ON SYNDETIC RIESZ SEQUENCES
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ABSTRACT. Applying the solution to the Kadison-Singer problem, we show that every sub-
set S of the torus of positive Lebesgue measure admits a Riesz sequence of exponentials
{eD\m

E. In the case when § is an open set we demonstrate, using quasicrystals, how such A can

be deterministically constructed.

} xea Such that A C Z is a set with gaps between consecutive elements bounded by

1. INTRODUCTION

Let H be a separable Hilbert space and I a countable set.

Definition 1.1. A system of vectors {¢;},.; C H is called a frame for H if there exist
positive constants A < B such that
(1) AllF* e = 2 KE el < B,
iel
for all vectors f € H.
We say that {¢;},.; is a Bessel sequence in H if only the RHS inequality in (1) is satisfied.
If A= B, {pi},c; is called a tight frame and if A= B =11t is called a Parseval frame.

Definition 1.2. A system of vectors {¢;},.; C H is called a Riesz sequence in H if there
exist positive constants A < B such that

(2) AZW’Z <

il

2

< BZ’%F

H el

Z a;P;

i€l

for every finite sequence of scalars {a;},.;-

In this paper we discuss Riesz sequences of exponentials, i.e. for bounded sets S of
positive Lebesgue measure and a countable set A C R we consider the exponential system
E(A) = {e?},_, in the space L*(S).

Throughout this paper we will denote by |S| the Lebesgue measure of the set S. Note
that if A is a separated set, i.e. infy,, |A — p| > 0, then the RHS of (1) and (2) is satisfied
for E(A). In particular, if S C T = R/27Z is a set of positive Lebesgue measure and A C Z,
The first author was supported in part by the NSF grant DMS-1665056. The authors are grateful to Prof.
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then we may take B = 2m. Also, it follows from Parseval’s identity that the normalized
exponential system \/LQ?E (Z) is a Parseval frame in L*(S).
The case where [ is an interval is classical. In order to determine whether a system E (A)

is a Riesz sequence in L? (I), one essentially needs to know the upper density of A

Dt (A) = lim sup # (AN (a,a+7‘))‘

r—>00 a€R T

Remark. Analogously one may define lower density, and in case these quantities coincide we
say A has uniform density denoted D (A).

Kahane [7] proved the following result, see also [18].

Theorem 1.3 ([7]). If DT (A) < %, then E (A) is a Riesz sequence in L* (I). On the other
hand, if Dt (A) > %, then E (M) is not a Riesz sequence in L* (I).

For arbitrary sets of positive measure the situation is much more complicated and only
necessary condition exists due to Landau [9].

Theorem 1.4 ([9]). Let S C R be a measurable set. If E (A) is a Riesz sequence in L* (S),
then D (A) < %

In light of Theorem 1.4 it is natural to ask:

Given a set S, does there exist a set A of positive density such that the exponential system
E (A) is a Riesz sequence in L*(S)?

This question may be considered under various notions of density. The first result on
this subject was obtained by Bourgain and Tzafriri [1, Theorem 2.2] using their celebrated

restricted invertibility theorem.

Theorem 1.5 ([1]). Given S C T of positive measure, there exists a set A C Z with positive
asymptotic density
AN(—
dens(A) = lim # AN (=)
r—>00 /s

and such that E (A) is a Riesz sequence in L*(S). Here, ¢ is an absolute constant, indepen-
dent of S.

> c|S]

Theorem 1.5 implies that every set & admits a Riesz sequence A with positive upper
density, proportional to the measure of S, and so we can answer the question above positively.

Another related property is a relatively dense set, also referred to as a syndetic set.

Definition 1.6. A subset A = {... <Xy <A1 < X2 <...} C Z is called syndetic if the

consecutive gaps in A are bounded, i.e., if there is a positive constant d such that

(3) Aiii— A <d Vnez.
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We denote the smallest possible constant satisfying (3) by v (A).

The existence of syndetic Riesz sequences has been proved by Lawton [10, Corollary 2.1],
and by a different approach by Paulsen [19, Theorem 1.1] to be equivalent to the Feichtinger

conjecture.

