Program Synthesis using Conflict-Driven Learning

Yu Feng
University of Texas at Austin
US.A
yufeng@cs.utexas.edu

Osbert Bastani
Massachusetts Institute of Technology
US.A
obastani@csail.mit.edu

Abstract

We propose a new conflict-driven program synthesis tech-
nique that is capable of learning from past mistakes. Given a
spurious program that violates the desired specification, our
synthesis algorithm identifies the root cause of the conflict
and learns new lemmas that can prevent similar mistakes in
the future. Specifically, we introduce the notion of equiva-
lence modulo conflict and show how this idea can be used to
learn useful lemmas that allow the synthesizer to prune large
parts of the search space. We have implemented a general-
purpose CDCL-style program synthesizer called NEo and
evaluate it in two different application domains, namely data
wrangling in R and functional programming over lists. Our
experiments demonstrate the substantial benefits of conflict-
driven learning and show that NEo outperforms two state-
of-the-art synthesis tools, MOrRPHEUS and DEEPCODER, that
target these respective domains.

CCS Concepts -« Software and its engineering — Pro-
gramming by example; Automatic programming;

Keywords program synthesis, conflict-driven learning, au-
tomated reasoning

ACM Reference Format:

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Pro-
gram Synthesis using Conflict-Driven Learning. In Proceedings of
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’'18). ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3192366.3192382

“Yu Feng and Ruben Martins contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06...$15.00
https://doi.org/10.1145/3192366.3192382

420

Ruben Martins*
Carnegie Mellon University
US.A
rubenm@cs.cmu.edu

Isil Dillig
University of Texas at Austin
US.A
isil@cs.utexas.edu

1 Introduction

In recent years, there has been significant interest in pro-
gram synthesis, in which the goal is to automatically gen-
erate programs from high-level specifications. Automated
program synthesis has proven to be useful to both end-users
and programmers: For instance, programming-by-example
(PBE) has been used to automate tedious tasks that arise in
everyday life, such as string and format manipulations in
spreadsheets [13, 27] or data wrangling tasks on tabular and
hierarchical data [8, 36, 39]. Program synthesis has also been
used for improving programmer productivity by automati-
cally completing parts of a program [25, 31, 32] or helping
programmers use complex APIs [9, 15, 17].

While there are several different approaches to program
synthesis, one common method is to perform enumerative
search over the space of programs that can be generated
using the context-free grammar of some DSL [1, 10, 35, 39].
In a nutshell, these techniques enumerate DSL programs
according to some cost metric and return the first program
that satisfies the user-provided specification. Several recent
methods also combine enumerative search with deduction
with the goal of ruling out partial programs [8, 10, 23].

Despite recent advances in program synthesis, a common
shortcoming of existing techniques is that they are not able
to learn from past mistakes. To understand what we mean by
this, consider the input-output specification [1, 2, 3] - [1, 2]
and a candidate program of the form Ax. map(x, ...). Here,
it is easy to see that no program of this shape can satisfy
the given specification, since the output list is shorter than
the input list, but the map combinator yields an output list
whose length is the same as the input list. In fact, we can
take this generalization one step further and deduce that no
program of the form Ax.f(x, ...) can satisfy the specification
as long as f yields a list whose length is greater than or equal
to that of the input list. This kind of reasoning allows the
synthesizer to learn from past mistakes (in this case, the
spurious program Ax. map(x, ...)) and rule out many other
erroneous programs (e.g., Ax.reverse(x), Ax. sort(x)) that
are guaranteed not to satisfy the desired specification.

In this paper, we present a new conflict-driven synthesis
algorithm that is capable of learning from its past mistakes.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Partial program

Decide Deduce

Specification \

DSL grammar
& semantics

All holes
Knowledge base, / filled

(initially empty)

New partial program

Analyze
Conflict

new
lemma

conflict

Solution No solution

Figure 1. High-level architecture of our synthesis algorithm

Our method is inspired by the success of conflict-driven learn-
ing in automated theorem provers and analyzes conflicts to
learn useful lemmas that guide the search. Furthermore, our
method can synthesize programs over any arbitrary DSL and
is not restricted to any particular application domain.

At a high level, the general structure of our synthesis
algorithm resembles the architecture of SAT and SMT solvers
based on conflict-driven clause learning (CDCL). As shown
in Figure 1, our synthesis algorithm consists of three key
components, namely Decide, Deduce, and AnalyzeConflict:

o Decide: Given a partial program P with holes (represent-
ing unknown program fragments), the Decide component
selects which hole to fill and determines how to fill it using
the constructs in the DSL.

o Deduce: Given the current partial program, the Deduce
component makes new inferences based on the syntax
and semantics of the DSL as well as a knowledge base,
which keeps track of useful “lemmas” learned during the
execution of the algorithm.

o Analyze Conflict: When the Deduce component detects
a conflict (meaning that the partial program is infeasible),
the goal of AnalyzeConflict is to identify the root cause of
failure and learn new lemmas that should be added to the
knowledge base. Because the decisions made by the Decide
component need to be consistent with the knowledge base,
these lemmas prevent the algorithm from making similar
bad decisions in the future.

Based on this discussion, the main technical contributions
of this paper are two-fold: First, we introduce the paradigm of
synthesis using conflict driven learning and propose a CDCL-
style architecture for building program synthesizers. Second,
we propose a new technique for analyzing conflicts and au-
tomatically learning useful lemmas that should be added
to the knowledge base. Our learning algorithm is based on
the novel notion of equivalence modulo conflict. In particular,
given a spurious partial program P that uses DSL construct
(“component”) ¢, our conflict analysis procedure automati-
cally infers other components cy, . . ., ¢, such that replacing
¢ with any of these c;’s yields a spurious program P’ with
the same root cause of failure as P. We refer to such com-
ponents as being equivalent modulo conflict (EMC) and our

1
2
3
4
5
6
7
8
9

10

421

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

conflict analysis procedure infers a maximal set of EMC com-
ponents from an infeasible partial program. Our learning
algorithm then uses these equivalence classes to identify
other infeasible partial programs and adds them as lemmas
to the knowledge base. Because the assignments made by
Decide must be consistent with the knowledge base, the lem-
mas learnt using AnalyzeConflict allow the synthesizer to
prune a large number of programs from the search space.
We have implemented the proposed synthesis technique
in a tool called NEo and evaluate it in two different applica-
tion domains that have been explored in prior work: First, we
use NEoO to perform data wrangling tasks in R and compare
NEo with MORPHEUS, a state-of-the-art synthesizer targeting
this domain [8]. Second, we evaluate NEo in the domain
of list manipulation programs and compare it against a re-
implementation of DEEPCODER, a state-of-the-art synthe-
sizer based on deep learning [3]. Our experiments clearly
demonstrate the benefits of learning from conflicts and show
that our general-purpose synthesis algorithm outperforms
state-of-the-art synthesizers that target these domains.

Contributions. To summarize, this paper makes the follow-
ing key contributions:

e We propose a new CDCL-style framework for conflict-
driven program synthesis.

e We introduce the notion of equivalence modulo conflict
and show how it can be used to learn useful lemmas
from conflicts.

e We implement the proposed ideas in a general-purpose
synthesis tool called NEo and evaluate it in two differ-
ent application domains.

2 Motivating Example

Suppose that we are given a list containing the scores of
different teams in a soccer league, and our goal is to write a
program to compute the total scores of the best k teams. For
instance, if the input list is [49, 62, 82, 54, 76] and k is specified
as 2, then the program should return 158 (i.e., 82 + 76). It is
easy to see that the computeKSum procedure below (written
in Haskell-like syntax) implements the desired functionality:

computeKSum List —> Int —> Int
computeKSum x1 x2 =

-- Sort x1 in ascending order

L1 <- sort x1

--L2 is x1 in descending order

L2 <— reverse L1

-- Take L2's first x2 entries

L3 <- take L2 x2

-- Compute sum of all elements in L3

sum L3

We now explain our key ideas using this simple example
and the small DSL shown in Figure 2. In this section (and
throughout the paper), we represent programs using their
abstract syntax tree (AST) representation. For instance, the

Program Synthesis using Conflict-Driven Learning

N—->o | | 10 | x;|last(L) | head(L) |sum(L)

| maximum(L) | minimum(L)
L — take(L,N) | filter(L,T)| sort(L) | reverse(L) | x;
T —geqz | legz | eqz

Figure 2. The grammar of a simple DSL for manipulating
lists of integers; in this grammar, N is the start symbol.

Component | Specification

head x1.size > 1 Ay.size = 1 A y.max < x;.max
take y.size < x1.size A y.max < xj.max A

x5 > 0 A x1.5ize > x5
filter y.size < x1.size A y.max < xj.max

Table 1. Examples of component specifications. Here, y de-
notes the output, and x; denotes the i’th input.

