 1, Rt�2 = 1, Rt�1 6= 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�2 = 0, Rt�2 = 1, Rt�1 6= 1, Rt = r, St = 1)pr(Yt�2 = 0, Rt�2 = 1, Rt�1 6= 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt�2 6= 1, Rt�1 6= 1, Rt = r)pr(Rt�2 6= 1, Rt�1 6= 1 | Rt = r, St = 1) (S24)

= pr(Yt�1 = 1, Rt�1 = 1 | Rt = r, St = 1) + pr(Yt�2 = 1, Rt�2 = 1, Rt�1 6= 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�1 = 0, Rt�1 = 1, Rt = r, St = 1)pr(Yt�1 = 0, Rt�1 = 1 | Rt = r, St = 1)

+pr(Yt = 1 | Yt�2 = 0, Rt�2 = 1, Rt�1 6= 1, Rt = r, St = 1)pr(Yt�2 = 0, Rt�2 = 1, Rt�1 6= 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt�2 6= 1, Rt�1 6= 1, Rt = r, St = 1)pr(Rt�2 6= 1, Rt�1 6= 1 | Rt = r, St = 1) (S25)

where (S24) follows from the law of total probability, and (S25) follows from pr(Yt = 1 | Yt�2 =

1, Rt�2 = 1, Rt�1 6= 1, Rt = r, St = 1) = 1 due to monotonicity.
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Sequentially applying the law of total probability to

pr(Yt = 1 | Rt�i 6= 1, . . . , Rt�1 6= 1, Rt = r, St = 1), (i = 2, . . . , I � 1)

with respect to the distribution of (Yt�i�1, Rt�i�1) and using the fact that

pr(Yt = 1 | Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1, Rt = r, St = 1) = 1, (i = 3, . . . , I)

we can further decompose (S25) as

pr(Yt = 1 | Rt = r, St = 1)

=

IX

i=1

pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = 0, St = 1)

+

IX

i=1

pr(Yt = 1 | Yt�i = 0, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1, Rt = r, St = 1)

· pr(Yt�i = 0, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = r, St = 1)

+pr(Yt = 1 | Rt�I 6= 1, . . . , Rt�1 6= 1, Rt = r, St = 1)pr(Rt�I 6= 1, . . . , Rt�1 6= 1 | Rt = r, St = 1)

(S26)

where the terms in the first summation come from the expansion of pr(Yt = 1 | Rt�i 6= 1, . . . , Rt�1 6=

1, Rt = r, St = 1) with respect to the event (Yt�i = 1, Rt�i = 1), and the terms in the second

summation comes from the expansion with respect to the event (Yt�i = 0, Rt�i = 1). Note that

(S22) and (S25) are special cases of (S11) with J = 1 and J = 2.

Because the unobservable probabilities in (S26) are all bounded below by 0, i.e.,

pr(Yt = 1 | Yt�i = 0, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1, Rt = r, St = 1) � 0, (i = 1, . . . , I)

(S27)

pr(Yt = 1 | Rt�I 6= 1, . . . , Rt�1 6= 1, Rt = r, St = 1) � 0, (S28)
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we have

pr(Yt = 1 | Rt = r, St = 1) �
IX

i=1

pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = 0, St = 1).

(S29)

Taking r = 0 and �1, (S29) yields

⇡t �
IX

i=1

pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = 0, St = 1),

✓t �
IX

i=1

pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = �1, St = 1).

⇤
Proof of Theorem 2. According to Lemmas S1–S3, we can obtain the bounds of ⇡t by maximizing

and minimizing ⇡t under the constraints (S3), (S4), (S5), (S19) and (S20). These are two linear

programming problems. Solving them, we obtain fLB
I
t  ⇡t  gUB

J
t , where

fLB
I

t = max

(PI
i=1 pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1, Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)
+ fLBt,

IX

i=1

pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = 0, St = 1)

)
,

gUB
J

t = min

(
gUBt �

PJ
j=1 pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, Rt = �1, St+j = 1 | St = 1)

1� pr(Rt = 0 | St = 1)
,

1�
JX

j=1

pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = 0, St = 1)

9
=

; .