Theorem 1.7 ([10]). Given a set S C T of positive measure, the following are equivalent:

(i) There exists r € N and a partition Z = \J;_, A; such that E (A;) is a Riesz sequence
in L*(8S) for all j € [r] ={1,...,7}.
(ii) There ezists d € N and a syndetic set A C Z with v(A) = d such that E(A) is a

Riesz sequence in L*(S).

Remark 1.8. While we can trivially deduce r < d in the implication (ii) = (i) by
considering translates of A, it should be emphasized that the proof of Theorem 1.7 does not
imply any connection in the other direction. Explicitly, knowing the number of partitions r

in (i) does not give any upper bound on « (A) in (ii).

The first statement in Theorem 1.7 is known as the Feichtinger conjecture for exponen-
tials. The Feichtinger conjecture in its general form states that every bounded frame can
be decomposed into finitely many Riesz sequences. It has been proved by Casazza et al. in
[3] as well as by Casazza and Tremain [4], to be equivalent to the Kadison-Singer problem.
The latter has been solved recently by Marcus, Spielman and Srivastava. Their main result

is the following theorem [11, Theorem 1.4].

Theorem 1.9 ([11]). If & > 0 and vy,...,v, are independent random vectors in C? with

finite support such that Z E v} =14 and E [||vz||2} < ¢ for all i, then

i=1
m

*

P E V;U;
i=1

Here and below I; is the d x d identity matrix. Later, using similar techniques, Bownik,

< (1+\/E)2> > 0.

Casazza, Marcus and Speegle [2, Theorem 1.2] gave an improved bound in the case when

random vectors vy, ..., v, each have support of size 2.
Theorem 1.10 ([2]). If ¢ € (0,Y2) and vy, ..., v, are independent random vectors in C?
m

with support of size 2 such that ZE [vvf] =1 and E [||v,||2} < ¢ for all i, then

1=1
]P <

m
E (N
i=1

§1+2\/€(1—5)> > 0.
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Theorems 1.9 and 1.10 give the following quantitative bounds on the number of partitions
r, see [2, Theorem 1.4].

Theorem 1.11 ([2]). Let ¢ > 0 and suppose that {u;},.; is a Bessel sequence in H with
bound 1 that consists of vectors satisfying ||qu2 > e. Then there exists a universal constant
C > 0, such that I can be partitioned into r < g subsets I, ..., I, such that every subfamily

{ui}idj, j=1,...,r, is a Riesz sequence in H. Moreover, if € > 3/4, then r = 2 works.

Applying Theorem 1.11 to exponential systems they obtained the following corollary |2,
Corollary 6.16].

Theorem 1.12 ([2]). There ezists a universal constant C' > 0 such that for any subset
S C T with positive measure, the exponential system FE (Z) can be decomposed as a union
of r < ¢/is| Riesz sequences E (A;) in L*(8S) for j =1,...,r. Moreover, if |S| > 3/4, then
r =2 works.

2. RESULTS

The problem of attaining an explicit bound on the gap in the syndetic Riesz sequence was
initially considered by Casazza and Tremain [5]. Their result [5, Theorem 6.17] states that
every set S admits a syndetic Riesz sequence E (A), with v (A) < ¢|S|™%, but no proof was
given.

The proof of Theorem 1.11 is based on defining random vectors appropriately so that with
positive probability they facilitate a partition of the index set I with desired properties.
By modifying the definition of those random vectors we establish a quantitative bound for
v (A). Our main result takes the form of a selection theorem for Bessel sequences with norms
bounded from below.

Theorem 2.1. There exists a universal constant C' > 0 such that the following holds. Let

€ > 0 and suppose that {u;},.; is a Bessel sequence in H with bound 1 and
lu|>>e  Viel.

Then whenever {Jy}, is a collection of disjoint subsets of I with #J, > r = [g], for all k,
there exists a selector J C |J, Ji satisfying

#(JNJ)=1 Vk

3

1, then the same conclusion

and such that {u;},. ; is a Riesz sequence in H. Moreover, if e >

holds with r = 2.
4



The proof of Theorem 2.1 is given in Section 3. Applying Theorem 2.1 to the normalized
exponential system {\/%emt}nez in L?(S) with J, = [rk,r(k+ 1)) NZ, k € Z, where r =
[C'/|S|], we obtain the following corollary.