Figure 3. An example partial program

AST shown in Figure 3 corresponds to the partial program
head(take(filter(x1,?),?)), where each question mark is a
hole (i.e., unknown program) yet to be determined. We think
of partial programs as assignments from each AST node to
a specific component. For instance, the AST from Figure 3
corresponds to the following partial assignment:

{No — head, N; — take, N3 — filter, N; — x1}

Decide. Given an AST representing a partial program P (ini-
tially, a single unassigned root node), our synthesis algorithm
determines how to fill one of the holes in P. In other words,
thinking of partial programs as partial assignments from
AST nodes to DSL constructs, the goal of the Decide com-
ponent is to choose an unassigned node N in the AST and
determine which DSL construct to assign to N.

Our technique requires the assignments made by the De-
cide component to obey any lemmas that have been added
to the knowledge base Q. In particular, Q consists of a set
of propositional formulas over variables c; , whose truth
value indicates whether AST node with unique identifier i
is assigned to component y. Thus, making an assignment
consistent with the knowledge base requires checking the
satisfiability of a propositional formula. However, since there
are typically many different decisions that are consistent
with the knowledge base, the Decide component additionally
consults a statistical model to predict the most “promising”
assignment.

Deduce. After every assignment made by the Decide compo-
nent, NEo performs deduction to check whether the current

422

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Dp =Ny A PN, A PN A DN,

ON, =Y < vi.max A vi.size > 1 A y.size =1

¢N, =vi.max < vs.max A vi.size < v3.size A

v4 >0 A v3.Size > v4

oN, = v3.size < v7.size A v3.max < v7.max

ON, = X1 =17
Figure 4. Specification of partial program from Figure 3,
where v; represents the intermediate value at node N; and
variables x; and y denote the input and output, respectively.

partial program is feasible. ' Our deduction engine utilizes
the semantics of the DSL, provided as first-order specifica-
tions of each component. For instance, Table 1 shows the
specifications for three DSL constructs, namely take, head
and filter. Here, the specification for take says that the
maximum element and size of the output list are no larger
than those of the input list. The specification for head is
similar and states that the maximum element of the output
is no larger than that of the input. Finally, the specification
for filter says that the size (resp. maximum) of the output
is smaller (resp. not larger) than the size of the input list.

NEo uses the specifications of each component to infer a
specification of the current partial program. In particular, Fig-
ure 4 shows the inferred specification ®p for partial program
P from Figure 3. Observe that ®p uses the specifications of
head, take, and filter to infer a specification for each node
in the AST. Our method determines the feasibility of partial
program P by checking the satisfiability of the SMT formula
®p A ® where @ represents the user-provided specification.
In this case, the input-output example corresponds to the
specification x; = [49, 62, 82,54,76] A y = 158. Observe that
the formula ®p A ® is unsatisfiable: Since x;.max = 82, Op
implies y < 82, contradicting the fact that y = 158.

Analyzing conflicts. The key novelty of our technique is
its ability to analyze conflicts and learn useful lemmas that
prevent similar bad decisions in the future. In particular,
NEo learns new lemmas by identifying components that are
equivalent modulo conflict. That is, given an infeasible partial
program P containing component y, our method identifies
other components y1, . . ., y» such that replacing y with any
xi results in another infeasible program. By computing these
equivalence classes, we can generalize from the current con-
flict and learn many other partial programs that are guar-
anteed to be infeasible. This information is then encoded as
a SAT formula and added to the knowledge base to avoid
similar conflicts in the future.

We now illustrate how NEoO learns new lemmas after it
detects the infeasibility of partial program P from Figure 3.
To identify the root cause of the conflict, NEo starts by com-
puting a minimal unsatisfiable core (MUC) of the formula

INote that SMT-based deduction is not a contribution of this paper; however,
it is a prerequisite for learning from conflicts.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

®p A ®. For this example, the MUC includes all underlined
predicates in Figure 4. We represent the MUC as a set of
triples (¢;, Nj, xi) where y; is a component labeling node N;
and each formula ¢; corresponds to a part of y;’s specifica-
tion. For our running example, the MUC corresponds to the

following set k:

Our learning algorithm infers components that are equiv-
alent modulo conflict by analyzing the MUC. In particular,
let (¢, N, y) be an element of the MUC, and let y’ be another
component with specification y. Now, if y logically implies ¢,
we can be sure that replacing the annotation of node N with
x’ in partial program P will result in an infeasible program
with the same MUC as P. Thus, we can conclude that y and
x' are equivalent modulo conflict at node N.

Going back to our example, the partial program from Fig-
ure 3 contains the take component, and the relevant part
of its specification that appears in the MUC is the predicate
y.max < xj.max. Since the specification of sort (see Ta-
ble 1) logically implies y.max < x;.max, we can conclude
that changing the annotation of node Nj to sort will still
result in a spurious program. Using this strategy, we can
learn that the following components all belong to the same
equivalence class with respect to the current conflict:

(y < x1.max, Ny, head), (y.max < x;.max, Ny, take)
(y.max < xy.max, N3, filter), (y = x1, N7, x1)

take =y, reverse =y, sort =y, filter

In other words, changing the assignment of node N to sort,
reverse, or filter is guaranteed to result in another infea-
sible program. Using the same kind of reasoning for other
nodes, we can learn a lemma (whose form is described in
Section 5) that allows us to rule out 63 other partial programs
that would have otherwise been explored by the synthesis
algorithm. Thus, learning from conflicts allows us to prune
large parts of the search space.

3 Preliminaries

Before describing our algorithm in detail, we first provide
some background that will be used throughout the paper.

3.1 Domain-Specific Language & Semantics

Our synthesis algorithm searches the space of programs de-
scribed by a given domain-specific language (DSL), which
consists of a context-free grammar G together with the se-
mantics of DSL operators (i.e., “‘components”).

Syntax. The syntax of the DSL is described by a context-free
grammar G. In particular, G is a tuple (V, 2, R, S), where V
is the set of nonterminals, ¥ represents terminals, R is the
set of productions, and S is the start symbol. The terminals
X € 2 correspond to built-in DSL operators (e.g., +, concat,
map etc), constants, and variables. We assume that G always
includes special terminal symbols xi, ...,x;x € ¥ denoting
the k program inputs. The productions p € R have the form

423

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

p = (A —> y(A;...Ax)), where y € X is a DSL operator and
A, A4, ...,Ar € V are nonterminals. We use the notation X
to denote DSL operators of arity k, and we write 34 4,.. 4,
to denote DSL operators y such that R contains a production
A— y(A;...Ap).

Semantics. As mentioned in Section 1, our synthesis algo-
rithm uses the semantics of DSL constructs to make useful
deductions and analyze conflicts. We assume that the DSL se-
mantics are provided as a mapping ¥ from each DSL operator
X € X, to a first-order formula over variables y, x1, ..., x,
where x; represents the i’th argument of y and y represents
its return value. For instance, consider a unary function inc
that returns its argument incremented by 1. Then, we have
¥(inc) = (y = x; + 1).

3.2 Partial Programs

Since the key data structure maintained by our synthesis
algorithm is a partial program, we now introduce some ter-
minology related to this concept.

Definition 3.1. (Partial program) Given a DSL defined by
context-free grammar G = (V, 3, R, S), a partial program P

in this DSL is a string P € (X U V)* such that S = P.

In contrast to a concrete program which only contains sym-
bols from ¥, a partial program may contain non-terminals.
We say that concrete program P’ (or just “program” for short)

is a completion of P if P = P

We represent partial programs as abstract syntax trees
(AST). Given partial program P, we use the notation Nodes(P),
Internal(P), and Leaves(P) to denote the set of all nodes, in-
ternal nodes, and leaves in P, respectively. We also write
Children(N) to denote the children of internal node N.

In our representation of partial programs, every node N
is labeled with a corresponding grammar symbol Ay € V
such that N may be expanded using any production whose
left-hand side is Any. Every node N is also optionally labeled
with a symbol yn € ¥ indicating that N has been expanded
using the production Ay — yn(...). Observe that internal
nodes in the AST must have these yn annotations, but leaf
nodes do not. In particular, any leaf node N without a yn
annotation represents an unknown program fragment; thus,
we refer to such nodes as holes. Given partial program P, we
write Holes(P) to represent the set of all holes in P.

Example 3.2. Consider the partial program from Figure 3.
Here, we have the following annotations for each node:

AN, =N An, =L An, =L
AN, =N An, =L An, =T

XN, = head yn, = take yn, = filter
XN; = x1

Observe that leaf nodes Ny and N correspond to holes in
this partial program.