The lower bound is attainable in one of the following two cases: (a) the equalities in (S27) and

(S28) hold for r = �1 if the first term in the expression of fLB
I
t is larger than the second term; (b)

the equalities in (S27) and (S28) hold for r = 0 if the first term in the expression of fLB
I
t is less

than or equal to the second term. In either case, the distribution is compatible with Assumptions

1 and 2. Thus, the lower bound is sharp.

The upper bound is attainable in one of the following two cases: (a) the equalities in (S12)–

(S15) hold for r = �1 if the first term in the expression of gUB
J
t is less than the second term; (b)
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the equalities in (S12)–(S15) hold for r = 0 if the first term in the expression of gUB
J
t is larger than

or equal to the second term. In either case, the distribution is compatible with Assumptions 1 and

2. Thus, the upper bound is sharp. ⇤

S2. Testable conditions

Proof of Corollary 1. With time points t and t + 1, the sharp bounds of ⇡t are fLBt  ⇡t  gUB
1
t ,

where

gUB
1

t

= min

⇢
pr(Yt = 1, Rt = 1 | St = 1) + pr(Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)
� pr(Yt+1 = 0, Rt+1 = 1, Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)
,

1� pr(Yt+1 = 0, Rt+1 = 1 | Rt = 0, St = 1)

�

Because the lower bound must be less than or equal to the upper bound, we have the constraint

fLBt  gUB
1
t , which is equivalent to

pr(Yt = 1, Rt = 1 | St = 1)

1� pr(Rt = 0 | St = 1)
 1� pr(Yt+1 = 0, Rt+1 = 1 | Rt = 0, St = 1),

pr(Yt = 1, Rt = 1 | St = 1)

1� pr(Rt = 0 | St = 1)
 pr(Yt = 1, Rt = 1 | St = 1) + pr(Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)

�pr(Yt+1 = 0, Rt+1 = 1, Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)
.

The second inequality holds automatically, and thus the first inequality is the final testable condi-

tion. ⇤

Proof of Corollary 2. With time points t � 1 and t, the sharp bounds of ⇡t are fLB
1
t  ⇡t  gUBt,

where

fLB
1
t = max

n
pr(Yt�1 = 1, Rt�1 = 1 | Rt = 0, St = 1), fLBt +

pr(Yt�1=1,Rt�1=1,Rt=�1|St=1)
1�pr(Rt=0|St=1)

o
.

Because the lower bound must be less than or equal to the upper bound, we have the constraint
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fLB
1
t  gUBt, which is equivalent to

pr(Yt�1 = 1, Rt�1 = 1 | Rt = 0, St = 1)  pr(Yt = 1, Rt = 1 | St = 1) + pr(Rt = �1 | St = 1)
1� pr(Rt = 0 | St = 1)

,

pr(Yt = 1, Rt = 1 | St = 1)
1� pr(Rt = 0 | St = 1)

+
pr(Yt�1 = 1, Rt�1 = 1, Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)
 pr(Yt = 1, Rt = 1 | St = 1) + pr(Rt = �1 | St = 1)

1� pr(Rt = 0 | St = 1)
.

The second inequality holds automatically, and thus the first inequality is the final the testable

condition. ⇤

Proof of Corollary 3. Because the lower bound must be less than or equal to the upper bound,

we have the constraint fLB
1
t  gUB

1
t . The two terms in the maximum operation of fLB

1
t must be

less than or equal to the two terms in the minimum operation of gUB
1
t , which results in the four

conditions of the corollary.

⇤

With data at time points t�I, . . . , t, . . . , t+J , we can use Theorem 2 to derive testable conditions

for Assumptions 1 and 2. In Theorem 2, the lower bound must be less than or equal to the upper

bound. Therefore, we have the constraint fLB
I
t  gUB

J
t . The two terms in the maximum operation

of fLB
I
t must be less than or equal to the two terms in the minimum operation of gUB

J
t , which results

in the following four conditions:

PI
i=1 pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1, Rt = 0, St = 1)

 1�
PJ

j=1 pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = 0, St = 1),

PI
i=1 pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1, Rt = �1 | St = 1)

 pr(Rt = �1 | St = 1)�
PJ

j=1 pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, Rt = �1, St+j = 1 | St = 1),

