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Abstract

We propose a new con�ict-driven program synthesis tech-
nique that is capable of learning from past mistakes. Given a
spurious program that violates the desired speci�cation, our
synthesis algorithm identi�es the root cause of the con�ict
and learns new lemmas that can prevent similar mistakes in
the future. Speci�cally, we introduce the notion of equiva-
lence modulo con�ict and show how this idea can be used to
learn useful lemmas that allow the synthesizer to prune large
parts of the search space. We have implemented a general-
purpose CDCL-style program synthesizer called N�� and
evaluate it in two di�erent application domains, namely data
wrangling in R and functional programming over lists. Our
experiments demonstrate the substantial bene�ts of con�ict-
driven learning and show that N�� outperforms two state-
of-the-art synthesis tools,M������� and D���C����, that
target these respective domains.
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1 Introduction

In recent years, there has been signi�cant interest in pro-
gram synthesis, in which the goal is to automatically gen-
erate programs from high-level speci�cations. Automated
program synthesis has proven to be useful to both end-users
and programmers: For instance, programming-by-example
(PBE) has been used to automate tedious tasks that arise in
everyday life, such as string and format manipulations in
spreadsheets [13, 27] or data wrangling tasks on tabular and
hierarchical data [8, 36, 39]. Program synthesis has also been
used for improving programmer productivity by automati-
cally completing parts of a program [25, 31, 32] or helping
programmers use complex APIs [9, 15, 17].
While there are several di�erent approaches to program

synthesis, one common method is to perform enumerative
search over the space of programs that can be generated
using the context-free grammar of some DSL [1, 10, 35, 39].
In a nutshell, these techniques enumerate DSL programs
according to some cost metric and return the �rst program
that satis�es the user-provided speci�cation. Several recent
methods also combine enumerative search with deduction
with the goal of ruling out partial programs [8, 10, 23].

Despite recent advances in program synthesis, a common
shortcoming of existing techniques is that they are not able
to learn from past mistakes. To understand what we mean by
this, consider the input-output speci�cation [1, 2, 3] 7! [1, 2]

and a candidate program of the form �x . map(x , ...). Here,
it is easy to see that no program of this shape can satisfy
the given speci�cation, since the output list is shorter than
the input list, but the map combinator yields an output list
whose length is the same as the input list. In fact, we can
take this generalization one step further and deduce that no
program of the form �x .f(x , ...) can satisfy the speci�cation
as long as f yields a list whose length is greater than or equal
to that of the input list. This kind of reasoning allows the
synthesizer to learn from past mistakes (in this case, the
spurious program �x . map(x , ...)) and rule out many other
erroneous programs (e.g., �x .reverse(x ), �x . sort(x )) that
are guaranteed not to satisfy the desired speci�cation.
In this paper, we present a new con�ict-driven synthesis

algorithm that is capable of learning from its past mistakes.
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ΦP ^ Φ. For this example, the MUC includes all underlined
predicates in Figure 4. We represent the MUC as a set of
triples (�i ,Ni , �i ) where �i is a component labeling node Ni

and each formula �i corresponds to a part of �i ’s speci�ca-
tion. For our running example, the MUC corresponds to the
following set �:
(

(�  x1.max ,N0, head), (�.max  x1.max ,N1, take)

(�.max  x1.max ,N3, filter), (� = x1,N7,x1)

)

Our learning algorithm infers components that are equiv-
alent modulo con�ict by analyzing the MUC. In particular,
let (�,N , � ) be an element of the MUC, and let � 0 be another
component with speci�cation � . Now, if � logically implies �,
we can be sure that replacing the annotation of node N with
� 0 in partial program P will result in an infeasible program
with the same MUC as P . Thus, we can conclude that � and
� 0 are equivalent modulo con�ict at node N .
Going back to our example, the partial program from Fig-

ure 3 contains the take component, and the relevant part
of its speci�cation that appears in the MUC is the predicate
�.max  x1.max . Since the speci�cation of sort (see Ta-
ble 1) logically implies y.max  x1.max , we can conclude
that changing the annotation of node N1 to sort will still
result in a spurious program. Using this strategy, we can
learn that the following components all belong to the same
equivalence class with respect to the current con�ict:

take ⌘N1
reverse ⌘N1

sort ⌘N1
filter

In other words, changing the assignment of node N1 to sort,
reverse, or filter is guaranteed to result in another infea-
sible program. Using the same kind of reasoning for other
nodes, we can learn a lemma (whose form is described in
Section 5) that allows us to rule out 63 other partial programs
that would have otherwise been explored by the synthesis
algorithm. Thus, learning from con�icts allows us to prune
large parts of the search space.

3 Preliminaries

Before describing our algorithm in detail, we �rst provide
some background that will be used throughout the paper.

3.1 Domain-Speci�c Language & Semantics

Our synthesis algorithm searches the space of programs de-
scribed by a given domain-speci�c language (DSL), which
consists of a context-free grammar G together with the se-
mantics of DSL operators (i.e., “components”).

Syntax. The syntax of the DSL is described by a context-free
grammar G. In particular, G is a tuple (V , Σ,R, S ), where V
is the set of nonterminals, Σ represents terminals, R is the
set of productions, and S is the start symbol. The terminals
� 2 Σ correspond to built-in DSL operators (e.g., +, concat,
map etc), constants, and variables. We assume that G always
includes special terminal symbols x1, ...,xk 2 Σ denoting
the k program inputs. The productions p 2 R have the form

p = (A! � (A1...Ak )), where � 2 Σ is a DSL operator and
A,A1, ...,Ak 2 V are nonterminals. We use the notation Σk

to denote DSL operators of arity k , and we write ΣA,A1 ...Ak

to denote DSL operators � such that R contains a production
A! � (A1...Ak ).