Program Synthesis using Conflict-Driven Learning

Algorithm 1 Given DSL with syntax G and semantics ¥ as
well as a specification ®, SYNTHESIZE either returns a DSL
program P such that P |= ® or L if no such program exists.

procedure SYNTHESIZE(G, ¥, D)
P « Root(S)
Q10
while true do
(H,p) « DEcIDE(P, G, D, Q)
P « ProraGaTE(P, G, (H,p), Q)
k < CHECKCONFLICT(P, ¥, D)
if ¥ # 0 then
Q « Q U ANaLyzeConfFLICT(P, G, ¥, k)
P « BACKTRACK(P, Q)
if UNSAT(A geq ¢) then
return L
else if ISCONCRETE(P) then
return P

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:

In the remainder of this paper, we assume that there is a
unique index sy associated with each node N in the AST.
In particular, if N is the i’th node at depth d of the AST, we
assign N the id k971 + i — 1, where k is the maximum arity
of any DSL operator. > Observe that this numbering scheme
ensures that nodes at the same position in two different ASTs
are always assigned the same identifier. As we will see in
the next section, this assumption is important for learning
reusable lemmas from conflicts.

4 Synthesis Algorithm

In this section, we describe the architecture of our conflict-
driven synthesis algorithm and explain each of its compo-
nents in detail. However, because conflict analysis is one
of the main contributions of this paper, we defer a detailed
discussion of AnalyzeConflict to Section 5.

4.1 Overview

Algorithm 1 shows the high-level structure of our synthesis
algorithm, which takes as input a specification ® that must
be satisfied by the synthesized program as well as a domain-
specific language with syntax G and semantics ¥. We assume
that specification @ is an SMT formula over variables ¥, y,
which represent the inputs and output of the program re-
spectively. The output of the SYNTHESIZE procedure is either
a concrete program P in the DSL or L, meaning that there is
no DSL program that satisfies . As we will prove later, our
synthesis algorithm is both sound and complete with respect
to the provided DSL semantics. In particular, the program P
returned by SYNTHESIZE is guaranteed to satisfy ® with re-
spect to ¥, and SYNTHESIZE returns L only if there is indeed
no DSL program that satisfies .

2We assume that the root node is at depth 1.

424

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Internally, our synthesis algorithm maintains two data
structures, namely a partial program P and a knowledge base
Q. The knowledge base Q is a set of learnt lemmas derived
from the input specification ® with respect to ¥, where each
lemma is represented as a propositional (SAT) formula. The
SYNTHESIZE procedure initializes P to contain a single root
node labeled with the start symbol S (line 3); thus, P initially
represents any syntactically legal DSL program. The knowl-
edge base Q is initialized to the empty set (line 4), but will
be updated by the algorithm as it learns new lemmas from
each conflict.

The key part of the synthesis procedure is the conflict-
driven learning loop in lines 4-14. Given a partial program
P containing holes, the DECIDE procedure selects a hole H
in P as well as a candidate production p with which to fill H.
The decision (H, p) returned by DEcIDE should be consistent
with the knowledge base in order to prevent the algorithm
from making wrong choices as early as possible. In other
words, filling hole H according to production p should yield
a partial program P’ that does not violate the lemmas in Q.
The DEcIDE procedure is further described in Section 4.3.

After choosing a hole H to be filled using production p,
the synthesis algorithm performs two kinds of deduction,
represented by the calls to PROPAGATE and CHECKCONFLICT
in lines 6 and 7 respectively. In particular, PROPAGATE is
analogous to Boolean Constraint Propagation (BCP) in SAT
solvers ° and infers new assignments that are implied by the
knowledge base as a result of filling hole H with production
p. In contrast, the CHECKCONFLICT procedure uses the se-
mantics of the DSL constructs to determine if there exists a
completion of P that can satisfy ®. If P cannot be completed
in a way that satisfies &, we have detected a conflict (i.e., P
is spurious), and CHECKCONFLICT returns the root cause of
the conflict. As explained in Section 2, we represent the root
cause of each conflict as a minimal unsatisfiable core (MUC)
k of the SMT formula representing the specification of P.
If k = 0, this means that CHECKCoNFLICT did not find any
conflicts, so the algorithm goes back to making new deci-
sions if there are any remaining holes in P. The PROPAGATE
and CHECKCONFLICT procedures are further described in
Sections 4.4 and 4.5, respectively.

As mentioned earlier, the key innovation underlying our
synthesis algorithm is its ability to make generalizations
from conflicts. Given a non-empty MUC returned by CHECK-
ConFLICT, the ANALYZECONFLICT procedure (line 9) analyzes
the unsatisfiable core x to identify other spurious partial pro-
grams that have the same root cause of failure as P. Thus, the
lemmas returned by ANALYZECONFLICT prevent the DECIDE
component from generating partial programs that will even-
tually result in a similar conflict as P. The algorithm adds
these new lemmas to the knowledge base and backtracks by

3Recall that BCP in SAT solvers exhaustively applies unit propagation by
finding all literals that are implied by the current assignment.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

undoing the assignments made by DECIDE and PROPAGATE
during the last iteration.

Algorithm 1 has two possible termination conditions that
are checked after each iteration: If the conjunction of lem-
mas in the knowledge base Q has become unsatisfiable, this
means that there is no DSL program that can satisfy ®; thus,
the algorithm returns L. On the other hand, if P is a concrete
program without holes, it must satisfy ® with respect to the
provided semantics ¥; thus, the algorithm returns P as a
possible solution.

Discussion. The soundness of the SYNTHESIZE procedure
from Algorithm 1 is with respect to the provided semantics
¥ of the DSL. Thus, if ¥ defines a complete semantics of
each DSL construct, then the synthesized program is indeed
guaranteed to satisfy ®. However, if ¥ over-approximates
(i.e., under-specifies) the true semantics of the DSL, then
the synthesized program is not guaranteed to satisfy ®. For
programming-by-example applications where the specifica-
tion ® represents concrete input-output examples, we believe
that a sensible design choice is to use over-approximate spec-
ifications of the DSL constructs and then check whether P
actually satisfies ® by executing P on these examples. The
benefit of over-approximate specifications is two-fold: First,
for some operators, it may be infeasible to precisely encode
their functionality using a first-order theory supported by
SMT solvers. Second, the use of over-approximate specifica-
tions allows us to control the tradeoff between effectiveness
of deduction/learning and overhead of SMT solving.

4.2 Knowledge Base and SAT Encoding of Programs

Before we can explain each of the subroutines used in Algo-
rithm 1, we first describe the knowledge base Q maintained
by the synthesis algorithm. As mentioned earlier, Q is a set
of learnt lemmas, where each lemma ¢ is a SAT formula over
encoding variables cg,, . Here, sy corresponds to the unique
index associated with an AST node N and p is a production
in the grammar. Thus, the encoding variable cs,,, , indicates
whether N is labeled with (i.e., assigned to) production p.

In order to ensure that the choices made by the algorithm
are consistent with the knowledge base, it is convenient
to represent partial programs in terms of a SAT formula
over encoding variables. Towards this goal, we introduce the
following SAT encoding of partial programs:

Definition 4.1. (SAT encoding of program) Let P be the
AST representation of a partial program, as explained in
Section 3.2. We use the notation 7p to denote the following
SAT encoding of P:

/\

N eNodes(P)

Tp = Csnu XN

where sy denotes the unique index of node N and yy is the
component labeling node N.

425

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

Algorithm 2 Outline of DECIDE

procedure DecinE(P, G, @, Q)
V « {(H,p) | H € Holes(P), p = Ay — x(A1...Ax)}
V'« {(H,p) € V | Fill(P,H,p) ~ Q}
return arg max g, p)ev Lo (Fill(P, H, p) | @)

Example 4.2. The partial program in Figure 3 can be de-
noted using the following SAT encoding 7p:

Co,head A C1,take A C3 filter A C7,x1-

Definition 4.3. (Consistency with KB) We say that a par-
tial program P is consistent with knowledge base Q, denoted
P ~ Q, if the formula 7p A A 4eq ¢ is satisfiable.

Definition 4.4. (Consistency with spec) We say that a
partial program P is consistent with specification ®, denoted
P ~ @, if there exists some completion of P that satisfies ®.

Definition 4.5. (Correctness of KB) The knowledge base
Q is correct with respect to specification ® if, for any partial
program P, P ~ ® implies P ~ Q.

Thus, given a correct knowledge base Q, the synthesis
algorithm can safely prune any partial program P that is
inconsistent with Q. In particular, if P is inconsistent with
Q, the correctness of the knowledge base guarantees that
there is no completion of P that satisfies specification .

4.3 The DEcCIDE Subroutine

We will now explain each of the auxiliary procedures used in
Algorithm 1, starting with the DECIDE component. The high-
level idea underlying our DECIDE procedure is to fill one of
the holes in P such that (a) the resulting partial program P’
is consistent with the knowledge base, and (b) P’ is the most
likely completion of P with respect to a probabilistic model.
Thus, our DECIDE procedure combines logical constraints
with statistical information in a unified framework.