PI
i=1 pr(Yt�i=1,Rt�i=1,Rt�i+1 6=1,...,Rt�1 6=1,Rt=�1|St=1)

1�pr(Rt=0|St=1) + fLBt

 1�
PJ

j=1 pr(Yt+j = 0, Rt+j = 1, Rt+j�1 6= 1, . . . , Rt+1 6= 1, St+j = 1 | Rt = 0, St = 1),

PI
i=1 pr(Yt�i = 1, Rt�i = 1, Rt�i+1 6= 1, . . . , Rt�1 6= 1 | Rt = 0, St = 1)

 gUBt �
PJ

j=1 pr(Yt+j=0,Rt+j=1,Rt+j�1 6=1,...,Rt+1 6=1,Rt=�1,St+j=1|St=1)

1�pr(Rt=0|St=1) .

12



S3. Confidence intervals for partially identified parameters

We first state the regularity conditions for pointwise coverage in Theorem 3.

(R1) The width of the bounds is uniformly bounded, i.e., C1 < min{U(1), . . . ,U(R)}�max{L(1), . . . ,L(Q)} <

C2 for some C1 > 0 and C2 > 0;

(R2) for any q and r, the asymptotic variance of L(q) and U(r), �2
L(q) and �2

U(r), are uniformly

bounded, i.e., C3 < �2
L(q) < C4 and C3 < �2

U(r) < C4 for some C3 > 0 and C4 > 0.

For any q and r, let �2
(q, r) be the asymptotic variance of bU(r) � bL(q). From (R2) and the

Cauchy–Schwarz inequality, we have

�2
(q, r)  �2

L(q) + �2
U(r) + 2�L(q)�U(r) < 4C4. (S30)

Under the above conditions, we can show that the confidence interval CI(q0, r0) has a correct

asymptotic coverage rate in the sense that limn!1 pr{⇡ 2 CI(q0, r0)} � 1 � ↵. We need only to

verify the three conditions of Lemma 4 in Imbens and Manski (2004). In Imbens and Manski

(2004)’s Lemma 4, Condition (i) follows from Condition (3) of Theorem 3, and Condition (ii)

follows from (R1) and (R2). From Conditions (2) of Theorem 3, the asymptotic distribution

(bU(r) � bL(q)) � (U(r) � L(q)) is normal with mean 0 and variance �2
(q, r). Let N denote the

sample size and �(·) denote the distribution function of the standard normal distribution. For any

positive v,

lim
N!+1

pr

np
N |bU(r)� bL(q)� (U(r)� L(q))| > k(U(r)� L(q))v

o

 lim
N!+1

pr

np
N |bU(r)� bL(q)� (U(r)� L(q))| > kCv

1

o

= 2�{�kCv
1/�(q, r)}

 2�{�kCv
1/2

p
C4}

k!+1����! 0,

where the first inequality follow from (R1) and the second inequality follows from (S30). Therefore,

Condition (iii) in Imbens and Manski (2004)’s Lemma 4 holds.

In the following, I(·) denotes an indicator function.

Proof of Theorem 3. We first show pr{(bq, br) 6= (q0, r0)} ! 0 as the sample size n ! 1. Because of
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the union bound pr{(bq, br) 6= (q0, r0)}  pr(bq 6= q0) + pr(br 6= r0), it su�ces to show pr(bq 6= q0) ! 0

and pr(br 6= r0) ! 0. Because of symmetry, we show only pr(bq 6= q0) ! 0. Because bL(q) ! L(q) in

probability for any q, the dominant convergence theorem implies

pr(bq 6= q0) =
X

q 6=q0

pr(bq = q) 
X

q 6=q0

E
h
I{bL(q) � bL(q0)}

i
!

X

q 6=q0

E [I{L(q) � L(q0)}] = 0,

where the last equality holds because the uniqueness of the maximum value of {L(1), . . . ,L(Q)}

implies L(q) < L(q0) for all q 6= q0.