Corollary 2.2. There exists a universal constant C' > 0 such that for any subset S C T
with positive measure, there exists a syndetic set A C Z with v (A) < C'|S|™" so that E (M)
is a Riesz sequence in L* (S). Moreover, if % > 3/4, then such A exists with v (A) < 3.

Remark. Beyond improvements to the constant C'; the bound in Corollary 2.2 is asymptot-
ically sharp as |S| — 0. That is, we cannot expect to find a syndetic Riesz sequence with
gaps of the order |S|* as |S| — 0 with @ > —1. This follows from Theorem 1.4 due to

density considerations of the set A.

Theorem 2.1 can also be applied to the multidimensional setting. In this case we can

deduce the existence of exponential Riesz sequences with syndetic-like properties.

Corollary 2.3. There exists a universal constant C' > 0 such that for any subset S C T¢
of positive measure, any d-dimensional rectangle R with #R > C|S|™t, and any partition
74 = |J Ry, into disjoint union of translated copies of R, there exists a set A C Z¢ such that

LANRY) =1  Vk

and E (A) is a Riesz sequence in L?(S). If R is taken to be a cube, then we obtain a set
A C Z% with
(4) sup inf [\ — | < CVd|S|™".
MGZd AEA

Note that Theorem 2.1 does not put any restrictions on the choice of sets {Ji},x beyond
the size requirement #.J, > r for all k. Consequently, in Corollary 2.3 we may choose for
{Ri}x any family of disjoint subsets of Z? satisfying #R;, > r, where r = C'/|S|. However,
the most interesting case occurs when we take a cube R = [0,s)¢ N Z? with side length

s = [(C/|S|)~"/?] and the corresponding lattice partition
Re=k+R, kesZi

This choice yields a set A C Z% satisfying the bound (4) such that F (A) is a Riesz sequence
in L2 (S). Partitioning the lattice Z¢ in a more complicated pattern we obtain the following

corollary.

Corollary 2.4. There exists a universal constant C' > 0 such that for any subset S C T? of
positive measure, there exists a set A C Z% so that E (\) is a Riesz sequence in L*(S) and

A is syndetic along any of its one dimensional sections. That is, for any j = 1,...,d, and
5



for any (ki,. .., l;’j, . kg) € 2471 the set
Aj(kl,,l;’],,k’d) :{k] SN/ (kl,,kj,,kd) GA}
15 a syndetic subset of integers with gap satisfying

(5) V(A (k.. kg, k) < Cd|S|TY

~

The notation l;:j in the vector (ki,...,kj, ..., ks) means that the term k; is missing.

Proof. Let S C T of positive measure. We wish to apply Theorem 2.1 to the normalized
exponential system (2r)~%2E (Z%), which is a Parseval frame in L*(S), so we are only left
to specify how {Jx} should be chosen.

Let r = [C/|S|], where C' is the same constant as in Theorem 2.1. Define the d-dimensional

cube

Qra=1{0,...,r —1}%
We shall construct a partition {Jk,x}(k,x)g(rz)dXQT,d_l of Z% as follows. For k € (T‘Z)d, let
j=7j(k)e{1,...,d} be such that

i+ ...+ kg

(6) J mod d.

Define

Jk’z:{(k1+131,...,kj_1+$j_1,kj+$,kj+1+ZL'j,...,k'd+ZEd_1>I.TG{O,...,T—l}}.