Algorithm 2 shows the high-level structure of our DECIDE
component and makes use of a procedure Fill(P, H, p) which
fills hole H in partial program P with a production p =
(Ag — x(A;...Ax)). Specifically, Fill generates a new partial
program P’ that is the same as P except that node H is now
labeled with DSL operator y and has k new children labeled
Ay, ..., Ag. Thus, if P’ = Fill(P, H, p) and we think of P and
P’ as strings in (X U V)*, then we have P = P’.

Algorithm 2 proceeds in three steps: First, it constructs
the set V of all pairs (H, p), where H is a hole in the partial
program P, and p = (Ag — y(A;...Ax)) is a grammar pro-
duction that can be used to fill H. Second, it restricts this
set to pairs (H, p) such that the program P’ = Fill(P, H, p)
satisfies the knowledge base Q. Finally, it assumes access
to a probabilistic model Ly (parametrized by 6 € R?) that
can be used to score partial programs conditioned on the

Program Synthesis using Conflict-Driven Learning

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Algorithm 3 Outline of PROPAGATE

Algorithm 4 Outline of CHECKCONFLICT

procedure ProPAGATE(P, G, (H,p), Q)

P « Fill(P,H,p)

S « Holes(P) x Productions(G)

S {(N,p) | (N,p) €S A p=(An — x(..)}

for all (H;,p;) € S’ do
R « {p | p € Productions(G) Ap = (An, — ...)}
if (/\¢EQ A \/pjeR Csp.py N mp) = Cshy,pi then

P « PropaGaTe(P, G, (H;,pi), Q)

return P

specification @, i.e.,
Lo(P' | ®,P) =Pr[P" | ®,P,0].
Based on this model, DECIDE returns the pair (H, p) resulting

in the most likely partial program P’ = Fill(P, H, p) accord-
ing to this model. *

4.4 The PROPAGATE Subroutine

After each invocation of DECIDE, the synthesis algorithm
infers additional assignments that are implied by the cur-
rent decision. Such inferences are made by the PROPAGATE
procedure summarized in Algorithm 3.

Given a decision (H, p), PROPAGATE first fills hole H with
production p; it then checks whether this decision implies
additional assignments. It does so by querying whether the
following implication is valid:

(/\ oA \/ Csppopy N ﬂp) = Csp,opi

PeQ Pj€R

where R is the set of all productions that can be used to fill
hole H;. Intuitively, we check if Q and 7p imply that the only
feasible choice for hole H; is to fill it using production p;. If
this is the case, the PROPAGATE procedure recursively calls
itself to further propagate this assignment. °

Remark. The PROPAGATE procedure is a necessary ingredi-
ent of our algorithm rather than a mere optimization because
it enforces the consistency of the current assignment with
the constraints stored in Q. In particular, if PROPAGATE was
not invoked after each decision, then the DECIDE procedure
could continously choose the same decision (H, p).

Example 4.6. Suppose that the current partial program con-
sists of a single hole (i.e., AST with only node Ny) and the
knowledge base Q contains the following two lemmas:

{_‘CO,Filter V 1€ eqz, €0, filter V _‘C2,leqz}

“We do not fix a particular statistical model because different models may be
suitable for different applications. Section 6 describes two different statistical
models used in our implementation.

°In general, PROPAGATE can discover conflicts if the decision (H, p) will lead
to a hole H; that cannot be filled with any production p;. In this case, the
algorithm will backtrack and pick another decision. For simplicity, we omit
this case from the PROPAGATE subroutine and the main synthesis algorithm.

426

1: procedure CHECKCONFLICT(P, ¥,)

2 ®p « InferSpec(P)

3 Y < SMTSolve(®p A D)

£ ke {@ NN 1§ €y A N=Node(g))

5 k' — {(¢',N, xn) | ¢’ = Rename(P) A (¢, N, yN) € K}

6 return «’

®p = ®g[y/vs,] where R = Root(P)

Ny = YN A AN;ecChildren(N) PN;
true if N € Holes(P)

4N = Y(xn)[vsy /Y] else if N € Leaves(P)
Y(¥N)[C(N)/%,vsy/y] otherwise

C(N) = [USNN e ,szk] where [Ni, ..., Ni] = Children(N)

Figure 5. Rules defining InferSpec(P)

If Decide makes the assignment Ny - filter, Propagate will
result in the following partial program:
filter

vy e

In particular, observe that Fill(P, Ny, filter) results in two
new nodes Ni, N; where Ay, = L and Ay, = T. Further-
more, since the knowledge base Q and the assignment N
filter together imply that N, cannot be assigned to leqz or
eqz, Propagate infers that N, must be assigned to geqz.

4.5 The CHECKCONFLICT Subroutine

In addition to identifying assignments implied by the current
decision, our synthesis procedure performs a different form
of deduction to prune partial programs that do not satisfy
the specification. This form of deduction is performed by the
CHECKCONFLICT procedure outlined in Algorithm 4.

The core part of CHECKCONFLICT is the InferSpec proce-
dure, described as inference rules in Figure 5. Given a partial
program P, InferSpec generates an SMT formula ®p that
serves as a specification of P. This formula ®p is constructed
recursively by traversing the AST bottom-up and uses a
variable v;,, to denote the return value of the sub-program
rooted at node N. The specification ® of node N is obtained
by conjoining the specifications of the children of N with
the (suitable renamed) specification ¥y of the component
labeling N. Observe that the final SMT formula ®p is over
variables X, y describing P’s inputs and outputs respectively
as well as auxiliary variables J denoting intermediate values
of P’s sub-expressions.

Example 4.7. Figure 4 shows the result of calling InferSpec
on the partial program from Figure 3.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

The following theorem states the correctness of the Infer-
Spec procedure presented in Figure 5:

Theorem 4.8. Assuming ¥ provides a sound semantics of
the DSL and P ~ ®, then ®p A @ is satisfiable.

According to this theorem, if ®p A ® is unsatisfiable, then
there is in fact no completion of P that can satisfy ¢, meaning
that P is infeasible. Thus, CHECKCONFLICT invokes the SMT-
Solve procedure to check the satisfiability of ®p A ® (line 3
of Algorithm 4). If this formula is unsatisfiable, Theorem 4.8
allows us to prune partial program P from the search space.

Since our learning algorithm makes use of a minimal un-
satisfiable core (MUC), we represent the return value of the
SMTSoLVE procedure as a set of clauses i/ representing the
MUC. ° In particular, the MUC ¥/ is a set of SMT formulas
{P1, ..., Pn} such that:

1. A\; ¢i = false,

2. Each ¢; either corresponds to a clause (conjunct) of
® or a clause of ¥(y) for some component y (modulo
renaming)

3. ¢ isminimal, i.e., forany ¢; € Y, Ay, epn\i4,) 95 I false

Because our ANALYZECONFLICT procedure requires the
MUC to be represented in a special form, lines 4-6 of CHECK-
CONFLICT post-process ¢ to generate an MUC consisting
of triples (¢;, N, y;) where y; is a component labeling node
N and ¢; is a clause in y;’s specification. In particular, line
4 identifies, for each ¢; € ¢, the AST node N = NoDE(¢;)
that is associated with ¢; and attaches to ¢; the component
xn~ labeling N. Finally, since each ¢; € i refers to auxiliary
variables associated with nodes in the AST, lines 5 converts
each ¢; to a “normal form” over variables ¥, y rather than
variables ¥ used in ®p. Observe that clauses of the MUC that
come from & are dropped during this post-processing step.

Example 4.9. Consider the formula ®p Ax;.max = 82Ay =
158 where ®p is the formula from Figure 4. This formula is
unsatisfiable and its MUC ¢ consists of the following clauses:

{ }

Since the first two clauses come from the specification @,
they are dropped during post-processing. The clause y <
v1.max is generated from the root node Ny from Figure 3;
thus, the set representation k of the MUC contains (y <
x1.max, Ny, head). The clause v;.max < vs.max is generated
from node N; with annotation take; thus, x also contains
(y.max < x;.max, Ny, take). Using similar reasoning for the
other clauses in ¢, we obtain the following set representation
k of the MUC:

{

If &p A @ is satisfiable, then 1 is simply the empty set.

xi.max = 82, y = 158, y < v;.max,
v1.max < v3.max,vs.max < v;.max, Xy = vy

(y < x1.max, Ny, head), (y.max < x;.max, Ny, take)
(y.max < xj;.max, N3, filter), (y = x1, N7,x1)

427

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

5 Analyzing Conflicts

In this section, we turn our attention to the conflict analysis
procedure for learning new lemmas to add to the knowledge
base. To the best of our knowledge, our approach is the
first synthesis technique that can rule out unrelated partial
programs by analyzing the root cause of the conflict.

The key idea underlying our learning algorithm is to iden-
tify DSL operators that are equivalent modulo conflict:

Definition 5.1. Let P be a partial program that is inconsis-
tent with specification @, and let y be a DSL operator labeling
node N of P. We say that components y, y’ are equivalent
modulo conflict at node N, denoted y =y y’ if replacing label
x of node N with y’ results in a program P’ that is also
inconsistent with @.’