Semantics. As mentioned in Section 1, our synthesis algo-
rithm uses the semantics of DSL constructs to make useful
deductions and analyze con�icts. We assume that the DSL se-
mantics are provided as a mappingΨ from each DSL operator
� 2 Σn to a �rst-order formula over variables �,x1, . . . ,xn
where xi represents the i’th argument of � and � represents
its return value. For instance, consider a unary function inc

that returns its argument incremented by 1. Then, we have
Ψ(inc) = (� = x1 + 1).

3.2 Partial Programs

Since the key data structure maintained by our synthesis
algorithm is a partial program, we now introduce some ter-
minology related to this concept.

De�nition 3.1. (Partial program)Given a DSL de�ned by
context-free grammar G = (V , Σ,R, S ), a partial program P

in this DSL is a string P 2 (Σ [V )⇤ such that S
⇤
=) P .

In contrast to a concrete programwhich only contains sym-
bols from Σ, a partial program may contain non-terminals.
We say that concrete program P 0 (or just “program” for short)

is a completion of P if P
⇤
=) P 0.

We represent partial programs as abstract syntax trees
(AST). Given partial program P , we use the notationNodes(P ),
Internal(P ), and Leaves(P ) to denote the set of all nodes, in-
ternal nodes, and leaves in P , respectively. We also write
Children(N ) to denote the children of internal node N .
In our representation of partial programs, every node N

is labeled with a corresponding grammar symbol AN 2 V

such that N may be expanded using any production whose
left-hand side is AN . Every node N is also optionally labeled
with a symbol �N 2 Σ indicating that N has been expanded
using the production AN ! �N (. . .). Observe that internal
nodes in the AST must have these �N annotations, but leaf
nodes do not. In particular, any leaf node N without a �N
annotation represents an unknown program fragment; thus,
we refer to such nodes as holes. Given partial program P , we
write Holes(P ) to represent the set of all holes in P .

Example 3.2. Consider the partial program from Figure 3.
Here, we have the following annotations for each node:

AN0
= N AN1

= L AN3
= L

AN4
= N AN7

= L AN8
= T

�N0
= head �N1

= take �N3
= filter

�N7
= x1

Observe that leaf nodes N4 and N8 correspond to holes in
this partial program.
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Algorithm 1 Given DSL with syntax G and semantics Ψ as
well as a speci�cation Φ, S��������� either returns a DSL
program P such that P |= Φ or ? if no such program exists.

1: procedure S���������(G, Ψ, Φ)
2: P  Root(S )

3: Ω  ;

4: while true do

5: (H ,p)  D�����(P , G, Φ, Ω)
6: P  P��������(P , G, (H ,p), Ω)
7: �  C����C�������(P , Ψ, Φ)
8: if � , ; then

9: Ω  Ω [ A������C�������(P , G, Ψ,�)
10: P  B��������(P , Ω)

11: if UNSAT(
V

ϕ 2Ω �) then
12: return ?

13: else if I�C�������(P ) then
14: return P

In the remainder of this paper, we assume that there is a
unique index sN associated with each node N in the AST.
In particular, if N is the i’th node at depth d of the AST, we
assign N the id kd�1 + i � 1, where k is the maximum arity
of any DSL operator. 2 Observe that this numbering scheme
ensures that nodes at the same position in two di�erent ASTs
are always assigned the same identi�er. As we will see in
the next section, this assumption is important for learning
reusable lemmas from con�icts.

4 Synthesis Algorithm

In this section, we describe the architecture of our con�ict-
driven synthesis algorithm and explain each of its compo-
nents in detail. However, because con�ict analysis is one
of the main contributions of this paper, we defer a detailed
discussion of AnalyzeCon�ict to Section 5.

4.1 Overview

Algorithm 1 shows the high-level structure of our synthesis
algorithm, which takes as input a speci�cation Φ that must
be satis�ed by the synthesized program as well as a domain-
speci�c language with syntaxG and semanticsΨ. We assume
that speci�cation Φ is an SMT formula over variables ~x ,�,
which represent the inputs and output of the program re-
spectively. The output of the S��������� procedure is either
a concrete program P in the DSL or ?, meaning that there is
no DSL program that satis�es Φ. As we will prove later, our
synthesis algorithm is both sound and complete with respect
to the provided DSL semantics. In particular, the program P

returned by S��������� is guaranteed to satisfy Φ with re-
spect to Ψ, and S��������� returns ? only if there is indeed
no DSL program that satis�es Φ.

2We assume that the root node is at depth 1.

Internally, our synthesis algorithm maintains two data
structures, namely a partial program P and a knowledge base
Ω. The knowledge base Ω is a set of learnt lemmas derived
from the input speci�cation Φ with respect to Ψ, where each
lemma is represented as a propositional (SAT) formula. The
S��������� procedure initializes P to contain a single root
node labeled with the start symbol S (line 3); thus, P initially
represents any syntactically legal DSL program. The knowl-
edge base Ω is initialized to the empty set (line 4), but will
be updated by the algorithm as it learns new lemmas from
each con�ict.
The key part of the synthesis procedure is the con�ict-

driven learning loop in lines 4–14. Given a partial program
P containing holes, the D����� procedure selects a hole H
in P as well as a candidate production p with which to �ll H .
The decision (H ,p) returned by D����� should be consistent
with the knowledge base in order to prevent the algorithm
from making wrong choices as early as possible. In other
words, �lling hole H according to production p should yield
a partial program P 0 that does not violate the lemmas in Ω.
The D����� procedure is further described in Section 4.3.