Hence, for a fixed k € (rZ)?, the family {Jka}zeq, ., is a partition of a cube k + @, 4 into
line segments of length r parallel to the j axis. Now, the direction j cycles according to
(6) as a function of k € (rZ)¢. In particular, for a fixed jo = 1,...,d, cubes of the form
k+r(nd+jo—j)ej, +Qrq, where n € Z, j is given by (6) and e;, is the jy'th coordinate vector,
are partitioned into line segments parallel to the jy axis. Since Theorem 2.1 guarantees that
the selection set A contains one element from each such line segment, we deduce that A is
syndetic along every one dimensional section in the direction of e; with gap bounded by 2dr.
This yields the bound (5). Moreover, E(A) is a Riesz sequence in L*(S) by Theorem 2.1. [

In Section 3 we discuss the proof of Theorem 2.1 in detail. Its proof uses Theorems 1.9
and 1.10, which involve probabilistic elements. This, in essence, makes the task of extracting
a deterministic construction of the set A extremely difficult, and the authors do not know
how this might be done for an arbitrary set. Furthermore, while Corollary 2.2 is sharp in

the sense that asymptotically as |S| — 0, we are also interested in another kind of sharpness
|S]

which may occur as 5~ — 1. That is, for sets of large measure we wish to remove from Z

a uniformly separated set with gaps size not smaller than C' \SCFI. It turns out that in the
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case where S is an open set a deterministic construction does exist and can be chosen to

satisfy these properties.

Theorem 2.5. There ezists a universal constant C' > 0 such that for any open subset S C T,
one can construct a syndetic set A C Z with gaps between consecutive elements taking exactly
two values {1,d}, where d = d(S) < I%\’ and so that E (M) is a Riesz sequence in L*(S).
Moreover, if ‘2%' > %, then A may be chosen so that A® = Z\A is uniformly separated and
satisfies
. C

(7) N IO Ly T 2k

It should be noted that the sheer existence of syndetic Riesz sequences for open sets is
trivial since any open set admits an infinite arithmetic progression as a Riesz sequence. How-
ever, Theorem 2.5 ensures the existence of such systems together with an effective estimate
on the gap. The proof of Theorem 2.5 is based on a totally different approach than that of

Theorem 2.1 and uses simple quasicrystals. This will be discussed in Section 4.

3. THE SYNDETIC RIESZ SEQUENCE BOUND - GENERAL CASE

In this section we prove our main result Theorem 2.1. Theorem 1.9 gives rise to a selecting
mechanism which allows, from every Parseval frame with certain norms, a probabilistic
selection of a Bessel subsystem with smaller bound. Note that by the Schur-Horn theorem
we may apply Theorem 1.9 to Bessel sequences with bound 1 by completing them to a

Parseval frame. Indeed, we have the following lemma from [2].

Lemma 3.1. Let H be an infinite dimensional Hilbert space, M € N and 6 € (0,1). Suppose
{u;}, © H is a Bessel sequence with Bessel bound 1 and ||u;||* > 6 for all i, or ||u;||* < 6 for
alli. Then for every large enough K € N, there exist vectors oy, ..., ox € H with ||g;||> > 0
for all i, or ||g||> < & for all i, respectively, such that {w;}it, U{p:}, is a Parseval frame

for its linear span.

Proof. The case ||uz||2 > ¢ of Lemma 3.1 follows from the Schur-Horn theorem and it can
be found in [2, Corollary 6.6]. However, the case |lu;||> < d is much simpler as it does not
require the use of the Schur-Horn theorem. Indeed, consider the frame operator S which
corresponds to {u;}ir,. It is well known that S is a self-adjoint operator (see [18]), and so
denoting its non-zero eigenvalues 1 > A\, > ... > A\; > 0 and corresponding orthonormal

eigenvectors vy, ..., v, we may write

S = i )\1 <',Ui> V; .
=1

7



Then we choose a number m such that =22 < §, and for each i € [n] we take m copies of

the vector 1;1’\" v;. By the choice of m

T |

H — |l <6 Vie[n]
m
and o
E5 ) SE= WP

—i= M
where H = span{uy,...,uy} = spanf{vy,...,v,}. Here and below I denotes the identity
map on H. ([l

Recall that by Naimark’s dilation theorem [6, Proposition 1.1] a system {u;},.; is a Parse-
val frame for H if and only if there exists a containing space HC H and an orthonormal basis
{ei},;c; for H such that Pe; = u; for all i. Here P : H —H is the orthogonal projection onto
H. Tt turns out that by considering a certain dual system, called Naimark’s complement, we

may choose a subsystem of {u;},., which is a Riesz sequence, see [2, Proposition 5.4].