To see why the notion of equivalence modulo conflict
(EMCQ) is useful for synthesis, let P be a spurious partial pro-
gram containing n assigned nodes, and suppose that, for each
node N, we have m different components that are equivalent
modulo conflict to yn. Using this information, we can learn
m" other partial programs that are all infeasible with respect
to specification ®. By encoding these partial programs as
lemmas in our knowledge base, we can potentially prune a
large number of programs from the search space.

As illustrated by this discussion, we would like to find
as many components as possible that are equivalent to each
component used in P. Specifically, the bigger the size of each
equivalence class (i.e., m), the more programs we can prune.

The most straightforward way to identify components
that are equivalent modulo conflict is to check whether their
specifications are logically equivalent. While this approach
would clearly be sound, it would not work well in practice
because different DSL constructs rarely share the same spec-
ification. Thus, the size of each equivalence class would be
very small, meaning that the synthesizer cannot rule out
many programs as a result of a conflict.

The core idea underlying our learning algorithm is to infer
equivalence classes by analyzing the root cause of the infea-
sibility of a given partial program P. In particular, the idea is
to extract the root cause of P’s infeasibility by obtaining a
minimal unsatisfiable core of the formula ®p A ®, where ®p
represents the specification of P. Now, because each clause in
the MUC refers to a small subset of the clauses in component
specifications, we can identify maximal equivalence classes
by utilizing precisely those clauses that appear in the MUC.
The following theorem makes this discussion more precise.

Theorem 5.2. Let P a partial program inconsistent with spec-
ification ®, and let k be the MUC returned by Algorithm 4. We
have y =5y’ if ¥Y(x') = ¢, where ($,N,) € k.

Intuitively, if ¥(y”) logically implies ¢, then the specifica-
tion ¥(y’) for y’ is more restrictive than the specification

"Note that equivalence modulo conflict also depends on the partial program
P; we omit this information to simplify our notation.

Program Synthesis using Conflict-Driven Learning

Algorithm 5 Algorithm for learning lemmas

procedure ANALYZECONFLICT(P, G, ¥, k)
@ « false
for (¢, N, yn) € k do
(A1,...,Ar) « (AN, | N; € Children(N))
N —{xlx €Zana....a N YY) = ¢}
¢ =@V Ayesy "Csn.x

7: return ¢

1:
2
3
4:
5
6

¥ (y) for y, considering only the subformula ¢ of ¥(y) con-
tained in the MUC. Thus, changing the annotation of node N
from y to y’ in P is guaranteed to result in an another infea-
sible partial program, meaning that y and y’ are equivalent
modulo conflict at node N.

Example 5.3. Consider the element (y.max < x;.max, Ny,
take) in the MUC from Example 4.9. Also, recall from Table 1
that the specification of sort is y.size = x;.size A y.max =
x1.max. Since the formula

(y.size = xy.size A y.max = x;.max) = y.max < x;.max
is logically valid, we have sort =y, take.

We now discuss how the ANALYZECONFLICT procedure
from Algorithm 5 leverages Theorem 5.2 to learn new lem-
mas to add to the knowledge base. As shown in Algorithm 5,
the ANALYZECONFLICT procedure takes as input the partial
program P, the syntax G and semantics ¥ of the DSL, as well
as the MUC « representing the root cause of infeasibility
of P. The output of the algorithm is a lemma ¢ that can be
added to the knowledge base.

The ANALYZECONFLICT procedure iterates over all ele-
ments (¢, N, yn) in the MUC x and uses Theorem 5.2 to
compute a set Xy such that 3y contains all components y’
that are equivalent to y modulo conflict at node N. It then
generates the following lemma to add to the knowledge base:

VA e

Nek yeEN

Here, the outer disjunct states that we must change the as-
signment for at least one of the nodes N that appear in the
proof of infeasibility of the current partial program P. The
inner conjunct says that node N cannot be assigned to any
of the y’s that appear in X5 because Theorem 5.2 guaran-
tees that changing the assignment of N to y must result in
another infeasible program.

The following theorem states the correctness of the lem-
mas returned by ANALYZECONFLICT:

Theorem 5.4. Let ¢ be a lemma returned by ANALYZECON-
FLICT. If P ~ ®, then the formula np A ¢ is satisfiable.

Since 7p is the SAT encoding of P, this theorem says that
the learnt lemma ¢ must be consistent with zp for it to be
the case that P ~ ®@. Thus, we have:

428

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Corollary 1. The knowledge base Q0 maintained by Algo-
rithm 1 is correct with respect to specification ®.

Finally, the soundness and completeness of our algorithm
follow from Theorem 4.8 and Corollary 1:

Theorem 5.5. (Soundness) If Algorithm 1 returns P as a
solution to the synthesis problem defined by G, ¥, ®, then P
satisfies specification ® with respect to DSL semantics V.

Theorem 5.6. (Completeness) If Algorithm 1 returns L as
a solution to the synthesis problem defined by G, ¥, ®, then
there is no DSL program that satisfies ® with respect to DSL
semantics V.

6 Implementation

We have implemented our conflict-driven synthesis frame-
work in a tool called NEO, written in Java. NEO uses the
SAT4] [4] SAT solver to implement DECIDE and PROPAGATE
and employs the Z3 [6] SMT solver to check for conflicts.

Decide. As explained in Section 4.3, NEO uses a combination
of logical and statistical reasoning to identify which hole to
fill and how to fill it. However, our implementation of DECIDE
differs from Algorithm 2 in that we do not issue a full SAT
query to determine whether the decision is consistent with
the knowledge base. Since checking satisfiability for each
combination of holes and components is potentially very ex-
pensive, our implementation of DECIDE over-approximates
satisfiability through unit propagation. ® In particular, we
consider an assignment to be feasible if applying unit propa-
gation to the corresponding SAT formula does not result in
a contradiction. Note that replacing a full SAT query with
unit propagation does not affect the soundness or complete-
ness of our approach. In particular, the algorithm may end
up detecting conflicts later than if it were using a full SAT
query, but it also reduces overhead without affecting any
soundness and completeness guarantees.

Since there are many possible assignments that do not
contradict the knowledge base, NEO uses a statistical model
to identify the “most promising” one. Our current implemen-
tation supports two different statistical models, namely a 2-
gram model (as used in MorPHEUS [8]) as well as a deep neu-
ral network model (as described in DEEPCODER [3]). While
the 2-gram model only considers the current partial program
to make predictions, the deep neural network model consid-
ers both the specification and the current partial program.

Propagate. As described in Section 4.4, the goal of propa-
gation is to identify additional assignments implied by the
knowledge base. We identify such assignments by perform-
ing unit propagation on the corresponding SAT formula.

8Unit propagation (also known as Boolean constraint propagation) ap-
plies unit resolution to a fixed point. In particular, unit resolution de-
rives the clause {xy, . . ., x5 } from the unit clause {/} and another clause

(=L x1, ..., xn}.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

CheckConflict. Our implementation of CHECKCONFLICT
follows Algorithm 4 and uses Z3 to query the satisfiability of
the corresponding SMT formula [6]. Given an unsatisfiable
formula ¢, we also use Z3 to obtain an unsatisfiable core and
post-process it as described in Section 4.5. The unsatisfiable
core returned by Z3 is not guaranteed to be minimal. We do
not minimize the unsatisfiable core since this procedure can
be time consuming, but in practice we have observed that
the unsatisfiable cores returned by Z3 are often minimal.

Our implementation of CHECKCONFLICT performs an addi-
tional optimization over Algorithm 4: Since different partial
programs may share the same SMT specification, Algorithm 4
ends up querying the satisfiability of the same SMT formula
multiple times. Thus, our implementation memoizes the re-
sult of each SMT call to avoid redundant Z3 queries.

AnalyzeConflict. Our implementation of ANALYZECONFLICT
performs two additional optimizations over the algorithm
presented in Section 5. First, our implementation does not
keep all learnt lemmas in the knowledge base. In particu-
lar, since the efficiency of DECIDE and PROPAGATE is sensi-
tive to the size of the knowledge base, our implementation
uses heuristics to identify likely-not-useful lemmas and pe-
riodically removes them from the knowledge base. Second,
our implementation performs an optimization to facilitate
the computation of components that are equivalent mod-
ulo conflict. Specifically, we maintain a mapping from each
subformula ¢ occurring in a component specification to all
components xi,. .., x, such that ¥(y;) = ¢. This off-line
computation allows us to replace an SMT query with a map
lookup in most cases.

Backtracking. Similar to CDCL-based SAT solvers, NEo
can perform non-chronological backtracking by analyzing the
lemma obtained from ANALYZECONFLICT. Specifically, sup-
pose that the learnt lemma refers to components yi, . . ., Yn,
where each y; was chosen at decision level d;. Our implemen-
tation adopts the standard SAT solver heuristic of backtrack-
ing to the second highest decision level among all d;’s. This
strategy often results in non-chronological backtracking and
causes the algorithm to undo multiple assignments at the
same time.