After choosing a hole H to be �lled using production p,
the synthesis algorithm performs two kinds of deduction,
represented by the calls to P�������� and C����C�������

in lines 6 and 7 respectively. In particular, P�������� is
analogous to Boolean Constraint Propagation (BCP) in SAT
solvers 3 and infers new assignments that are implied by the
knowledge base as a result of �lling hole H with production
p. In contrast, the C����C������� procedure uses the se-
mantics of the DSL constructs to determine if there exists a
completion of P that can satisfy Φ. If P cannot be completed
in a way that satis�es Φ, we have detected a con�ict (i.e., P
is spurious), and C����C������� returns the root cause of
the con�ict. As explained in Section 2, we represent the root
cause of each con�ict as a minimal unsatis�able core (MUC)
� of the SMT formula representing the speci�cation of P .
If � = ;, this means that C����C������� did not �nd any
con�icts, so the algorithm goes back to making new deci-
sions if there are any remaining holes in P . The P��������
and C����C������� procedures are further described in
Sections 4.4 and 4.5, respectively.
As mentioned earlier, the key innovation underlying our

synthesis algorithm is its ability to make generalizations
from con�icts. Given a non-empty MUC returned by C�����

C�������, theA������C������� procedure (line 9) analyzes
the unsatis�able core � to identify other spurious partial pro-
grams that have the same root cause of failure as P . Thus, the
lemmas returned by A������C������� prevent the D�����
component from generating partial programs that will even-
tually result in a similar con�ict as P . The algorithm adds
these new lemmas to the knowledge base and backtracks by

3Recall that BCP in SAT solvers exhaustively applies unit propagation by

�nding all literals that are implied by the current assignment.
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undoing the assignments made by D����� and P��������

during the last iteration.
Algorithm 1 has two possible termination conditions that

are checked after each iteration: If the conjunction of lem-
mas in the knowledge base Ω has become unsatis�able, this
means that there is no DSL program that can satisfy Φ; thus,
the algorithm returns?. On the other hand, if P is a concrete
program without holes, it must satisfy Φ with respect to the
provided semantics Ψ; thus, the algorithm returns P as a
possible solution.

Discussion. The soundness of the S��������� procedure
from Algorithm 1 is with respect to the provided semantics
Ψ of the DSL. Thus, if Ψ de�nes a complete semantics of
each DSL construct, then the synthesized program is indeed
guaranteed to satisfy Φ. However, if Ψ over-approximates
(i.e., under-speci�es) the true semantics of the DSL, then
the synthesized program is not guaranteed to satisfy Φ. For
programming-by-example applications where the speci�ca-
tionΦ represents concrete input-output examples, we believe
that a sensible design choice is to use over-approximate spec-
i�cations of the DSL constructs and then check whether P
actually satis�es Φ by executing P on these examples. The
bene�t of over-approximate speci�cations is two-fold: First,
for some operators, it may be infeasible to precisely encode
their functionality using a �rst-order theory supported by
SMT solvers. Second, the use of over-approximate speci�ca-
tions allows us to control the tradeo� between e�ectiveness
of deduction/learning and overhead of SMT solving.

4.2 Knowledge Base and SAT Encoding of Programs

Before we can explain each of the subroutines used in Algo-
rithm 1, we �rst describe the knowledge base Ω maintained
by the synthesis algorithm. As mentioned earlier, Ω is a set
of learnt lemmas, where each lemma � is a SAT formula over
encoding variables csN ,p . Here, sN corresponds to the unique
index associated with an AST node N and p is a production
in the grammar. Thus, the encoding variable csN ,p indicates
whether N is labeled with (i.e., assigned to) production p.

In order to ensure that the choices made by the algorithm
are consistent with the knowledge base, it is convenient
to represent partial programs in terms of a SAT formula
over encoding variables. Towards this goal, we introduce the
following SAT encoding of partial programs:

De�nition 4.1. (SAT encoding of program) Let P be the
AST representation of a partial program, as explained in
Section 3.2. We use the notation �P to denote the following
SAT encoding of P :

�P =
^

N 2Nodes(P )

csN , χN

where sN denotes the unique index of node N and �N is the
component labeling node N .

Algorithm 2 Outline of D�����

procedure D�����(P , G, Φ, Ω)
V  {(H ,p) | H 2 Holes(P ), p = AH ! � (A1...Ak )}

V 0  {(H ,p) 2 V | Fill(P ,H ,p) ⇠ Ω}

return argmax(H,p )2V 0 Lθ (Fill(P ,H ,p) | Φ)

Example 4.2. The partial program in Figure 3 can be de-
noted using the following SAT encoding �P :

c0,head ^ c1,take ^ c3,filter ^ c7,x1.

De�nition 4.3. (Consistency with KB)We say that a par-
tial program P is consistent with knowledge base Ω, denoted
P ⇠ Ω, if the formula �P ^

V

ϕ 2Ω � is satis�able.

De�nition 4.4. (Consistency with spec) We say that a
partial program P is consistent with speci�cation Φ, denoted
P ⇠ Φ, if there exists some completion of P that satis�es Φ.

De�nition 4.5. (Correctness of KB) The knowledge base
Ω is correct with respect to speci�cation Φ if, for any partial
program P , P ⇠ Φ implies P ⇠ Ω.

Thus, given a correct knowledge base Ω, the synthesis
algorithm can safely prune any partial program P that is
inconsistent with Ω. In particular, if P is inconsistent with
Ω, the correctness of the knowledge base guarantees that
there is no completion of P that satis�es speci�cation Φ.

4.3 The D����� Subroutine

We will now explain each of the auxiliary procedures used in
Algorithm 1, starting with the D����� component. The high-
level idea underlying our D����� procedure is to �ll one of
the holes in P such that (a) the resulting partial program P 0

is consistent with the knowledge base, and (b) P 0 is the most
likely completion of P with respect to a probabilistic model.
Thus, our D����� procedure combines logical constraints
with statistical information in a uni�ed framework.