Lemma 3.2 ([2]). Let P : H — H be the orthogonal projection onto a closed subspace
H CH, and let {e;},.; be an orthonormal basis for H. Then for any subset J C I and 6 >0

the following are equivalent:

(1) {Pei},c; is a Bessel sequence with bound 1 — 9.

(2) {(Iyy — P)ei};ey is a Riesz sequence with lower Riesz bound .

The following theorem demonstrates how Theorem 1.9 can be applied in order to find a
selector.

Theorem 3.3. Letr, M € N and 6 > 0. Suppose that {u,}f\il C H is a Bessel sequence with
bound 1 and Huz||2 < 6 for alli. Then for every collection of disjoint subsets Jy, ..., J, C [M]
with #Ji, > r for all k, there ezists a subset J C [M] such that

(8) #(JNJ) =1 Vkeln]

and the system of vectors {u;},., is a Bessel sequence with bound

L 2
— + Vo .
(v %)
Proof. Without loss of generality we can assume that #J, = r for all k. Consider the
system of vectors {ui}iEUZ_l 7, and note that it is Bessel sequence with bound 1. By Lemma
3.1 we can find finitely many vectors ¢1, ..., .k with |[@;]|> < ¢ for all i and such that

{ui}ieuz,l g U {¢i}7E is a Parseval frame for some finite dimensional subspace H C H.
- 8



Define the independent random vectors vy, ..., v,k as follows. For k = 1,... n we let the
vector vy, to take values /ru; for any i € J;, with equal probability % For k=n+1,...n+K,

we set
Note that
E|vll> <rd  Vke[n+K]
as well as
n+K rK
Z E (vevy) = Z uu; + Z pip; =1n.
k=1 i€y Jk i=1

It follows from Theorem 1.9 that

|

This implies the existence of a set J C [M] satisfying (8) such that

S = (G )

as required. O

n+K

E Ry,

k=1

< <1+m>2) > 0.

In the case the vectors in our systems are short we can obtain a variant of Theorem 3.3.
Theorem 3.4 follows from Theorem 1.10 in a similar fashion as Theorem 3.3 follows from
Theorem 1.9, see [2, Theorem 6.3].

Theorem 3.4. Let M € N and &, € (0,/4). Suppose that {u;}1", C H is a Bessel sequence
with Bessel bound 1 and |jus||> < 8o for all i. Then for every collection of disjoint subsets
Jiy .oy Jn C [M] with #J, = 2 for all k, there exists a subset J C [M] such that # (J N Jg) =

1 for all k € [n], and the system of vectors {u;},.,; is a Bessel sequence with bound 1 — &,

where gy = % — /260 (1 — 20p).

Throughout this section we fix some value of §y € (0,1/4) and the corresponding &, =
% — /280 (1 —28p). As a corollary we obtain a way to extract a syndetic Riesz sequence
from a given Bessel sequence, provided that the vectors in the system are not too short.

Corollary 3.5. Let M € N and & € (0,1/4). Suppose that {u;}"", C H is a Bessel sequence
with Bessel bound B and ||u||> > B (1 — &) for all i. Then for every collection of disjoint
subsets Jy,...,J, C [M] with #Jx = 2 for all k, there exists a subset J C [M] such that
#(JNJg) =1 for all k € [n] and the system of vectors {u;},.; is a Riesz sequence with

lower Riesz bound Bey.
9



Proof. Without loss of generality we may assume B = 1. Let Ji,...,J, C [M] be a disjoint
collection of subsets with #.J;, = 2 for all k. Consider the system of vectors {ui}ieuzﬂ s, and
note that it is Bessel sequence with bound 1. Then applying Lemma 3.1 to {ui}ieug,l .0 We

find finitely many vectors o1, . . . , par with ||¢;]|* > 1—d for all i and such that {u;} U

iEU;QL:l Ji
{gol}ffl is a Parseval frame for its linear span, denoted by H.