We then show that CI(bq, br) has a correct asymptotic coverage rate. First, the confidence interval

CI(q0, r0) has a correct asymptotic coverage rate in the sense that limn!1 pr{⇡ 2 CI(q0, r0)} � 1�↵

following from Imbens and Manski (2004). Second, we show that the coverage rate of CI(bq, br) is

close enough to that of CI(q0, r0) asymptotically. Because

pr{⇡ 2 CI(q0, r0)} = pr{⇡ 2 CI(q0, r0), (bq, br) = (q0, r0)}+ pr{⇡ 2 CI(q0, r0), (bq, br) 6= (q0, r0)}

= pr{⇡ 2 CI(bq, br), (bq, br) = (q0, r0)}+ pr{⇡ 2 CI(q0, r0), (bq, br) 6= (q0, r0)}

 pr{⇡ 2 CI(bq, br)}+ pr{(bq, br) 6= (q0, r0)}, (S31)

and, similarly,

pr{⇡ 2 CI(bq, br)} = pr{⇡ 2 CI(bq, br), (bq, br) = (q0, r0)}+ pr{⇡ 2 CI(bq, br), (bq, br) 6= (q0, r0)}

= pr{⇡ 2 CI(q0, r0), (bq, br) = (q0, r0)}+ pr{⇡ 2 CI(bq, br), (bq, br) 6= (q0, r0)}

 pr{⇡ 2 CI(q0, r0)}+ pr{(bq, br) 6= (q0, r0)},

we have

|pr{⇡ 2 CI(bq, br)}� pr{⇡ 2 CI(q0, r0)}|  pr{(bq, br) 6= (q0, r0)} ! 0.

Therefore, this further implies limn!1 pr{⇡ 2 CI(bq, br)} � 1� ↵. ⇤

To obtain the uniform coverage property, we need more regularity conditions on the space of

probability distributions P.

(R3) For any q1 6= q2, the distribution of bL(q1)� bL(q2) converges uniformly to a normal distri-

bution with mean L(q1)�L(q2) and variance �2
L(q1, q2), in the sense that for any ✏ > 0, there exists
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an M such that for all N > M , P 2 P and any fixed x,

�����pr
(
bL(q1)� bL(q2)� (L(q1)� L(q2))

�l(q1, q2)/
p
N

< x

)
� �(x)

����� < ✏.

(R4) For any r1 6= r2, the distribution of bU(r1) � bU(r2) converges uniformly to a normal

distribution with mean U(r1)�U(r2) and variance �2
U(r1, r2) in the same sense as (R3).

(R5) There exists a � > 0 such that for any q1 6= q2, |L(q1) � L(q2)| > �, and for any r1 6= r2,

|U(r1)�U(r2)| > �.

Proof of Uniform Coverage. For any q 6= q0 and ✏ > 0, there exists an M , such that for N > M

and all P 2 P,

pr{bL(q0)� bL(q) < 0}

= pr

(
bL(q0)� bL(q)� (L(q0)� L(q))

�L(q0, q)/
p
N

<
L(q)� L(q0)

�L(q1, q2)/
p
N

)

 �

⇢
L(q)� L(q0)

�L(q1, q2)/
p
N

�
+ ✏  �{�

p
M�/2

p
C4}+ ✏,

where the first inequality follows from Condition (R3), and the second inequality follows from

L(q) � L(q0) < �� < 0 ensured by Condition (R5) and �L(q1, q2)  2
p
C4 ensured by (R2).

Therefore,

sup

P2P
pr{bL(q0)� bL(q) < 0}  �{�

p
M�/2

p
C4}+ ✏.

We can choose M large enough to ensure supP2P pr{bL(q0) � bL(q) > 0}  2✏. Because ✏ can be

arbitrarily small, we have

lim
N!+1

sup

P2P
pr(bq 6= q0) = lim

N!+1
sup

P2P
pr{max{bL(1), . . . , bL(Q)} 6= bL(q0)}


X

q 6=q0

lim
N!+1

sup

P2P
pr{bL(q0)� bL(q) < 0} = 0.