Algorithm 2 shows the high-level structure of our D�����
component and makes use of a procedure Fill(P ,H ,p) which
�lls hole H in partial program P with a production p =

(AH ! � (A1...Ak )). Speci�cally, Fill generates a new partial
program P 0 that is the same as P except that node H is now
labeled with DSL operator � and has k new children labeled
A1, . . . ,Ak . Thus, if P

0
= Fill(P ,H ,p) and we think of P and

P 0 as strings in (Σ [V )⇤, then we have P ) P 0.
Algorithm 2 proceeds in three steps: First, it constructs

the set V of all pairs (H ,p), where H is a hole in the partial
program P , and p = (AH ! � (A1...Ak )) is a grammar pro-
duction that can be used to �ll H . Second, it restricts this
set to pairs (H ,p) such that the program P 0 = Fill(P ,H ,p)

satis�es the knowledge base Ω. Finally, it assumes access
to a probabilistic model Lθ (parametrized by � 2 Rd ) that
can be used to score partial programs conditioned on the
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The following theorem states the correctness of the Infer-
Spec procedure presented in Figure 5:

Theorem 4.8. Assuming Ψ provides a sound semantics of
the DSL and P ⇠ Φ, then ΦP ^ Φ is satis�able.

According to this theorem, if ΦP ^ Φ is unsatis�able, then
there is in fact no completion of P that can satisfyΦ, meaning
that P is infeasible. Thus, C����C������� invokes the SMT-

Solve procedure to check the satis�ability of ΦP ^ Φ (line 3
of Algorithm 4). If this formula is unsatis�able, Theorem 4.8
allows us to prune partial program P from the search space.

Since our learning algorithm makes use of a minimal un-
satis�able core (MUC), we represent the return value of the
SMTS���� procedure as a set of clauses� representing the
MUC. 6 In particular, the MUC � is a set of SMT formulas
{�1, . . . ,�n } such that:

1.
V

i �i |= false,
2. Each �i either corresponds to a clause (conjunct) of

Φ or a clause of Ψ(� ) for some component � (modulo
renaming)

3. � is minimal, i.e., for any �i 2 � ,
V

ϕ j 2ψ \{ϕi } � j 6|= false

Because our A������C������� procedure requires the
MUC to be represented in a special form, lines 4–6 of C�����
C������� post-process � to generate an MUC consisting
of triples (�i ,N , �i ) where �i is a component labeling node
N and �i is a clause in �i ’s speci�cation. In particular, line
4 identi�es, for each �i 2 � , the AST node N = N���(�i )

that is associated with �i and attaches to �i the component
�N labeling N . Finally, since each �i 2 � refers to auxiliary
variables associated with nodes in the AST, lines 5 converts
each �i to a “normal form” over variables ~x ,� rather than
variables ~� used in ΦP . Observe that clauses of the MUC that
come from Φ are dropped during this post-processing step.

Example 4.9. Consider the formula ΦP ^x1.max = 82^� =

158 where ΦP is the formula from Figure 4. This formula is
unsatis�able and its MUC� consists of the following clauses:
(

x1.max = 82, � = 158, �  �1.max ,

�1.max  �3.max ,�3.max  �7.max , x1 = �7

)

Since the �rst two clauses come from the speci�cation Φ,
they are dropped during post-processing. The clause � 
�1.max is generated from the root node N0 from Figure 3;
thus, the set representation � of the MUC contains (� 

x1.max ,N0, head). The clause�1.max  �3.max is generated
from node N1 with annotation take; thus, � also contains
(�.max  x1.max ,N1, take). Using similar reasoning for the
other clauses in� , we obtain the following set representation
� of the MUC:
(

(�  x1.max ,N0, head), (�.max  x1.max ,N1, take)

(�.max  x1.max ,N3, filter), (� = x1,N7,x1)

)

6If ΦP ^ Φ is satis�able, then ψ is simply the empty set.

5 Analyzing Con�icts

In this section, we turn our attention to the con�ict analysis
procedure for learning new lemmas to add to the knowledge
base. To the best of our knowledge, our approach is the
�rst synthesis technique that can rule out unrelated partial
programs by analyzing the root cause of the con�ict.

The key idea underlying our learning algorithm is to iden-
tify DSL operators that are equivalent modulo con�ict:

De�nition 5.1. Let P be a partial program that is inconsis-
tent with speci�cationΦ, and let � be a DSL operator labeling
node N of P . We say that components � , � 0 are equivalent
modulo con�ict at node N , denoted � ⌘N �

0 if replacing label
� of node N with � 0 results in a program P 0 that is also
inconsistent with Φ.7

To see why the notion of equivalence modulo con�ict
(EMC) is useful for synthesis, let P be a spurious partial pro-
gram containingn assigned nodes, and suppose that, for each
node N , we havem di�erent components that are equivalent
modulo con�ict to �N . Using this information, we can learn
mn other partial programs that are all infeasible with respect
to speci�cation Φ. By encoding these partial programs as
lemmas in our knowledge base, we can potentially prune a
large number of programs from the search space.
As illustrated by this discussion, we would like to �nd

as many components as possible that are equivalent to each
component used in P . Speci�cally, the bigger the size of each
equivalence class (i.e.,m), the more programs we can prune.
The most straightforward way to identify components

that are equivalent modulo con�ict is to check whether their
speci�cations are logically equivalent. While this approach
would clearly be sound, it would not work well in practice
because di�erent DSL constructs rarely share the same spec-
i�cation. Thus, the size of each equivalence class would be
very small, meaning that the synthesizer cannot rule out
many programs as a result of a con�ict.

The core idea underlying our learning algorithm is to infer
equivalence classes by analyzing the root cause of the infea-
sibility of a given partial program P . In particular, the idea is
to extract the root cause of P ’s infeasibility by obtaining a
minimal unsatis�able core of the formula ΦP ^ Φ, where ΦP

represents the speci�cation of P . Now, because each clause in
the MUC refers to a small subset of the clauses in component
speci�cations, we can identify maximal equivalence classes
by utilizing precisely those clauses that appear in the MUC.
The following theorem makes this discussion more precise.

Theorem 5.2. Let P a partial program inconsistent with spec-
i�cation Φ, and let � be the MUC returned by Algorithm 4. We
have � ⌘N �

0 if Ψ(� 0) ) �, where (�,N , � ) 2 �.