- 2(ntk . g -
For convenience we rename our vectors as {g; } Zng ) as follows. We write J; = { T, 35}

and define

Gok—1 = Uk, Yok = Ujp, E=1,...,n,
and {gl}?g;;fl) = {p:}2X . By Naimark’s dilation theorem there exists a 2 (n + K) dimen-
sional space KL O H with a corresponding orthonormal basis {61‘}?2+K) and an orthogonal
projection P : K — K onto H such that

Pe; = g; fori=1,2,...,2(n+ K)

Then, setting f; = (Ix — P)e; for i = 1,...,2(n+ K), it follows that {f;} is a Parseval
frame for its linear span with || fi|> < . By Theorem 3.4 applied to the collection .J, =
{2k — 1,2k}, k=1,...,n+ K, there is a subset J' C [2(n + K)] such that # (J'NJ}) =1
for all k& € [n+ K] and {f;},., is a Bessel sequence with bound 1 — ¢y. By Lemma 3.2
{gi},c, is a Riesz sequence with lower bound &y. Hence, there exists J C [M] such that
#(JNJy) =1 for all k € [n] and the system of vectors {u;}, ., is a Riesz sequence with
lower bound &. 0

Combining Theorem 3.3 and Corollary 3.5 we get a finite dimensional version of Theorem
2.1.

Theorem 3.6. Let € > 0 and M € N. Suppose that {ul}f\il C H s a Bessel sequence with
Bessel bound 1 and |Ju||> > ¢ for all i. Then there exists r = O (1<), independent of M,
such that for every collection of disjoint subsets Jy,...,J, C [M] with #J, > r for all k,
there exists a subset J C [M] such that # (J N Jy) =1 for all k € [n] and {u;},.; is a Riesz
sequence with lower Riesz bound ecqg. Moreover, if € > 3/4 then the same conclusion holds
with r = 2.

Proof. Without loss of generality we may assume ||u;]|*> = ¢ for all i; otherwise replace u;
with v&/ju;u;. Let C' be an absolute constant to be specified later and set r = 2 ’—g-‘ Let
Ji, ..., Jn C[M] be a collection of disjoint subsets with #.J; > r for all k.

Let 7 = §. For every k € [n] choose a partition J, = Agp—1 U Ag such that #A, > 7 for

all £ € [2n]. By Theorem 3.3 we may find a subset J C [2n] such that # (J N Ay) =1 for all
10



¢ € [2n], and the system of vectors {u;},., is a Bessel sequence with bound

1 2
—=t+ Vel .
(\/? \[)
Then we partition J = |J _, P, into pairs P,, = {jam—1, jom } S0 that j, € A, for all £ € [2n].

Next we wish to apply Corollary 3.5 to {u;},.,, and we may do that if for some o € (0, 1/4)

e
we have

e > (\%+\/§)2(1—50).

,,7.

2
By a simple calculation this holds true whenever 7 > %, with C' =9 <1g(§50> , see the proof
[2, Theorem 6.7]. By Corollary 3.5 applied to the collection P, ..., P,, there exists a subset

J' C [n] such that # (J'N P,) = 1 for all m € [n], and the system of vectors {u;},., is

2
a Riesz sequence with lower bound <\/i; + \/§> g9 > €gg. For the moreover part we apply
Corollary 3.5 directly, setting dg =1 — €. O

In order to prove Theorem 2.1 we will require the following lemma.

Lemma 3.7. Let {Ji}, be a collection of disjoint subsets of I. Assume for every n € N we
have a subset I, C UZ:1 Ji such that

9) 4(L,NJ) =1 Vkeln].

Then, there ezists a subset I, C I and an increasing sequence {n;} such that

(10) I, N (U Jk> =I..N (O Jk> vj.

In particular, we have
# (NI =1 Vk € N.

Lemma 3.7 is proved by a combination of a diagonal argument with the pigeonhole prin-

ciple. For a similar result involving partitions, see [3, Proposition 2.1].

Proof of Theorem 2.1. Let r = r () be as in Theorem 3.6 and {.J,}, a collection of disjoint
subsets of I with #J, > r, for all k.