Instantiating Neo in new domains. As a general synthe-
sis framework, NEO can be instantiated in new domains
by providing a suitable DSL and the corresponding speci-
fications of each DSL construct. As mentioned previously,
these specifications need not be precise and typically under-
specify the constructs’ functionality to achieve a good trade-
off between performance overhead and pruning of the search
space.

We have currently implemented two instantiations of NEo,
one of which targets data wrangling tasks in R and the other
of which targets list manipulations in a functional para-
digm. For both domains, our specifications are expressed

429

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

in quantifier-free Presburger arithmetic. More specifically,
for the data wrangling domain, we use the same DSL and
the same specifications considered in prior work [8]. For
the list manipulation domain, we use the same DSL as in
prior work [3] but write our own specification since they
are not available in the DeepCoder setting [3]. In particular,
our specifications capture the size of the list, the values of
its first and last elements, and the minimum and maximum
elements of the list.

Our experience indicates that it does not require much
manual effort to instantiate NEo in new domains. For exam-
ple, it took us less than one day to instantiate NEoO in each
of the two domains mentioned earlier.

7 Evaluation

We evaluated NEo by conducting three experiments that are
designed to answer the following questions:
Q1. How does NEO compare against state-of-the-art syn-
thesis tools?
Q2. How significant is the benefit of conflict-driven learn-
ing in program synthesis?

To answer these questions, we instantiated Neo on two dif-
ferent domains explored in prior work, namely (i) data wran-
gling in R and (ii) functional programming over lists. Specif-
ically, to compare NEO against existing tools, we adopted
the DSL used in MorpHEUS [8] for domain (i) and the lan-
guage used in DEEPCODER [3] for (ii). All of the experiments
discussed in this section are conducted on an Intel Xeon(R)
computer with an E5-2640 v3 CPU and 32G of memory, run-
ning the Ubuntu 16.04 operating system and using a timeout
of 5 minutes.

7.1 Comparison against Morpheus

In our first experiment, we compare NEO against MORPHE-
Us [8], a state-of-the-art synthesis tool that automates data
wrangling tasks in R. While NEo is similar to MORPHEUS
in that both techniques use deduction to prune the search
space, MORPHEUS uses several domain-specific heuristics that
specifically target table transformations (e.g., “table-driven
type inhabitation”). In contrast, NEo does not use any such
domain-specific heuristics and directly applies the general-
purpose synthesis algorithm presented in Section 4. To allow
a fair comparison between the tools, we instantiate Neo with
the same set of R library methods used by MoRPHEUS as well
as the same component specifications. Furthermore, since
MORPHEUS uses a 2-gram model to prioritize its search, we
also use the same statistical model in NEO’s DECIDE compo-
nent. As in MORPHEUS, we train the 2-gram model on 15,000
code snippets collected from Stackoverflow.

Benchmark selection. We compare NEO against MORPHEUS
on a data set consisting of 50 challenging data wrangling
tasks. Out of these 50 benchmarks, 30 correspond to the
most difficult benchmarks used for evaluating MORPHEUS,

Program Synthesis using Conflict-Driven Learning

2,500 : ‘
MORPHEUS
2,000 | . NEo
1,500
g
£ 1,000
500
0
| | |
0 10 20 30 40 50
#Benchmarks

Figure 6. Comparison between NEo and MORPHEUS

B#baseline ! 1 m1N 8 deduce B8 learn

Percentage

Figure 7. Impact of each component for data wrangling

where difficulty is measured in terms of synthesis time.
We also include 20 additional benchmarks collected from
Stackoverflow posts. To ensure that these benchmarks are
sufficiently challenging, we consider only those posts where
(a) the desired program is included in an answer, and (b) this
program contains more than 12 AST nodes and at least four
higher-order components.

Results. The results of our first experiment are summarized
in Figure 6, which plots cumulative synthesis time (the y-
axis) against the number of benchmarks solved (the x-axis).
As we can see from this figure, NEo significantly outperforms
MorrPHEUS both in terms of synthesis time as well as the
number of benchmarks solved within the 5 minute time limit.
In particular, NEO can solve 90% of these benchmarks with
an average running time of 19 seconds, whereas MORPHEUS
solves 64% with an average running time of 68 seconds. These
results indicate that our proposed synthesis methodology
is able to outperform a domain-specific synthesis tool that
specifically targets data wrangling tasks.

9The performance of NEo and MORPHEUS is very similar on the 20 easy
benchmarks from the MorPHEUS data set. Specifically, both tools can syn-
thesize all of these benchmarks in under 4 seconds.

430

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

7,000
6,000 -
5,000
4,000 -
3,000
2,000
1,000 -

0

DEePCODER
—»— NEO

Time

10 20 30 40 50 60
#Benchmarks

70 80

Figure 8. Comparison between NEo and DEEPCODER

BB baseline I 1 m18 ¥ deduce BB learn

100

Percentage

Figure 9. Impact of components for list manipulation

Impact of different components. Figure 7 evaluates the
impact of different components in NEo on the data wrangling
benchmarks. In particular, we compare the number of bench-
marks solved by Neo with four variants: “baseline”, “ml”,
“deduce” and “learn”. The “baseline” variant uses a depth-
first search with a random decider and only solves 10% of
the benchmarks. The “ml” variant uses as decider the 2-gram
model from MorPHEUS, which further improves the number
of solved benchmarks to 20%. The “deduce” variant signif-
icantly improves the number of solved benchmarks from
20% to 70% by combining statistical reasoning and deduction.
Finally, NEO achieves its best performance and can solve 90%
of the benchmarks by combining all of these ingredients.

7.2 Comparison against DeepCoder

In our second experiment, we compare NEO against a re-
implementation of DEEPCODER, which is a state-of-the-art
synthesis tool that uses deep learning to guide search [3]. '
Because DEEPCODER specializes in functional programs that
manipulate lists, we instantiated NEo on the same domain,
using the same DSL constructs as DEEPCODER. However,

1¥We implemented our own version of DEEPCODER since the tool is not
publicly available. Our re-implementation is faithful to the description in [3]
as well as e-mail communications with the developers of DEEPCODER.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

2,500 :
Neo'
2,000 NEO =
1,500 =
g
& 1,000 |- -
500 - *
0 HHHHKKHKRK KK |
| | | | |
0 10 20 30 40 50
#Benchmarks

Figure 10. Impact of learning in data wrangling domain

since DEEPCODER does not utilize component specifications
to prune the search space, we additionally wrote first-order
specifications for each DSL construct. To allow a fair compar-
ison between the tools, we also use the same deep neural net-
work model used in DEEPCODER. In particular, DEEPCODER
predicts the likelihood that y is the right DSL operator based
on the given input-output example. As in [3], we trained our
deep neural network model on 1,000,000 randomly generated
programs and their corresponding input-output examples.

Benchmark selection. Since the benchmarks used for eval-
uating DEEPCODER are also not publicly available, we gen-
erate 100 benchmarks following the same methodology de-
scribed in [3]. Specifically, we enumerate DSL programs with
at least 5 components and randomly generate inputs and the
corresponding output. This procedure is repeated for a fixed
number of times until we either obtain 5 valid input-output
examples or no examples have been found within the iter-
ation limit. In the latter case, we restart this process and
randomly search for a different program.

Results. The results of this experiment are summarized in
Figure 8, which also plots running time against the number
of solved benchmarks. As we can see from Figure 8, NEo
outperforms DEEPCODER in terms of running time and the
number of benchmarks solved within the 5 minute time limit.
In particular, NEO can solve 71% of these benchmarks with an
average running time of 99 seconds. In contrast, DEEPCODER
solves 32% of the benchmarks with an average running time
of 205 seconds.

Impact of different components. Figure 9 compares the
percentage of benchmarks solved by Neo with four variants
(“baseline”, “ml”, “deduce” and “learn”). The “baseline” vari-
ant which uses a depth-first search enumeration can only
solve 22% of the benchmarks. The “ml” variant uses a neu-
ral network decider and increases the percentage of solved
benchmarks to 32%. Combining statistical model and deduc-
tion (“deduce”) further improves the performance of NEo to

431

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

10,000 : :
9,000 NEOT -
8000 | . o
7.000
6,000
5,000
4,000
3,000
2,000
1,000

O - -
| | | | | | | |

0 10 20 30 40 50 60 70
#Benchmarks

Time

Figure 11. Impact of learning for the list domain

solve 56% of the benchmarks. Finally, NEo can solve 71% of
the benchmarks when we combine all of these ingredients.