Intuitively, if Ψ(� 0) logically implies �, then the speci�ca-
tion Ψ(� 0) for � 0 is more restrictive than the speci�cation

7Note that equivalence modulo con�ict also depends on the partial program

P ; we omit this information to simplify our notation.
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Algorithm 5 Algorithm for learning lemmas

1: procedure A������C�������(P , G, Ψ,�)
2: �  false

3: for (�,N , �N ) 2 � do

4: (A1, . . . ,Ak )  (ANi
| Ni 2 Children(N ))

5: ΣN  {� | � 2 ΣAN ,A1, ...,Ak ^ Ψ(� ) ) �}

6: �  � _
V

χ 2ΣN ¬csN , χ

7: return �

Ψ(� ) for � , considering only the subformula � of Ψ(� ) con-
tained in the MUC. Thus, changing the annotation of node N
from � to � 0 in P is guaranteed to result in an another infea-
sible partial program, meaning that � and � 0 are equivalent
modulo con�ict at node N .

Example 5.3. Consider the element (�.max  x1.max ,N1,

take) in the MUC from Example 4.9. Also, recall from Table 1
that the speci�cation of sort is �.size = x1.size ^ �.max =

x1.max . Since the formula

(�.size = x1.size ^ �.max = x1.max ) ) �.max  x1.max

is logically valid, we have sort ⌘N1
take.

We now discuss how the A������C������� procedure
from Algorithm 5 leverages Theorem 5.2 to learn new lem-
mas to add to the knowledge base. As shown in Algorithm 5,
the A������C������� procedure takes as input the partial
program P , the syntax G and semantics Ψ of the DSL, as well
as the MUC � representing the root cause of infeasibility
of P . The output of the algorithm is a lemma � that can be
added to the knowledge base.
The A������C������� procedure iterates over all ele-

ments (�,N , �N ) in the MUC � and uses Theorem 5.2 to
compute a set ΣN such that ΣN contains all components � 0

that are equivalent to � modulo con�ict at node N . It then
generates the following lemma to add to the knowledge base:

_

N 2κ

^

χ 2ΣN

¬csN , χ

Here, the outer disjunct states that we must change the as-
signment for at least one of the nodes N that appear in the
proof of infeasibility of the current partial program P . The
inner conjunct says that node N cannot be assigned to any
of the � ’s that appear in ΣN because Theorem 5.2 guaran-
tees that changing the assignment of N to � must result in
another infeasible program.
The following theorem states the correctness of the lem-

mas returned by A������C�������:

Theorem 5.4. Let � be a lemma returned by A������C���
�����. If P ⇠ Φ, then the formula �P ^ � is satis�able.

Since �P is the SAT encoding of P , this theorem says that
the learnt lemma � must be consistent with �P for it to be
the case that P ⇠ Φ. Thus, we have:

Corollary 1. The knowledge base Ω maintained by Algo-
rithm 1 is correct with respect to speci�cation Φ.

Finally, the soundness and completeness of our algorithm
follow from Theorem 4.8 and Corollary 1:

Theorem 5.5. (Soundness) If Algorithm 1 returns P as a
solution to the synthesis problem de�ned by G,Ψ,Φ, then P

satis�es speci�cation Φ with respect to DSL semantics Ψ.

Theorem 5.6. (Completeness) If Algorithm 1 returns ? as
a solution to the synthesis problem de�ned by G,Ψ,Φ, then
there is no DSL program that satis�es Φ with respect to DSL
semantics Ψ.

6 Implementation

We have implemented our con�ict-driven synthesis frame-
work in a tool called N��, written in Java. N�� uses the
SAT4J [4] SAT solver to implement D����� and P��������

and employs the Z3 [6] SMT solver to check for con�icts.

Decide. As explained in Section 4.3, N�� uses a combination
of logical and statistical reasoning to identify which hole to
�ll and how to �ll it. However, our implementation ofD�����
di�ers from Algorithm 2 in that we do not issue a full SAT
query to determine whether the decision is consistent with
the knowledge base. Since checking satis�ability for each
combination of holes and components is potentially very ex-
pensive, our implementation of D����� over-approximates
satis�ability through unit propagation. 8 In particular, we
consider an assignment to be feasible if applying unit propa-
gation to the corresponding SAT formula does not result in
a contradiction. Note that replacing a full SAT query with
unit propagation does not a�ect the soundness or complete-
ness of our approach. In particular, the algorithm may end
up detecting con�icts later than if it were using a full SAT
query, but it also reduces overhead without a�ecting any
soundness and completeness guarantees.
Since there are many possible assignments that do not

contradict the knowledge base, N�� uses a statistical model
to identify the “most promising” one. Our current implemen-
tation supports two di�erent statistical models, namely a 2-
gram model (as used inM������� [8]) as well as a deep neu-
ral network model (as described in D���C���� [3]). While
the 2-gram model only considers the current partial program
to make predictions, the deep neural network model consid-
ers both the speci�cation and the current partial program.

Propagate. As described in Section 4.4, the goal of propa-
gation is to identify additional assignments implied by the
knowledge base. We identify such assignments by perform-
ing unit propagation on the corresponding SAT formula.

8Unit propagation (also known as Boolean constraint propagation) ap-

plies unit resolution to a �xed point. In particular, unit resolution de-

rives the clause {x1, . . . , xn } from the unit clause {l } and another clause

{¬l, x1, . . . , xn }.
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CheckConflict. Our implementation of C����C�������
follows Algorithm 4 and uses Z3 to query the satis�ability of
the corresponding SMT formula [6]. Given an unsatis�able
formula �, we also use Z3 to obtain an unsatis�able core and
post-process it as described in Section 4.5. The unsatis�able
core returned by Z3 is not guaranteed to be minimal. We do
not minimize the unsatis�able core since this procedure can
be time consuming, but in practice we have observed that
the unsatis�able cores returned by Z3 are often minimal.