Similarly, limN!+1 supP2P pr(br 6= r0) = 0. According to Imbens and Manski (2004)’s Lemma 4,
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we have limN!+1 infP2P pr{⇡ 2 CI(q0, r0)} � 1� ↵. Similar to (S31), we can show that

lim
N!+1

inf
P2P

pr{⇡ 2 CI(bq, br)}

� lim
N!+1

inf
P2P

pr{⇡ 2 CI(q0, r0)}� lim
N!+1

sup

P2P
pr{(bq, br) 6= (q0, r0)}

� lim
N!+1

inf
P2P

pr{⇡ 2 CI(q0, r0)}� lim
N!+1

sup

P2P
pr{bq 6= q0}� lim

N!+1
sup

P2P
pr{br 6= r0}

� 1� ↵.

Proof of Corollary 2. The proof follows from the same argument as that of Theorem 3 above.

First, we can show that as the sample size n ! 1,

pr{(bq1, . . . , bqK , br1, . . . , brK) 6= (q10, . . . , qK0, r10, . . . , rK0)} ! 0.

Second, we have

|pr{⇡ 2 CI(bq1, . . . , bqK , br1, . . . , brK)}� pr{⇡ 2 CI(q10, . . . , qK0, r10, . . . , rK0)}|

 pr{(bq1, . . . , bqK , br1, . . . , brK) 6= (q10, . . . , qK0, r10, . . . , rK0)} ! 0.

Finally, because the “oracle” confidence interval CI(q10, . . . , qK0, r10, . . . , rK0) has correct asymp-

totic coverage rate, our confidence interval CI(bq1, . . . , bqK , br1, . . . , brK) also has correct asymptotic

coverage rate. ⇤

The above proof is for the pointwise coverage property, and with additional regularity conditions

we can establish the uniform coverage property. Due to the similarity with the discussion of

Theorem 3, we omit the technical details. As a final remark, the above proofs also allow the lower

bound to be the minimum of finite parameters and the upper bound to be the maximum of finite

parameters. The proofs are still valid under these changes.

Extensions. In the main text, the approach for constructing confidence interval requires {L(1), . . . ,L(Q)}

have a unique maximum value L(q0) and {U(1), . . . ,U(R)} have a unique minimum value U(r0).

Here, we provide an alternative approach without this condition, which can also be used as confi-
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dence intervals for the bounds themselves. First, we can rewrite the bounds as

L(⌘)  ⇡  U(⌘)

where ⌘ is identifiable from the data.

Theorem S1. For any set C⌘, if pr(⌘ 2 C⌘) � 1� ↵, then pr(⇡ 2 C⇡) � 1� ↵, where

C⇡ =


min
⌘2C⌘

L(⌘),⌘ max
⌘2C⌘

U(⌘)

�
.

Proof of Theorem S1. It follows from simple probability rules:

pr(⇡ 2 C⇡) � pr

✓
L(⌘) � min

⌘2C⌘

L(⌘),U(⌘)  max
⌘2C⌘

U(⌘)

◆

� pr(⌘ 2 C⌘) � 1� ↵.

⇤

The forms of U(·), L(·) and ⌘ depend on the problems themselves, but in many cases, ⌘ is

asymptotically Normal. Using the same logic as Theorem S1, we can derive the following results.

Corollary S1. Suppose that

p
N(b⌘ � ⌘)

d�! Nk(0,⌃), b⌃ P�! ⌃.

Define

bC⌘ = {⌘ : N(⌘ � b⌘)> b⌃�1
(⌘ � b⌘)  �2

k,↵}, bC⇡ =

"
min

⌘2 bC⌘

L(⌘), max

⌘2 bC⌘

U(⌘)

#
,

where �2
k,↵ is the ↵-quantile of the chi-squared distribution with degrees of freedom k. Then,

lim
N!1

pr(⇡ 2 bC⇡) � 1� ↵.

As we can see from the proof of Theorem S1, the confidence interval constructed using Corollary

S1 is a confidence interval of bounds, while the approach in the main text constructs the confidence
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intervals of the parameter of interest. As a consequence, when the conditions of Theorem 3 hold,

the confidence interval constructed using Corollary S1 will be wider than that in the main text.

Similar to Section S3, additional regularity conditions on the space of probability distributions

P will also ensure the uniform coverage property.