For every n € N apply Theorem 3.6 to the collection Ji,...,J,. This gives a subset
I, C Uj— Ji satisfying (9) and such that the system of vectors {u;},.; is a Riesz sequence
in H with lower bound egy. By Lemma 3.7 there exist an increasing sequence {n;} and a
subset I, C I satisfying (10). We claim that {u;};.; is a Riesz sequence in H with the

same lower bound. This is true since every finite subsystem is contained in {u;} , given

i€l
that 7 is large enough. O
11



It is worth to mention an extension of Theorem 2.1 in which we are interested in finding a

syndetic Riesz sequence with tight bounds. This problem was known as the R. conjecture.

Theorem 3.8. There exists a universal constant C' > 0 such that following holds. Let
{ui}er be a unit norm Bessel sequence in H with bound B. For any e > 0 and any collection
of disjoint subsets of I, {Ji}, satisfying #J, > r = (Cgﬂ for all k, there exists a selector
J C U, Ji satisfying

#INJ) =1 vk

and such that {u;},.; is a Riesz sequence in H with bounds 1 — ¢ and 1+ ¢.

Remark. Theorem 3.8, when applied to exponential systems, provides an improvement of
[5, Theorem 6.4]. A recent multi-paving result of Ravichandran and Srivastava [20] suggests
that this result might hold with r = O(£).

We will give an outline of the proof of Theorem 3.8. This will require the following lemma,
which appeared in [21]. A slightly more general formulation, given below, is taken from [2,
Lemma 6.13].

Lemma 3.9 ([2]). Suppose {u;}icr is a Riesz basis in H, and let {uf}ic; be its unique
biorthogonal Riesz basis. Then for any subset J C I, the Riesz sequence bounds of {u;}ics

are A and B if and only if the Riesz sequence bounds of {u}ic; are /B and 1/A.

The proof of Theorem 3.8 proceeds as follows. By Lemma 3.7 it suffices to consider a finite
system {ul}f\il that is a unit norm Bessel sequence with upper bound B. Fix a collection
Jiy ooy Jp C[M] with #J,, > r for all k. Then the subsystem we are looking for is obtained
in 3 steps. In the first step, using Theorem 3.6, we find a subsystem {u;,},., which is a Riesz
sequence with lower Riesz bound gy and upper Riesz bound ﬁ, and # (JNJy) > [5%12
for all k. In the second step we apply Theorem 3.3 to {u,},., and extract from it another
subsystem {u; }ieyr, J' C J, having its upper Riesz bound reduced to 1+e. As a consequence
we get # (J'NJy) > [4] for all k. In the last step we move to the dual system {u}},
which, by Lemma 3.9, has upper Riesz bound % Apply to it Theorem 3.3 and get a
subsystem {u };cs», J” C J' with upper Riesz bound reduced to 1+ ¢, and # (J" N Ji) =1
for all k. Now {u;},. ;. is the desired subsystem, keeping in mind that ﬁ >1—e.

4. OPEN SETS

In this section we prove Theorem 2.5, namely we present a construction of a syndetic
exponential Riesz sequence which is asymptotically sharp in both senses described in Section
2. This will be done applying a particular case of Fourier quasicrystals. We begin with some

background.
12



4.1. Universal Riesz sequences. In their paper [17] Olevskii and Ulanovskii asked whether
there exists a set A such that £ (A) is a Riesz sequence in L?(8S) for all sets S C T with
large measure. As it turns out, the answer depends considerably on the spectrum S. It is

positive if we restrict ourselves to open spectra.

Theorem 4.1 ([17, Theorem 5]). For every d € (0,1), there is a universal Riesz sequence,
i.e. aset A C R with D (A) = d such that E (A) is a Riesz sequence in L? (S) for every open
setSCT with% > d.

Note that the set A constructed in the proof of Theorem 4.1 is a specially chosen pertur-
bation of the lattice 1/aZ. On the other hand, considering all measurable sets the answer is

negative.

Theorem 4.2 ([17, Theorem 4]). Let d € (0,1). Then for every ¢ € (0,1) and A C R with
D (A) = d, there exists a set S C T with % > 1 —¢ such that E (A) is not a Riesz sequence
in L?(S).