Our implementation of C����C������� performs an addi-
tional optimization over Algorithm 4: Since di�erent partial
programsmay share the same SMT speci�cation, Algorithm 4
ends up querying the satis�ability of the same SMT formula
multiple times. Thus, our implementation memoizes the re-
sult of each SMT call to avoid redundant Z3 queries.

AnalyzeConflict. Our implementation ofA������C�������
performs two additional optimizations over the algorithm
presented in Section 5. First, our implementation does not
keep all learnt lemmas in the knowledge base. In particu-
lar, since the e�ciency of D����� and P�������� is sensi-
tive to the size of the knowledge base, our implementation
uses heuristics to identify likely-not-useful lemmas and pe-
riodically removes them from the knowledge base. Second,
our implementation performs an optimization to facilitate
the computation of components that are equivalent mod-
ulo con�ict. Speci�cally, we maintain a mapping from each
subformula � occurring in a component speci�cation to all
components �1, . . . , �n such that Ψ(�i ) ) �. This o�-line
computation allows us to replace an SMT query with a map
lookup in most cases.

Backtracking. Similar to CDCL-based SAT solvers, N��
can perform non-chronological backtracking by analyzing the
lemma obtained from A������C�������. Speci�cally, sup-
pose that the learnt lemma refers to components �1, . . . , �n ,
where each �i was chosen at decision leveldi . Our implemen-
tation adopts the standard SAT solver heuristic of backtrack-
ing to the second highest decision level among all di ’s. This
strategy often results in non-chronological backtracking and
causes the algorithm to undo multiple assignments at the
same time.

Instantiating Neo in new domains. As a general synthe-
sis framework, N�� can be instantiated in new domains
by providing a suitable DSL and the corresponding speci-
�cations of each DSL construct. As mentioned previously,
these speci�cations need not be precise and typically under-
specify the constructs’ functionality to achieve a good trade-
o� between performance overhead and pruning of the search
space.

We have currently implemented two instantiations ofN��,
one of which targets data wrangling tasks in R and the other
of which targets list manipulations in a functional para-
digm. For both domains, our speci�cations are expressed

in quanti�er-free Presburger arithmetic. More speci�cally,
for the data wrangling domain, we use the same DSL and
the same speci�cations considered in prior work [8]. For
the list manipulation domain, we use the same DSL as in
prior work [3] but write our own speci�cation since they
are not available in the DeepCoder setting [3]. In particular,
our speci�cations capture the size of the list, the values of
its �rst and last elements, and the minimum and maximum
elements of the list.
Our experience indicates that it does not require much

manual e�ort to instantiate N�� in new domains. For exam-
ple, it took us less than one day to instantiate N�� in each
of the two domains mentioned earlier.

7 Evaluation

We evaluated N�� by conducting three experiments that are
designed to answer the following questions:

Q1. How does N�� compare against state-of-the-art syn-
thesis tools?

Q2. How signi�cant is the bene�t of con�ict-driven learn-
ing in program synthesis?

To answer these questions, we instantiatedN�� on two dif-
ferent domains explored in prior work, namely (i) data wran-
gling in R and (ii) functional programming over lists. Specif-
ically, to compare N�� against existing tools, we adopted
the DSL used in M������� [8] for domain (i) and the lan-
guage used in D���C���� [3] for (ii). All of the experiments
discussed in this section are conducted on an Intel Xeon(R)
computer with an E5-2640 v3 CPU and 32G of memory, run-
ning the Ubuntu 16.04 operating system and using a timeout
of 5 minutes.

7.1 Comparison against Morpheus

In our �rst experiment, we compare N�� againstM������

�� [8], a state-of-the-art synthesis tool that automates data
wrangling tasks in R. While N�� is similar to M�������

in that both techniques use deduction to prune the search
space,M������� uses several domain-speci�c heuristics that
speci�cally target table transformations (e.g., “table-driven
type inhabitation” ). In contrast, N�� does not use any such
domain-speci�c heuristics and directly applies the general-
purpose synthesis algorithm presented in Section 4. To allow
a fair comparison between the tools, we instantiateN��with
the same set of R library methods used byM������� as well
as the same component speci�cations. Furthermore, since
M������� uses a 2-gram model to prioritize its search, we
also use the same statistical model in N��’s D����� compo-
nent. As inM�������, we train the 2-gram model on 15,000
code snippets collected from Stackover�ow.

Benchmark selection. We compareN�� againstM�������

on a data set consisting of 50 challenging data wrangling
tasks. Out of these 50 benchmarks, 30 correspond to the
most di�cult benchmarks used for evaluating M�������,
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Figure 10. Impact of learning in data wrangling domain

since D���C���� does not utilize component speci�cations
to prune the search space, we additionally wrote �rst-order
speci�cations for each DSL construct. To allow a fair compar-
ison between the tools, we also use the same deep neural net-
work model used in D���C����. In particular, D���C����
predicts the likelihood that � is the right DSL operator based
on the given input-output example. As in [3], we trained our
deep neural network model on 1,000,000 randomly generated
programs and their corresponding input-output examples.

Benchmark selection. Since the benchmarks used for eval-
uating D���C���� are also not publicly available, we gen-
erate 100 benchmarks following the same methodology de-
scribed in [3]. Speci�cally, we enumerate DSL programs with
at least 5 components and randomly generate inputs and the
corresponding output. This procedure is repeated for a �xed
number of times until we either obtain 5 valid input-output
examples or no examples have been found within the iter-
ation limit. In the latter case, we restart this process and
randomly search for a di�erent program.

Results. The results of this experiment are summarized in
Figure 8, which also plots running time against the number
of solved benchmarks. As we can see from Figure 8, N��
outperforms D���C���� in terms of running time and the
number of benchmarks solved within the 5 minute time limit.
In particular,N�� can solve 71% of these benchmarks with an
average running time of 99 seconds. In contrast, D���C����
solves 32% of the benchmarks with an average running time
of 205 seconds.