Corollary S2. Suppose that the distribution of N(⌘ � b⌘)> b⌃�1
(⌘ � b⌘) converges uniformly to a

chi-squared distribution with degrees of freedom k, in the sense that for any ✏ > 0, there exists an

M such that for all N > M , P 2 P and any fixed x,

���pr
n
N(⌘ � b⌘)> b⌃�1

(⌘ � b⌘)  x
o
� �2

k(x)
��� < ✏, (S32)

where �2
k(·) is the cumulative distribution function of the chi-squared distribution with degrees of

freedom k. Then we have

lim
N!1

inf
P2P

pr(⇡ 2 bC⇡) � 1� ↵.

S4. Simulation studies

S4.1. Data generating process

In this section, we conduct simulation studies to evaluate the method for constructing confidence

intervals proposed in Section 4. We generate data at three time points, (Yt, Rt) for t = 1, 2, 3, and

calculate bounds and confidence intervals for ⇡t. We assume that all the units are alive at the

three time points and thus we will omit S1, S2 and S3 in this section. The bounds of ⇡2 have the

form max{L(1),L(2)}  ⇡2  min{U(1),U(2)}. Because the key step of our method is to replace

(q, r) by (bq, br) in CI(q, r), whether (bq, br) equals the true value (q0, r0) will a↵ect the coverage rates

of our confidence intervals. Intuitively, the relation between (bq, br) and (q0, r0) depends on the

relative magnitudes between L(1) and L(2) and the relative magnitudes between U(1) and U(2).

Therefore, for the lower bound, we consider three scenarios: (A1) L(1) is less than L(2); (A2) L(1)

is larger than L(2); (A3) L(1) is very close to L(2). Similarly, for the upper bound, we consider

three scenarios: (B1) U(1) is less than U(2); (B2) U(1) is larger than U(2); (B3) U(1) is very close

to U(2). Combining the scenarios for the lower and upper bounds, we then have nine scenarios
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covering all the possible situations.

Suppose that the complete-data likelihood factorizes as

pr(Y1, R1, Y2, R2, Y3, R2) = pr(Y2, R2)pr(Y1, R1 | Y2, R2)pr(Y3, R3 | Y2, R2).

We can first generate (Y2, R2), and then generate (Y1, R1) and (Y3, R3) conditional on (Y2, R2).

First, we generate (Y2, R2) from

pr(R2 = �1) = 1/4, pr(R2 = 0) = 1/4, pr(R2 = 1) = 1/2,

pr(Y2 = 1 | R2 = �1) = 2/5, pr(Y2 = 1 | R2 = 0) = 1/5, pr(Y2 = 1 | R2 = 1) = 1/10.

Then the data generating process satisfies Assumption 1.

Second, we generate (Y1, R1) conditional on (Y2, R2). We further assume the conditional prob-

ability of (Y1, R1) on (Y2, R2) can be decomposed as pr(Y1, R1 | Y2, R2) = pr(Y1 | Y2)pr(R1 | R2).

We set pr(Y1 = 0 | Y2 = 0) = 1 and pr(Y1 = 0 | Y2 = 1) = 1/8. Thus, the monotonicity Y1  Y2

holds. We choose three di↵erent settings for pr(R1 | R2):

A1. pr(R1 = 1 | R2 = �1) = 6/7, pr(R1 = 1 | R2 = 0) = 0, pr(R1 = 1 | R2 = 1) = 5/7,

pr(R1 = 0 | R2 = �1) = 1/7, pr(R1 = 0 | R2 = 0) = 1, pr(R1 = 0 | R2 = 1) = 2/7;

A2. pr(R1 = 1 | R2 = �1) = 0, pr(R1 = 1 | R2 = 0) = 1, pr(R1 = 1 | R2 = 1) = 5/7,

pr(R1 = 0 | R2 = �1) = 1, pr(R1 = 0 | R2 = 0) = 0, pr(R1 = 0 | R2 = 1) = 2/7;

A3. pr(R1 = 1 | R2 = �1) = 6/7, pr(R1 = 1 | R2 = 0) = 5/7, pr(R1 = 1 | R2 = 1) = 5/7,

pr(R1 = 0 | R2 = �1) = 1/7, pr(R1 = 0 | R2 = 0) = 2/7, pr(R1 = 0 | R2 = 1) = 2/7.