7.3 Benefit of Conflict-driven Learning

In our third experiment, we further evaluate the benefit of
conflict-driven learning by comparing NEo against NEo',
which is a version of Neo that does not perform conflict
analysis. In other words, Neo' is the same as NEo except
that it does not invoke the ANALYZECONFLICT procedure and
does not add lemmas to the knowledge base (beyond blocking
the current assignment). To ensure that NEo does not incur
unnecessary overhead, we also modify the CHECKCONFLICT
procedure to give a yes/no answer rather than producing a
minimal unsatisfiable core.

The results of this experiment are summarized in Fig-
ures 10 and 11. Specifically, Figure 10 compares NEo against
NEo' on the data wrangling benchmarks from Section 7.1,
whereas Figure 11 shows the same comparison for the list
manipulation benchmarks used in Section 7.2. As we can see
from these figures, learning has a very significant positive
impact on the overall performance of NEo. Specifically, in the
data wrangling domain, NEo™ times out on 30% of the bench-
marks and its average running time is 38 seconds. On the
other hand, NEo only times out on 10% of the benchmarks
while maintaining an average running time of 19 seconds. As
shown in Figure 11, the effect of learning is even more sub-
stantial in the list manipulation domain. Specifically, Neo'
times out on 44% of the benchmarks and its average running
time is 199 seconds. In contrast, NEo only times out on 29%
of the benchmarks and has an average running time of 99
seconds.

Discussion. To evaluate the impact of conflict-driven learn-
ing on scalability, we classify our data wrangling tasks into
three categories (i.e., “easy”, “moderate”, and “hard”) depend-
ing on the complexity of the target program. While NEo is
2.7x faster than NEo' on “easy” benchmarks, NEo outper-

forms NEo' by 5.7x on the medium category. For benchmarks

Program Synthesis using Conflict-Driven Learning

NEo Speedup
Benchmark Min Avg Max
Data Wrangling | 28 55 17.6
Lists 1.6 40 148

Table 2. Impact of learning

in the “hard” category, NEo is 19.8x faster than NEo' on av-
erage. ' Also, to further evaluate the impact of learning on
hard benchmarks, we conduct an additional experiment on
exactly those problems that are solved by NEo but not by
NEeo' within the 5 minute time-limit. For these 25 bench-
marks, we re-run Neo' with a much longer time limit of one
hour. Table 2 shows the impact of learning on these harder
benchmarks. Specifically, NEo has an average speedup of
5.5x and 4.0x on the MorPHEUS and DEEPCODER benchmarks
respectively. The maximum speedup is 17.6x for the data
wrangling domain and 14.8x for the list manipulation pro-
grams. For example, NEo! takes around 45 minutes to solve a
benchmark that can be solved by NEo in less than 3 minutes.

8 Limitations

In this section, we discuss some of the limitations of the pro-
posed approach. First, because our method does not reason
about termination, NEo does not currently support synthe-
sizing recursive programs. Second, even though NEo is a
generic framework that can be instantiated in different do-
mains, it is likely to be more effective when synthesizing
functional programs that can be expressed as a composition
of library methods. Third, the effectiveness of our technique
depends on the quality of the specifications. For example, if
the specifications are too detailed, they might significantly
increase SMT solving overhead without providing additional
benefit. On the other extreme, if the specifications are very
coarse-grained, NEO may not be able to make useful deduc-
tions and learn from conflicts. Overall, we believe that NEo
is likely to be more effective in domains where the DSL in-
cludes many related components and the specifications of
these components expose their shared functionality.

9 Related Work

Program synthesis is an active research topic that has found
many applications, including string processing [13, 26] bit-
vector manipulations [16], data wrangling [8, 37], query syn-
thesis [36, 40, 42], API completion [9, 15, 17], functional
programming [10, 22, 23], and data processing [28, 39]. In
what follows, we discuss prior work that is most closely
related to our proposed approach.

Logical reasoning in program synthesis. The technique
proposed in this paper leverages logical specifications of DSL
constructs to enable conflict-driven learning. While we are

1'We did not perform the same comparison for the list domain since all
benchmarks have similar complexity.

432

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

not aware of prior work that learns useful lemmas from con-
flicts, there are many prior techniques that leverage logical
specifications to aid synthesis. In particular, synthesis algo-
rithms that use specifications can be grouped along two axes:
(a) whether they require exact vs. approximate specifications,
and (b) whether they use specifications to guide search or
completely reduce synthesis to constraint solving.

There are several techniques that formulate synthesis as
a constraint solving problem [12, 14, 16, 34]. For example,
Brahma [16] uses component specifications to generate an
3V formula such that any satisfying assignment to this for-
mula is a solution to the synthesis problem. More recent work
such as Synubpic [12] also reduces synthesis to constraint
solving, but uses the abstract semantics of components to
simplify the resulting constraint-solving problem.

An alternative approach is to formulate synthesis as a
search —rather than constraint-solving— problem and use
logical specifications to prune the search space [8, 10, 23].
For example, SYNQUID uses liquid type specifications to avoid
the exploration of some program terms. Other tools, such as
A% [10] and MorpHEUS [8], similarly use logical reasoning to
prune the search space but allow these specifications to be
over-approximate. Neo differs from all prior techniques in
that it leverages logical specifications to infer useful lemmas
that prevent the exploration of spurious programs that are
semantically similar to previously encountered ones.

Another work that is closely related to NEo is BLAZE [38],
which performs program synthesis using counterexample-
guided abstraction refinement. Similar to our approach, BLAZE
prunes its search space also by using a form of deductive
reasoning. However, a key difference is that BLAZE uses ab-
stract interpretation to enumerate only those programs that
satisfy the specification with respect to a given abstract se-
mantics. In contrast, NEO uses automated theorem proving
(i.e., SAT and SMT) to prune partial programs that have no
feasible completion. Furthermore, while both approaches
perform some form of learning, BLAZE learns a new abstract
domain during refinement, whereas NEeo directly learns in-
feasible partial programs. We believe that NEo has two main
advantages over BLAZE: First, NEO does not require a domain
expert to provide an abstract domain in the form of predicate
templates. Second, NEo can handle higher-order constructs
more naturally and efficiently compared to BLAZE.

Comparison to CEGIS. Counterexample-guided inductive
synthesis (CEGIS) is a popular framework for synthesizing
programs that satisfy a given specification @ [2, 29, 30]. The
key idea underlying CEGIS is to decompose the problem
into separate synthesis and verification steps. Specifically, the
synthesizer proposes a candidate program P that is consis-
tent with a given set of examples, and the verifier checks
whether P actually satisfies . If this is not the case, then the
verifier provides the synthesizer with a counterexample. Our
baseline synthesis algorithm (i.e., without learning) can be

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

roughly formulated in the CEGIS framework. At each step,
the synthesizer (i.e., DECIDE) proposes a partial program P.
Then, the verifier (i.e., DEDUCE) checks whether there is any
completion of P that can satisfy ®. If not, it provides coun-
terexample (i.e., an UNSAT core 7). Thus, our work can be
thought of as extending CEGIS to incorporate learning. In
particular, the baseline algorithm does not learn any addi-
tional information from a counter-example 7 reported by
the verifier (other than the trivial fact that r is unsatisfiable).
In contrast, given a MUC reported by our verifier, ANALYZE-
CoONFLICT learns new lemmas that typically rule out many
additional programs.

Machine learning for synthesis. The work combining ma-
chine learning with program synthesis has roughly followed
two paths. The first approach uses neural networks (or “neu-
ral programmers”) to directly generate programs [20, 21].
This line of work is inspired by sequence-to-sequence mod-
els in machine translation, where one neural network (the
“encoder”) encodes an input phrase in the source language
(e.g., English) into a vector, and a second neural network (the
“decoder”) decodes this vector into a phrase in the target
language (e.g., French) [33]. The neural programmer follows
the same paradigm, where the “source language” is the spec-
ification (e.g., examples or natural language), and the “target
language” is the programming language (e.g., SQL).

The second approach, which is the one we adopt, incor-
porates statistical knowledge to guide a symbolic program
synthesizer. These approaches train a statistical model to
predict the most promising program to explore next. For
instance, Menon et al. use a log-linear model to predict the
most likely DSL operator based on features of the input-
output example [19], and DEEPCODER uses a deep neural
network to learn features that can be used to make such
predictions [3]. Alternatively, Raychev et el. use an n-gram
model, trained on a large database of code, to predict the
most likely completion of a hole based on its ancestors in the
AST [25]. Later work by Raychev et al. extends this approach
to the case of program synthesis with noisy input-output
examples [24], and Feng et al. use a similar n-gram model
for synthesizing table transformations [8]. Similar to all of
these techniques, NEo also uses a statistical model to predict
the most likely completion of a hole during its DECIDE step
but also takes into account the “hard constraints” encoded
in its knowledge base.