Impact of di�erent components. Figure 9 compares the
percentage of benchmarks solved by N�� with four variants
(“baseline”, “ml”, “deduce” and “learn”). The “baseline” vari-
ant which uses a depth-�rst search enumeration can only
solve 22% of the benchmarks. The “ml” variant uses a neu-
ral network decider and increases the percentage of solved
benchmarks to 32%. Combining statistical model and deduc-
tion (“deduce”) further improves the performance of N�� to
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Figure 11. Impact of learning for the list domain

solve 56% of the benchmarks. Finally, N�� can solve 71% of
the benchmarks when we combine all of these ingredients.

7.3 Bene�t of Con�ict-driven Learning

In our third experiment, we further evaluate the bene�t of
con�ict-driven learning by comparing N�� against N��†,
which is a version of N�� that does not perform con�ict
analysis. In other words, N��† is the same as N�� except
that it does not invoke the A������C������� procedure and
does not add lemmas to the knowledge base (beyond blocking
the current assignment). To ensure that N��† does not incur
unnecessary overhead, we also modify the C����C�������
procedure to give a yes/no answer rather than producing a
minimal unsatis�able core.
The results of this experiment are summarized in Fig-

ures 10 and 11. Speci�cally, Figure 10 compares N�� against
N��† on the data wrangling benchmarks from Section 7.1,
whereas Figure 11 shows the same comparison for the list
manipulation benchmarks used in Section 7.2. As we can see
from these �gures, learning has a very signi�cant positive
impact on the overall performance ofN��. Speci�cally, in the
data wrangling domain, N��† times out on 30% of the bench-
marks and its average running time is 38 seconds. On the
other hand, N�� only times out on 10% of the benchmarks
while maintaining an average running time of 19 seconds. As
shown in Figure 11, the e�ect of learning is even more sub-
stantial in the list manipulation domain. Speci�cally, N��†

times out on 44% of the benchmarks and its average running
time is 199 seconds. In contrast, N�� only times out on 29%
of the benchmarks and has an average running time of 99
seconds.

Discussion. To evaluate the impact of con�ict-driven learn-
ing on scalability, we classify our data wrangling tasks into
three categories (i.e., “easy”, “moderate”, and “hard”) depend-
ing on the complexity of the target program. While N�� is
2.7x faster than N��† on “easy” benchmarks, N�� outper-
formsN��† by 5.7x on themedium category. For benchmarks
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Benchmark
N�� Speedup

Min Avg Max

Data Wrangling 2.8 5.5 17.6
Lists 1.6 4.0 14.8

Table 2. Impact of learning

in the “hard” category, N�� is 19.8x faster than N��† on av-
erage. 11 Also, to further evaluate the impact of learning on
hard benchmarks, we conduct an additional experiment on
exactly those problems that are solved by N�� but not by
N��† within the 5 minute time-limit. For these 25 bench-
marks, we re-run N��† with a much longer time limit of one
hour. Table 2 shows the impact of learning on these harder
benchmarks. Speci�cally, N�� has an average speedup of
5.5x and 4.0x on theM������� andD���C���� benchmarks
respectively. The maximum speedup is 17.6x for the data
wrangling domain and 14.8x for the list manipulation pro-
grams. For example, N��† takes around 45 minutes to solve a
benchmark that can be solved by N�� in less than 3 minutes.

8 Limitations

In this section, we discuss some of the limitations of the pro-
posed approach. First, because our method does not reason
about termination, N�� does not currently support synthe-
sizing recursive programs. Second, even though N�� is a
generic framework that can be instantiated in di�erent do-
mains, it is likely to be more e�ective when synthesizing
functional programs that can be expressed as a composition
of library methods. Third, the e�ectiveness of our technique
depends on the quality of the speci�cations. For example, if
the speci�cations are too detailed, they might signi�cantly
increase SMT solving overhead without providing additional
bene�t. On the other extreme, if the speci�cations are very
coarse-grained, N�� may not be able to make useful deduc-
tions and learn from con�icts. Overall, we believe that N��
is likely to be more e�ective in domains where the DSL in-
cludes many related components and the speci�cations of
these components expose their shared functionality.

9 Related Work

Program synthesis is an active research topic that has found
many applications, including string processing [13, 26] bit-
vector manipulations [16], data wrangling [8, 37], query syn-
thesis [36, 40, 42], API completion [9, 15, 17], functional
programming [10, 22, 23], and data processing [28, 39]. In
what follows, we discuss prior work that is most closely
related to our proposed approach.

Logical reasoning in program synthesis. The technique
proposed in this paper leverages logical speci�cations of DSL
constructs to enable con�ict-driven learning. While we are

11We did not perform the same comparison for the list domain since all

benchmarks have similar complexity.

not aware of prior work that learns useful lemmas from con-
�icts, there are many prior techniques that leverage logical
speci�cations to aid synthesis. In particular, synthesis algo-
rithms that use speci�cations can be grouped along two axes:
(a) whether they require exact vs. approximate speci�cations,
and (b) whether they use speci�cations to guide search or
completely reduce synthesis to constraint solving.
There are several techniques that formulate synthesis as

a constraint solving problem [12, 14, 16, 34]. For example,
Brahma [16] uses component speci�cations to generate an
98 formula such that any satisfying assignment to this for-
mula is a solution to the synthesis problem.More recent work
such as S������ [12] also reduces synthesis to constraint
solving, but uses the abstract semantics of components to
simplify the resulting constraint-solving problem.
An alternative approach is to formulate synthesis as a

search –rather than constraint-solving– problem and use
logical speci�cations to prune the search space [8, 10, 23].
For example, S����� uses liquid type speci�cations to avoid
the exploration of some program terms. Other tools, such as
�2 [10] andM������� [8], similarly use logical reasoning to
prune the search space but allow these speci�cations to be
over-approximate. N�� di�ers from all prior techniques in
that it leverages logical speci�cations to infer useful lemmas
that prevent the exploration of spurious programs that are
semantically similar to previously encountered ones.