4.2. Quasicrystals. The mathematical model of quasicrystals, introduced by Meyer in 1972
(see [15]), is a construction based on the “cut and project” process which produces what is
known as Meyer’s “model set”. In the periodic case a model set takes the following form.

We use the notation from [§].

Definition 4.3. Let o be an irrational number, and I = [a,b) C [0,1]. The (simple)

quasicrystal corresponding to a and [ is
A(a,I)={n e Z]| {an} € I}
where {z} is the fractional part of the real number z.

The set A («, I') has many interesting and important properties, see, for instance, [15] and
[16]. A basic property which follows from the fact that the sequence {an} is equidistributed
in [0,1] is that the corresponding simple quasicrystal had uniform density D (A («,I)) =
|I|. One key property of the exponential system E (A («,I)) that will be useful for us is
universality. Matei and Meyer showed that simple quasicrystals are an alternative example
of universal Riesz sequences with the additional property that they are contained in the
integers rather than in the real line (see [12]-[14]). We will require a version of Meyer’s

duality principle, we use the formulation given in [8, Lemma 2.1].

Lemma 4.4 ([8]). Let U C [0,1] be a semi-closed multiband set, and V' C [0,1] a multiband
set. Then:
(1) If E(27A (o, V) is a frame in L? (U), then E (—27A (o, U)) is a Riesz sequence in

L2 (V).
13



(2) If E(27A (o, V) is a Riesz sequence in L* (U), then E (—27A (a,U)) is a frame in
L2(V).

Here, a set is called multiband if it is a union of finitely many intervals. A multiband set
is called semi-closed if its indicator function is continuous either from the left or from the
right. Combining Lemma 4.4 and Beurling’s sufficient condition for frames [18, Theorem
3.33] together with a rescaling argument gives the following universality result of Matei and
Meyer [13], see [18, Section 6.6.5].

Theorem 4.5 ([13]). The system E (A («, 1)) is a universal Riesz sequence, i.e., E (A (a, 1))
is a Riesz sequence in L? (S) for every open set S C T with g%‘ > |1].

Proof of Theorem 2.5. Let n > 2 be an integer such that % < % < ﬁ Fix an irrational
1 1 1—a

L < a4 < -1 such that ¥ > a. Set the irrational o = and define I = [0,a). Now
n n+1 2T n—1

consider the simple quasicrystal

Ao, I)={)j:je€Z}  where \; < \ji; forall j € Z.

By Theorem 4.5 FE (A (a, I)) is a Riesz sequence in L?*(S) since % > |I| = a. Moreover, if
for some k € Z
0<{ak}<a and a<{a(k+1)}<1

then by the choice of o we have
a<{ak+j)}<1 forje{2,....,n—1}
Since a < a we also have
{a(k+n)} el
This implies that
A1 — A € {1,n} for all j € Z.
For the moreover part we let n > 2 be such that 1 — % < % < 1— - Fix an irrational

n+1"
1

=7 < a < ; such that % > 1—a. Weset o =2=% and I = [0,a) as above. Thus, by

Theorem 4.5 E (A (, I9)) is a Riesz sequence in L*(S), where I¢ = [a,1). Since a > a, if
{ak} € I for some k € I, then {a(k+ 1)} € I¢ and consequently we have

{ak+j)}erlc forje{l,....n—1}
Hence, the difference between consecutive elements in A(c, I) is bounded below by n. Since
A(a, I9) = Z\A (o, 1)

we deduce that A (a, I€) satisfies (7). O
14



There are still a few open problems left with regards to the subject of syndetic Riesz
sequences. Below we give a couple of them.

Open problem 1. By Theorem 4.2, E (A («a,I)) is not a Riesz sequence in L? (S) for
some non-open set § C T with % > |I|. Does there exist S with empty interior for which
E (A (o, 1)) is a Riesz sequence? Otherwise prove that such set does not exist.

Open problem 2. Does the moreover part of Theorem 2.5 hold in the general case? That
is, an arbitrary measurable set S C T with % > % admits an exponential Riesz sequence
E (A) such that A® = Z\A satisfies

C
inf A—pul > —.
A,uel/{lc,x¢u| m= |S¢|
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