In A1–A3, the true data generating process implies lower bounds fLB
1
t = max(0, 1/6), max(7/40, 1/15),

max(1/8, 1/6) for ⇡2, respectively, which correspond to the three previously mentioned scenarios of

di↵erent magnitude relations between L(1) and L(2).

Third, we generate (Y3, R3) conditional on (Y2, R2). Suppose that the conditional probability

of (Y3, R3) on (Y2, R2) can be decomposed as pr(Y3, R3 | Y2, R2) = pr(Y3 | Y2)pr(R3 | R2). We

set pr(Y3 = 1 | Y2 = 1) = 1 and pr(Y3 = 1 | Y2 = 0) = 1/8. Thus, Y2  Y3 and hence the data
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generating process satisfies Assumption 2. We choose three di↵erent settings for pr(R3 | R2):

B1. pr(R3 = 1 | R2 = �1) = 0, pr(R3 = 1 | R2 = 0) = 1, pr(R3 = 1 | R2 = 1) = 5/7,

pr(R3 = 0 | R2 = �1) = 1, pr(R3 = 0 | R2 = 0) = 0, pr(R3 = 0 | R2 = 1) = 2/7;

B2. pr(R3 = 1 | R2 = �1) = 4/7, pr(R3 = 1 | R2 = 0) = 4/7, pr(R3 = 1 | R2 = 1) = 5/7,

pr(R3 = 0 | R2 = �1) = 3/7, pr(R3 = 0 | R2 = 0) = 3/7, pr(R3 = 0 | R2 = 1) = 2/7;

B3. pr(R3 = 1 | R2 = �1) = 1/7, pr(R3 = 1 | R2 = 0) = 13/14, pr(R3 = 1 | R2 = 1) = 5/7,

pr(R3 = 0 | R2 = �1) = 6/7, pr(R3 = 0 | R2 = 0) = 1/14, pr(R3 = 0 | R2 = 1) = 2/7.

In B1–B3, the true data generating process implies upper boundsgUB
1
t = min(3/10, 2/5), min(3/5, 3/10),

min(7/20, 3/8) for ⇡2, respectively, which correspond to the three previously mentioned scenarios

of di↵erent magnitude relations between U(1) and U(2).

S4.2. Simulation results

Figure S1 shows the results of simulation studies averaged over 500 repeated samplings, with

sample sizes N = 200 and N = 2000. For the nine scenarios, we obtain the estimates of the

bounds, construct 95% confidence intervals for ⇡2, and evaluate their coverage properties over the

true parameter ⇡2. The grey lines show that the bounds (grey solid lines) and confidence intervals

(grey dotted lines) with only cross-sectional data severely over-cover the true parameters, and

they are much wider than the black lines, which are the bounds (black solid lines) and intervals

(black dotted lines) with longitudinal data. The black solid lines in each subfigure show that with

longitudinal data, the naive bounds ignoring sample variability may under cover the true value of

⇡2. When N = 200, the coverage rates of the naive bounds are 69.6% for scenario (A2, B2) and

71.4% for scenario (A2, B3), showing the possibility of quite low coverage rates under small sample

sizes. This issue becomes less severe when the sample size increases to N = 2000, but the coverage

rates may still be below the nominal level (e.g., 93.2% for scenario (A2, B2) and 91.2% for scenario

(A2, B3)). Therefore, it is necessary to account for sample variability, especially for small sample

sizes.

The black dotted lines show that the confidence intervals with longitudinal data always achieve

the nominal coverage rates, although the confidence intervals over cover the true value of ⇡2. As

we mentioned in Section 4, this is because the confidence intervals for partial identified parameters
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take into account not only the true values but also all other possible values of ⇡2. Nevertheless, the

confidence intervals constructed according to our method are much narrower than the confidence

intervals with only cross-sectional data.
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Figure S1: Simulation results of the nine combinations of parameter settings. The three columns

correspond to settings A1–A3 and the three rows correspond to settings B1–B3. The grey solid and

dotted lines are the bounds and confidence intervals based on the data at time point 2. The black

solid and dotted lines are the bounds and confidence intervals based on the data at time points 1,

2 and 3. The bounds and confidence intervals are averaged over 500 replications, and the coverage

rates are presented on the right of their corresponding lines.
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