Conflict-driven learning. Our proposed synthesis frame-
work is directly inspired by the success of CDCL-style SAT
and SMT solvers [5, 11, 18, 41]. Given a partial assignment
that results in a conflict, the idea is to learn a so-called con-
flict clause that prevents similar conflicts in the future. While
the architecture of our synthesis algorithm is (intentionally)
very similar to CDCL-style SAT solvers, the mechanisms
used for learning these conflict clauses are very different.
In particular, SAT solvers typically learn a conflict clause

433

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

by constructing an implication graph that describes which
assignments lead to which other assignments as a result of
unit propagation. Given such an implication graph, a conflict
clause is inferred by performing resolution between clauses
that contribute to the conflict. In contrast, our method learns
“contlict clauses” (i.e., lemmas) by identifying DSL constructs
that are equivalent modulo conflict. Our method also dif-
fers from CDCL-style constraint solvers in the way it makes
decisions and performs deduction. In particular, we use a
statistical model to make assignments and detect conflicts
by issuing an SMT query.

10 Conclusion and Future Work

We have presented a new synthesis framework based on
the idea of conflict-driven learning. Given a spurious partial
program that violates the specification, the idea is to infer
a lemma that can be used to prevent similar mistakes in
the future. Our synthesis algorithm infers these lemmas by
identifying DSL constructs that are equivalent modulo con-
flict, meaning that replacing one component with the other
results in an another infeasible program.

We have implemented these ideas in a synthesis frame-
work called NEo and instantiated NEo for two different ap-
plication domains, namely data wrangling and list manipula-
tion. NEo is publicly available [7] and can be instantiated in
other application domains by providing a suitable DSL and
its specification.

We have evaluated NEo on 130 benchmarks that pertain to
data wrangling and list transformation tasks. Our evaluation
shows that NEo outperforms state-of-the art synthesis tools,
namely MorrPHEUS and DEEPCODER, that specialize in these
two domains respectively. Our experiments also demonstrate
that conflict-driven learning substantially improves the ca-
pabilities of the synthesizer.

In future work, we are interested in instantiating NEo in
more application domains. Since conflict-driven learning is
particularly helpful in domains that involve a large number
of components, we plan to use NEo to synthesize programs
that require the use of many different libraries.

Acknowledgments

We thank Thomas Dillig, Navid Yaghmazadeh, Xinyu Wang,
Yuepeng Wang, Jiayi Wei, and Jia Chen for their insight-
ful comments. We would also like to thank our shepherd
Ben Zorn, and the anonymous reviewers for their helpful
feedback.

This work was supported in part by NSF Award #1453386,
#1162076, #1762299, AFRL Awards #8750-14-2-0270, and a
Google Fellowship. The views, opinions, and findings con-
tained in this paper are those of the authors and should not
be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

Program Synthesis using Conflict-Driven Learning

References

(1]

(10]

(11]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recur-
sive Program Synthesis. In Proc. International Conference on Computer
Aided Verification. Springer, 934-950.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis.
In Proc. Formal Methods in Computer-Aided Design. IEEE, 1-8.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. Deepcoder: Learning to write
programs. In Proc. International Conference on Learning Representa-
tions. OpenReview.

Daniel Le Berre and Anne Parrain. 2010. The Sat4;j library, release
2.2. Journal on Satisfiability, Boolean Modeling and Computation (2010),
59-6.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2009.
Conflict-driven clause learning SAT solvers. Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications (2009), 131-153.
Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT
solver. In Proc. Tools and Algorithms for Construction and Analysis of
Systems. Springer, 337-340.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Neo.
http://utopia-group.github.io/neo/.

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based synthesis of table consolidation
and transformation tasks from examples. In Proc. Conference on Pro-
gramming Language Design and Implementation. ACM, 422-436.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas Reps.
2017. Component-Based Synthesis for Complex APIs. In Proc. Sympo-
sium on Principles of Programming Languages. ACM, 599-612.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesiz-
ing Data Structure Transformations from Input-output Examples. In
Proc. Conference on Programming Language Design and Implementation.
ACM,, 229-239.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliv-
eras, and Cesare Tinelli. 2004. DPLL(T): Fast Decision Procedures. In
Proc. International Conference on Computer Aided Verification. Springer,
175-188.

Adria Gascon, Ashish Tiwari, Brent Carmer, and Umang Mathur. 2017.
Look for the Proof to Find the Program: Decorated-Component-Based
Program Synthesis. In Proc. International Conference on Computer Aided
Verification. Springer, 86-103.

Sumit Gulwani. 2011. Automating string processing in spreadsheets
using input-output examples. In Proc. Symposium on Principles of Pro-
gramming Languages. ACM, 317-330.

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. 2011. Synthesis of loop-free programs. In Proc. Conference on
Programming Language Design and Implementation. ACM, 62-73.
Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013.
Complete completion using types and weights. In Proc. Conference on
Programming Language Design and Implementation. ACM, 27-38.
Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.
Oracle-guided component-based program synthesis. In Proc. Interna-
tional Conference on Software Engineering. ACM/IEEE, 215-224.
David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. 2005.
Jungloid mining: helping to navigate the API jungle. In Proc. Conference
on Programming Language Design and Implementation. ACM, 48-61.
Joao Marques-Silva and Karem A. Sakallah. 1999. GRASP: A Search
Algorithm for Propositional Satisfiability. IEEE Trans. Computers 48, 5
(1999), 506-521.

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and
Adam Kalai. 2013. A machine learning framework for programming
by example. In Proc. International Conference on Machine Learning.
Proceedings of Machine Learning Research, 187-195.

434

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Arvind Neelakantan, Quoc V Le, Martin Abadi, Andrew McCallum,
and Dario Amodei. 2017. Learning a natural language interface with
neural programmer. In Proc. International Conference on Learning Rep-
resentations. OpenReview.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. 2016. Neural
programmer: Inducing latent programs with gradient descent. In Proc.
International Conference on Learning Representations. OpenReview.
Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed program synthesis. In Proc. Conference on Programming Lan-
guage Design and Implementation. ACM, 619-630.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram synthesis from polymorphic refinement types. Proc. Conference
on Programming Language Design and Implementation (2016), 522-538.
Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause.
2016. Learning programs from noisy data. In Proc. Symposium on
Principles of Programming Languages. ACM, 761-774.

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code comple-
tion with statistical language models. In Proc. Conference on Program-
ming Language Design and Implementation. ACM, 419-428.

Rishabh Singh. 2016. Blinkfill: Semi-supervised programming by ex-
ample for syntactic string transformations. Proceedings of the VLDB
Endowment 9, 10 (2016), 816-827.

Rishabh Singh and Sumit Gulwani. 2016. Transforming spreadsheet
data types using examples. In Proc. Symposium on Principles of Pro-
gramming Languages. ACM, 343-356.

Calvin Smith and Aws Albarghouthi. 2016. MapReduce program syn-
thesis. In Proc. Conference on Programming Language Design and Im-
plementation. ACM, 326-340.

Armando Solar-Lezama. 2008. Program synthesis by sketching. Univer-
sity of California, Berkeley.

Armando Solar-Lezama. 2009. The Sketching Approach to Program
Synthesis.. In Proc. Asian Symposium on Programming Languages and
Systems. Springer, 4-13.

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodik, and Ke-
mal Ebcioglu. 2005. Programming by sketching for bit-streaming
programs. In Proc. Conference on Programming Language Design and
Implementation. ACM, 281-294.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. 2006. Combinatorial Sketching for Finite Pro-
grams. In Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 404-415.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to
sequence learning with neural networks. In Advances in Neural Infor-
mation Processing Systems. 3104-3112.

Ashish Tiwari, Adria Gascon, and Bruno Dutertre. 2015. Program
synthesis using dual interpretation. In Proc. International Conference
on Automated Deduction. Springer, 482-497.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-
Haim, Milo MK Martin, and Rajeev Alur. 2013. TRANSIT: specifying
protocols with concolic snippets. Proc. Conference on Programming
Language Design and Implementation (2013), 287-296.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthe-
sizing highly expressive SQL queries from input-output examples. In
Proc. Conference on Programming Language Design and Implementation.
ACM, 452-466.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Synthesis of Data
Completion Scripts using Finite Tree Automata. In Proc. International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications. ACM, 62:1-62:26.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2018. Program Synthesis
using Abstraction Refinement. In Proc. Symposium on Principles of
Programming Languages. ACM, 63:1-63:30.

Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaud-
huri. 2016. Synthesizing transformations on hierarchically structured

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

(40]

[41

—

data. In Proc. Conference on Programming Language Design and Imple-
mentation. ACM, 508-521.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.
2017. SQLizer: Query Synthesis from Natural Language. In Proc. In-
ternational Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications. ACM, 63:1-63:26.

Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. 2001. Efficient Conflict Driven Learning in Boolean Satisfiability

435

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig

Solver. In Proc. of International Conference on Computer-Aided Design.
IEEE Computer Society, 279-285.

[42] Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing sql queries
from input-output examples. In Proc. International Conference on Auto-
mated Software Engineering. IEEE, 224-234.