Another work that is closely related to N�� is B���� [38],
which performs program synthesis using counterexample-
guided abstraction re�nement. Similar to our approach, B����
prunes its search space also by using a form of deductive
reasoning. However, a key di�erence is that B���� uses ab-
stract interpretation to enumerate only those programs that
satisfy the speci�cation with respect to a given abstract se-
mantics. In contrast, N�� uses automated theorem proving
(i.e., SAT and SMT) to prune partial programs that have no
feasible completion. Furthermore, while both approaches
perform some form of learning, B���� learns a new abstract
domain during re�nement, whereas N�� directly learns in-
feasible partial programs. We believe that N�� has two main
advantages over B����: First, N�� does not require a domain
expert to provide an abstract domain in the form of predicate
templates. Second, N�� can handle higher-order constructs
more naturally and e�ciently compared to B����.

Comparison to CEGIS. Counterexample-guided inductive
synthesis (CEGIS) is a popular framework for synthesizing
programs that satisfy a given speci�cation Φ [2, 29, 30]. The
key idea underlying CEGIS is to decompose the problem
into separate synthesis and veri�cation steps. Speci�cally, the
synthesizer proposes a candidate program P that is consis-
tent with a given set of examples, and the veri�er checks
whether P actually satis�es Φ. If this is not the case, then the
veri�er provides the synthesizer with a counterexample. Our
baseline synthesis algorithm (i.e., without learning) can be
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roughly formulated in the CEGIS framework. At each step,
the synthesizer (i.e., D�����) proposes a partial program P .
Then, the veri�er (i.e., D�����) checks whether there is any
completion of P that can satisfy Φ. If not, it provides coun-
terexample (i.e., an UNSAT core � ). Thus, our work can be
thought of as extending CEGIS to incorporate learning. In
particular, the baseline algorithm does not learn any addi-
tional information from a counter-example � reported by
the veri�er (other than the trivial fact that � is unsatis�able).
In contrast, given a MUC reported by our veri�er, A�������
C������� learns new lemmas that typically rule out many
additional programs.

Machine learning for synthesis. The work combining ma-
chine learning with program synthesis has roughly followed
two paths. The �rst approach uses neural networks (or “neu-
ral programmers”) to directly generate programs [20, 21].
This line of work is inspired by sequence-to-sequence mod-
els in machine translation, where one neural network (the
“encoder”) encodes an input phrase in the source language
(e.g., English) into a vector, and a second neural network (the
“decoder”) decodes this vector into a phrase in the target
language (e.g., French) [33]. The neural programmer follows
the same paradigm, where the “source language” is the spec-
i�cation (e.g., examples or natural language), and the “target
language” is the programming language (e.g., SQL).
The second approach, which is the one we adopt, incor-

porates statistical knowledge to guide a symbolic program
synthesizer. These approaches train a statistical model to
predict the most promising program to explore next. For
instance, Menon et al. use a log-linear model to predict the
most likely DSL operator based on features of the input-
output example [19], and D���C���� uses a deep neural
network to learn features that can be used to make such
predictions [3]. Alternatively, Raychev et el. use an n-gram
model, trained on a large database of code, to predict the
most likely completion of a hole based on its ancestors in the
AST [25]. Later work by Raychev et al. extends this approach
to the case of program synthesis with noisy input-output
examples [24], and Feng et al. use a similar n-gram model
for synthesizing table transformations [8]. Similar to all of
these techniques, N�� also uses a statistical model to predict
the most likely completion of a hole during its D����� step
but also takes into account the “hard constraints” encoded
in its knowledge base.

Conflict-driven learning. Our proposed synthesis frame-
work is directly inspired by the success of CDCL-style SAT
and SMT solvers [5, 11, 18, 41]. Given a partial assignment
that results in a con�ict, the idea is to learn a so-called con-
�ict clause that prevents similar con�icts in the future. While
the architecture of our synthesis algorithm is (intentionally)
very similar to CDCL-style SAT solvers, the mechanisms
used for learning these con�ict clauses are very di�erent.
In particular, SAT solvers typically learn a con�ict clause

by constructing an implication graph that describes which
assignments lead to which other assignments as a result of
unit propagation. Given such an implication graph, a con�ict
clause is inferred by performing resolution between clauses
that contribute to the con�ict. In contrast, our method learns
“con�ict clauses” (i.e., lemmas) by identifying DSL constructs
that are equivalent modulo con�ict. Our method also dif-
fers from CDCL-style constraint solvers in the way it makes
decisions and performs deduction. In particular, we use a
statistical model to make assignments and detect con�icts
by issuing an SMT query.

10 Conclusion and Future Work

We have presented a new synthesis framework based on
the idea of con�ict-driven learning. Given a spurious partial
program that violates the speci�cation, the idea is to infer
a lemma that can be used to prevent similar mistakes in
the future. Our synthesis algorithm infers these lemmas by
identifying DSL constructs that are equivalent modulo con-
�ict, meaning that replacing one component with the other
results in an another infeasible program.
We have implemented these ideas in a synthesis frame-

work called N�� and instantiated N�� for two di�erent ap-
plication domains, namely data wrangling and list manipula-
tion. N�� is publicly available [7] and can be instantiated in
other application domains by providing a suitable DSL and
its speci�cation.

We have evaluatedN�� on 130 benchmarks that pertain to
data wrangling and list transformation tasks. Our evaluation
shows that N�� outperforms state-of-the art synthesis tools,
namely M������� and D���C����, that specialize in these
two domains respectively. Our experiments also demonstrate
that con�ict-driven learning substantially improves the ca-
pabilities of the synthesizer.
In future work, we are interested in instantiating N�� in

more application domains. Since con�ict-driven learning is
particularly helpful in domains that involve a large number
of components, we plan to use N�� to synthesize programs
that require the use of many di�erent libraries.
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